edsl 0.1.38.dev1__py3-none-any.whl → 0.1.38.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (263) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -48
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +858 -855
  7. edsl/agents/AgentList.py +362 -350
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +284 -284
  10. edsl/agents/PromptConstructor.py +353 -353
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -289
  26. edsl/config.py +149 -149
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -58
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +961 -958
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +530 -527
  37. edsl/data/CacheEntry.py +228 -228
  38. edsl/data/CacheHandler.py +149 -149
  39. edsl/data/RemoteCacheSync.py +97 -97
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -4
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -73
  44. edsl/enums.py +173 -173
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -38
  48. edsl/exceptions/cache.py +5 -0
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -91
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -22
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -87
  61. edsl/inference_services/AwsBedrock.py +120 -120
  62. edsl/inference_services/AzureAI.py +217 -217
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +156 -156
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -147
  67. edsl/inference_services/InferenceServicesCollection.py +97 -97
  68. edsl/inference_services/MistralAIService.py +123 -123
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -224
  71. edsl/inference_services/TestService.py +89 -89
  72. edsl/inference_services/TogetherAIService.py +170 -170
  73. edsl/inference_services/models_available_cache.py +118 -118
  74. edsl/inference_services/rate_limits_cache.py +25 -25
  75. edsl/inference_services/registry.py +39 -39
  76. edsl/inference_services/write_available.py +10 -10
  77. edsl/jobs/Answers.py +56 -56
  78. edsl/jobs/Jobs.py +1358 -1347
  79. edsl/jobs/__init__.py +1 -1
  80. edsl/jobs/buckets/BucketCollection.py +63 -63
  81. edsl/jobs/buckets/ModelBuckets.py +65 -65
  82. edsl/jobs/buckets/TokenBucket.py +251 -248
  83. edsl/jobs/interviews/Interview.py +661 -661
  84. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  85. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  86. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  87. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  88. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  89. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  90. edsl/jobs/interviews/ReportErrors.py +66 -66
  91. edsl/jobs/interviews/interview_status_enum.py +9 -9
  92. edsl/jobs/runners/JobsRunnerAsyncio.py +361 -338
  93. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  94. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  95. edsl/jobs/tasks/TaskCreators.py +64 -64
  96. edsl/jobs/tasks/TaskHistory.py +451 -442
  97. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  98. edsl/jobs/tasks/task_status_enum.py +163 -163
  99. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  100. edsl/jobs/tokens/TokenUsage.py +34 -34
  101. edsl/language_models/KeyLookup.py +30 -30
  102. edsl/language_models/LanguageModel.py +708 -706
  103. edsl/language_models/ModelList.py +109 -102
  104. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  105. edsl/language_models/__init__.py +3 -3
  106. edsl/language_models/fake_openai_call.py +15 -15
  107. edsl/language_models/fake_openai_service.py +61 -61
  108. edsl/language_models/registry.py +137 -137
  109. edsl/language_models/repair.py +156 -156
  110. edsl/language_models/unused/ReplicateBase.py +83 -83
  111. edsl/language_models/utilities.py +64 -64
  112. edsl/notebooks/Notebook.py +258 -259
  113. edsl/notebooks/__init__.py +1 -1
  114. edsl/prompts/Prompt.py +357 -357
  115. edsl/prompts/__init__.py +2 -2
  116. edsl/questions/AnswerValidatorMixin.py +289 -289
  117. edsl/questions/QuestionBase.py +660 -656
  118. edsl/questions/QuestionBaseGenMixin.py +161 -161
  119. edsl/questions/QuestionBasePromptsMixin.py +217 -234
  120. edsl/questions/QuestionBudget.py +227 -227
  121. edsl/questions/QuestionCheckBox.py +359 -359
  122. edsl/questions/QuestionExtract.py +183 -183
  123. edsl/questions/QuestionFreeText.py +114 -114
  124. edsl/questions/QuestionFunctional.py +166 -159
  125. edsl/questions/QuestionList.py +231 -231
  126. edsl/questions/QuestionMultipleChoice.py +286 -286
  127. edsl/questions/QuestionNumerical.py +153 -153
  128. edsl/questions/QuestionRank.py +324 -324
  129. edsl/questions/Quick.py +41 -41
  130. edsl/questions/RegisterQuestionsMeta.py +71 -71
  131. edsl/questions/ResponseValidatorABC.py +174 -174
  132. edsl/questions/SimpleAskMixin.py +73 -73
  133. edsl/questions/__init__.py +26 -26
  134. edsl/questions/compose_questions.py +98 -98
  135. edsl/questions/decorators.py +21 -21
  136. edsl/questions/derived/QuestionLikertFive.py +76 -76
  137. edsl/questions/derived/QuestionLinearScale.py +87 -87
  138. edsl/questions/derived/QuestionTopK.py +93 -91
  139. edsl/questions/derived/QuestionYesNo.py +82 -82
  140. edsl/questions/descriptors.py +413 -413
  141. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  142. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  143. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  144. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  145. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  146. edsl/questions/prompt_templates/question_list.jinja +17 -17
  147. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  148. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  149. edsl/questions/question_registry.py +147 -147
  150. edsl/questions/settings.py +12 -12
  151. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  152. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  153. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  154. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  155. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  157. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  158. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  159. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  160. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  161. edsl/questions/templates/list/question_presentation.jinja +5 -5
  162. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  163. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  164. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  165. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  166. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  167. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  168. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  169. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  170. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  171. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  172. edsl/results/Dataset.py +293 -293
  173. edsl/results/DatasetExportMixin.py +717 -717
  174. edsl/results/DatasetTree.py +145 -145
  175. edsl/results/Result.py +456 -450
  176. edsl/results/Results.py +1071 -1071
  177. edsl/results/ResultsDBMixin.py +238 -238
  178. edsl/results/ResultsExportMixin.py +43 -43
  179. edsl/results/ResultsFetchMixin.py +33 -33
  180. edsl/results/ResultsGGMixin.py +121 -121
  181. edsl/results/ResultsToolsMixin.py +98 -98
  182. edsl/results/Selector.py +135 -135
  183. edsl/results/__init__.py +2 -2
  184. edsl/results/tree_explore.py +115 -115
  185. edsl/scenarios/FileStore.py +458 -458
  186. edsl/scenarios/Scenario.py +544 -546
  187. edsl/scenarios/ScenarioHtmlMixin.py +64 -64
  188. edsl/scenarios/ScenarioList.py +1112 -1112
  189. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  190. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  191. edsl/scenarios/__init__.py +4 -4
  192. edsl/shared.py +1 -1
  193. edsl/study/ObjectEntry.py +173 -173
  194. edsl/study/ProofOfWork.py +113 -113
  195. edsl/study/SnapShot.py +80 -80
  196. edsl/study/Study.py +528 -528
  197. edsl/study/__init__.py +4 -4
  198. edsl/surveys/DAG.py +148 -148
  199. edsl/surveys/Memory.py +31 -31
  200. edsl/surveys/MemoryPlan.py +244 -244
  201. edsl/surveys/Rule.py +326 -330
  202. edsl/surveys/RuleCollection.py +387 -387
  203. edsl/surveys/Survey.py +1787 -1795
  204. edsl/surveys/SurveyCSS.py +261 -261
  205. edsl/surveys/SurveyExportMixin.py +259 -259
  206. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  207. edsl/surveys/SurveyQualtricsImport.py +284 -284
  208. edsl/surveys/__init__.py +3 -3
  209. edsl/surveys/base.py +53 -53
  210. edsl/surveys/descriptors.py +56 -56
  211. edsl/surveys/instructions/ChangeInstruction.py +49 -47
  212. edsl/surveys/instructions/Instruction.py +53 -51
  213. edsl/surveys/instructions/InstructionCollection.py +77 -77
  214. edsl/templates/error_reporting/base.html +23 -23
  215. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  216. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  217. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  218. edsl/templates/error_reporting/interview_details.html +115 -115
  219. edsl/templates/error_reporting/interviews.html +9 -9
  220. edsl/templates/error_reporting/overview.html +4 -4
  221. edsl/templates/error_reporting/performance_plot.html +1 -1
  222. edsl/templates/error_reporting/report.css +73 -73
  223. edsl/templates/error_reporting/report.html +117 -117
  224. edsl/templates/error_reporting/report.js +25 -25
  225. edsl/tools/__init__.py +1 -1
  226. edsl/tools/clusters.py +192 -192
  227. edsl/tools/embeddings.py +27 -27
  228. edsl/tools/embeddings_plotting.py +118 -118
  229. edsl/tools/plotting.py +112 -112
  230. edsl/tools/summarize.py +18 -18
  231. edsl/utilities/SystemInfo.py +28 -28
  232. edsl/utilities/__init__.py +22 -22
  233. edsl/utilities/ast_utilities.py +25 -25
  234. edsl/utilities/data/Registry.py +6 -6
  235. edsl/utilities/data/__init__.py +1 -1
  236. edsl/utilities/data/scooter_results.json +1 -1
  237. edsl/utilities/decorators.py +77 -77
  238. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  239. edsl/utilities/interface.py +627 -627
  240. edsl/{conjure → utilities}/naming_utilities.py +263 -263
  241. edsl/utilities/repair_functions.py +28 -28
  242. edsl/utilities/restricted_python.py +70 -70
  243. edsl/utilities/utilities.py +409 -409
  244. {edsl-0.1.38.dev1.dist-info → edsl-0.1.38.dev3.dist-info}/LICENSE +21 -21
  245. {edsl-0.1.38.dev1.dist-info → edsl-0.1.38.dev3.dist-info}/METADATA +1 -1
  246. edsl-0.1.38.dev3.dist-info/RECORD +269 -0
  247. edsl/conjure/AgentConstructionMixin.py +0 -160
  248. edsl/conjure/Conjure.py +0 -62
  249. edsl/conjure/InputData.py +0 -659
  250. edsl/conjure/InputDataCSV.py +0 -48
  251. edsl/conjure/InputDataMixinQuestionStats.py +0 -182
  252. edsl/conjure/InputDataPyRead.py +0 -91
  253. edsl/conjure/InputDataSPSS.py +0 -8
  254. edsl/conjure/InputDataStata.py +0 -8
  255. edsl/conjure/QuestionOptionMixin.py +0 -76
  256. edsl/conjure/QuestionTypeMixin.py +0 -23
  257. edsl/conjure/RawQuestion.py +0 -65
  258. edsl/conjure/SurveyResponses.py +0 -7
  259. edsl/conjure/__init__.py +0 -9
  260. edsl/conjure/examples/placeholder.txt +0 -0
  261. edsl/conjure/utilities.py +0 -201
  262. edsl-0.1.38.dev1.dist-info/RECORD +0 -283
  263. {edsl-0.1.38.dev1.dist-info → edsl-0.1.38.dev3.dist-info}/WHEEL +0 -0
edsl/auto/StagePersona.py CHANGED
@@ -1,61 +1,61 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from typing import List
4
-
5
- from edsl.auto.StageBase import StageBase
6
- from edsl.auto.StageBase import FlowDataBase
7
- from edsl import Model
8
- from edsl.auto.StageQuestions import StageQuestions
9
-
10
- from edsl.questions import QuestionFreeText
11
- from edsl.scenarios import Scenario
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StagePersona(StageBase):
17
- input = StageQuestions.output
18
-
19
- @dataclass
20
- class Output(FlowDataBase):
21
- persona: str
22
- questions: List[str]
23
-
24
- output = Output
25
-
26
- def handle_data(self, data):
27
- m = Model()
28
- q_persona = QuestionFreeText(
29
- question_text=dedent(
30
- """\
31
- Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
- Make up a 1 paragraph persona for this person who would have answers for these questions.
33
- """
34
- ),
35
- question_name="persona",
36
- )
37
- results = (
38
- q_persona.by(m)
39
- .by(Scenario({"questions": data.questions, "population": data.population}))
40
- .run()
41
- )
42
- print("Constructing a persona that could answer the following questions:")
43
- print(data.questions)
44
- results.select("persona").print(
45
- pretty_labels={
46
- "answer.persona": f"Persona that can answer: {data.questions}"
47
- },
48
- split_at_dot=False,
49
- )
50
- persona = results.select("persona").first()
51
- return self.output(persona=persona, questions=data.questions)
52
-
53
-
54
- if __name__ == "__main__":
55
- pipeline = gen_pipeline([StageQuestions, StagePersona])
56
- pipeline.process(
57
- pipeline.input(
58
- overall_question="What are some factors that could determine whether someone likes ice cream?",
59
- persona="People",
60
- )
61
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from typing import List
4
+
5
+ from edsl.auto.StageBase import StageBase
6
+ from edsl.auto.StageBase import FlowDataBase
7
+ from edsl import Model
8
+ from edsl.auto.StageQuestions import StageQuestions
9
+
10
+ from edsl.questions import QuestionFreeText
11
+ from edsl.scenarios import Scenario
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StagePersona(StageBase):
17
+ input = StageQuestions.output
18
+
19
+ @dataclass
20
+ class Output(FlowDataBase):
21
+ persona: str
22
+ questions: List[str]
23
+
24
+ output = Output
25
+
26
+ def handle_data(self, data):
27
+ m = Model()
28
+ q_persona = QuestionFreeText(
29
+ question_text=dedent(
30
+ """\
31
+ Imagine a person from the population {{ population }} responding to these questions: "{{ questions }}"
32
+ Make up a 1 paragraph persona for this person who would have answers for these questions.
33
+ """
34
+ ),
35
+ question_name="persona",
36
+ )
37
+ results = (
38
+ q_persona.by(m)
39
+ .by(Scenario({"questions": data.questions, "population": data.population}))
40
+ .run()
41
+ )
42
+ print("Constructing a persona that could answer the following questions:")
43
+ print(data.questions)
44
+ results.select("persona").print(
45
+ pretty_labels={
46
+ "answer.persona": f"Persona that can answer: {data.questions}"
47
+ },
48
+ split_at_dot=False,
49
+ )
50
+ persona = results.select("persona").first()
51
+ return self.output(persona=persona, questions=data.questions)
52
+
53
+
54
+ if __name__ == "__main__":
55
+ pipeline = gen_pipeline([StageQuestions, StagePersona])
56
+ pipeline.process(
57
+ pipeline.input(
58
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
59
+ persona="People",
60
+ )
61
+ )
@@ -1,88 +1,88 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValueRanges(StageBase):
18
- input = StagePersonaDimensionValues.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- focal_dimension_values: List[dict]
23
- mapping: dict
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- # breakpoint()
30
- """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
- dimension_values = data["dimension_values"]
32
- attribute_results = data["attribute_results"]
33
- persona = data["persona"]
34
- m = Model()
35
- d = dict(zip(attribute_results, dimension_values))
36
- q = QuestionList(
37
- question_text=dedent(
38
- """\
39
- Consider the following persona: {{ persona }}.
40
- They were categorized as having the following attributes: {{ d }}.
41
- For this dimension: {{ focal_dimension }},
42
- What are values that other people might have on this attribute?
43
- """
44
- ),
45
- question_name="focal_dimension_values",
46
- )
47
- s = [
48
- Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
- for k in d.keys()
50
- ]
51
- results = q.by(s).by(m).run()
52
- # breakpoint()
53
- results.select("focal_dimension", "answer.*").print(
54
- pretty_labels={
55
- "scenario.focal_dimension": f"Dimensions of a persona",
56
- "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
- },
58
- split_at_dot=False,
59
- )
60
-
61
- focal_dimension_values = results.select("focal_dimension_values").to_list()
62
- mapping = dict(zip(attribute_results, focal_dimension_values))
63
- return self.output(
64
- focal_dimension_values=focal_dimension_values,
65
- mapping=mapping,
66
- persona=persona,
67
- )
68
-
69
-
70
- if __name__ == "__main__":
71
- from edsl.auto.StageQuestions import StageQuestions
72
- from edsl.auto.StagePersona import StagePersona
73
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
-
75
- pipeline = gen_pipeline(
76
- [
77
- StageQuestions,
78
- StagePersona,
79
- StagePersonaDimensions,
80
- StagePersonaDimensionValues,
81
- StagePersonaDimensionValueRanges,
82
- ]
83
- )
84
- pipeline.process(
85
- pipeline.input(
86
- overall_question="What are some factors that could determine whether someone likes ice cream?"
87
- )
88
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensionValues import StagePersonaDimensionValues
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValueRanges(StageBase):
18
+ input = StagePersonaDimensionValues.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ focal_dimension_values: List[dict]
23
+ mapping: dict
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ # breakpoint()
30
+ """Goal with this stage is to, for each dimension, get a range of values that the persona might have for that dimension."""
31
+ dimension_values = data["dimension_values"]
32
+ attribute_results = data["attribute_results"]
33
+ persona = data["persona"]
34
+ m = Model()
35
+ d = dict(zip(attribute_results, dimension_values))
36
+ q = QuestionList(
37
+ question_text=dedent(
38
+ """\
39
+ Consider the following persona: {{ persona }}.
40
+ They were categorized as having the following attributes: {{ d }}.
41
+ For this dimension: {{ focal_dimension }},
42
+ What are values that other people might have on this attribute?
43
+ """
44
+ ),
45
+ question_name="focal_dimension_values",
46
+ )
47
+ s = [
48
+ Scenario({"persona": persona, "d": d, "focal_dimension": k})
49
+ for k in d.keys()
50
+ ]
51
+ results = q.by(s).by(m).run()
52
+ # breakpoint()
53
+ results.select("focal_dimension", "answer.*").print(
54
+ pretty_labels={
55
+ "scenario.focal_dimension": f"Dimensions of a persona",
56
+ "answer.focal_dimension_values": f"Values a person might have for that dimension",
57
+ },
58
+ split_at_dot=False,
59
+ )
60
+
61
+ focal_dimension_values = results.select("focal_dimension_values").to_list()
62
+ mapping = dict(zip(attribute_results, focal_dimension_values))
63
+ return self.output(
64
+ focal_dimension_values=focal_dimension_values,
65
+ mapping=mapping,
66
+ persona=persona,
67
+ )
68
+
69
+
70
+ if __name__ == "__main__":
71
+ from edsl.auto.StageQuestions import StageQuestions
72
+ from edsl.auto.StagePersona import StagePersona
73
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
74
+
75
+ pipeline = gen_pipeline(
76
+ [
77
+ StageQuestions,
78
+ StagePersona,
79
+ StagePersonaDimensions,
80
+ StagePersonaDimensionValues,
81
+ StagePersonaDimensionValueRanges,
82
+ ]
83
+ )
84
+ pipeline.process(
85
+ pipeline.input(
86
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
87
+ )
88
+ )
@@ -1,74 +1,74 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List, Dict
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
- from edsl import Model
11
- from edsl.questions import QuestionList, QuestionExtract
12
- from edsl.scenarios import Scenario
13
-
14
- from edsl.auto.utilities import gen_pipeline
15
-
16
-
17
- class StagePersonaDimensionValues(StageBase):
18
- input = StagePersonaDimensions.output
19
-
20
- @dataclass
21
- class Output(FlowDataBase):
22
- attribute_results: List[str]
23
- dimension_values: Dict[str, str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- attribute_results = data.attribute_results
30
- persona = data.persona
31
- m = Model()
32
- q = QuestionExtract(
33
- question_text=dedent(
34
- """\
35
- This is a persona: "{{ persona }}"
36
- They vary on the following dimensions: "{{ attribute_results }}"
37
- For each dimenion, what are some values that this persona might have for that dimension?
38
- Please keep answers very short, ideally one word.
39
- """
40
- ),
41
- answer_template={k: None for k in attribute_results},
42
- question_name="dimension_values",
43
- )
44
- results = (
45
- q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
- .by(m)
47
- .run()
48
- )
49
- results.select("attribute_results", "dimension_values").print()
50
- return self.output(
51
- dimension_values=results.select("dimension_values").first(),
52
- attribute_results=attribute_results,
53
- persona=persona,
54
- )
55
-
56
-
57
- if __name__ == "__main__":
58
- from edsl.auto.StageQuestions import StageQuestions
59
- from edsl.auto.StagePersona import StagePersona
60
- from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
-
62
- pipeline = gen_pipeline(
63
- [
64
- StageQuestions,
65
- StagePersona,
66
- StagePersonaDimensions,
67
- StagePersonaDimensionValues,
68
- ]
69
- )
70
- pipeline.process(
71
- pipeline.input(
72
- overall_question="What are some factors that could determine whether someone likes ice cream?"
73
- )
74
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List, Dict
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
10
+ from edsl import Model
11
+ from edsl.questions import QuestionList, QuestionExtract
12
+ from edsl.scenarios import Scenario
13
+
14
+ from edsl.auto.utilities import gen_pipeline
15
+
16
+
17
+ class StagePersonaDimensionValues(StageBase):
18
+ input = StagePersonaDimensions.output
19
+
20
+ @dataclass
21
+ class Output(FlowDataBase):
22
+ attribute_results: List[str]
23
+ dimension_values: Dict[str, str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ attribute_results = data.attribute_results
30
+ persona = data.persona
31
+ m = Model()
32
+ q = QuestionExtract(
33
+ question_text=dedent(
34
+ """\
35
+ This is a persona: "{{ persona }}"
36
+ They vary on the following dimensions: "{{ attribute_results }}"
37
+ For each dimenion, what are some values that this persona might have for that dimension?
38
+ Please keep answers very short, ideally one word.
39
+ """
40
+ ),
41
+ answer_template={k: None for k in attribute_results},
42
+ question_name="dimension_values",
43
+ )
44
+ results = (
45
+ q.by(Scenario({"attribute_results": attribute_results, "persona": persona}))
46
+ .by(m)
47
+ .run()
48
+ )
49
+ results.select("attribute_results", "dimension_values").print()
50
+ return self.output(
51
+ dimension_values=results.select("dimension_values").first(),
52
+ attribute_results=attribute_results,
53
+ persona=persona,
54
+ )
55
+
56
+
57
+ if __name__ == "__main__":
58
+ from edsl.auto.StageQuestions import StageQuestions
59
+ from edsl.auto.StagePersona import StagePersona
60
+ from edsl.auto.StagePersonaDimensions import StagePersonaDimensions
61
+
62
+ pipeline = gen_pipeline(
63
+ [
64
+ StageQuestions,
65
+ StagePersona,
66
+ StagePersonaDimensions,
67
+ StagePersonaDimensionValues,
68
+ ]
69
+ )
70
+ pipeline.process(
71
+ pipeline.input(
72
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
73
+ )
74
+ )
@@ -1,69 +1,69 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
-
4
- from typing import List
5
-
6
- from edsl.auto.StageBase import StageBase
7
- from edsl.auto.StageBase import FlowDataBase
8
-
9
- from edsl.auto.StagePersona import StagePersona
10
-
11
- from edsl.questions import QuestionList
12
- from edsl.scenarios import Scenario
13
- from edsl import Model
14
-
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- class StagePersonaDimensions(StageBase):
19
- input = StagePersona.output
20
-
21
- @dataclass
22
- class Output(FlowDataBase):
23
- attribute_results: List[str]
24
- persona: str
25
-
26
- output = Output
27
-
28
- def handle_data(self, data):
29
- q_attributes = QuestionList(
30
- question_text=dedent(
31
- """\
32
- Here is a persona: "{{ persona }}"
33
- It was construced to be someone who could answer these questions: "{{ questions }}"
34
-
35
- We want to identify the general dimensions that make up this persona.
36
- E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
- """
38
- ),
39
- question_name="find_attributes",
40
- )
41
- m = Model()
42
- results = (
43
- q_attributes.by(
44
- Scenario({"persona": data.persona, "questions": data.questions})
45
- )
46
- .by(m)
47
- .run()
48
- )
49
- (
50
- results.select("find_attributes").print(
51
- pretty_labels={
52
- "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
- },
54
- split_at_dot=False,
55
- )
56
- )
57
- attribute_results = results.select("find_attributes").first()
58
- return self.output(attribute_results=attribute_results, persona=data.persona)
59
-
60
-
61
- if __name__ == "__main__":
62
- from edsl.auto.StageQuestions import StageQuestions
63
-
64
- pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?"
68
- )
69
- )
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+
4
+ from typing import List
5
+
6
+ from edsl.auto.StageBase import StageBase
7
+ from edsl.auto.StageBase import FlowDataBase
8
+
9
+ from edsl.auto.StagePersona import StagePersona
10
+
11
+ from edsl.questions import QuestionList
12
+ from edsl.scenarios import Scenario
13
+ from edsl import Model
14
+
15
+ from edsl.auto.utilities import gen_pipeline
16
+
17
+
18
+ class StagePersonaDimensions(StageBase):
19
+ input = StagePersona.output
20
+
21
+ @dataclass
22
+ class Output(FlowDataBase):
23
+ attribute_results: List[str]
24
+ persona: str
25
+
26
+ output = Output
27
+
28
+ def handle_data(self, data):
29
+ q_attributes = QuestionList(
30
+ question_text=dedent(
31
+ """\
32
+ Here is a persona: "{{ persona }}"
33
+ It was construced to be someone who could answer these questions: "{{ questions }}"
34
+
35
+ We want to identify the general dimensions that make up this persona.
36
+ E.g., if the person is desribed as 'happy' then a dimenion would be 'mood'
37
+ """
38
+ ),
39
+ question_name="find_attributes",
40
+ )
41
+ m = Model()
42
+ results = (
43
+ q_attributes.by(
44
+ Scenario({"persona": data.persona, "questions": data.questions})
45
+ )
46
+ .by(m)
47
+ .run()
48
+ )
49
+ (
50
+ results.select("find_attributes").print(
51
+ pretty_labels={
52
+ "answer.find_attributes": f'Persona dimensions for: "{data.persona}"'
53
+ },
54
+ split_at_dot=False,
55
+ )
56
+ )
57
+ attribute_results = results.select("find_attributes").first()
58
+ return self.output(attribute_results=attribute_results, persona=data.persona)
59
+
60
+
61
+ if __name__ == "__main__":
62
+ from edsl.auto.StageQuestions import StageQuestions
63
+
64
+ pipeline = gen_pipeline([StageQuestions, StagePersona, StagePersonaDimensions])
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
68
+ )
69
+ )