edsl 0.1.38.dev2__py3-none-any.whl → 0.1.38.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (248) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -49
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +858 -858
  7. edsl/agents/AgentList.py +362 -362
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +284 -284
  10. edsl/agents/PromptConstructor.py +353 -353
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -279
  26. edsl/config.py +149 -149
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -58
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +961 -961
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +530 -530
  37. edsl/data/CacheEntry.py +228 -228
  38. edsl/data/CacheHandler.py +149 -149
  39. edsl/data/RemoteCacheSync.py +97 -97
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -4
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -73
  44. edsl/enums.py +173 -173
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -42
  48. edsl/exceptions/cache.py +5 -5
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -91
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -22
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -87
  61. edsl/inference_services/AwsBedrock.py +120 -120
  62. edsl/inference_services/AzureAI.py +217 -217
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +156 -156
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -147
  67. edsl/inference_services/InferenceServicesCollection.py +97 -97
  68. edsl/inference_services/MistralAIService.py +123 -123
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -224
  71. edsl/inference_services/TestService.py +89 -89
  72. edsl/inference_services/TogetherAIService.py +170 -170
  73. edsl/inference_services/models_available_cache.py +118 -118
  74. edsl/inference_services/rate_limits_cache.py +25 -25
  75. edsl/inference_services/registry.py +39 -39
  76. edsl/inference_services/write_available.py +10 -10
  77. edsl/jobs/Answers.py +56 -56
  78. edsl/jobs/Jobs.py +1358 -1358
  79. edsl/jobs/__init__.py +1 -1
  80. edsl/jobs/buckets/BucketCollection.py +63 -63
  81. edsl/jobs/buckets/ModelBuckets.py +65 -65
  82. edsl/jobs/buckets/TokenBucket.py +251 -251
  83. edsl/jobs/interviews/Interview.py +661 -661
  84. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  85. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  86. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  87. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  88. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  89. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  90. edsl/jobs/interviews/ReportErrors.py +66 -66
  91. edsl/jobs/interviews/interview_status_enum.py +9 -9
  92. edsl/jobs/runners/JobsRunnerAsyncio.py +361 -361
  93. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  94. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  95. edsl/jobs/tasks/TaskCreators.py +64 -64
  96. edsl/jobs/tasks/TaskHistory.py +451 -451
  97. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  98. edsl/jobs/tasks/task_status_enum.py +163 -163
  99. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  100. edsl/jobs/tokens/TokenUsage.py +34 -34
  101. edsl/language_models/KeyLookup.py +30 -30
  102. edsl/language_models/LanguageModel.py +708 -708
  103. edsl/language_models/ModelList.py +109 -109
  104. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  105. edsl/language_models/__init__.py +3 -3
  106. edsl/language_models/fake_openai_call.py +15 -15
  107. edsl/language_models/fake_openai_service.py +61 -61
  108. edsl/language_models/registry.py +137 -137
  109. edsl/language_models/repair.py +156 -156
  110. edsl/language_models/unused/ReplicateBase.py +83 -83
  111. edsl/language_models/utilities.py +64 -64
  112. edsl/notebooks/Notebook.py +258 -258
  113. edsl/notebooks/__init__.py +1 -1
  114. edsl/prompts/Prompt.py +357 -357
  115. edsl/prompts/__init__.py +2 -2
  116. edsl/questions/AnswerValidatorMixin.py +289 -289
  117. edsl/questions/QuestionBase.py +660 -660
  118. edsl/questions/QuestionBaseGenMixin.py +161 -161
  119. edsl/questions/QuestionBasePromptsMixin.py +217 -217
  120. edsl/questions/QuestionBudget.py +227 -227
  121. edsl/questions/QuestionCheckBox.py +359 -359
  122. edsl/questions/QuestionExtract.py +183 -183
  123. edsl/questions/QuestionFreeText.py +114 -114
  124. edsl/questions/QuestionFunctional.py +166 -166
  125. edsl/questions/QuestionList.py +231 -231
  126. edsl/questions/QuestionMultipleChoice.py +286 -286
  127. edsl/questions/QuestionNumerical.py +153 -153
  128. edsl/questions/QuestionRank.py +324 -324
  129. edsl/questions/Quick.py +41 -41
  130. edsl/questions/RegisterQuestionsMeta.py +71 -71
  131. edsl/questions/ResponseValidatorABC.py +174 -174
  132. edsl/questions/SimpleAskMixin.py +73 -73
  133. edsl/questions/__init__.py +26 -26
  134. edsl/questions/compose_questions.py +98 -98
  135. edsl/questions/decorators.py +21 -21
  136. edsl/questions/derived/QuestionLikertFive.py +76 -76
  137. edsl/questions/derived/QuestionLinearScale.py +87 -87
  138. edsl/questions/derived/QuestionTopK.py +93 -93
  139. edsl/questions/derived/QuestionYesNo.py +82 -82
  140. edsl/questions/descriptors.py +413 -413
  141. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  142. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  143. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  144. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  145. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  146. edsl/questions/prompt_templates/question_list.jinja +17 -17
  147. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  148. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  149. edsl/questions/question_registry.py +147 -147
  150. edsl/questions/settings.py +12 -12
  151. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  152. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  153. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  154. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  155. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  157. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  158. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  159. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  160. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  161. edsl/questions/templates/list/question_presentation.jinja +5 -5
  162. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  163. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  164. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  165. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  166. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  167. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  168. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  169. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  170. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  171. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  172. edsl/results/Dataset.py +293 -293
  173. edsl/results/DatasetExportMixin.py +717 -717
  174. edsl/results/DatasetTree.py +145 -145
  175. edsl/results/Result.py +456 -456
  176. edsl/results/Results.py +1071 -1071
  177. edsl/results/ResultsDBMixin.py +238 -238
  178. edsl/results/ResultsExportMixin.py +43 -43
  179. edsl/results/ResultsFetchMixin.py +33 -33
  180. edsl/results/ResultsGGMixin.py +121 -121
  181. edsl/results/ResultsToolsMixin.py +98 -98
  182. edsl/results/Selector.py +135 -135
  183. edsl/results/__init__.py +2 -2
  184. edsl/results/tree_explore.py +115 -115
  185. edsl/scenarios/FileStore.py +458 -458
  186. edsl/scenarios/Scenario.py +544 -544
  187. edsl/scenarios/ScenarioHtmlMixin.py +64 -64
  188. edsl/scenarios/ScenarioList.py +1112 -1112
  189. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  190. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  191. edsl/scenarios/__init__.py +4 -4
  192. edsl/shared.py +1 -1
  193. edsl/study/ObjectEntry.py +173 -173
  194. edsl/study/ProofOfWork.py +113 -113
  195. edsl/study/SnapShot.py +80 -80
  196. edsl/study/Study.py +528 -528
  197. edsl/study/__init__.py +4 -4
  198. edsl/surveys/DAG.py +148 -148
  199. edsl/surveys/Memory.py +31 -31
  200. edsl/surveys/MemoryPlan.py +244 -244
  201. edsl/surveys/Rule.py +326 -326
  202. edsl/surveys/RuleCollection.py +387 -387
  203. edsl/surveys/Survey.py +1787 -1787
  204. edsl/surveys/SurveyCSS.py +261 -261
  205. edsl/surveys/SurveyExportMixin.py +259 -259
  206. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  207. edsl/surveys/SurveyQualtricsImport.py +284 -284
  208. edsl/surveys/__init__.py +3 -3
  209. edsl/surveys/base.py +53 -53
  210. edsl/surveys/descriptors.py +56 -56
  211. edsl/surveys/instructions/ChangeInstruction.py +49 -49
  212. edsl/surveys/instructions/Instruction.py +53 -53
  213. edsl/surveys/instructions/InstructionCollection.py +77 -77
  214. edsl/templates/error_reporting/base.html +23 -23
  215. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  216. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  217. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  218. edsl/templates/error_reporting/interview_details.html +115 -115
  219. edsl/templates/error_reporting/interviews.html +9 -9
  220. edsl/templates/error_reporting/overview.html +4 -4
  221. edsl/templates/error_reporting/performance_plot.html +1 -1
  222. edsl/templates/error_reporting/report.css +73 -73
  223. edsl/templates/error_reporting/report.html +117 -117
  224. edsl/templates/error_reporting/report.js +25 -25
  225. edsl/tools/__init__.py +1 -1
  226. edsl/tools/clusters.py +192 -192
  227. edsl/tools/embeddings.py +27 -27
  228. edsl/tools/embeddings_plotting.py +118 -118
  229. edsl/tools/plotting.py +112 -112
  230. edsl/tools/summarize.py +18 -18
  231. edsl/utilities/SystemInfo.py +28 -28
  232. edsl/utilities/__init__.py +22 -22
  233. edsl/utilities/ast_utilities.py +25 -25
  234. edsl/utilities/data/Registry.py +6 -6
  235. edsl/utilities/data/__init__.py +1 -1
  236. edsl/utilities/data/scooter_results.json +1 -1
  237. edsl/utilities/decorators.py +77 -77
  238. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  239. edsl/utilities/interface.py +627 -627
  240. edsl/utilities/naming_utilities.py +263 -263
  241. edsl/utilities/repair_functions.py +28 -28
  242. edsl/utilities/restricted_python.py +70 -70
  243. edsl/utilities/utilities.py +409 -409
  244. {edsl-0.1.38.dev2.dist-info → edsl-0.1.38.dev3.dist-info}/LICENSE +21 -21
  245. {edsl-0.1.38.dev2.dist-info → edsl-0.1.38.dev3.dist-info}/METADATA +1 -1
  246. edsl-0.1.38.dev3.dist-info/RECORD +269 -0
  247. edsl-0.1.38.dev2.dist-info/RECORD +0 -269
  248. {edsl-0.1.38.dev2.dist-info → edsl-0.1.38.dev3.dist-info}/WHEEL +0 -0
@@ -1,73 +1,73 @@
1
- from dataclasses import dataclass
2
- from typing import List
3
- from textwrap import dedent
4
-
5
-
6
- from edsl import Scenario
7
- from edsl import Model
8
- from edsl.questions.QuestionList import QuestionList
9
-
10
- from edsl.auto.StageBase import StageBase
11
- from edsl.auto.StageBase import FlowDataBase
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StageQuestions(StageBase):
17
- "This stages takes as input an overall question and returns a list of questions"
18
-
19
- @dataclass
20
- class Input(FlowDataBase):
21
- overall_question: str
22
- population: str
23
-
24
- @dataclass
25
- class Output(FlowDataBase):
26
- questions: List[str]
27
- population: str
28
-
29
- input = Input
30
- output = Output
31
-
32
- def handle_data(self, data):
33
- m = Model()
34
- overall_question = data.overall_question
35
- population = data.population
36
- s = Scenario({"overall_question": overall_question, "population": population})
37
- q = QuestionList(
38
- question_text=dedent(
39
- """\
40
- Suppose I am interested in the question:
41
- "{{ overall_question }}"
42
- What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
- """
44
- ),
45
- question_name="questions",
46
- )
47
- results = q.by(s).by(m).run()
48
- (
49
- results.select("questions").print(
50
- pretty_labels={
51
- "answer.questions": f'Questions for overall question: "{overall_question }"'
52
- },
53
- split_at_dot=False,
54
- )
55
- )
56
-
57
- raw_questions = results.select("questions").first()
58
- questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
- return self.Output(questions=questions, population=population)
60
-
61
-
62
- if __name__ == "__main__":
63
- pipeline = gen_pipeline([StageQuestions])
64
-
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?",
68
- population="Consumers",
69
- )
70
- )
71
- StageQuestions.func(
72
- overall_question="Why aren't my students studying more?", population="Tech"
73
- )
1
+ from dataclasses import dataclass
2
+ from typing import List
3
+ from textwrap import dedent
4
+
5
+
6
+ from edsl import Scenario
7
+ from edsl import Model
8
+ from edsl.questions.QuestionList import QuestionList
9
+
10
+ from edsl.auto.StageBase import StageBase
11
+ from edsl.auto.StageBase import FlowDataBase
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StageQuestions(StageBase):
17
+ "This stages takes as input an overall question and returns a list of questions"
18
+
19
+ @dataclass
20
+ class Input(FlowDataBase):
21
+ overall_question: str
22
+ population: str
23
+
24
+ @dataclass
25
+ class Output(FlowDataBase):
26
+ questions: List[str]
27
+ population: str
28
+
29
+ input = Input
30
+ output = Output
31
+
32
+ def handle_data(self, data):
33
+ m = Model()
34
+ overall_question = data.overall_question
35
+ population = data.population
36
+ s = Scenario({"overall_question": overall_question, "population": population})
37
+ q = QuestionList(
38
+ question_text=dedent(
39
+ """\
40
+ Suppose I am interested in the question:
41
+ "{{ overall_question }}"
42
+ What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
+ """
44
+ ),
45
+ question_name="questions",
46
+ )
47
+ results = q.by(s).by(m).run()
48
+ (
49
+ results.select("questions").print(
50
+ pretty_labels={
51
+ "answer.questions": f'Questions for overall question: "{overall_question }"'
52
+ },
53
+ split_at_dot=False,
54
+ )
55
+ )
56
+
57
+ raw_questions = results.select("questions").first()
58
+ questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
+ return self.Output(questions=questions, population=population)
60
+
61
+
62
+ if __name__ == "__main__":
63
+ pipeline = gen_pipeline([StageQuestions])
64
+
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
68
+ population="Consumers",
69
+ )
70
+ )
71
+ StageQuestions.func(
72
+ overall_question="Why aren't my students studying more?", population="Tech"
73
+ )
@@ -1,21 +1,21 @@
1
- import random
2
- from typing import Dict, List, Any, TypeVar, Generator, Optional
3
-
4
- from textwrap import dedent
5
-
6
- # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
- from edsl import Model
8
- from edsl.agents.AgentList import AgentList
9
- from edsl.results.Results import Results
10
- from edsl import Agent
11
-
12
- from edsl import Scenario
13
- from edsl.surveys.Survey import Survey
14
-
15
- from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
- from edsl.questions.QuestionFreeText import QuestionFreeText
17
- from edsl.auto.utilities import gen_pipeline
18
- from edsl.utilities.naming_utilities import sanitize_string
19
-
20
-
21
- m = Model()
1
+ import random
2
+ from typing import Dict, List, Any, TypeVar, Generator, Optional
3
+
4
+ from textwrap import dedent
5
+
6
+ # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
+ from edsl import Model
8
+ from edsl.agents.AgentList import AgentList
9
+ from edsl.results.Results import Results
10
+ from edsl import Agent
11
+
12
+ from edsl import Scenario
13
+ from edsl.surveys.Survey import Survey
14
+
15
+ from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
+ from edsl.questions.QuestionFreeText import QuestionFreeText
17
+ from edsl.auto.utilities import gen_pipeline
18
+ from edsl.utilities.naming_utilities import sanitize_string
19
+
20
+
21
+ m = Model()
edsl/auto/utilities.py CHANGED
@@ -1,224 +1,224 @@
1
- from textwrap import dedent
2
- import random
3
- from typing import List, TypeVar, Generator, Optional
4
- from edsl.auto.StageBase import StageBase
5
- from edsl.utilities.naming_utilities import sanitize_string
6
- from edsl import Agent, Survey, Model, Cache, AgentList
7
- from edsl import QuestionFreeText, Scenario
8
- from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
-
10
- StageClassType = TypeVar("StageClassType", bound=StageBase)
11
-
12
-
13
- def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
- """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
- A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
-
17
- """
18
- pipeline = stages_list[0]()
19
- last_stage = pipeline
20
- for stage in stages_list[1:]:
21
- while last_stage.next_stage is not None: # find the end of the pipeline
22
- last_stage = last_stage.next_stage
23
- stage_to_add = stage()
24
- last_stage.next_stage = stage_to_add
25
- return pipeline
26
-
27
-
28
- q_eligibility = QuestionMultipleChoice(
29
- question_text=dedent(
30
- """\
31
- Consider this set of question: '{{ questions }}'.
32
- Consider this persona: '{{ persona }}'.
33
- Would this persona be able to answer all of these questions?
34
- """
35
- ),
36
- question_options=["No", "Yes"],
37
- question_name="eligibility",
38
- )
39
-
40
-
41
- def agent_list_eligibility(
42
- agent_list: AgentList,
43
- survey: Optional[Survey] = None,
44
- model: Optional[Model] = None,
45
- cache: Optional[Cache] = None,
46
- ) -> List[bool]:
47
- """
48
- Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
-
50
- >>> from edsl.language_models import LanguageModel
51
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
- >>> agent_list_eligibility(AgentList.example())
53
- [True, True]
54
- >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
- [True, True]
56
- """
57
- if survey is None:
58
- return [True] * len(agent_list)
59
- if "persona" not in agent_list.all_traits:
60
- raise ValueError(
61
- f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
- )
63
- sl = agent_list.select("persona").to_scenario_list()
64
- sl.add_value("questions", [q.question_text for q in survey._questions])
65
- results = q_eligibility.by(sl).by(model).run(cache=cache)
66
- return [r == "Yes" for r in results.select("eligibility").to_list()]
67
-
68
-
69
- def agent_eligibility(
70
- agent: Agent,
71
- survey: Survey,
72
- model: Optional[Model] = None,
73
- cache: Optional[Cache] = None,
74
- ) -> bool:
75
- """NB: This could be parallelized.
76
-
77
- >>> from edsl.language_models import LanguageModel
78
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
- >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
- True
81
-
82
- """
83
- model = model or Model()
84
-
85
- questions = [q.question_text for q in survey._questions]
86
- persona = agent.traits["persona"]
87
- return (
88
- q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
- == "Yes"
90
- )
91
- # results = (
92
- # q.by(model)
93
- # .by(Scenario({"questions": questions, "persona": persona}))
94
- # .run(cache=cache)
95
- # )
96
- # return results.select("eligibility").first() == "Yes"
97
-
98
-
99
- def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
- """
101
- >>> dimension_dict = {'attitude':['positive', 'negative']}
102
- >>> ag = gen_agent_traits(dimension_dict)
103
- >>> a = next(ag)
104
- >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
- True
106
- >>> len([next(ag) for _ in range(100)])
107
- 100
108
- """
109
- if seed_value is None:
110
- seed_value = "edsl"
111
-
112
- random.seed(seed_value)
113
-
114
- while True:
115
- new_agent_traits = {}
116
- for key, list_of_values in dimension_dict.items():
117
- new_agent_traits[key] = random.choice(list_of_values)
118
- yield new_agent_traits
119
-
120
-
121
- def agent_generator(
122
- persona: str,
123
- dimension_dict: dict,
124
- model: Optional[Model] = None,
125
- cache: Optional["Cache"] = None,
126
- ) -> Generator["Results", None, None]:
127
- """
128
- >>> from edsl.language_models import LanguageModel
129
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
- >>> next(ag).select('new_agent_persona').first()
132
- 'This is a cool dude.'
133
- >>> next(ag).select('new_agent_persona').first()
134
- 'This is a cool dude.'
135
- """
136
-
137
- if model is None:
138
- model = Model()
139
-
140
- q = QuestionFreeText(
141
- question_text=dedent(
142
- """\
143
- Consider this persona: '{{ persona }}'.
144
- Now imagine writing a new persona with these traits:
145
- '{{ new_agent_traits }}'
146
- Please write this persona as a narrative.
147
- """
148
- ),
149
- question_name="new_agent_persona",
150
- )
151
- agent_trait_generator = gen_agent_traits(dimension_dict)
152
- codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
- while True:
154
- new_agent_traits = next(agent_trait_generator)
155
- yield q(
156
- persona=persona,
157
- new_agent_traits=new_agent_traits,
158
- codebook=codebook,
159
- just_answer=False,
160
- cache=cache,
161
- model=model,
162
- )
163
-
164
-
165
- def create_agents(
166
- agent_generator: Generator["Results", None, None],
167
- survey: Optional[Survey] = None,
168
- num_agents=11,
169
- ) -> AgentList:
170
- """
171
- >>> from edsl.language_models import LanguageModel
172
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
- >>> new_agent_list = create_agents(agent_generator = ag)
175
- >>> new_agent_list
176
-
177
- """
178
- agent_list = AgentList([])
179
-
180
- MAX_ITERATIONS_MULTIPLIER = 2
181
- iterations = 0
182
-
183
- while len(agent_list) < num_agents:
184
- iterations += 1
185
- candidate_agent = next(agent_generator)
186
- codebook = candidate_agent.select("codebook").to_list()[0]
187
-
188
- koobedoc = {v: k for k, v in codebook.items()}
189
- persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
- traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
- new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
- "persona": persona
193
- }
194
- agent = Agent(traits=new_traits, codebook=codebook)
195
- if survey is not None:
196
- if agent_eligibility(agent, survey):
197
- agent_list.append(agent)
198
- else:
199
- print("Agent not eligible")
200
- else:
201
- agent_list.append(agent)
202
-
203
- if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
- raise Exception("Too many failures")
205
-
206
- return agent_list
207
-
208
-
209
- if __name__ == "__main__":
210
- import doctest
211
-
212
- doctest.testmod()
213
- # from edsl.language_models import LanguageModel
214
-
215
- # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
- # ag = agent_generator(
217
- # persona="Base person",
218
- # dimension_dict={"attitude": ["Positive", "Negative"]},
219
- # model=m,
220
- # )
221
- # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
- # dimension_dict = {"attitude": ["positive", "negative"]}
223
- # ag = gen_agent_traits(dimension_dict)
224
- # example = [next(ag) for _ in range(100)]
1
+ from textwrap import dedent
2
+ import random
3
+ from typing import List, TypeVar, Generator, Optional
4
+ from edsl.auto.StageBase import StageBase
5
+ from edsl.utilities.naming_utilities import sanitize_string
6
+ from edsl import Agent, Survey, Model, Cache, AgentList
7
+ from edsl import QuestionFreeText, Scenario
8
+ from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
+
10
+ StageClassType = TypeVar("StageClassType", bound=StageBase)
11
+
12
+
13
+ def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
+ """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
+ A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
+
17
+ """
18
+ pipeline = stages_list[0]()
19
+ last_stage = pipeline
20
+ for stage in stages_list[1:]:
21
+ while last_stage.next_stage is not None: # find the end of the pipeline
22
+ last_stage = last_stage.next_stage
23
+ stage_to_add = stage()
24
+ last_stage.next_stage = stage_to_add
25
+ return pipeline
26
+
27
+
28
+ q_eligibility = QuestionMultipleChoice(
29
+ question_text=dedent(
30
+ """\
31
+ Consider this set of question: '{{ questions }}'.
32
+ Consider this persona: '{{ persona }}'.
33
+ Would this persona be able to answer all of these questions?
34
+ """
35
+ ),
36
+ question_options=["No", "Yes"],
37
+ question_name="eligibility",
38
+ )
39
+
40
+
41
+ def agent_list_eligibility(
42
+ agent_list: AgentList,
43
+ survey: Optional[Survey] = None,
44
+ model: Optional[Model] = None,
45
+ cache: Optional[Cache] = None,
46
+ ) -> List[bool]:
47
+ """
48
+ Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
+
50
+ >>> from edsl.language_models import LanguageModel
51
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
+ >>> agent_list_eligibility(AgentList.example())
53
+ [True, True]
54
+ >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
+ [True, True]
56
+ """
57
+ if survey is None:
58
+ return [True] * len(agent_list)
59
+ if "persona" not in agent_list.all_traits:
60
+ raise ValueError(
61
+ f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
+ )
63
+ sl = agent_list.select("persona").to_scenario_list()
64
+ sl.add_value("questions", [q.question_text for q in survey._questions])
65
+ results = q_eligibility.by(sl).by(model).run(cache=cache)
66
+ return [r == "Yes" for r in results.select("eligibility").to_list()]
67
+
68
+
69
+ def agent_eligibility(
70
+ agent: Agent,
71
+ survey: Survey,
72
+ model: Optional[Model] = None,
73
+ cache: Optional[Cache] = None,
74
+ ) -> bool:
75
+ """NB: This could be parallelized.
76
+
77
+ >>> from edsl.language_models import LanguageModel
78
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
+ >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
+ True
81
+
82
+ """
83
+ model = model or Model()
84
+
85
+ questions = [q.question_text for q in survey._questions]
86
+ persona = agent.traits["persona"]
87
+ return (
88
+ q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
+ == "Yes"
90
+ )
91
+ # results = (
92
+ # q.by(model)
93
+ # .by(Scenario({"questions": questions, "persona": persona}))
94
+ # .run(cache=cache)
95
+ # )
96
+ # return results.select("eligibility").first() == "Yes"
97
+
98
+
99
+ def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
+ """
101
+ >>> dimension_dict = {'attitude':['positive', 'negative']}
102
+ >>> ag = gen_agent_traits(dimension_dict)
103
+ >>> a = next(ag)
104
+ >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
+ True
106
+ >>> len([next(ag) for _ in range(100)])
107
+ 100
108
+ """
109
+ if seed_value is None:
110
+ seed_value = "edsl"
111
+
112
+ random.seed(seed_value)
113
+
114
+ while True:
115
+ new_agent_traits = {}
116
+ for key, list_of_values in dimension_dict.items():
117
+ new_agent_traits[key] = random.choice(list_of_values)
118
+ yield new_agent_traits
119
+
120
+
121
+ def agent_generator(
122
+ persona: str,
123
+ dimension_dict: dict,
124
+ model: Optional[Model] = None,
125
+ cache: Optional["Cache"] = None,
126
+ ) -> Generator["Results", None, None]:
127
+ """
128
+ >>> from edsl.language_models import LanguageModel
129
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
+ >>> next(ag).select('new_agent_persona').first()
132
+ 'This is a cool dude.'
133
+ >>> next(ag).select('new_agent_persona').first()
134
+ 'This is a cool dude.'
135
+ """
136
+
137
+ if model is None:
138
+ model = Model()
139
+
140
+ q = QuestionFreeText(
141
+ question_text=dedent(
142
+ """\
143
+ Consider this persona: '{{ persona }}'.
144
+ Now imagine writing a new persona with these traits:
145
+ '{{ new_agent_traits }}'
146
+ Please write this persona as a narrative.
147
+ """
148
+ ),
149
+ question_name="new_agent_persona",
150
+ )
151
+ agent_trait_generator = gen_agent_traits(dimension_dict)
152
+ codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
+ while True:
154
+ new_agent_traits = next(agent_trait_generator)
155
+ yield q(
156
+ persona=persona,
157
+ new_agent_traits=new_agent_traits,
158
+ codebook=codebook,
159
+ just_answer=False,
160
+ cache=cache,
161
+ model=model,
162
+ )
163
+
164
+
165
+ def create_agents(
166
+ agent_generator: Generator["Results", None, None],
167
+ survey: Optional[Survey] = None,
168
+ num_agents=11,
169
+ ) -> AgentList:
170
+ """
171
+ >>> from edsl.language_models import LanguageModel
172
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
+ >>> new_agent_list = create_agents(agent_generator = ag)
175
+ >>> new_agent_list
176
+
177
+ """
178
+ agent_list = AgentList([])
179
+
180
+ MAX_ITERATIONS_MULTIPLIER = 2
181
+ iterations = 0
182
+
183
+ while len(agent_list) < num_agents:
184
+ iterations += 1
185
+ candidate_agent = next(agent_generator)
186
+ codebook = candidate_agent.select("codebook").to_list()[0]
187
+
188
+ koobedoc = {v: k for k, v in codebook.items()}
189
+ persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
+ traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
+ new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
+ "persona": persona
193
+ }
194
+ agent = Agent(traits=new_traits, codebook=codebook)
195
+ if survey is not None:
196
+ if agent_eligibility(agent, survey):
197
+ agent_list.append(agent)
198
+ else:
199
+ print("Agent not eligible")
200
+ else:
201
+ agent_list.append(agent)
202
+
203
+ if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
+ raise Exception("Too many failures")
205
+
206
+ return agent_list
207
+
208
+
209
+ if __name__ == "__main__":
210
+ import doctest
211
+
212
+ doctest.testmod()
213
+ # from edsl.language_models import LanguageModel
214
+
215
+ # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
+ # ag = agent_generator(
217
+ # persona="Base person",
218
+ # dimension_dict={"attitude": ["Positive", "Negative"]},
219
+ # model=m,
220
+ # )
221
+ # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
+ # dimension_dict = {"attitude": ["positive", "negative"]}
223
+ # ag = gen_agent_traits(dimension_dict)
224
+ # example = [next(ag) for _ in range(100)]