edsl 0.1.37.dev4__py3-none-any.whl → 0.1.37.dev5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (261) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +48 -48
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +855 -804
  7. edsl/agents/AgentList.py +350 -345
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +284 -305
  10. edsl/agents/PromptConstructor.py +353 -312
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -86
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +289 -289
  26. edsl/config.py +149 -149
  27. edsl/conjure/AgentConstructionMixin.py +160 -152
  28. edsl/conjure/Conjure.py +62 -62
  29. edsl/conjure/InputData.py +659 -659
  30. edsl/conjure/InputDataCSV.py +48 -48
  31. edsl/conjure/InputDataMixinQuestionStats.py +182 -182
  32. edsl/conjure/InputDataPyRead.py +91 -91
  33. edsl/conjure/InputDataSPSS.py +8 -8
  34. edsl/conjure/InputDataStata.py +8 -8
  35. edsl/conjure/QuestionOptionMixin.py +76 -76
  36. edsl/conjure/QuestionTypeMixin.py +23 -23
  37. edsl/conjure/RawQuestion.py +65 -65
  38. edsl/conjure/SurveyResponses.py +7 -7
  39. edsl/conjure/__init__.py +9 -9
  40. edsl/conjure/naming_utilities.py +263 -263
  41. edsl/conjure/utilities.py +201 -201
  42. edsl/conversation/Conversation.py +290 -238
  43. edsl/conversation/car_buying.py +58 -58
  44. edsl/conversation/chips.py +95 -0
  45. edsl/conversation/mug_negotiation.py +81 -81
  46. edsl/conversation/next_speaker_utilities.py +93 -93
  47. edsl/coop/PriceFetcher.py +54 -54
  48. edsl/coop/__init__.py +2 -2
  49. edsl/coop/coop.py +958 -827
  50. edsl/coop/utils.py +131 -131
  51. edsl/data/Cache.py +527 -527
  52. edsl/data/CacheEntry.py +228 -228
  53. edsl/data/CacheHandler.py +149 -149
  54. edsl/data/RemoteCacheSync.py +97 -97
  55. edsl/data/SQLiteDict.py +292 -292
  56. edsl/data/__init__.py +4 -4
  57. edsl/data/orm.py +10 -10
  58. edsl/data_transfer_models.py +73 -73
  59. edsl/enums.py +173 -173
  60. edsl/exceptions/BaseException.py +21 -0
  61. edsl/exceptions/__init__.py +54 -50
  62. edsl/exceptions/agents.py +38 -40
  63. edsl/exceptions/configuration.py +16 -16
  64. edsl/exceptions/coop.py +10 -10
  65. edsl/exceptions/data.py +14 -14
  66. edsl/exceptions/general.py +34 -34
  67. edsl/exceptions/jobs.py +33 -33
  68. edsl/exceptions/language_models.py +63 -63
  69. edsl/exceptions/prompts.py +15 -15
  70. edsl/exceptions/questions.py +91 -91
  71. edsl/exceptions/results.py +29 -26
  72. edsl/exceptions/scenarios.py +22 -0
  73. edsl/exceptions/surveys.py +37 -34
  74. edsl/inference_services/AnthropicService.py +87 -87
  75. edsl/inference_services/AwsBedrock.py +120 -120
  76. edsl/inference_services/AzureAI.py +217 -217
  77. edsl/inference_services/DeepInfraService.py +18 -18
  78. edsl/inference_services/GoogleService.py +156 -156
  79. edsl/inference_services/GroqService.py +20 -20
  80. edsl/inference_services/InferenceServiceABC.py +147 -147
  81. edsl/inference_services/InferenceServicesCollection.py +97 -74
  82. edsl/inference_services/MistralAIService.py +123 -123
  83. edsl/inference_services/OllamaService.py +18 -18
  84. edsl/inference_services/OpenAIService.py +224 -224
  85. edsl/inference_services/TestService.py +89 -89
  86. edsl/inference_services/TogetherAIService.py +170 -170
  87. edsl/inference_services/models_available_cache.py +118 -118
  88. edsl/inference_services/rate_limits_cache.py +25 -25
  89. edsl/inference_services/registry.py +39 -39
  90. edsl/inference_services/write_available.py +10 -10
  91. edsl/jobs/Answers.py +56 -56
  92. edsl/jobs/Jobs.py +1347 -1135
  93. edsl/jobs/__init__.py +1 -1
  94. edsl/jobs/buckets/BucketCollection.py +63 -63
  95. edsl/jobs/buckets/ModelBuckets.py +65 -65
  96. edsl/jobs/buckets/TokenBucket.py +248 -248
  97. edsl/jobs/interviews/Interview.py +661 -661
  98. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  99. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -182
  100. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  101. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  102. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  103. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  104. edsl/jobs/interviews/ReportErrors.py +66 -66
  105. edsl/jobs/interviews/interview_status_enum.py +9 -9
  106. edsl/jobs/runners/JobsRunnerAsyncio.py +338 -338
  107. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  108. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  109. edsl/jobs/tasks/TaskCreators.py +64 -64
  110. edsl/jobs/tasks/TaskHistory.py +442 -441
  111. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  112. edsl/jobs/tasks/task_status_enum.py +163 -163
  113. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  114. edsl/jobs/tokens/TokenUsage.py +34 -34
  115. edsl/language_models/KeyLookup.py +30 -0
  116. edsl/language_models/LanguageModel.py +706 -718
  117. edsl/language_models/ModelList.py +102 -102
  118. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  119. edsl/language_models/__init__.py +3 -2
  120. edsl/language_models/fake_openai_call.py +15 -15
  121. edsl/language_models/fake_openai_service.py +61 -61
  122. edsl/language_models/registry.py +137 -137
  123. edsl/language_models/repair.py +156 -156
  124. edsl/language_models/unused/ReplicateBase.py +83 -83
  125. edsl/language_models/utilities.py +64 -64
  126. edsl/notebooks/Notebook.py +259 -259
  127. edsl/notebooks/__init__.py +1 -1
  128. edsl/prompts/Prompt.py +357 -353
  129. edsl/prompts/__init__.py +2 -2
  130. edsl/questions/AnswerValidatorMixin.py +289 -289
  131. edsl/questions/QuestionBase.py +656 -616
  132. edsl/questions/QuestionBaseGenMixin.py +161 -161
  133. edsl/questions/QuestionBasePromptsMixin.py +234 -266
  134. edsl/questions/QuestionBudget.py +227 -227
  135. edsl/questions/QuestionCheckBox.py +359 -359
  136. edsl/questions/QuestionExtract.py +183 -183
  137. edsl/questions/QuestionFreeText.py +114 -114
  138. edsl/questions/QuestionFunctional.py +159 -159
  139. edsl/questions/QuestionList.py +231 -231
  140. edsl/questions/QuestionMultipleChoice.py +286 -286
  141. edsl/questions/QuestionNumerical.py +153 -153
  142. edsl/questions/QuestionRank.py +324 -324
  143. edsl/questions/Quick.py +41 -41
  144. edsl/questions/RegisterQuestionsMeta.py +71 -71
  145. edsl/questions/ResponseValidatorABC.py +174 -174
  146. edsl/questions/SimpleAskMixin.py +73 -73
  147. edsl/questions/__init__.py +26 -26
  148. edsl/questions/compose_questions.py +98 -98
  149. edsl/questions/decorators.py +21 -21
  150. edsl/questions/derived/QuestionLikertFive.py +76 -76
  151. edsl/questions/derived/QuestionLinearScale.py +87 -87
  152. edsl/questions/derived/QuestionTopK.py +91 -91
  153. edsl/questions/derived/QuestionYesNo.py +82 -82
  154. edsl/questions/descriptors.py +413 -418
  155. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  156. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  157. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  158. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  159. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  160. edsl/questions/prompt_templates/question_list.jinja +17 -17
  161. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  162. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  163. edsl/questions/question_registry.py +147 -147
  164. edsl/questions/settings.py +12 -12
  165. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  166. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  167. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  168. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  169. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  170. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  171. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  172. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  173. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  174. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  175. edsl/questions/templates/list/question_presentation.jinja +5 -5
  176. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  177. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  178. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  179. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  180. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  181. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  182. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  183. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  184. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  185. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  186. edsl/results/Dataset.py +293 -293
  187. edsl/results/DatasetExportMixin.py +717 -693
  188. edsl/results/DatasetTree.py +145 -145
  189. edsl/results/Result.py +450 -435
  190. edsl/results/Results.py +1071 -1160
  191. edsl/results/ResultsDBMixin.py +238 -238
  192. edsl/results/ResultsExportMixin.py +43 -43
  193. edsl/results/ResultsFetchMixin.py +33 -33
  194. edsl/results/ResultsGGMixin.py +121 -121
  195. edsl/results/ResultsToolsMixin.py +98 -98
  196. edsl/results/Selector.py +135 -118
  197. edsl/results/__init__.py +2 -2
  198. edsl/results/tree_explore.py +115 -115
  199. edsl/scenarios/FileStore.py +458 -458
  200. edsl/scenarios/Scenario.py +546 -510
  201. edsl/scenarios/ScenarioHtmlMixin.py +64 -59
  202. edsl/scenarios/ScenarioList.py +1112 -1101
  203. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  204. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  205. edsl/scenarios/__init__.py +4 -4
  206. edsl/shared.py +1 -1
  207. edsl/study/ObjectEntry.py +173 -173
  208. edsl/study/ProofOfWork.py +113 -113
  209. edsl/study/SnapShot.py +80 -80
  210. edsl/study/Study.py +528 -528
  211. edsl/study/__init__.py +4 -4
  212. edsl/surveys/DAG.py +148 -148
  213. edsl/surveys/Memory.py +31 -31
  214. edsl/surveys/MemoryPlan.py +244 -244
  215. edsl/surveys/Rule.py +330 -324
  216. edsl/surveys/RuleCollection.py +387 -387
  217. edsl/surveys/Survey.py +1795 -1772
  218. edsl/surveys/SurveyCSS.py +261 -261
  219. edsl/surveys/SurveyExportMixin.py +259 -259
  220. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  221. edsl/surveys/SurveyQualtricsImport.py +284 -284
  222. edsl/surveys/__init__.py +3 -3
  223. edsl/surveys/base.py +53 -53
  224. edsl/surveys/descriptors.py +56 -56
  225. edsl/surveys/instructions/ChangeInstruction.py +47 -47
  226. edsl/surveys/instructions/Instruction.py +51 -51
  227. edsl/surveys/instructions/InstructionCollection.py +77 -77
  228. edsl/templates/error_reporting/base.html +23 -23
  229. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  230. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  231. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  232. edsl/templates/error_reporting/interview_details.html +115 -115
  233. edsl/templates/error_reporting/interviews.html +9 -9
  234. edsl/templates/error_reporting/overview.html +4 -4
  235. edsl/templates/error_reporting/performance_plot.html +1 -1
  236. edsl/templates/error_reporting/report.css +73 -73
  237. edsl/templates/error_reporting/report.html +117 -117
  238. edsl/templates/error_reporting/report.js +25 -25
  239. edsl/tools/__init__.py +1 -1
  240. edsl/tools/clusters.py +192 -192
  241. edsl/tools/embeddings.py +27 -27
  242. edsl/tools/embeddings_plotting.py +118 -118
  243. edsl/tools/plotting.py +112 -112
  244. edsl/tools/summarize.py +18 -18
  245. edsl/utilities/SystemInfo.py +28 -28
  246. edsl/utilities/__init__.py +22 -22
  247. edsl/utilities/ast_utilities.py +25 -25
  248. edsl/utilities/data/Registry.py +6 -6
  249. edsl/utilities/data/__init__.py +1 -1
  250. edsl/utilities/data/scooter_results.json +1 -1
  251. edsl/utilities/decorators.py +77 -77
  252. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  253. edsl/utilities/interface.py +627 -627
  254. edsl/utilities/repair_functions.py +28 -28
  255. edsl/utilities/restricted_python.py +70 -70
  256. edsl/utilities/utilities.py +409 -391
  257. {edsl-0.1.37.dev4.dist-info → edsl-0.1.37.dev5.dist-info}/LICENSE +21 -21
  258. {edsl-0.1.37.dev4.dist-info → edsl-0.1.37.dev5.dist-info}/METADATA +1 -1
  259. edsl-0.1.37.dev5.dist-info/RECORD +283 -0
  260. edsl-0.1.37.dev4.dist-info/RECORD +0 -279
  261. {edsl-0.1.37.dev4.dist-info → edsl-0.1.37.dev5.dist-info}/WHEEL +0 -0
@@ -1,73 +1,73 @@
1
- from dataclasses import dataclass
2
- from typing import List
3
- from textwrap import dedent
4
-
5
-
6
- from edsl import Scenario
7
- from edsl import Model
8
- from edsl.questions.QuestionList import QuestionList
9
-
10
- from edsl.auto.StageBase import StageBase
11
- from edsl.auto.StageBase import FlowDataBase
12
-
13
- from edsl.auto.utilities import gen_pipeline
14
-
15
-
16
- class StageQuestions(StageBase):
17
- "This stages takes as input an overall question and returns a list of questions"
18
-
19
- @dataclass
20
- class Input(FlowDataBase):
21
- overall_question: str
22
- population: str
23
-
24
- @dataclass
25
- class Output(FlowDataBase):
26
- questions: List[str]
27
- population: str
28
-
29
- input = Input
30
- output = Output
31
-
32
- def handle_data(self, data):
33
- m = Model()
34
- overall_question = data.overall_question
35
- population = data.population
36
- s = Scenario({"overall_question": overall_question, "population": population})
37
- q = QuestionList(
38
- question_text=dedent(
39
- """\
40
- Suppose I am interested in the question:
41
- "{{ overall_question }}"
42
- What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
- """
44
- ),
45
- question_name="questions",
46
- )
47
- results = q.by(s).by(m).run()
48
- (
49
- results.select("questions").print(
50
- pretty_labels={
51
- "answer.questions": f'Questions for overall question: "{overall_question }"'
52
- },
53
- split_at_dot=False,
54
- )
55
- )
56
-
57
- raw_questions = results.select("questions").first()
58
- questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
- return self.Output(questions=questions, population=population)
60
-
61
-
62
- if __name__ == "__main__":
63
- pipeline = gen_pipeline([StageQuestions])
64
-
65
- pipeline.process(
66
- pipeline.input(
67
- overall_question="What are some factors that could determine whether someone likes ice cream?",
68
- population="Consumers",
69
- )
70
- )
71
- StageQuestions.func(
72
- overall_question="Why aren't my students studying more?", population="Tech"
73
- )
1
+ from dataclasses import dataclass
2
+ from typing import List
3
+ from textwrap import dedent
4
+
5
+
6
+ from edsl import Scenario
7
+ from edsl import Model
8
+ from edsl.questions.QuestionList import QuestionList
9
+
10
+ from edsl.auto.StageBase import StageBase
11
+ from edsl.auto.StageBase import FlowDataBase
12
+
13
+ from edsl.auto.utilities import gen_pipeline
14
+
15
+
16
+ class StageQuestions(StageBase):
17
+ "This stages takes as input an overall question and returns a list of questions"
18
+
19
+ @dataclass
20
+ class Input(FlowDataBase):
21
+ overall_question: str
22
+ population: str
23
+
24
+ @dataclass
25
+ class Output(FlowDataBase):
26
+ questions: List[str]
27
+ population: str
28
+
29
+ input = Input
30
+ output = Output
31
+
32
+ def handle_data(self, data):
33
+ m = Model()
34
+ overall_question = data.overall_question
35
+ population = data.population
36
+ s = Scenario({"overall_question": overall_question, "population": population})
37
+ q = QuestionList(
38
+ question_text=dedent(
39
+ """\
40
+ Suppose I am interested in the question:
41
+ "{{ overall_question }}"
42
+ What would be some survey questions I could ask to {{ population }} that might shed light on this question?
43
+ """
44
+ ),
45
+ question_name="questions",
46
+ )
47
+ results = q.by(s).by(m).run()
48
+ (
49
+ results.select("questions").print(
50
+ pretty_labels={
51
+ "answer.questions": f'Questions for overall question: "{overall_question }"'
52
+ },
53
+ split_at_dot=False,
54
+ )
55
+ )
56
+
57
+ raw_questions = results.select("questions").first()
58
+ questions = [q.replace("'", "").replace(":", "") for q in raw_questions]
59
+ return self.Output(questions=questions, population=population)
60
+
61
+
62
+ if __name__ == "__main__":
63
+ pipeline = gen_pipeline([StageQuestions])
64
+
65
+ pipeline.process(
66
+ pipeline.input(
67
+ overall_question="What are some factors that could determine whether someone likes ice cream?",
68
+ population="Consumers",
69
+ )
70
+ )
71
+ StageQuestions.func(
72
+ overall_question="Why aren't my students studying more?", population="Tech"
73
+ )
@@ -1,21 +1,21 @@
1
- import random
2
- from typing import Dict, List, Any, TypeVar, Generator, Optional
3
-
4
- from textwrap import dedent
5
-
6
- # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
- from edsl import Model
8
- from edsl.agents.AgentList import AgentList
9
- from edsl.results.Results import Results
10
- from edsl import Agent
11
-
12
- from edsl import Scenario
13
- from edsl.surveys.Survey import Survey
14
-
15
- from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
- from edsl.questions.QuestionFreeText import QuestionFreeText
17
- from edsl.auto.utilities import gen_pipeline
18
- from edsl.conjure.naming_utilities import sanitize_string
19
-
20
-
21
- m = Model()
1
+ import random
2
+ from typing import Dict, List, Any, TypeVar, Generator, Optional
3
+
4
+ from textwrap import dedent
5
+
6
+ # from edsl.language_models.model_interfaces.LanguageModelOpenAIFour import LanguageModelOpenAIFour
7
+ from edsl import Model
8
+ from edsl.agents.AgentList import AgentList
9
+ from edsl.results.Results import Results
10
+ from edsl import Agent
11
+
12
+ from edsl import Scenario
13
+ from edsl.surveys.Survey import Survey
14
+
15
+ from edsl.questions.QuestionMultipleChoice import QuestionMultipleChoice
16
+ from edsl.questions.QuestionFreeText import QuestionFreeText
17
+ from edsl.auto.utilities import gen_pipeline
18
+ from edsl.conjure.naming_utilities import sanitize_string
19
+
20
+
21
+ m = Model()
edsl/auto/utilities.py CHANGED
@@ -1,224 +1,224 @@
1
- from textwrap import dedent
2
- import random
3
- from typing import List, TypeVar, Generator, Optional
4
- from edsl.auto.StageBase import StageBase
5
- from edsl.conjure.naming_utilities import sanitize_string
6
- from edsl import Agent, Survey, Model, Cache, AgentList
7
- from edsl import QuestionFreeText, Scenario
8
- from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
-
10
- StageClassType = TypeVar("StageClassType", bound=StageBase)
11
-
12
-
13
- def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
- """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
- A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
-
17
- """
18
- pipeline = stages_list[0]()
19
- last_stage = pipeline
20
- for stage in stages_list[1:]:
21
- while last_stage.next_stage is not None: # find the end of the pipeline
22
- last_stage = last_stage.next_stage
23
- stage_to_add = stage()
24
- last_stage.next_stage = stage_to_add
25
- return pipeline
26
-
27
-
28
- q_eligibility = QuestionMultipleChoice(
29
- question_text=dedent(
30
- """\
31
- Consider this set of question: '{{ questions }}'.
32
- Consider this persona: '{{ persona }}'.
33
- Would this persona be able to answer all of these questions?
34
- """
35
- ),
36
- question_options=["No", "Yes"],
37
- question_name="eligibility",
38
- )
39
-
40
-
41
- def agent_list_eligibility(
42
- agent_list: AgentList,
43
- survey: Optional[Survey] = None,
44
- model: Optional[Model] = None,
45
- cache: Optional[Cache] = None,
46
- ) -> List[bool]:
47
- """
48
- Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
-
50
- >>> from edsl.language_models import LanguageModel
51
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
- >>> agent_list_eligibility(AgentList.example())
53
- [True, True]
54
- >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
- [True, True]
56
- """
57
- if survey is None:
58
- return [True] * len(agent_list)
59
- if "persona" not in agent_list.all_traits:
60
- raise ValueError(
61
- f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
- )
63
- sl = agent_list.select("persona").to_scenario_list()
64
- sl.add_value("questions", [q.question_text for q in survey._questions])
65
- results = q_eligibility.by(sl).by(model).run(cache=cache)
66
- return [r == "Yes" for r in results.select("eligibility").to_list()]
67
-
68
-
69
- def agent_eligibility(
70
- agent: Agent,
71
- survey: Survey,
72
- model: Optional[Model] = None,
73
- cache: Optional[Cache] = None,
74
- ) -> bool:
75
- """NB: This could be parallelized.
76
-
77
- >>> from edsl.language_models import LanguageModel
78
- >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
- >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
- True
81
-
82
- """
83
- model = model or Model()
84
-
85
- questions = [q.question_text for q in survey._questions]
86
- persona = agent.traits["persona"]
87
- return (
88
- q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
- == "Yes"
90
- )
91
- # results = (
92
- # q.by(model)
93
- # .by(Scenario({"questions": questions, "persona": persona}))
94
- # .run(cache=cache)
95
- # )
96
- # return results.select("eligibility").first() == "Yes"
97
-
98
-
99
- def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
- """
101
- >>> dimension_dict = {'attitude':['positive', 'negative']}
102
- >>> ag = gen_agent_traits(dimension_dict)
103
- >>> a = next(ag)
104
- >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
- True
106
- >>> len([next(ag) for _ in range(100)])
107
- 100
108
- """
109
- if seed_value is None:
110
- seed_value = "edsl"
111
-
112
- random.seed(seed_value)
113
-
114
- while True:
115
- new_agent_traits = {}
116
- for key, list_of_values in dimension_dict.items():
117
- new_agent_traits[key] = random.choice(list_of_values)
118
- yield new_agent_traits
119
-
120
-
121
- def agent_generator(
122
- persona: str,
123
- dimension_dict: dict,
124
- model: Optional[Model] = None,
125
- cache: Optional["Cache"] = None,
126
- ) -> Generator["Results", None, None]:
127
- """
128
- >>> from edsl.language_models import LanguageModel
129
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
- >>> next(ag).select('new_agent_persona').first()
132
- 'This is a cool dude.'
133
- >>> next(ag).select('new_agent_persona').first()
134
- 'This is a cool dude.'
135
- """
136
-
137
- if model is None:
138
- model = Model()
139
-
140
- q = QuestionFreeText(
141
- question_text=dedent(
142
- """\
143
- Consider this persona: '{{ persona }}'.
144
- Now imagine writing a new persona with these traits:
145
- '{{ new_agent_traits }}'
146
- Please write this persona as a narrative.
147
- """
148
- ),
149
- question_name="new_agent_persona",
150
- )
151
- agent_trait_generator = gen_agent_traits(dimension_dict)
152
- codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
- while True:
154
- new_agent_traits = next(agent_trait_generator)
155
- yield q(
156
- persona=persona,
157
- new_agent_traits=new_agent_traits,
158
- codebook=codebook,
159
- just_answer=False,
160
- cache=cache,
161
- model=model,
162
- )
163
-
164
-
165
- def create_agents(
166
- agent_generator: Generator["Results", None, None],
167
- survey: Optional[Survey] = None,
168
- num_agents=11,
169
- ) -> AgentList:
170
- """
171
- >>> from edsl.language_models import LanguageModel
172
- >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
- >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
- >>> new_agent_list = create_agents(agent_generator = ag)
175
- >>> new_agent_list
176
-
177
- """
178
- agent_list = AgentList([])
179
-
180
- MAX_ITERATIONS_MULTIPLIER = 2
181
- iterations = 0
182
-
183
- while len(agent_list) < num_agents:
184
- iterations += 1
185
- candidate_agent = next(agent_generator)
186
- codebook = candidate_agent.select("codebook").to_list()[0]
187
-
188
- koobedoc = {v: k for k, v in codebook.items()}
189
- persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
- traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
- new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
- "persona": persona
193
- }
194
- agent = Agent(traits=new_traits, codebook=codebook)
195
- if survey is not None:
196
- if agent_eligibility(agent, survey):
197
- agent_list.append(agent)
198
- else:
199
- print("Agent not eligible")
200
- else:
201
- agent_list.append(agent)
202
-
203
- if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
- raise Exception("Too many failures")
205
-
206
- return agent_list
207
-
208
-
209
- if __name__ == "__main__":
210
- import doctest
211
-
212
- doctest.testmod()
213
- # from edsl.language_models import LanguageModel
214
-
215
- # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
- # ag = agent_generator(
217
- # persona="Base person",
218
- # dimension_dict={"attitude": ["Positive", "Negative"]},
219
- # model=m,
220
- # )
221
- # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
- # dimension_dict = {"attitude": ["positive", "negative"]}
223
- # ag = gen_agent_traits(dimension_dict)
224
- # example = [next(ag) for _ in range(100)]
1
+ from textwrap import dedent
2
+ import random
3
+ from typing import List, TypeVar, Generator, Optional
4
+ from edsl.auto.StageBase import StageBase
5
+ from edsl.conjure.naming_utilities import sanitize_string
6
+ from edsl import Agent, Survey, Model, Cache, AgentList
7
+ from edsl import QuestionFreeText, Scenario
8
+ from edsl import QuestionMultipleChoice, Scenario, Agent, ScenarioList
9
+
10
+ StageClassType = TypeVar("StageClassType", bound=StageBase)
11
+
12
+
13
+ def gen_pipeline(stages_list: List[StageClassType]) -> StageBase:
14
+ """Takes as input a list of Stage classes & returns a pipeline of instantiated stages.
15
+ A pipeline is a linked list of stages where each stage has a next_stage attribute.
16
+
17
+ """
18
+ pipeline = stages_list[0]()
19
+ last_stage = pipeline
20
+ for stage in stages_list[1:]:
21
+ while last_stage.next_stage is not None: # find the end of the pipeline
22
+ last_stage = last_stage.next_stage
23
+ stage_to_add = stage()
24
+ last_stage.next_stage = stage_to_add
25
+ return pipeline
26
+
27
+
28
+ q_eligibility = QuestionMultipleChoice(
29
+ question_text=dedent(
30
+ """\
31
+ Consider this set of question: '{{ questions }}'.
32
+ Consider this persona: '{{ persona }}'.
33
+ Would this persona be able to answer all of these questions?
34
+ """
35
+ ),
36
+ question_options=["No", "Yes"],
37
+ question_name="eligibility",
38
+ )
39
+
40
+
41
+ def agent_list_eligibility(
42
+ agent_list: AgentList,
43
+ survey: Optional[Survey] = None,
44
+ model: Optional[Model] = None,
45
+ cache: Optional[Cache] = None,
46
+ ) -> List[bool]:
47
+ """
48
+ Returns whether each agent in a list is elgible for a survey i.e., can answer every question.
49
+
50
+ >>> from edsl.language_models import LanguageModel
51
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
52
+ >>> agent_list_eligibility(AgentList.example())
53
+ [True, True]
54
+ >>> agent_list_eligibility(AgentList.example().add_trait('persona', 2*["Cool dude"]), survey = Survey.example(), model = m)
55
+ [True, True]
56
+ """
57
+ if survey is None:
58
+ return [True] * len(agent_list)
59
+ if "persona" not in agent_list.all_traits:
60
+ raise ValueError(
61
+ f"Each agent needs to have a persona attribute; traits are {agent_list.all_traits}"
62
+ )
63
+ sl = agent_list.select("persona").to_scenario_list()
64
+ sl.add_value("questions", [q.question_text for q in survey._questions])
65
+ results = q_eligibility.by(sl).by(model).run(cache=cache)
66
+ return [r == "Yes" for r in results.select("eligibility").to_list()]
67
+
68
+
69
+ def agent_eligibility(
70
+ agent: Agent,
71
+ survey: Survey,
72
+ model: Optional[Model] = None,
73
+ cache: Optional[Cache] = None,
74
+ ) -> bool:
75
+ """NB: This could be parallelized.
76
+
77
+ >>> from edsl.language_models import LanguageModel
78
+ >>> m = LanguageModel.example(canned_response = "1", test_model = True)
79
+ >>> agent_eligibility(agent = Agent.example().add_trait({'persona': "Persona"}), survey = Survey.example(), model = m)
80
+ True
81
+
82
+ """
83
+ model = model or Model()
84
+
85
+ questions = [q.question_text for q in survey._questions]
86
+ persona = agent.traits["persona"]
87
+ return (
88
+ q_eligibility(model=model, questions=questions, persona=persona, cache=cache)
89
+ == "Yes"
90
+ )
91
+ # results = (
92
+ # q.by(model)
93
+ # .by(Scenario({"questions": questions, "persona": persona}))
94
+ # .run(cache=cache)
95
+ # )
96
+ # return results.select("eligibility").first() == "Yes"
97
+
98
+
99
+ def gen_agent_traits(dimension_dict: dict, seed_value: Optional[str] = None):
100
+ """
101
+ >>> dimension_dict = {'attitude':['positive', 'negative']}
102
+ >>> ag = gen_agent_traits(dimension_dict)
103
+ >>> a = next(ag)
104
+ >>> a == {'attitude': 'positive'} or a == {'attitude': 'negative'}
105
+ True
106
+ >>> len([next(ag) for _ in range(100)])
107
+ 100
108
+ """
109
+ if seed_value is None:
110
+ seed_value = "edsl"
111
+
112
+ random.seed(seed_value)
113
+
114
+ while True:
115
+ new_agent_traits = {}
116
+ for key, list_of_values in dimension_dict.items():
117
+ new_agent_traits[key] = random.choice(list_of_values)
118
+ yield new_agent_traits
119
+
120
+
121
+ def agent_generator(
122
+ persona: str,
123
+ dimension_dict: dict,
124
+ model: Optional[Model] = None,
125
+ cache: Optional["Cache"] = None,
126
+ ) -> Generator["Results", None, None]:
127
+ """
128
+ >>> from edsl.language_models import LanguageModel
129
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
130
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
131
+ >>> next(ag).select('new_agent_persona').first()
132
+ 'This is a cool dude.'
133
+ >>> next(ag).select('new_agent_persona').first()
134
+ 'This is a cool dude.'
135
+ """
136
+
137
+ if model is None:
138
+ model = Model()
139
+
140
+ q = QuestionFreeText(
141
+ question_text=dedent(
142
+ """\
143
+ Consider this persona: '{{ persona }}'.
144
+ Now imagine writing a new persona with these traits:
145
+ '{{ new_agent_traits }}'
146
+ Please write this persona as a narrative.
147
+ """
148
+ ),
149
+ question_name="new_agent_persona",
150
+ )
151
+ agent_trait_generator = gen_agent_traits(dimension_dict)
152
+ codebook = {sanitize_string(k): k for k in dimension_dict.keys()}
153
+ while True:
154
+ new_agent_traits = next(agent_trait_generator)
155
+ yield q(
156
+ persona=persona,
157
+ new_agent_traits=new_agent_traits,
158
+ codebook=codebook,
159
+ just_answer=False,
160
+ cache=cache,
161
+ model=model,
162
+ )
163
+
164
+
165
+ def create_agents(
166
+ agent_generator: Generator["Results", None, None],
167
+ survey: Optional[Survey] = None,
168
+ num_agents=11,
169
+ ) -> AgentList:
170
+ """
171
+ >>> from edsl.language_models import LanguageModel
172
+ >>> m = LanguageModel.example(canned_response = "This is a cool dude.", test_model = True)
173
+ >>> ag = agent_generator(persona = "Base person", dimension_dict = {'attitude':['Positive', 'Negative']}, model = m)
174
+ >>> new_agent_list = create_agents(agent_generator = ag)
175
+ >>> new_agent_list
176
+
177
+ """
178
+ agent_list = AgentList([])
179
+
180
+ MAX_ITERATIONS_MULTIPLIER = 2
181
+ iterations = 0
182
+
183
+ while len(agent_list) < num_agents:
184
+ iterations += 1
185
+ candidate_agent = next(agent_generator)
186
+ codebook = candidate_agent.select("codebook").to_list()[0]
187
+
188
+ koobedoc = {v: k for k, v in codebook.items()}
189
+ persona = candidate_agent.select("new_agent_persona").to_list()[0]
190
+ traits = candidate_agent.select("new_agent_traits").to_list()[0]
191
+ new_traits = {koobedoc[key]: value for key, value in traits.items()} | {
192
+ "persona": persona
193
+ }
194
+ agent = Agent(traits=new_traits, codebook=codebook)
195
+ if survey is not None:
196
+ if agent_eligibility(agent, survey):
197
+ agent_list.append(agent)
198
+ else:
199
+ print("Agent not eligible")
200
+ else:
201
+ agent_list.append(agent)
202
+
203
+ if iterations > MAX_ITERATIONS_MULTIPLIER * num_agents:
204
+ raise Exception("Too many failures")
205
+
206
+ return agent_list
207
+
208
+
209
+ if __name__ == "__main__":
210
+ import doctest
211
+
212
+ doctest.testmod()
213
+ # from edsl.language_models import LanguageModel
214
+
215
+ # m = LanguageModel.example(canned_response="This is a cool dude.", test_model=True)
216
+ # ag = agent_generator(
217
+ # persona="Base person",
218
+ # dimension_dict={"attitude": ["Positive", "Negative"]},
219
+ # model=m,
220
+ # )
221
+ # example = [next(ag).select("new_agent_persona").first() for _ in range(10)]
222
+ # dimension_dict = {"attitude": ["positive", "negative"]}
223
+ # ag = gen_agent_traits(dimension_dict)
224
+ # example = [next(ag) for _ in range(100)]