edsl 0.1.37.dev4__py3-none-any.whl → 0.1.37.dev5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (261) hide show
  1. edsl/Base.py +303 -303
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +48 -48
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +855 -804
  7. edsl/agents/AgentList.py +350 -345
  8. edsl/agents/Invigilator.py +222 -222
  9. edsl/agents/InvigilatorBase.py +284 -305
  10. edsl/agents/PromptConstructor.py +353 -312
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -86
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +289 -289
  26. edsl/config.py +149 -149
  27. edsl/conjure/AgentConstructionMixin.py +160 -152
  28. edsl/conjure/Conjure.py +62 -62
  29. edsl/conjure/InputData.py +659 -659
  30. edsl/conjure/InputDataCSV.py +48 -48
  31. edsl/conjure/InputDataMixinQuestionStats.py +182 -182
  32. edsl/conjure/InputDataPyRead.py +91 -91
  33. edsl/conjure/InputDataSPSS.py +8 -8
  34. edsl/conjure/InputDataStata.py +8 -8
  35. edsl/conjure/QuestionOptionMixin.py +76 -76
  36. edsl/conjure/QuestionTypeMixin.py +23 -23
  37. edsl/conjure/RawQuestion.py +65 -65
  38. edsl/conjure/SurveyResponses.py +7 -7
  39. edsl/conjure/__init__.py +9 -9
  40. edsl/conjure/naming_utilities.py +263 -263
  41. edsl/conjure/utilities.py +201 -201
  42. edsl/conversation/Conversation.py +290 -238
  43. edsl/conversation/car_buying.py +58 -58
  44. edsl/conversation/chips.py +95 -0
  45. edsl/conversation/mug_negotiation.py +81 -81
  46. edsl/conversation/next_speaker_utilities.py +93 -93
  47. edsl/coop/PriceFetcher.py +54 -54
  48. edsl/coop/__init__.py +2 -2
  49. edsl/coop/coop.py +958 -827
  50. edsl/coop/utils.py +131 -131
  51. edsl/data/Cache.py +527 -527
  52. edsl/data/CacheEntry.py +228 -228
  53. edsl/data/CacheHandler.py +149 -149
  54. edsl/data/RemoteCacheSync.py +97 -97
  55. edsl/data/SQLiteDict.py +292 -292
  56. edsl/data/__init__.py +4 -4
  57. edsl/data/orm.py +10 -10
  58. edsl/data_transfer_models.py +73 -73
  59. edsl/enums.py +173 -173
  60. edsl/exceptions/BaseException.py +21 -0
  61. edsl/exceptions/__init__.py +54 -50
  62. edsl/exceptions/agents.py +38 -40
  63. edsl/exceptions/configuration.py +16 -16
  64. edsl/exceptions/coop.py +10 -10
  65. edsl/exceptions/data.py +14 -14
  66. edsl/exceptions/general.py +34 -34
  67. edsl/exceptions/jobs.py +33 -33
  68. edsl/exceptions/language_models.py +63 -63
  69. edsl/exceptions/prompts.py +15 -15
  70. edsl/exceptions/questions.py +91 -91
  71. edsl/exceptions/results.py +29 -26
  72. edsl/exceptions/scenarios.py +22 -0
  73. edsl/exceptions/surveys.py +37 -34
  74. edsl/inference_services/AnthropicService.py +87 -87
  75. edsl/inference_services/AwsBedrock.py +120 -120
  76. edsl/inference_services/AzureAI.py +217 -217
  77. edsl/inference_services/DeepInfraService.py +18 -18
  78. edsl/inference_services/GoogleService.py +156 -156
  79. edsl/inference_services/GroqService.py +20 -20
  80. edsl/inference_services/InferenceServiceABC.py +147 -147
  81. edsl/inference_services/InferenceServicesCollection.py +97 -74
  82. edsl/inference_services/MistralAIService.py +123 -123
  83. edsl/inference_services/OllamaService.py +18 -18
  84. edsl/inference_services/OpenAIService.py +224 -224
  85. edsl/inference_services/TestService.py +89 -89
  86. edsl/inference_services/TogetherAIService.py +170 -170
  87. edsl/inference_services/models_available_cache.py +118 -118
  88. edsl/inference_services/rate_limits_cache.py +25 -25
  89. edsl/inference_services/registry.py +39 -39
  90. edsl/inference_services/write_available.py +10 -10
  91. edsl/jobs/Answers.py +56 -56
  92. edsl/jobs/Jobs.py +1347 -1135
  93. edsl/jobs/__init__.py +1 -1
  94. edsl/jobs/buckets/BucketCollection.py +63 -63
  95. edsl/jobs/buckets/ModelBuckets.py +65 -65
  96. edsl/jobs/buckets/TokenBucket.py +248 -248
  97. edsl/jobs/interviews/Interview.py +661 -661
  98. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  99. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -182
  100. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  101. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  102. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  103. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  104. edsl/jobs/interviews/ReportErrors.py +66 -66
  105. edsl/jobs/interviews/interview_status_enum.py +9 -9
  106. edsl/jobs/runners/JobsRunnerAsyncio.py +338 -338
  107. edsl/jobs/runners/JobsRunnerStatus.py +332 -332
  108. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  109. edsl/jobs/tasks/TaskCreators.py +64 -64
  110. edsl/jobs/tasks/TaskHistory.py +442 -441
  111. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  112. edsl/jobs/tasks/task_status_enum.py +163 -163
  113. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  114. edsl/jobs/tokens/TokenUsage.py +34 -34
  115. edsl/language_models/KeyLookup.py +30 -0
  116. edsl/language_models/LanguageModel.py +706 -718
  117. edsl/language_models/ModelList.py +102 -102
  118. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  119. edsl/language_models/__init__.py +3 -2
  120. edsl/language_models/fake_openai_call.py +15 -15
  121. edsl/language_models/fake_openai_service.py +61 -61
  122. edsl/language_models/registry.py +137 -137
  123. edsl/language_models/repair.py +156 -156
  124. edsl/language_models/unused/ReplicateBase.py +83 -83
  125. edsl/language_models/utilities.py +64 -64
  126. edsl/notebooks/Notebook.py +259 -259
  127. edsl/notebooks/__init__.py +1 -1
  128. edsl/prompts/Prompt.py +357 -353
  129. edsl/prompts/__init__.py +2 -2
  130. edsl/questions/AnswerValidatorMixin.py +289 -289
  131. edsl/questions/QuestionBase.py +656 -616
  132. edsl/questions/QuestionBaseGenMixin.py +161 -161
  133. edsl/questions/QuestionBasePromptsMixin.py +234 -266
  134. edsl/questions/QuestionBudget.py +227 -227
  135. edsl/questions/QuestionCheckBox.py +359 -359
  136. edsl/questions/QuestionExtract.py +183 -183
  137. edsl/questions/QuestionFreeText.py +114 -114
  138. edsl/questions/QuestionFunctional.py +159 -159
  139. edsl/questions/QuestionList.py +231 -231
  140. edsl/questions/QuestionMultipleChoice.py +286 -286
  141. edsl/questions/QuestionNumerical.py +153 -153
  142. edsl/questions/QuestionRank.py +324 -324
  143. edsl/questions/Quick.py +41 -41
  144. edsl/questions/RegisterQuestionsMeta.py +71 -71
  145. edsl/questions/ResponseValidatorABC.py +174 -174
  146. edsl/questions/SimpleAskMixin.py +73 -73
  147. edsl/questions/__init__.py +26 -26
  148. edsl/questions/compose_questions.py +98 -98
  149. edsl/questions/decorators.py +21 -21
  150. edsl/questions/derived/QuestionLikertFive.py +76 -76
  151. edsl/questions/derived/QuestionLinearScale.py +87 -87
  152. edsl/questions/derived/QuestionTopK.py +91 -91
  153. edsl/questions/derived/QuestionYesNo.py +82 -82
  154. edsl/questions/descriptors.py +413 -418
  155. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  156. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  157. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  158. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  159. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  160. edsl/questions/prompt_templates/question_list.jinja +17 -17
  161. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  162. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  163. edsl/questions/question_registry.py +147 -147
  164. edsl/questions/settings.py +12 -12
  165. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  166. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  167. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  168. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  169. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  170. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  171. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  172. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  173. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  174. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  175. edsl/questions/templates/list/question_presentation.jinja +5 -5
  176. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  177. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  178. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  179. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  180. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  181. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  182. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  183. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  184. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  185. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  186. edsl/results/Dataset.py +293 -293
  187. edsl/results/DatasetExportMixin.py +717 -693
  188. edsl/results/DatasetTree.py +145 -145
  189. edsl/results/Result.py +450 -435
  190. edsl/results/Results.py +1071 -1160
  191. edsl/results/ResultsDBMixin.py +238 -238
  192. edsl/results/ResultsExportMixin.py +43 -43
  193. edsl/results/ResultsFetchMixin.py +33 -33
  194. edsl/results/ResultsGGMixin.py +121 -121
  195. edsl/results/ResultsToolsMixin.py +98 -98
  196. edsl/results/Selector.py +135 -118
  197. edsl/results/__init__.py +2 -2
  198. edsl/results/tree_explore.py +115 -115
  199. edsl/scenarios/FileStore.py +458 -458
  200. edsl/scenarios/Scenario.py +546 -510
  201. edsl/scenarios/ScenarioHtmlMixin.py +64 -59
  202. edsl/scenarios/ScenarioList.py +1112 -1101
  203. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  204. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  205. edsl/scenarios/__init__.py +4 -4
  206. edsl/shared.py +1 -1
  207. edsl/study/ObjectEntry.py +173 -173
  208. edsl/study/ProofOfWork.py +113 -113
  209. edsl/study/SnapShot.py +80 -80
  210. edsl/study/Study.py +528 -528
  211. edsl/study/__init__.py +4 -4
  212. edsl/surveys/DAG.py +148 -148
  213. edsl/surveys/Memory.py +31 -31
  214. edsl/surveys/MemoryPlan.py +244 -244
  215. edsl/surveys/Rule.py +330 -324
  216. edsl/surveys/RuleCollection.py +387 -387
  217. edsl/surveys/Survey.py +1795 -1772
  218. edsl/surveys/SurveyCSS.py +261 -261
  219. edsl/surveys/SurveyExportMixin.py +259 -259
  220. edsl/surveys/SurveyFlowVisualizationMixin.py +121 -121
  221. edsl/surveys/SurveyQualtricsImport.py +284 -284
  222. edsl/surveys/__init__.py +3 -3
  223. edsl/surveys/base.py +53 -53
  224. edsl/surveys/descriptors.py +56 -56
  225. edsl/surveys/instructions/ChangeInstruction.py +47 -47
  226. edsl/surveys/instructions/Instruction.py +51 -51
  227. edsl/surveys/instructions/InstructionCollection.py +77 -77
  228. edsl/templates/error_reporting/base.html +23 -23
  229. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  230. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  231. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  232. edsl/templates/error_reporting/interview_details.html +115 -115
  233. edsl/templates/error_reporting/interviews.html +9 -9
  234. edsl/templates/error_reporting/overview.html +4 -4
  235. edsl/templates/error_reporting/performance_plot.html +1 -1
  236. edsl/templates/error_reporting/report.css +73 -73
  237. edsl/templates/error_reporting/report.html +117 -117
  238. edsl/templates/error_reporting/report.js +25 -25
  239. edsl/tools/__init__.py +1 -1
  240. edsl/tools/clusters.py +192 -192
  241. edsl/tools/embeddings.py +27 -27
  242. edsl/tools/embeddings_plotting.py +118 -118
  243. edsl/tools/plotting.py +112 -112
  244. edsl/tools/summarize.py +18 -18
  245. edsl/utilities/SystemInfo.py +28 -28
  246. edsl/utilities/__init__.py +22 -22
  247. edsl/utilities/ast_utilities.py +25 -25
  248. edsl/utilities/data/Registry.py +6 -6
  249. edsl/utilities/data/__init__.py +1 -1
  250. edsl/utilities/data/scooter_results.json +1 -1
  251. edsl/utilities/decorators.py +77 -77
  252. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  253. edsl/utilities/interface.py +627 -627
  254. edsl/utilities/repair_functions.py +28 -28
  255. edsl/utilities/restricted_python.py +70 -70
  256. edsl/utilities/utilities.py +409 -391
  257. {edsl-0.1.37.dev4.dist-info → edsl-0.1.37.dev5.dist-info}/LICENSE +21 -21
  258. {edsl-0.1.37.dev4.dist-info → edsl-0.1.37.dev5.dist-info}/METADATA +1 -1
  259. edsl-0.1.37.dev5.dist-info/RECORD +283 -0
  260. edsl-0.1.37.dev4.dist-info/RECORD +0 -279
  261. {edsl-0.1.37.dev4.dist-info → edsl-0.1.37.dev5.dist-info}/WHEEL +0 -0
@@ -1,178 +1,178 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from collections import defaultdict
4
-
5
- from typing import List, Dict
6
-
7
- from edsl.auto.StageBase import StageBase
8
- from edsl.auto.utilities import gen_pipeline
9
- from edsl.auto.StageBase import FlowDataBase
10
-
11
- from edsl.auto.StageQuestions import StageQuestions
12
- from edsl.auto.StageLabelQuestions import StageLabelQuestions
13
-
14
- from edsl.questions import QuestionList
15
- from edsl.scenarios import Scenario
16
- from edsl import Model
17
- from edsl.surveys import Survey
18
- from edsl.questions import QuestionBase
19
-
20
- from edsl.utilities.utilities import is_valid_variable_name
21
- from edsl import Model
22
- from edsl.questions import QuestionExtract
23
-
24
-
25
- m = Model()
26
-
27
-
28
- def chunker(seq, size):
29
- return (seq[pos : pos + size] for pos in range(0, len(seq), size))
30
-
31
-
32
- def get_short_options(question_options, num_chars=20):
33
- """Gets short names for the options of a question
34
- >>> get_short_options(["No, I don't own a scooter", "Yes, I own a scooter"])
35
- {'No, I don\'t own a scooter': 'no_scooter', 'Yes, I own a scooter': 'yes_scooter'}
36
- """
37
- q = QuestionList(
38
- question_text=dedent(
39
- f"""\
40
- We need short (less than {num_chars} characters) names for the options of a question, with no spaces.
41
- E.g., if the options were "No, I don't own a scooter" and "Yes, I own a scooter",
42
- you could use "no_scooter" and "yes_scooter".
43
- They should be all lower case. Use snake case.
44
- The short names have to be unique.
45
- The options are: {question_options}
46
- The names are {question_options} of them."""
47
- ),
48
- # answer_template={k: None for k in question_options},
49
- question_name="short_options",
50
- )
51
- results = q.by(m).run()
52
- return results.select("short_options").first()
53
-
54
-
55
- def get_short_names_chunk(questions, num_chars=20):
56
- q = QuestionList(
57
- question_text=dedent(
58
- f"""\
59
- We need short (less than {num_chars} characters) names for the questions, with no spaces.
60
- E.g., if the question was: "What is your first name?", you could use "first_name".
61
- The short names have to be unique and not starting with numbers. They should be all lower case.
62
- The questions are: {questions}
63
- """
64
- ),
65
- question_name="short_names",
66
- )
67
- results = q.by(m).run()
68
- short_names = results.select("short_names").first()
69
- return {k: v for k, v in zip(questions, short_names)}
70
-
71
-
72
- def get_short_names(questions, max_size=10, num_chars=20):
73
- "Gets short names for questions"
74
- if len(questions) <= max_size:
75
- short_names_dict = get_short_names_chunk(questions, num_chars)
76
- else:
77
- short_names_dict = {}
78
- for chunk in chunker(questions, max_size):
79
- results = get_short_names_chunk(chunk, num_chars)
80
- short_names_dict.update(results)
81
- return short_names_dict
82
-
83
-
84
- class StageGenerateSurvey(StageBase):
85
- input = StageLabelQuestions.output
86
-
87
- @dataclass
88
- class Output(FlowDataBase):
89
- survey: Survey
90
-
91
- output = Output
92
-
93
- def handle_data(self, data):
94
- """This tage uses the question types to generate a survey
95
- It constucts the edsl-specific dictionary needed to create a question
96
- """
97
- # survey = Survey(name = {data.overall_question, population = data.population, description)
98
- survey = Survey()
99
-
100
- short_names = get_short_names(data.questions)
101
-
102
- question_count = -1
103
- for question, question_type, options, option_labels in zip(
104
- data.questions, data.types, data.options, data.option_labels
105
- ):
106
- question_count += 1
107
- short_names_dict = {}
108
- if question in short_names:
109
- short_names_dict[question] = short_names[question]
110
- data = {
111
- "question_text": question,
112
- "question_type": question_type,
113
- "question_name": short_names.get(question, f"q{question_count}"),
114
- }
115
- if options is not None:
116
- data["question_options"] = options
117
- # make sure it's not a linear scale question, in which case we don't want to add short names
118
-
119
- if option_labels is not None:
120
- data["option_labels"] = dict(zip(options, option_labels))
121
- # print(data["option_labels"])
122
- # breakpoint()
123
-
124
- if question_type == "linear_scale":
125
- option_keys = option_labels
126
- else:
127
- option_keys = options
128
-
129
- if options is not None:
130
- short_options = get_short_options(option_keys)
131
- short_names_dict.update(
132
- {k: v for k, v in zip(option_keys, short_options)}
133
- )
134
-
135
- if question_type not in ["numerical", "free_text"]:
136
- data["short_names_dict"] = short_names_dict
137
- _ = data.pop("short_names_dict", None)
138
- q = QuestionBase.from_dict(data)
139
- survey.add_question(q)
140
-
141
- survey.print()
142
- return self.output(survey=survey)
143
-
144
-
145
- if __name__ == "__main__":
146
- # pipeline = gen_pipeline([StageQuestions, StageLabelQuestions, StageGenerateSurvey])
147
-
148
- # results = pipeline.process(
149
- # pipeline.input(
150
- # overall_question="What are some factors that could determine whether someone likes ice cream?",
151
- # population="consumers",
152
- # )
153
- # )
154
- # # print(results)
155
- # short_options = get_short_options(
156
- # ["No, I don't own a scooter", "Yes, I own a scooter"]
157
- # )
158
- # print(short_options)
159
-
160
- sample_questions = [
161
- "What are the primary goals for your company in sponsoring a research center like the MIT IDE?",
162
- "How does your company measure the ROI on sponsorships like this?",
163
- "What specific aspects of the MIT IDEs work align with your companys strategic interests?",
164
- "Can you describe the decision-making process your company uses to select research initiatives for sponsorship?",
165
- "What are the most important factors your company considers when deciding to sponsor a research center?",
166
- "How important is the visibility and recognition your company receives from sponsoring a research center like the MIT IDE?",
167
- "What kind of collaborative opportunities with the MIT IDE are you looking for?",
168
- "What are your companys expectations regarding intellectual property and the commercialization of research outcomes?",
169
- "How does your company evaluate the success of the research projects it sponsors?",
170
- "Would your company be interested in engaging with students or faculty at the MIT IDE for recruitment or professional development opportunities?",
171
- "How does your company plan to leverage the research and insights gained from the MIT IDE?",
172
- "What challenges has your company faced in previous sponsorships that you would want to avoid in the future?",
173
- "Is there any additional support or involvement your company would like to have in the MIT IDE beyond financial sponsorship?",
174
- "How do you see your companys role in shaping the research agenda at the MIT IDE?",
175
- "What can the MIT IDE do to make its sponsorship opportunities more attractive to your company?",
176
- ]
177
-
178
- short_names = get_short_names(sample_questions)
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from collections import defaultdict
4
+
5
+ from typing import List, Dict
6
+
7
+ from edsl.auto.StageBase import StageBase
8
+ from edsl.auto.utilities import gen_pipeline
9
+ from edsl.auto.StageBase import FlowDataBase
10
+
11
+ from edsl.auto.StageQuestions import StageQuestions
12
+ from edsl.auto.StageLabelQuestions import StageLabelQuestions
13
+
14
+ from edsl.questions import QuestionList
15
+ from edsl.scenarios import Scenario
16
+ from edsl import Model
17
+ from edsl.surveys import Survey
18
+ from edsl.questions import QuestionBase
19
+
20
+ from edsl.utilities.utilities import is_valid_variable_name
21
+ from edsl import Model
22
+ from edsl.questions import QuestionExtract
23
+
24
+
25
+ m = Model()
26
+
27
+
28
+ def chunker(seq, size):
29
+ return (seq[pos : pos + size] for pos in range(0, len(seq), size))
30
+
31
+
32
+ def get_short_options(question_options, num_chars=20):
33
+ """Gets short names for the options of a question
34
+ >>> get_short_options(["No, I don't own a scooter", "Yes, I own a scooter"])
35
+ {'No, I don\'t own a scooter': 'no_scooter', 'Yes, I own a scooter': 'yes_scooter'}
36
+ """
37
+ q = QuestionList(
38
+ question_text=dedent(
39
+ f"""\
40
+ We need short (less than {num_chars} characters) names for the options of a question, with no spaces.
41
+ E.g., if the options were "No, I don't own a scooter" and "Yes, I own a scooter",
42
+ you could use "no_scooter" and "yes_scooter".
43
+ They should be all lower case. Use snake case.
44
+ The short names have to be unique.
45
+ The options are: {question_options}
46
+ The names are {question_options} of them."""
47
+ ),
48
+ # answer_template={k: None for k in question_options},
49
+ question_name="short_options",
50
+ )
51
+ results = q.by(m).run()
52
+ return results.select("short_options").first()
53
+
54
+
55
+ def get_short_names_chunk(questions, num_chars=20):
56
+ q = QuestionList(
57
+ question_text=dedent(
58
+ f"""\
59
+ We need short (less than {num_chars} characters) names for the questions, with no spaces.
60
+ E.g., if the question was: "What is your first name?", you could use "first_name".
61
+ The short names have to be unique and not starting with numbers. They should be all lower case.
62
+ The questions are: {questions}
63
+ """
64
+ ),
65
+ question_name="short_names",
66
+ )
67
+ results = q.by(m).run()
68
+ short_names = results.select("short_names").first()
69
+ return {k: v for k, v in zip(questions, short_names)}
70
+
71
+
72
+ def get_short_names(questions, max_size=10, num_chars=20):
73
+ "Gets short names for questions"
74
+ if len(questions) <= max_size:
75
+ short_names_dict = get_short_names_chunk(questions, num_chars)
76
+ else:
77
+ short_names_dict = {}
78
+ for chunk in chunker(questions, max_size):
79
+ results = get_short_names_chunk(chunk, num_chars)
80
+ short_names_dict.update(results)
81
+ return short_names_dict
82
+
83
+
84
+ class StageGenerateSurvey(StageBase):
85
+ input = StageLabelQuestions.output
86
+
87
+ @dataclass
88
+ class Output(FlowDataBase):
89
+ survey: Survey
90
+
91
+ output = Output
92
+
93
+ def handle_data(self, data):
94
+ """This tage uses the question types to generate a survey
95
+ It constucts the edsl-specific dictionary needed to create a question
96
+ """
97
+ # survey = Survey(name = {data.overall_question, population = data.population, description)
98
+ survey = Survey()
99
+
100
+ short_names = get_short_names(data.questions)
101
+
102
+ question_count = -1
103
+ for question, question_type, options, option_labels in zip(
104
+ data.questions, data.types, data.options, data.option_labels
105
+ ):
106
+ question_count += 1
107
+ short_names_dict = {}
108
+ if question in short_names:
109
+ short_names_dict[question] = short_names[question]
110
+ data = {
111
+ "question_text": question,
112
+ "question_type": question_type,
113
+ "question_name": short_names.get(question, f"q{question_count}"),
114
+ }
115
+ if options is not None:
116
+ data["question_options"] = options
117
+ # make sure it's not a linear scale question, in which case we don't want to add short names
118
+
119
+ if option_labels is not None:
120
+ data["option_labels"] = dict(zip(options, option_labels))
121
+ # print(data["option_labels"])
122
+ # breakpoint()
123
+
124
+ if question_type == "linear_scale":
125
+ option_keys = option_labels
126
+ else:
127
+ option_keys = options
128
+
129
+ if options is not None:
130
+ short_options = get_short_options(option_keys)
131
+ short_names_dict.update(
132
+ {k: v for k, v in zip(option_keys, short_options)}
133
+ )
134
+
135
+ if question_type not in ["numerical", "free_text"]:
136
+ data["short_names_dict"] = short_names_dict
137
+ _ = data.pop("short_names_dict", None)
138
+ q = QuestionBase.from_dict(data)
139
+ survey.add_question(q)
140
+
141
+ survey.print()
142
+ return self.output(survey=survey)
143
+
144
+
145
+ if __name__ == "__main__":
146
+ # pipeline = gen_pipeline([StageQuestions, StageLabelQuestions, StageGenerateSurvey])
147
+
148
+ # results = pipeline.process(
149
+ # pipeline.input(
150
+ # overall_question="What are some factors that could determine whether someone likes ice cream?",
151
+ # population="consumers",
152
+ # )
153
+ # )
154
+ # # print(results)
155
+ # short_options = get_short_options(
156
+ # ["No, I don't own a scooter", "Yes, I own a scooter"]
157
+ # )
158
+ # print(short_options)
159
+
160
+ sample_questions = [
161
+ "What are the primary goals for your company in sponsoring a research center like the MIT IDE?",
162
+ "How does your company measure the ROI on sponsorships like this?",
163
+ "What specific aspects of the MIT IDEs work align with your companys strategic interests?",
164
+ "Can you describe the decision-making process your company uses to select research initiatives for sponsorship?",
165
+ "What are the most important factors your company considers when deciding to sponsor a research center?",
166
+ "How important is the visibility and recognition your company receives from sponsoring a research center like the MIT IDE?",
167
+ "What kind of collaborative opportunities with the MIT IDE are you looking for?",
168
+ "What are your companys expectations regarding intellectual property and the commercialization of research outcomes?",
169
+ "How does your company evaluate the success of the research projects it sponsors?",
170
+ "Would your company be interested in engaging with students or faculty at the MIT IDE for recruitment or professional development opportunities?",
171
+ "How does your company plan to leverage the research and insights gained from the MIT IDE?",
172
+ "What challenges has your company faced in previous sponsorships that you would want to avoid in the future?",
173
+ "Is there any additional support or involvement your company would like to have in the MIT IDE beyond financial sponsorship?",
174
+ "How do you see your companys role in shaping the research agenda at the MIT IDE?",
175
+ "What can the MIT IDE do to make its sponsorship opportunities more attractive to your company?",
176
+ ]
177
+
178
+ short_names = get_short_names(sample_questions)
@@ -1,125 +1,125 @@
1
- from textwrap import dedent
2
- from dataclasses import dataclass
3
- from collections import defaultdict
4
-
5
- from typing import List, Dict, Union
6
-
7
- from edsl.auto.StageBase import StageBase
8
- from edsl.auto.StageBase import FlowDataBase
9
-
10
- from edsl.auto.StageQuestions import StageQuestions
11
-
12
- from edsl.questions import QuestionMultipleChoice, QuestionList
13
- from edsl.scenarios import Scenario
14
- from edsl import Model
15
- from edsl.auto.utilities import gen_pipeline
16
-
17
-
18
- question_purpose = {
19
- "multiple_choice": "When options are known and limited",
20
- "free_text": "When we are asking an open-ended question",
21
- "checkbox": "When multiple options can be selected e.g., have you heard of the following products:",
22
- "numerical": "When the answer is a single numerical value e.g., a float",
23
- "linear_scale": "When options are text like multiple choice, but can be ordered e.g., daily, weekly, monthly, etc.",
24
- "yes_no": "When the question can be fully answered with either a yes or a no",
25
- }
26
-
27
-
28
- class StageLabelQuestions(StageBase):
29
- input = StageQuestions.output
30
-
31
- @dataclass
32
- class Output(FlowDataBase):
33
- questions: List[str]
34
- types: List[str]
35
- options: Dict[str, List[str]]
36
- option_labels: Dict[str, Union[List[str], None]]
37
-
38
- output = Output
39
-
40
- def handle_data(self, data):
41
- """
42
- Labels each edsl question type. This is then used later to instantiate the questions
43
- """
44
- m = Model()
45
- label_questions_scenarios = [
46
- Scenario({"question": q, "question_purpose": question_purpose})
47
- for q in data.questions
48
- ]
49
- q_type = QuestionMultipleChoice(
50
- question_text=dedent(
51
- """\
52
- Consider this question: "{{ question }}"
53
- The question options and purpose are: {{ question_purpose }}
54
- Please avoid free text questions much as possible.
55
- If it could be a multiple choice, use that type.
56
- What type of question should this be to make for an informative survey?"""
57
- ),
58
- question_options=list(question_purpose.keys()),
59
- question_name="question_type",
60
- )
61
- ## If it is a linear scale, multiple choice or checkbox question, we need to know the options
62
- option_questions = [
63
- "multiple_choice",
64
- "linear_scale",
65
- "checkbox",
66
- ]
67
- q_options_mc = QuestionList(
68
- question_text=dedent(
69
- """\
70
- Consider this question: "{{ question }}"
71
- What options should this question have?"""
72
- ),
73
- question_name="mc_options",
74
- )
75
- survey = q_type.add_question(q_options_mc).add_stop_rule(
76
- "question_type", f"question_type not in {option_questions}"
77
- )
78
- type_results = survey.by(label_questions_scenarios).by(m).run()
79
- type_results.select("question", "question_type", "mc_options").print()
80
-
81
- # breakpoint()
82
-
83
- question_types = type_results.select("question_type").to_list()
84
- options = type_results.select("mc_options").to_list()
85
- # question_types, options = type_results.select(
86
- # "question_type", "mc_options"
87
- # ).to_list()
88
-
89
- type_results.select("question", "question_type", "mc_options").print()
90
-
91
- # if the question is a yes/no question, we need to set the options to be yes/no
92
- types_to_questions = defaultdict(list)
93
- for question_type, question in zip(question_types, data.questions):
94
- types_to_questions[question_type].append(question)
95
-
96
- questions_to_options = dict(zip(data.questions, options))
97
- question_to_option_labels = dict(
98
- zip(data.questions, len(data.questions) * [None])
99
- )
100
- for question in types_to_questions.get("yes_no", []):
101
- questions_to_options[question] = ["Yes", "No"]
102
-
103
- for question in types_to_questions.get("linear_scale", []):
104
- options = questions_to_options[question]
105
- questions_to_options[question] = list(range(len(options)))
106
- question_to_option_labels[question] = options
107
-
108
- return self.output(
109
- questions=data.questions,
110
- types=question_types,
111
- options=list(questions_to_options.values()),
112
- option_labels=list(question_to_option_labels.values()),
113
- )
114
-
115
-
116
- if __name__ == "__main__":
117
- pipeline = gen_pipeline([StageQuestions, StageLabelQuestions])
118
-
119
- results = pipeline.process(
120
- pipeline.input(
121
- overall_question="What are some factors that could determine whether someone likes ice cream?"
122
- )
123
- )
124
-
125
- print(results.options)
1
+ from textwrap import dedent
2
+ from dataclasses import dataclass
3
+ from collections import defaultdict
4
+
5
+ from typing import List, Dict, Union
6
+
7
+ from edsl.auto.StageBase import StageBase
8
+ from edsl.auto.StageBase import FlowDataBase
9
+
10
+ from edsl.auto.StageQuestions import StageQuestions
11
+
12
+ from edsl.questions import QuestionMultipleChoice, QuestionList
13
+ from edsl.scenarios import Scenario
14
+ from edsl import Model
15
+ from edsl.auto.utilities import gen_pipeline
16
+
17
+
18
+ question_purpose = {
19
+ "multiple_choice": "When options are known and limited",
20
+ "free_text": "When we are asking an open-ended question",
21
+ "checkbox": "When multiple options can be selected e.g., have you heard of the following products:",
22
+ "numerical": "When the answer is a single numerical value e.g., a float",
23
+ "linear_scale": "When options are text like multiple choice, but can be ordered e.g., daily, weekly, monthly, etc.",
24
+ "yes_no": "When the question can be fully answered with either a yes or a no",
25
+ }
26
+
27
+
28
+ class StageLabelQuestions(StageBase):
29
+ input = StageQuestions.output
30
+
31
+ @dataclass
32
+ class Output(FlowDataBase):
33
+ questions: List[str]
34
+ types: List[str]
35
+ options: Dict[str, List[str]]
36
+ option_labels: Dict[str, Union[List[str], None]]
37
+
38
+ output = Output
39
+
40
+ def handle_data(self, data):
41
+ """
42
+ Labels each edsl question type. This is then used later to instantiate the questions
43
+ """
44
+ m = Model()
45
+ label_questions_scenarios = [
46
+ Scenario({"question": q, "question_purpose": question_purpose})
47
+ for q in data.questions
48
+ ]
49
+ q_type = QuestionMultipleChoice(
50
+ question_text=dedent(
51
+ """\
52
+ Consider this question: "{{ question }}"
53
+ The question options and purpose are: {{ question_purpose }}
54
+ Please avoid free text questions much as possible.
55
+ If it could be a multiple choice, use that type.
56
+ What type of question should this be to make for an informative survey?"""
57
+ ),
58
+ question_options=list(question_purpose.keys()),
59
+ question_name="question_type",
60
+ )
61
+ ## If it is a linear scale, multiple choice or checkbox question, we need to know the options
62
+ option_questions = [
63
+ "multiple_choice",
64
+ "linear_scale",
65
+ "checkbox",
66
+ ]
67
+ q_options_mc = QuestionList(
68
+ question_text=dedent(
69
+ """\
70
+ Consider this question: "{{ question }}"
71
+ What options should this question have?"""
72
+ ),
73
+ question_name="mc_options",
74
+ )
75
+ survey = q_type.add_question(q_options_mc).add_stop_rule(
76
+ "question_type", f"question_type not in {option_questions}"
77
+ )
78
+ type_results = survey.by(label_questions_scenarios).by(m).run()
79
+ type_results.select("question", "question_type", "mc_options").print()
80
+
81
+ # breakpoint()
82
+
83
+ question_types = type_results.select("question_type").to_list()
84
+ options = type_results.select("mc_options").to_list()
85
+ # question_types, options = type_results.select(
86
+ # "question_type", "mc_options"
87
+ # ).to_list()
88
+
89
+ type_results.select("question", "question_type", "mc_options").print()
90
+
91
+ # if the question is a yes/no question, we need to set the options to be yes/no
92
+ types_to_questions = defaultdict(list)
93
+ for question_type, question in zip(question_types, data.questions):
94
+ types_to_questions[question_type].append(question)
95
+
96
+ questions_to_options = dict(zip(data.questions, options))
97
+ question_to_option_labels = dict(
98
+ zip(data.questions, len(data.questions) * [None])
99
+ )
100
+ for question in types_to_questions.get("yes_no", []):
101
+ questions_to_options[question] = ["Yes", "No"]
102
+
103
+ for question in types_to_questions.get("linear_scale", []):
104
+ options = questions_to_options[question]
105
+ questions_to_options[question] = list(range(len(options)))
106
+ question_to_option_labels[question] = options
107
+
108
+ return self.output(
109
+ questions=data.questions,
110
+ types=question_types,
111
+ options=list(questions_to_options.values()),
112
+ option_labels=list(question_to_option_labels.values()),
113
+ )
114
+
115
+
116
+ if __name__ == "__main__":
117
+ pipeline = gen_pipeline([StageQuestions, StageLabelQuestions])
118
+
119
+ results = pipeline.process(
120
+ pipeline.input(
121
+ overall_question="What are some factors that could determine whether someone likes ice cream?"
122
+ )
123
+ )
124
+
125
+ print(results.options)