edsl 0.1.38.dev1__py3-none-any.whl → 0.1.38.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (263) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -48
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +858 -855
  7. edsl/agents/AgentList.py +362 -350
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +284 -284
  10. edsl/agents/PromptConstructor.py +353 -353
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -289
  26. edsl/config.py +149 -149
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -58
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +961 -958
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +530 -527
  37. edsl/data/CacheEntry.py +228 -228
  38. edsl/data/CacheHandler.py +149 -149
  39. edsl/data/RemoteCacheSync.py +97 -97
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -4
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -73
  44. edsl/enums.py +173 -173
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -38
  48. edsl/exceptions/cache.py +5 -0
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -91
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -22
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -87
  61. edsl/inference_services/AwsBedrock.py +120 -120
  62. edsl/inference_services/AzureAI.py +217 -217
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +156 -156
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -147
  67. edsl/inference_services/InferenceServicesCollection.py +97 -97
  68. edsl/inference_services/MistralAIService.py +123 -123
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -224
  71. edsl/inference_services/TestService.py +89 -89
  72. edsl/inference_services/TogetherAIService.py +170 -170
  73. edsl/inference_services/models_available_cache.py +118 -118
  74. edsl/inference_services/rate_limits_cache.py +25 -25
  75. edsl/inference_services/registry.py +39 -39
  76. edsl/inference_services/write_available.py +10 -10
  77. edsl/jobs/Answers.py +56 -56
  78. edsl/jobs/Jobs.py +1358 -1347
  79. edsl/jobs/__init__.py +1 -1
  80. edsl/jobs/buckets/BucketCollection.py +63 -63
  81. edsl/jobs/buckets/ModelBuckets.py +65 -65
  82. edsl/jobs/buckets/TokenBucket.py +251 -248
  83. edsl/jobs/interviews/Interview.py +661 -661
  84. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  85. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  86. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  87. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  88. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  89. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  90. edsl/jobs/interviews/ReportErrors.py +66 -66
  91. edsl/jobs/interviews/interview_status_enum.py +9 -9
  92. edsl/jobs/runners/JobsRunnerAsyncio.py +361 -338
  93. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  94. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  95. edsl/jobs/tasks/TaskCreators.py +64 -64
  96. edsl/jobs/tasks/TaskHistory.py +451 -442
  97. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  98. edsl/jobs/tasks/task_status_enum.py +163 -163
  99. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  100. edsl/jobs/tokens/TokenUsage.py +34 -34
  101. edsl/language_models/KeyLookup.py +30 -30
  102. edsl/language_models/LanguageModel.py +708 -706
  103. edsl/language_models/ModelList.py +109 -102
  104. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  105. edsl/language_models/__init__.py +3 -3
  106. edsl/language_models/fake_openai_call.py +15 -15
  107. edsl/language_models/fake_openai_service.py +61 -61
  108. edsl/language_models/registry.py +137 -137
  109. edsl/language_models/repair.py +156 -156
  110. edsl/language_models/unused/ReplicateBase.py +83 -83
  111. edsl/language_models/utilities.py +64 -64
  112. edsl/notebooks/Notebook.py +258 -259
  113. edsl/notebooks/__init__.py +1 -1
  114. edsl/prompts/Prompt.py +357 -357
  115. edsl/prompts/__init__.py +2 -2
  116. edsl/questions/AnswerValidatorMixin.py +289 -289
  117. edsl/questions/QuestionBase.py +660 -656
  118. edsl/questions/QuestionBaseGenMixin.py +161 -161
  119. edsl/questions/QuestionBasePromptsMixin.py +217 -234
  120. edsl/questions/QuestionBudget.py +227 -227
  121. edsl/questions/QuestionCheckBox.py +359 -359
  122. edsl/questions/QuestionExtract.py +183 -183
  123. edsl/questions/QuestionFreeText.py +114 -114
  124. edsl/questions/QuestionFunctional.py +166 -159
  125. edsl/questions/QuestionList.py +231 -231
  126. edsl/questions/QuestionMultipleChoice.py +286 -286
  127. edsl/questions/QuestionNumerical.py +153 -153
  128. edsl/questions/QuestionRank.py +324 -324
  129. edsl/questions/Quick.py +41 -41
  130. edsl/questions/RegisterQuestionsMeta.py +71 -71
  131. edsl/questions/ResponseValidatorABC.py +174 -174
  132. edsl/questions/SimpleAskMixin.py +73 -73
  133. edsl/questions/__init__.py +26 -26
  134. edsl/questions/compose_questions.py +98 -98
  135. edsl/questions/decorators.py +21 -21
  136. edsl/questions/derived/QuestionLikertFive.py +76 -76
  137. edsl/questions/derived/QuestionLinearScale.py +87 -87
  138. edsl/questions/derived/QuestionTopK.py +93 -91
  139. edsl/questions/derived/QuestionYesNo.py +82 -82
  140. edsl/questions/descriptors.py +413 -413
  141. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  142. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  143. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  144. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  145. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  146. edsl/questions/prompt_templates/question_list.jinja +17 -17
  147. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  148. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  149. edsl/questions/question_registry.py +147 -147
  150. edsl/questions/settings.py +12 -12
  151. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  152. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  153. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  154. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  155. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  157. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  158. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  159. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  160. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  161. edsl/questions/templates/list/question_presentation.jinja +5 -5
  162. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  163. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  164. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  165. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  166. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  167. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  168. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  169. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  170. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  171. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  172. edsl/results/Dataset.py +293 -293
  173. edsl/results/DatasetExportMixin.py +717 -717
  174. edsl/results/DatasetTree.py +145 -145
  175. edsl/results/Result.py +456 -450
  176. edsl/results/Results.py +1071 -1071
  177. edsl/results/ResultsDBMixin.py +238 -238
  178. edsl/results/ResultsExportMixin.py +43 -43
  179. edsl/results/ResultsFetchMixin.py +33 -33
  180. edsl/results/ResultsGGMixin.py +121 -121
  181. edsl/results/ResultsToolsMixin.py +98 -98
  182. edsl/results/Selector.py +135 -135
  183. edsl/results/__init__.py +2 -2
  184. edsl/results/tree_explore.py +115 -115
  185. edsl/scenarios/FileStore.py +458 -458
  186. edsl/scenarios/Scenario.py +544 -546
  187. edsl/scenarios/ScenarioHtmlMixin.py +64 -64
  188. edsl/scenarios/ScenarioList.py +1112 -1112
  189. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  190. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  191. edsl/scenarios/__init__.py +4 -4
  192. edsl/shared.py +1 -1
  193. edsl/study/ObjectEntry.py +173 -173
  194. edsl/study/ProofOfWork.py +113 -113
  195. edsl/study/SnapShot.py +80 -80
  196. edsl/study/Study.py +528 -528
  197. edsl/study/__init__.py +4 -4
  198. edsl/surveys/DAG.py +148 -148
  199. edsl/surveys/Memory.py +31 -31
  200. edsl/surveys/MemoryPlan.py +244 -244
  201. edsl/surveys/Rule.py +326 -330
  202. edsl/surveys/RuleCollection.py +387 -387
  203. edsl/surveys/Survey.py +1787 -1795
  204. edsl/surveys/SurveyCSS.py +261 -261
  205. edsl/surveys/SurveyExportMixin.py +259 -259
  206. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  207. edsl/surveys/SurveyQualtricsImport.py +284 -284
  208. edsl/surveys/__init__.py +3 -3
  209. edsl/surveys/base.py +53 -53
  210. edsl/surveys/descriptors.py +56 -56
  211. edsl/surveys/instructions/ChangeInstruction.py +49 -47
  212. edsl/surveys/instructions/Instruction.py +53 -51
  213. edsl/surveys/instructions/InstructionCollection.py +77 -77
  214. edsl/templates/error_reporting/base.html +23 -23
  215. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  216. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  217. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  218. edsl/templates/error_reporting/interview_details.html +115 -115
  219. edsl/templates/error_reporting/interviews.html +9 -9
  220. edsl/templates/error_reporting/overview.html +4 -4
  221. edsl/templates/error_reporting/performance_plot.html +1 -1
  222. edsl/templates/error_reporting/report.css +73 -73
  223. edsl/templates/error_reporting/report.html +117 -117
  224. edsl/templates/error_reporting/report.js +25 -25
  225. edsl/tools/__init__.py +1 -1
  226. edsl/tools/clusters.py +192 -192
  227. edsl/tools/embeddings.py +27 -27
  228. edsl/tools/embeddings_plotting.py +118 -118
  229. edsl/tools/plotting.py +112 -112
  230. edsl/tools/summarize.py +18 -18
  231. edsl/utilities/SystemInfo.py +28 -28
  232. edsl/utilities/__init__.py +22 -22
  233. edsl/utilities/ast_utilities.py +25 -25
  234. edsl/utilities/data/Registry.py +6 -6
  235. edsl/utilities/data/__init__.py +1 -1
  236. edsl/utilities/data/scooter_results.json +1 -1
  237. edsl/utilities/decorators.py +77 -77
  238. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  239. edsl/utilities/interface.py +627 -627
  240. edsl/{conjure → utilities}/naming_utilities.py +263 -263
  241. edsl/utilities/repair_functions.py +28 -28
  242. edsl/utilities/restricted_python.py +70 -70
  243. edsl/utilities/utilities.py +409 -409
  244. {edsl-0.1.38.dev1.dist-info → edsl-0.1.38.dev3.dist-info}/LICENSE +21 -21
  245. {edsl-0.1.38.dev1.dist-info → edsl-0.1.38.dev3.dist-info}/METADATA +1 -1
  246. edsl-0.1.38.dev3.dist-info/RECORD +269 -0
  247. edsl/conjure/AgentConstructionMixin.py +0 -160
  248. edsl/conjure/Conjure.py +0 -62
  249. edsl/conjure/InputData.py +0 -659
  250. edsl/conjure/InputDataCSV.py +0 -48
  251. edsl/conjure/InputDataMixinQuestionStats.py +0 -182
  252. edsl/conjure/InputDataPyRead.py +0 -91
  253. edsl/conjure/InputDataSPSS.py +0 -8
  254. edsl/conjure/InputDataStata.py +0 -8
  255. edsl/conjure/QuestionOptionMixin.py +0 -76
  256. edsl/conjure/QuestionTypeMixin.py +0 -23
  257. edsl/conjure/RawQuestion.py +0 -65
  258. edsl/conjure/SurveyResponses.py +0 -7
  259. edsl/conjure/__init__.py +0 -9
  260. edsl/conjure/examples/placeholder.txt +0 -0
  261. edsl/conjure/utilities.py +0 -201
  262. edsl-0.1.38.dev1.dist-info/RECORD +0 -283
  263. {edsl-0.1.38.dev1.dist-info → edsl-0.1.38.dev3.dist-info}/WHEEL +0 -0
@@ -1,178 +1,178 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from collections import defaultdict
4
-
5
- from typing import List, Dict
6
-
7
- from edsl.auto.StageBase import StageBase
8
- from edsl.auto.utilities import gen_pipeline
9
- from edsl.auto.StageBase import FlowDataBase
10
-
11
- from edsl.auto.StageQuestions import StageQuestions
12
- from edsl.auto.StageLabelQuestions import StageLabelQuestions
13
-
14
- from edsl.questions import QuestionList
15
- from edsl.scenarios import Scenario
16
- from edsl import Model
17
- from edsl.surveys import Survey
18
- from edsl.questions import QuestionBase
19
-
20
- from edsl.utilities.utilities import is_valid_variable_name
21
- from edsl import Model
22
- from edsl.questions import QuestionExtract
23
-
24
-
25
- m = Model()
26
-
27
-
28
- def chunker(seq, size):
29
- return (seq[pos : pos + size] for pos in range(0, len(seq), size))
30
-
31
-
32
- def get_short_options(question_options, num_chars=20):
33
- """Gets short names for the options of a question
34
- >>> get_short_options(["No, I don't own a scooter", "Yes, I own a scooter"])
35
- {'No, I don\'t own a scooter': 'no_scooter', 'Yes, I own a scooter': 'yes_scooter'}
36
- """
37
- q = QuestionList(
38
- question_text=dedent(
39
- f"""\
40
- We need short (less than {num_chars} characters) names for the options of a question, with no spaces.
41
- E.g., if the options were "No, I don't own a scooter" and "Yes, I own a scooter",
42
- you could use "no_scooter" and "yes_scooter".
43
- They should be all lower case. Use snake case.
44
- The short names have to be unique.
45
- The options are: {question_options}
46
- The names are {question_options} of them."""
47
- ),
48
- # answer_template={k: None for k in question_options},
49
- question_name="short_options",
50
- )
51
- results = q.by(m).run()
52
- return results.select("short_options").first()
53
-
54
-
55
- def get_short_names_chunk(questions, num_chars=20):
56
- q = QuestionList(
57
- question_text=dedent(
58
- f"""\
59
- We need short (less than {num_chars} characters) names for the questions, with no spaces.
60
- E.g., if the question was: "What is your first name?", you could use "first_name".
61
- The short names have to be unique and not starting with numbers. They should be all lower case.
62
- The questions are: {questions}
63
- """
64
- ),
65
- question_name="short_names",
66
- )
67
- results = q.by(m).run()
68
- short_names = results.select("short_names").first()
69
- return {k: v for k, v in zip(questions, short_names)}
70
-
71
-
72
- def get_short_names(questions, max_size=10, num_chars=20):
73
- "Gets short names for questions"
74
- if len(questions) <= max_size:
75
- short_names_dict = get_short_names_chunk(questions, num_chars)
76
- else:
77
- short_names_dict = {}
78
- for chunk in chunker(questions, max_size):
79
- results = get_short_names_chunk(chunk, num_chars)
80
- short_names_dict.update(results)
81
- return short_names_dict
82
-
83
-
84
- class StageGenerateSurvey(StageBase):
85
- input = StageLabelQuestions.output
86
-
87
- @dataclass
88
- class Output(FlowDataBase):
89
- survey: Survey
90
-
91
- output = Output
92
-
93
- def handle_data(self, data):
94
- """This tage uses the question types to generate a survey
95
- It constucts the edsl-specific dictionary needed to create a question
96
- """
97
- # survey = Survey(name = {data.overall_question, population = data.population, description)
98
- survey = Survey()
99
-
100
- short_names = get_short_names(data.questions)
101
-
102
- question_count = -1
103
- for question, question_type, options, option_labels in zip(
104
- data.questions, data.types, data.options, data.option_labels
105
- ):
106
- question_count += 1
107
- short_names_dict = {}
108
- if question in short_names:
109
- short_names_dict[question] = short_names[question]
110
- data = {
111
- "question_text": question,
112
- "question_type": question_type,
113
- "question_name": short_names.get(question, f"q{question_count}"),
114
- }
115
- if options is not None:
116
- data["question_options"] = options
117
- # make sure it's not a linear scale question, in which case we don't want to add short names
118
-
119
- if option_labels is not None:
120
- data["option_labels"] = dict(zip(options, option_labels))
121
- # print(data["option_labels"])
122
- # breakpoint()
123
-
124
- if question_type == "linear_scale":
125
- option_keys = option_labels
126
- else:
127
- option_keys = options
128
-
129
- if options is not None:
130
- short_options = get_short_options(option_keys)
131
- short_names_dict.update(
132
- {k: v for k, v in zip(option_keys, short_options)}
133
- )
134
-
135
- if question_type not in ["numerical", "free_text"]:
136
- data["short_names_dict"] = short_names_dict
137
- _ = data.pop("short_names_dict", None)
138
- q = QuestionBase.from_dict(data)
139
- survey.add_question(q)
140
-
141
- survey.print()
142
- return self.output(survey=survey)
143
-
144
-
145
- if __name__ == "__main__":
146
- # pipeline = gen_pipeline([StageQuestions, StageLabelQuestions, StageGenerateSurvey])
147
-
148
- # results = pipeline.process(
149
- # pipeline.input(
150
- # overall_question="What are some factors that could determine whether someone likes ice cream?",
151
- # population="consumers",
152
- # )
153
- # )
154
- # # print(results)
155
- # short_options = get_short_options(
156
- # ["No, I don't own a scooter", "Yes, I own a scooter"]
157
- # )
158
- # print(short_options)
159
-
160
- sample_questions = [
161
- "What are the primary goals for your company in sponsoring a research center like the MIT IDE?",
162
- "How does your company measure the ROI on sponsorships like this?",
163
- "What specific aspects of the MIT IDEs work align with your companys strategic interests?",
164
- "Can you describe the decision-making process your company uses to select research initiatives for sponsorship?",
165
- "What are the most important factors your company considers when deciding to sponsor a research center?",
166
- "How important is the visibility and recognition your company receives from sponsoring a research center like the MIT IDE?",
167
- "What kind of collaborative opportunities with the MIT IDE are you looking for?",
168
- "What are your companys expectations regarding intellectual property and the commercialization of research outcomes?",
169
- "How does your company evaluate the success of the research projects it sponsors?",
170
- "Would your company be interested in engaging with students or faculty at the MIT IDE for recruitment or professional development opportunities?",
171
- "How does your company plan to leverage the research and insights gained from the MIT IDE?",
172
- "What challenges has your company faced in previous sponsorships that you would want to avoid in the future?",
173
- "Is there any additional support or involvement your company would like to have in the MIT IDE beyond financial sponsorship?",
174
- "How do you see your companys role in shaping the research agenda at the MIT IDE?",
175
- "What can the MIT IDE do to make its sponsorship opportunities more attractive to your company?",
176
- ]
177
-
178
- short_names = get_short_names(sample_questions)
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from collections import defaultdict
4
+
5
+ from typing import List, Dict
6
+
7
+ from edsl.auto.StageBase import StageBase
8
+ from edsl.auto.utilities import gen_pipeline
9
+ from edsl.auto.StageBase import FlowDataBase
10
+
11
+ from edsl.auto.StageQuestions import StageQuestions
12
+ from edsl.auto.StageLabelQuestions import StageLabelQuestions
13
+
14
+ from edsl.questions import QuestionList
15
+ from edsl.scenarios import Scenario
16
+ from edsl import Model
17
+ from edsl.surveys import Survey
18
+ from edsl.questions import QuestionBase
19
+
20
+ from edsl.utilities.utilities import is_valid_variable_name
21
+ from edsl import Model
22
+ from edsl.questions import QuestionExtract
23
+
24
+
25
+ m = Model()
26
+
27
+
28
+ def chunker(seq, size):
29
+ return (seq[pos : pos + size] for pos in range(0, len(seq), size))
30
+
31
+
32
+ def get_short_options(question_options, num_chars=20):
33
+ """Gets short names for the options of a question
34
+ >>> get_short_options(["No, I don't own a scooter", "Yes, I own a scooter"])
35
+ {'No, I don\'t own a scooter': 'no_scooter', 'Yes, I own a scooter': 'yes_scooter'}
36
+ """
37
+ q = QuestionList(
38
+ question_text=dedent(
39
+ f"""\
40
+ We need short (less than {num_chars} characters) names for the options of a question, with no spaces.
41
+ E.g., if the options were "No, I don't own a scooter" and "Yes, I own a scooter",
42
+ you could use "no_scooter" and "yes_scooter".
43
+ They should be all lower case. Use snake case.
44
+ The short names have to be unique.
45
+ The options are: {question_options}
46
+ The names are {question_options} of them."""
47
+ ),
48
+ # answer_template={k: None for k in question_options},
49
+ question_name="short_options",
50
+ )
51
+ results = q.by(m).run()
52
+ return results.select("short_options").first()
53
+
54
+
55
+ def get_short_names_chunk(questions, num_chars=20):
56
+ q = QuestionList(
57
+ question_text=dedent(
58
+ f"""\
59
+ We need short (less than {num_chars} characters) names for the questions, with no spaces.
60
+ E.g., if the question was: "What is your first name?", you could use "first_name".
61
+ The short names have to be unique and not starting with numbers. They should be all lower case.
62
+ The questions are: {questions}
63
+ """
64
+ ),
65
+ question_name="short_names",
66
+ )
67
+ results = q.by(m).run()
68
+ short_names = results.select("short_names").first()
69
+ return {k: v for k, v in zip(questions, short_names)}
70
+
71
+
72
+ def get_short_names(questions, max_size=10, num_chars=20):
73
+ "Gets short names for questions"
74
+ if len(questions) <= max_size:
75
+ short_names_dict = get_short_names_chunk(questions, num_chars)
76
+ else:
77
+ short_names_dict = {}
78
+ for chunk in chunker(questions, max_size):
79
+ results = get_short_names_chunk(chunk, num_chars)
80
+ short_names_dict.update(results)
81
+ return short_names_dict
82
+
83
+
84
+ class StageGenerateSurvey(StageBase):
85
+ input = StageLabelQuestions.output
86
+
87
+ @dataclass
88
+ class Output(FlowDataBase):
89
+ survey: Survey
90
+
91
+ output = Output
92
+
93
+ def handle_data(self, data):
94
+ """This tage uses the question types to generate a survey
95
+ It constucts the edsl-specific dictionary needed to create a question
96
+ """
97
+ # survey = Survey(name = {data.overall_question, population = data.population, description)
98
+ survey = Survey()
99
+
100
+ short_names = get_short_names(data.questions)
101
+
102
+ question_count = -1
103
+ for question, question_type, options, option_labels in zip(
104
+ data.questions, data.types, data.options, data.option_labels
105
+ ):
106
+ question_count += 1
107
+ short_names_dict = {}
108
+ if question in short_names:
109
+ short_names_dict[question] = short_names[question]
110
+ data = {
111
+ "question_text": question,
112
+ "question_type": question_type,
113
+ "question_name": short_names.get(question, f"q{question_count}"),
114
+ }
115
+ if options is not None:
116
+ data["question_options"] = options
117
+ # make sure it's not a linear scale question, in which case we don't want to add short names
118
+
119
+ if option_labels is not None:
120
+ data["option_labels"] = dict(zip(options, option_labels))
121
+ # print(data["option_labels"])
122
+ # breakpoint()
123
+
124
+ if question_type == "linear_scale":
125
+ option_keys = option_labels
126
+ else:
127
+ option_keys = options
128
+
129
+ if options is not None:
130
+ short_options = get_short_options(option_keys)
131
+ short_names_dict.update(
132
+ {k: v for k, v in zip(option_keys, short_options)}
133
+ )
134
+
135
+ if question_type not in ["numerical", "free_text"]:
136
+ data["short_names_dict"] = short_names_dict
137
+ _ = data.pop("short_names_dict", None)
138
+ q = QuestionBase.from_dict(data)
139
+ survey.add_question(q)
140
+
141
+ survey.print()
142
+ return self.output(survey=survey)
143
+
144
+
145
+ if __name__ == "__main__":
146
+ # pipeline = gen_pipeline([StageQuestions, StageLabelQuestions, StageGenerateSurvey])
147
+
148
+ # results = pipeline.process(
149
+ # pipeline.input(
150
+ # overall_question="What are some factors that could determine whether someone likes ice cream?",
151
+ # population="consumers",
152
+ # )
153
+ # )
154
+ # # print(results)
155
+ # short_options = get_short_options(
156
+ # ["No, I don't own a scooter", "Yes, I own a scooter"]
157
+ # )
158
+ # print(short_options)
159
+
160
+ sample_questions = [
161
+ "What are the primary goals for your company in sponsoring a research center like the MIT IDE?",
162
+ "How does your company measure the ROI on sponsorships like this?",
163
+ "What specific aspects of the MIT IDEs work align with your companys strategic interests?",
164
+ "Can you describe the decision-making process your company uses to select research initiatives for sponsorship?",
165
+ "What are the most important factors your company considers when deciding to sponsor a research center?",
166
+ "How important is the visibility and recognition your company receives from sponsoring a research center like the MIT IDE?",
167
+ "What kind of collaborative opportunities with the MIT IDE are you looking for?",
168
+ "What are your companys expectations regarding intellectual property and the commercialization of research outcomes?",
169
+ "How does your company evaluate the success of the research projects it sponsors?",
170
+ "Would your company be interested in engaging with students or faculty at the MIT IDE for recruitment or professional development opportunities?",
171
+ "How does your company plan to leverage the research and insights gained from the MIT IDE?",
172
+ "What challenges has your company faced in previous sponsorships that you would want to avoid in the future?",
173
+ "Is there any additional support or involvement your company would like to have in the MIT IDE beyond financial sponsorship?",
174
+ "How do you see your companys role in shaping the research agenda at the MIT IDE?",
175
+ "What can the MIT IDE do to make its sponsorship opportunities more attractive to your company?",
176
+ ]
177
+
178
+ short_names = get_short_names(sample_questions)
@@ -1,125 +1,125 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from collections import defaultdict
4
-
5
- from typing import List, Dict, Union
6
-
7
- from edsl.auto.StageBase import StageBase
8
- from edsl.auto.StageBase import FlowDataBase
9
-
10
- from edsl.auto.StageQuestions import StageQuestions
11
-
12
- from edsl.questions import QuestionMultipleChoice, QuestionList
13
- from edsl.scenarios import Scenario
14
- from edsl import Model
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- question_purpose = {
19
- "multiple_choice": "When options are known and limited",
20
- "free_text": "When we are asking an open-ended question",
21
- "checkbox": "When multiple options can be selected e.g., have you heard of the following products:",
22
- "numerical": "When the answer is a single numerical value e.g., a float",
23
- "linear_scale": "When options are text like multiple choice, but can be ordered e.g., daily, weekly, monthly, etc.",
24
- "yes_no": "When the question can be fully answered with either a yes or a no",
25
- }
26
-
27
-
28
- class StageLabelQuestions(StageBase):
29
- input = StageQuestions.output
30
-
31
- @dataclass
32
- class Output(FlowDataBase):
33
- questions: List[str]
34
- types: List[str]
35
- options: Dict[str, List[str]]
36
- option_labels: Dict[str, Union[List[str], None]]
37
-
38
- output = Output
39
-
40
- def handle_data(self, data):
41
- """
42
- Labels each edsl question type. This is then used later to instantiate the questions
43
- """
44
- m = Model()
45
- label_questions_scenarios = [
46
- Scenario({"question": q, "question_purpose": question_purpose})
47
- for q in data.questions
48
- ]
49
- q_type = QuestionMultipleChoice(
50
- question_text=dedent(
51
- """\
52
- Consider this question: "{{ question }}"
53
- The question options and purpose are: {{ question_purpose }}
54
- Please avoid free text questions much as possible.
55
- If it could be a multiple choice, use that type.
56
- What type of question should this be to make for an informative survey?"""
57
- ),
58
- question_options=list(question_purpose.keys()),
59
- question_name="question_type",
60
- )
61
- ## If it is a linear scale, multiple choice or checkbox question, we need to know the options
62
- option_questions = [
63
- "multiple_choice",
64
- "linear_scale",
65
- "checkbox",
66
- ]
67
- q_options_mc = QuestionList(
68
- question_text=dedent(
69
- """\
70
- Consider this question: "{{ question }}"
71
- What options should this question have?"""
72
- ),
73
- question_name="mc_options",
74
- )
75
- survey = q_type.add_question(q_options_mc).add_stop_rule(
76
- "question_type", f"question_type not in {option_questions}"
77
- )
78
- type_results = survey.by(label_questions_scenarios).by(m).run()
79
- type_results.select("question", "question_type", "mc_options").print()
80
-
81
- # breakpoint()
82
-
83
- question_types = type_results.select("question_type").to_list()
84
- options = type_results.select("mc_options").to_list()
85
- # question_types, options = type_results.select(
86
- # "question_type", "mc_options"
87
- # ).to_list()
88
-
89
- type_results.select("question", "question_type", "mc_options").print()
90
-
91
- # if the question is a yes/no question, we need to set the options to be yes/no
92
- types_to_questions = defaultdict(list)
93
- for question_type, question in zip(question_types, data.questions):
94
- types_to_questions[question_type].append(question)
95
-
96
- questions_to_options = dict(zip(data.questions, options))
97
- question_to_option_labels = dict(
98
- zip(data.questions, len(data.questions) * [None])
99
- )
100
- for question in types_to_questions.get("yes_no", []):
101
- questions_to_options[question] = ["Yes", "No"]
102
-
103
- for question in types_to_questions.get("linear_scale", []):
104
- options = questions_to_options[question]
105
- questions_to_options[question] = list(range(len(options)))
106
- question_to_option_labels[question] = options
107
-
108
- return self.output(
109
- questions=data.questions,
110
- types=question_types,
111
- options=list(questions_to_options.values()),
112
- option_labels=list(question_to_option_labels.values()),
113
- )
114
-
115
-
116
- if __name__ == "__main__":
117
- pipeline = gen_pipeline([StageQuestions, StageLabelQuestions])
118
-
119
- results = pipeline.process(
120
- pipeline.input(
121
- overall_question="What are some factors that could determine whether someone likes ice cream?"
122
- )
123
- )
124
-
125
- print(results.options)
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from collections import defaultdict
4
+
5
+ from typing import List, Dict, Union
6
+
7
+ from edsl.auto.StageBase import StageBase
8
+ from edsl.auto.StageBase import FlowDataBase
9
+
10
+ from edsl.auto.StageQuestions import StageQuestions
11
+
12
+ from edsl.questions import QuestionMultipleChoice, QuestionList
13
+ from edsl.scenarios import Scenario
14
+ from edsl import Model
15
+ from edsl.auto.utilities import gen_pipeline
16
+
17
+
18
+ question_purpose = {
19
+ "multiple_choice": "When options are known and limited",
20
+ "free_text": "When we are asking an open-ended question",
21
+ "checkbox": "When multiple options can be selected e.g., have you heard of the following products:",
22
+ "numerical": "When the answer is a single numerical value e.g., a float",
23
+ "linear_scale": "When options are text like multiple choice, but can be ordered e.g., daily, weekly, monthly, etc.",
24
+ "yes_no": "When the question can be fully answered with either a yes or a no",
25
+ }
26
+
27
+
28
+ class StageLabelQuestions(StageBase):
29
+ input = StageQuestions.output
30
+
31
+ @dataclass
32
+ class Output(FlowDataBase):
33
+ questions: List[str]
34
+ types: List[str]
35
+ options: Dict[str, List[str]]
36
+ option_labels: Dict[str, Union[List[str], None]]
37
+
38
+ output = Output
39
+
40
+ def handle_data(self, data):
41
+ """
42
+ Labels each edsl question type. This is then used later to instantiate the questions
43
+ """
44
+ m = Model()
45
+ label_questions_scenarios = [
46
+ Scenario({"question": q, "question_purpose": question_purpose})
47
+ for q in data.questions
48
+ ]
49
+ q_type = QuestionMultipleChoice(
50
+ question_text=dedent(
51
+ """\
52
+ Consider this question: "{{ question }}"
53
+ The question options and purpose are: {{ question_purpose }}
54
+ Please avoid free text questions much as possible.
55
+ If it could be a multiple choice, use that type.
56
+ What type of question should this be to make for an informative survey?"""
57
+ ),
58
+ question_options=list(question_purpose.keys()),
59
+ question_name="question_type",
60
+ )
61
+ ## If it is a linear scale, multiple choice or checkbox question, we need to know the options
62
+ option_questions = [
63
+ "multiple_choice",
64
+ "linear_scale",
65
+ "checkbox",
66
+ ]
67
+ q_options_mc = QuestionList(
68
+ question_text=dedent(
69
+ """\
70
+ Consider this question: "{{ question }}"
71
+ What options should this question have?"""
72
+ ),
73
+ question_name="mc_options",
74
+ )
75
+ survey = q_type.add_question(q_options_mc).add_stop_rule(
76
+ "question_type", f"question_type not in {option_questions}"
77
+ )
78
+ type_results = survey.by(label_questions_scenarios).by(m).run()
79
+ type_results.select("question", "question_type", "mc_options").print()
80
+
81
+ # breakpoint()
82
+
83
+ question_types = type_results.select("question_type").to_list()
84
+ options = type_results.select("mc_options").to_list()
85
+ # question_types, options = type_results.select(
86
+ # "question_type", "mc_options"
87
+ # ).to_list()
88
+
89
+ type_results.select("question", "question_type", "mc_options").print()
90
+
91
+ # if the question is a yes/no question, we need to set the options to be yes/no
92
+ types_to_questions = defaultdict(list)
93
+ for question_type, question in zip(question_types, data.questions):
94
+ types_to_questions[question_type].append(question)
95
+
96
+ questions_to_options = dict(zip(data.questions, options))
97
+ question_to_option_labels = dict(
98
+ zip(data.questions, len(data.questions) * [None])
99
+ )
100
+ for question in types_to_questions.get("yes_no", []):
101
+ questions_to_options[question] = ["Yes", "No"]
102
+
103
+ for question in types_to_questions.get("linear_scale", []):
104
+ options = questions_to_options[question]
105
+ questions_to_options[question] = list(range(len(options)))
106
+ question_to_option_labels[question] = options
107
+
108
+ return self.output(
109
+ questions=data.questions,
110
+ types=question_types,
111
+ options=list(questions_to_options.values()),
112
+ option_labels=list(question_to_option_labels.values()),
113
+ )
114
+
115
+
116
+ if __name__ == "__main__":
117
+ pipeline = gen_pipeline([StageQuestions, StageLabelQuestions])
118
+
119
+ results = pipeline.process(
120
+ pipeline.input(
121
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
122
+ )
123
+ )
124
+
125
+ print(results.options)