dsipts 1.1.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dsipts might be problematic. Click here for more details.
- dsipts/__init__.py +48 -0
- dsipts/data_management/__init__.py +0 -0
- dsipts/data_management/monash.py +338 -0
- dsipts/data_management/public_datasets.py +162 -0
- dsipts/data_structure/__init__.py +0 -0
- dsipts/data_structure/data_structure.py +1167 -0
- dsipts/data_structure/modifiers.py +213 -0
- dsipts/data_structure/utils.py +173 -0
- dsipts/models/Autoformer.py +199 -0
- dsipts/models/CrossFormer.py +152 -0
- dsipts/models/D3VAE.py +196 -0
- dsipts/models/Diffusion.py +818 -0
- dsipts/models/DilatedConv.py +342 -0
- dsipts/models/DilatedConvED.py +310 -0
- dsipts/models/Duet.py +197 -0
- dsipts/models/ITransformer.py +167 -0
- dsipts/models/Informer.py +180 -0
- dsipts/models/LinearTS.py +222 -0
- dsipts/models/PatchTST.py +181 -0
- dsipts/models/Persistent.py +44 -0
- dsipts/models/RNN.py +213 -0
- dsipts/models/Samformer.py +139 -0
- dsipts/models/TFT.py +269 -0
- dsipts/models/TIDE.py +296 -0
- dsipts/models/TTM.py +252 -0
- dsipts/models/TimeXER.py +184 -0
- dsipts/models/VQVAEA.py +299 -0
- dsipts/models/VVA.py +247 -0
- dsipts/models/__init__.py +0 -0
- dsipts/models/autoformer/__init__.py +0 -0
- dsipts/models/autoformer/layers.py +352 -0
- dsipts/models/base.py +439 -0
- dsipts/models/base_v2.py +444 -0
- dsipts/models/crossformer/__init__.py +0 -0
- dsipts/models/crossformer/attn.py +118 -0
- dsipts/models/crossformer/cross_decoder.py +77 -0
- dsipts/models/crossformer/cross_embed.py +18 -0
- dsipts/models/crossformer/cross_encoder.py +99 -0
- dsipts/models/d3vae/__init__.py +0 -0
- dsipts/models/d3vae/diffusion_process.py +169 -0
- dsipts/models/d3vae/embedding.py +108 -0
- dsipts/models/d3vae/encoder.py +326 -0
- dsipts/models/d3vae/model.py +211 -0
- dsipts/models/d3vae/neural_operations.py +314 -0
- dsipts/models/d3vae/resnet.py +153 -0
- dsipts/models/d3vae/utils.py +630 -0
- dsipts/models/duet/__init__.py +0 -0
- dsipts/models/duet/layers.py +438 -0
- dsipts/models/duet/masked.py +202 -0
- dsipts/models/informer/__init__.py +0 -0
- dsipts/models/informer/attn.py +185 -0
- dsipts/models/informer/decoder.py +50 -0
- dsipts/models/informer/embed.py +125 -0
- dsipts/models/informer/encoder.py +100 -0
- dsipts/models/itransformer/Embed.py +142 -0
- dsipts/models/itransformer/SelfAttention_Family.py +355 -0
- dsipts/models/itransformer/Transformer_EncDec.py +134 -0
- dsipts/models/itransformer/__init__.py +0 -0
- dsipts/models/patchtst/__init__.py +0 -0
- dsipts/models/patchtst/layers.py +569 -0
- dsipts/models/samformer/__init__.py +0 -0
- dsipts/models/samformer/utils.py +154 -0
- dsipts/models/tft/__init__.py +0 -0
- dsipts/models/tft/sub_nn.py +234 -0
- dsipts/models/timexer/Layers.py +127 -0
- dsipts/models/timexer/__init__.py +0 -0
- dsipts/models/ttm/__init__.py +0 -0
- dsipts/models/ttm/configuration_tinytimemixer.py +307 -0
- dsipts/models/ttm/consts.py +16 -0
- dsipts/models/ttm/modeling_tinytimemixer.py +2099 -0
- dsipts/models/ttm/utils.py +438 -0
- dsipts/models/utils.py +624 -0
- dsipts/models/vva/__init__.py +0 -0
- dsipts/models/vva/minigpt.py +83 -0
- dsipts/models/vva/vqvae.py +459 -0
- dsipts/models/xlstm/__init__.py +0 -0
- dsipts/models/xlstm/xLSTM.py +255 -0
- dsipts-1.1.5.dist-info/METADATA +31 -0
- dsipts-1.1.5.dist-info/RECORD +81 -0
- dsipts-1.1.5.dist-info/WHEEL +5 -0
- dsipts-1.1.5.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,255 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
import torch.nn.functional as F
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class mLSTM(nn.Module):
|
|
8
|
+
def __init__(self, input_size, hidden_size, num_layers, dropout=0.0):
|
|
9
|
+
super(mLSTM, self).__init__()
|
|
10
|
+
self.input_size = input_size
|
|
11
|
+
self.hidden_size = hidden_size
|
|
12
|
+
self.num_layers = num_layers
|
|
13
|
+
self.dropout = dropout
|
|
14
|
+
|
|
15
|
+
self.lstms = nn.ModuleList([nn.LSTMCell(input_size, hidden_size) for _ in range(num_layers)])
|
|
16
|
+
self.dropout_layers = nn.ModuleList([nn.Dropout(dropout) for _ in range(num_layers - 1)])
|
|
17
|
+
|
|
18
|
+
self.W_q = nn.Linear(input_size, hidden_size)
|
|
19
|
+
self.W_k = nn.Linear(input_size, hidden_size)
|
|
20
|
+
self.W_v = nn.Linear(input_size, hidden_size)
|
|
21
|
+
|
|
22
|
+
self.exp_input_gates = nn.ModuleList([nn.Linear(input_size, hidden_size) for _ in range(num_layers)])
|
|
23
|
+
self.exp_forget_gates = nn.ModuleList([nn.Linear(input_size, hidden_size) for _ in range(num_layers)])
|
|
24
|
+
self.output_gates = nn.ModuleList([nn.Linear(hidden_size, hidden_size) for _ in range(num_layers)])
|
|
25
|
+
|
|
26
|
+
self.reset_parameters()
|
|
27
|
+
|
|
28
|
+
def reset_parameters(self):
|
|
29
|
+
for lstm in self.lstms:
|
|
30
|
+
nn.init.xavier_uniform_(lstm.weight_ih)
|
|
31
|
+
nn.init.xavier_uniform_(lstm.weight_hh)
|
|
32
|
+
nn.init.zeros_(lstm.bias_ih)
|
|
33
|
+
nn.init.zeros_(lstm.bias_hh)
|
|
34
|
+
|
|
35
|
+
nn.init.xavier_uniform_(self.W_q.weight)
|
|
36
|
+
nn.init.xavier_uniform_(self.W_k.weight)
|
|
37
|
+
nn.init.xavier_uniform_(self.W_v.weight)
|
|
38
|
+
nn.init.zeros_(self.W_q.bias)
|
|
39
|
+
nn.init.zeros_(self.W_k.bias)
|
|
40
|
+
nn.init.zeros_(self.W_v.bias)
|
|
41
|
+
|
|
42
|
+
for gate in self.exp_input_gates + self.exp_forget_gates + self.output_gates:
|
|
43
|
+
nn.init.xavier_uniform_(gate.weight)
|
|
44
|
+
nn.init.zeros_(gate.bias)
|
|
45
|
+
|
|
46
|
+
def forward(self, input_seq, hidden_state=None):
|
|
47
|
+
batch_size = input_seq.size(0)
|
|
48
|
+
seq_length = input_seq.size(1)
|
|
49
|
+
|
|
50
|
+
if hidden_state is None:
|
|
51
|
+
hidden_state = self.init_hidden(batch_size)
|
|
52
|
+
|
|
53
|
+
output_seq = []
|
|
54
|
+
for t in range(seq_length):
|
|
55
|
+
x = input_seq[:, t, :]
|
|
56
|
+
queries = self.W_q(x)
|
|
57
|
+
keys = self.W_k(x)
|
|
58
|
+
values = self.W_v(x)
|
|
59
|
+
|
|
60
|
+
new_hidden_state = []
|
|
61
|
+
for i, (lstm, dropout, i_gate, f_gate, o_gate) in enumerate(zip(self.lstms, self.dropout_layers, self.exp_input_gates, self.exp_forget_gates, self.output_gates)):
|
|
62
|
+
if hidden_state[i][0] is None:
|
|
63
|
+
h, C = lstm(x)
|
|
64
|
+
else:
|
|
65
|
+
h, C = hidden_state[i]
|
|
66
|
+
|
|
67
|
+
ii = torch.exp(i_gate(x))
|
|
68
|
+
f = torch.exp(f_gate(x))
|
|
69
|
+
|
|
70
|
+
C_t = f * C + ii * torch.matmul(values.unsqueeze(2), keys.unsqueeze(1)).squeeze(1)
|
|
71
|
+
attn_output = torch.matmul(queries, C_t).squeeze(2)
|
|
72
|
+
|
|
73
|
+
o = torch.sigmoid(o_gate(h))
|
|
74
|
+
h = o * attn_output
|
|
75
|
+
new_hidden_state.append((h, C_t))
|
|
76
|
+
|
|
77
|
+
if i < self.num_layers - 1:
|
|
78
|
+
x = dropout(h)
|
|
79
|
+
else:
|
|
80
|
+
x = h
|
|
81
|
+
hidden_state = new_hidden_state
|
|
82
|
+
output_seq.append(x)
|
|
83
|
+
|
|
84
|
+
output_seq = torch.stack(output_seq, dim=1)
|
|
85
|
+
return output_seq, hidden_state
|
|
86
|
+
|
|
87
|
+
def init_hidden(self, batch_size):
|
|
88
|
+
hidden_state = []
|
|
89
|
+
for lstm in self.lstms:
|
|
90
|
+
h = torch.zeros(batch_size, self.hidden_size, device=lstm.weight_ih.device)
|
|
91
|
+
C = torch.zeros(batch_size, self.hidden_size, self.hidden_size, device=lstm.weight_ih.device)
|
|
92
|
+
hidden_state.append((h, C))
|
|
93
|
+
return hidden_state
|
|
94
|
+
class sLSTM(nn.Module):
|
|
95
|
+
def __init__(self, input_size, hidden_size, num_layers, dropout=0.0):
|
|
96
|
+
super(sLSTM, self).__init__()
|
|
97
|
+
self.input_size = input_size
|
|
98
|
+
self.hidden_size = hidden_size
|
|
99
|
+
self.num_layers = num_layers
|
|
100
|
+
self.dropout = dropout
|
|
101
|
+
|
|
102
|
+
self.lstms = nn.ModuleList([nn.LSTMCell(input_size if i == 0 else hidden_size, hidden_size) for i in range(num_layers)])
|
|
103
|
+
self.dropout_layers = nn.ModuleList([nn.Dropout(dropout) for _ in range(num_layers - 1)])
|
|
104
|
+
|
|
105
|
+
self.exp_forget_gates = nn.ModuleList([nn.Linear(hidden_size, hidden_size) for _ in range(num_layers)])
|
|
106
|
+
self.exp_input_gates = nn.ModuleList([nn.Linear(hidden_size, hidden_size) for _ in range(num_layers)])
|
|
107
|
+
|
|
108
|
+
self.reset_parameters()
|
|
109
|
+
|
|
110
|
+
def reset_parameters(self):
|
|
111
|
+
for lstm in self.lstms:
|
|
112
|
+
nn.init.xavier_uniform_(lstm.weight_ih)
|
|
113
|
+
nn.init.xavier_uniform_(lstm.weight_hh)
|
|
114
|
+
nn.init.zeros_(lstm.bias_ih)
|
|
115
|
+
nn.init.zeros_(lstm.bias_hh)
|
|
116
|
+
|
|
117
|
+
for gate in self.exp_forget_gates + self.exp_input_gates:
|
|
118
|
+
nn.init.xavier_uniform_(gate.weight)
|
|
119
|
+
nn.init.zeros_(gate.bias)
|
|
120
|
+
|
|
121
|
+
def forward(self, input_seq, hidden_state=None):
|
|
122
|
+
batch_size = input_seq.size(0)
|
|
123
|
+
seq_length = input_seq.size(1)
|
|
124
|
+
|
|
125
|
+
if hidden_state is None:
|
|
126
|
+
hidden_state = self.init_hidden(batch_size)
|
|
127
|
+
|
|
128
|
+
output_seq = []
|
|
129
|
+
for t in range(seq_length):
|
|
130
|
+
x = input_seq[:, t, :]
|
|
131
|
+
new_hidden_state = []
|
|
132
|
+
for i, (lstm, dropout, f_gate, i_gate) in enumerate(zip(self.lstms, self.dropout_layers, self.exp_forget_gates, self.exp_input_gates)):
|
|
133
|
+
if hidden_state[i][0] is None:
|
|
134
|
+
h, c = lstm(x)
|
|
135
|
+
else:
|
|
136
|
+
h, c = lstm(x, (hidden_state[i][0], hidden_state[i][1]))
|
|
137
|
+
|
|
138
|
+
f = torch.exp(f_gate(h))
|
|
139
|
+
ii = torch.exp(i_gate(h))
|
|
140
|
+
c = f * c + ii * lstm.weight_hh.new_zeros(batch_size, self.hidden_size)
|
|
141
|
+
new_hidden_state.append((h, c))
|
|
142
|
+
|
|
143
|
+
if i < self.num_layers - 1:
|
|
144
|
+
x = dropout(h)
|
|
145
|
+
else:
|
|
146
|
+
x = h
|
|
147
|
+
hidden_state = new_hidden_state
|
|
148
|
+
output_seq.append(x)
|
|
149
|
+
|
|
150
|
+
output_seq = torch.stack(output_seq, dim=1)
|
|
151
|
+
return output_seq, hidden_state
|
|
152
|
+
|
|
153
|
+
def init_hidden(self, batch_size):
|
|
154
|
+
hidden_state = []
|
|
155
|
+
for lstm in self.lstms:
|
|
156
|
+
h = torch.zeros(batch_size, self.hidden_size, device=lstm.weight_ih.device)
|
|
157
|
+
c = torch.zeros(batch_size, self.hidden_size, device=lstm.weight_ih.device)
|
|
158
|
+
hidden_state.append((h, c))
|
|
159
|
+
return hidden_state
|
|
160
|
+
|
|
161
|
+
class xLSTMBlock(nn.Module):
|
|
162
|
+
def __init__(self, input_size, hidden_size, num_layers, dropout=0.0, bidirectional=False, lstm_type="slstm"):
|
|
163
|
+
super(xLSTMBlock, self).__init__()
|
|
164
|
+
self.input_size = input_size
|
|
165
|
+
self.hidden_size = hidden_size
|
|
166
|
+
self.num_layers = num_layers
|
|
167
|
+
self.dropout = dropout
|
|
168
|
+
self.bidirectional = bidirectional
|
|
169
|
+
self.lstm_type = lstm_type
|
|
170
|
+
|
|
171
|
+
if lstm_type == "slstm":
|
|
172
|
+
self.lstm = sLSTM(input_size, hidden_size, num_layers, dropout)
|
|
173
|
+
elif lstm_type == "mlstm":
|
|
174
|
+
self.lstm = mLSTM(input_size, hidden_size, num_layers, dropout)
|
|
175
|
+
else:
|
|
176
|
+
raise ValueError(f"Invalid LSTM type: {lstm_type}")
|
|
177
|
+
|
|
178
|
+
self.norm = nn.LayerNorm(input_size)
|
|
179
|
+
self.activation = nn.GELU()
|
|
180
|
+
self.dropout_layer = nn.Dropout(dropout)
|
|
181
|
+
|
|
182
|
+
if bidirectional:
|
|
183
|
+
self.proj = nn.Linear(2 * hidden_size, input_size)
|
|
184
|
+
else:
|
|
185
|
+
if lstm_type == "mlstm":
|
|
186
|
+
self.up_proj = nn.Sequential(
|
|
187
|
+
nn.Linear(input_size, 4 * input_size),
|
|
188
|
+
nn.GELU(),
|
|
189
|
+
nn.Linear(4 * input_size, input_size)
|
|
190
|
+
)
|
|
191
|
+
self.proj = nn.Linear(hidden_size, input_size)
|
|
192
|
+
|
|
193
|
+
self.reset_parameters()
|
|
194
|
+
|
|
195
|
+
def reset_parameters(self):
|
|
196
|
+
if hasattr(self, "up_proj"):
|
|
197
|
+
nn.init.xavier_uniform_(self.up_proj[0].weight)
|
|
198
|
+
nn.init.zeros_(self.up_proj[0].bias)
|
|
199
|
+
nn.init.xavier_uniform_(self.up_proj[2].weight)
|
|
200
|
+
nn.init.zeros_(self.up_proj[2].bias)
|
|
201
|
+
|
|
202
|
+
nn.init.xavier_uniform_(self.proj.weight)
|
|
203
|
+
nn.init.zeros_(self.proj.bias)
|
|
204
|
+
|
|
205
|
+
def forward(self, input_seq, hidden_state=None):
|
|
206
|
+
if hasattr(self, "up_proj"):
|
|
207
|
+
input_seq = self.up_proj(input_seq)
|
|
208
|
+
|
|
209
|
+
lstm_output, hidden_state = self.lstm(input_seq, hidden_state)
|
|
210
|
+
if self.lstm_type == "slstm":
|
|
211
|
+
hidden_state = [[hidden_state[i][0], hidden_state[i][1]] for i in range(len(hidden_state))]
|
|
212
|
+
|
|
213
|
+
if self.bidirectional:
|
|
214
|
+
lstm_output = torch.cat((lstm_output[:, :, :self.hidden_size], lstm_output[:, :, -self.hidden_size:]), dim=-1)
|
|
215
|
+
|
|
216
|
+
output = self.activation(self.proj(lstm_output))
|
|
217
|
+
output = self.norm(output + input_seq)
|
|
218
|
+
output = self.dropout_layer(output)
|
|
219
|
+
|
|
220
|
+
return output, hidden_state
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
|
|
224
|
+
class xLSTM(nn.Module):
|
|
225
|
+
def __init__(self, input_size, hidden_size, num_layers, num_blocks,
|
|
226
|
+
dropout=0.0, bidirectional=False, lstm_type="slstm"):
|
|
227
|
+
super(xLSTM, self).__init__()
|
|
228
|
+
self.input_size = input_size
|
|
229
|
+
self.hidden_size = hidden_size
|
|
230
|
+
self.num_layers = num_layers
|
|
231
|
+
self.num_blocks = num_blocks
|
|
232
|
+
self.dropout = dropout
|
|
233
|
+
self.bidirectional = bidirectional
|
|
234
|
+
self.lstm_type = lstm_type
|
|
235
|
+
|
|
236
|
+
self.blocks = nn.ModuleList([xLSTMBlock(hidden_size,
|
|
237
|
+
hidden_size, num_layers, dropout, bidirectional, lstm_type)
|
|
238
|
+
for i in range(num_blocks)])
|
|
239
|
+
|
|
240
|
+
self.initial = nn.Linear(self.input_size,self.hidden_size)
|
|
241
|
+
|
|
242
|
+
def forward(self, input_seq, hidden_states=None):
|
|
243
|
+
|
|
244
|
+
if hidden_states is None:
|
|
245
|
+
hidden_states = [None] * self.num_blocks
|
|
246
|
+
output_seq = self.initial(input_seq)
|
|
247
|
+
for i, block in enumerate(self.blocks):
|
|
248
|
+
|
|
249
|
+
output_seq, hidden_state = block(output_seq, hidden_states[i])
|
|
250
|
+
if self.lstm_type == "slstm":
|
|
251
|
+
hidden_states[i] = [[hidden_state[j][0], hidden_state[j][1]] for j in range(len(hidden_state))]
|
|
252
|
+
else:
|
|
253
|
+
hidden_states[i] = hidden_state
|
|
254
|
+
|
|
255
|
+
return output_seq, hidden_states
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: dsipts
|
|
3
|
+
Version: 1.1.5
|
|
4
|
+
Summary: Unified library for timeseries modelling
|
|
5
|
+
Author-email: Andrea Gobbi <agobbi@fbk.eu>
|
|
6
|
+
Project-URL: Homepage, https://github.com/DSIP-FBK/DSIPTS
|
|
7
|
+
Project-URL: Docs, https://dsip-fbk.github.io/DSIPTS/
|
|
8
|
+
Requires-Python: ==3.11.13
|
|
9
|
+
Description-Content-Type: text/markdown
|
|
10
|
+
Requires-Dist: aim==3.20.1
|
|
11
|
+
Requires-Dist: beautifulsoup4==4.12.0
|
|
12
|
+
Requires-Dist: einops>=0.8.1
|
|
13
|
+
Requires-Dist: html-table-parser-python3==0.3.1
|
|
14
|
+
Requires-Dist: html5lib>=1.1
|
|
15
|
+
Requires-Dist: hydra-core>=1.3.2
|
|
16
|
+
Requires-Dist: hydra-joblib-launcher>=1.2.0
|
|
17
|
+
Requires-Dist: hydra-optuna-sweeper>=1.2.0
|
|
18
|
+
Requires-Dist: hydra-submitit-launcher>=1.2.0
|
|
19
|
+
Requires-Dist: ipykernel>=6.30.1
|
|
20
|
+
Requires-Dist: lightning>=2.5.4
|
|
21
|
+
Requires-Dist: matplotlib>=3.10.6
|
|
22
|
+
Requires-Dist: nbformat>=5.10.4
|
|
23
|
+
Requires-Dist: numba>=0.61.2
|
|
24
|
+
Requires-Dist: numpy<2.0.0
|
|
25
|
+
Requires-Dist: pandas>=2.3.2
|
|
26
|
+
Requires-Dist: plotly>=6.3.0
|
|
27
|
+
Requires-Dist: scikit-learn>=1.7.1
|
|
28
|
+
Requires-Dist: sphinx>=8.2.3
|
|
29
|
+
Requires-Dist: sphinx-mdinclude>=0.6.2
|
|
30
|
+
Requires-Dist: sphinx-pdj-theme>=0.7.3
|
|
31
|
+
Requires-Dist: transformers>=4.56.0
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
dsipts/__init__.py,sha256=k3fLLS66oWHI_TOLccv-foIlNZNO_NMTABw14OntaAc,1651
|
|
2
|
+
dsipts/data_management/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
|
+
dsipts/data_management/monash.py,sha256=aZxq9FbIH6IsU8Lwou1hAokXjgOAK-wdl2VAeFg2k4M,13075
|
|
4
|
+
dsipts/data_management/public_datasets.py,sha256=yXFzOZZ-X0ZG1DoqVU-zFmEGVMc2033YDQhRgYxY8ws,6793
|
|
5
|
+
dsipts/data_structure/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
+
dsipts/data_structure/data_structure.py,sha256=5yHi6N0zXYzzKooy-91-5C1PEdNuU6ZWD-mApJvDOe8,58888
|
|
7
|
+
dsipts/data_structure/modifiers.py,sha256=qlry9dfw8pEE0GrvgwROZJkJ6oPpUnjEHPIG5qIetss,7948
|
|
8
|
+
dsipts/data_structure/utils.py,sha256=QwfKPZgSy6DIw5n6ztOdPJIAnzo4EnlMTgRbpiWnyko,6593
|
|
9
|
+
dsipts/models/Autoformer.py,sha256=ddGT3L9T4gAXNJHx1TsuYZy7j63Anyr0rkqqXaOoSu4,8447
|
|
10
|
+
dsipts/models/CrossFormer.py,sha256=iO64L3S01jxuWA9dmm8FsK1WRvBIXbZ0PQ2tZlEQg4w,6481
|
|
11
|
+
dsipts/models/D3VAE.py,sha256=NstHIniNteBRrkfL7SJ3-bJEl3l3IIxoSxavRV3j16U,6857
|
|
12
|
+
dsipts/models/Diffusion.py,sha256=pUujnrdeSSkj4jC1RORbcptt03KpuCsGVwg414o4LPg,40733
|
|
13
|
+
dsipts/models/DilatedConv.py,sha256=2gK69p4Jn9nEI2T2PebNOr70wpyR2QWxzmNQIXRAmJE,14845
|
|
14
|
+
dsipts/models/DilatedConvED.py,sha256=fXk1-EWiRC5J_VIepTjYKya_D02SlEAkyiJcCjhW_XU,14004
|
|
15
|
+
dsipts/models/Duet.py,sha256=EharWHT_r7tEYIk7BkozVLPZ0xptE5mmQmeFGm3uBsA,7628
|
|
16
|
+
dsipts/models/ITransformer.py,sha256=jO8wxLaC06Wgu4GncrFFTISv3pVyfFLLhQvbEOYsz6Y,7368
|
|
17
|
+
dsipts/models/Informer.py,sha256=ByJ00qGk12ONFF7NZWAACzxxRb5UXcu5wpkGMYX9Cq4,6920
|
|
18
|
+
dsipts/models/LinearTS.py,sha256=B0-Sz4POwUyl-PN2ssSx8L-ZHgwrQQPcMmreyvSS47U,9104
|
|
19
|
+
dsipts/models/PatchTST.py,sha256=Z7DM1Kw5Ym8Hh9ywj0j9RuFtKaz_yVZmKFIYafjceM8,9061
|
|
20
|
+
dsipts/models/Persistent.py,sha256=URwyaBb0M7zbPXSGMImtHlwC9XCy-OquFCwfWvn3P70,1249
|
|
21
|
+
dsipts/models/RNN.py,sha256=W6-3ZPD6vkcNoxV9liqcm_8RD8qfF1JY-J7M1ngk6LA,9594
|
|
22
|
+
dsipts/models/Samformer.py,sha256=s61Hi1o9iuw-KgSBPfiE80oJcK1j2fUA6N9f5BJgKJc,5551
|
|
23
|
+
dsipts/models/TFT.py,sha256=JO2-AKIUag7bfm9Oeo4KmGfdYZJbzQBHPDqGVg0WUZI,13830
|
|
24
|
+
dsipts/models/TIDE.py,sha256=i8qXac2gImEVgE2X6cNxqW5kuQP3rzWMlQNdgJbNmKM,13033
|
|
25
|
+
dsipts/models/TTM.py,sha256=WpCiTN0qX3JFO6xgPLedoqMKXUC2pQpNAe9ee-Rw89Q,10602
|
|
26
|
+
dsipts/models/TimeXER.py,sha256=aCg0003LxYZzqZWyWugpbW_iOybcdHN4OH6_v77qp4o,7056
|
|
27
|
+
dsipts/models/VQVAEA.py,sha256=sNJi8UZh-10qEIKcZK3SzhlOFUUjvqjoglzeZBFaeZM,13789
|
|
28
|
+
dsipts/models/VVA.py,sha256=BnPkJ0Nzue0oShSHZVRNlf5RvT0Iwtf9bx19vLB9Nn0,11939
|
|
29
|
+
dsipts/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
30
|
+
dsipts/models/base.py,sha256=uqAjDdAjpnDWBlEeGuy-SZir0K8GjsoyMgxwlT1DQYg,17523
|
|
31
|
+
dsipts/models/base_v2.py,sha256=YHrejmxTmICXvLaXiual8j4dztSnWoQevIZWwy9zmfQ,17695
|
|
32
|
+
dsipts/models/utils.py,sha256=H1lr1lukDk7FNyXXTJh217tyTBsBW8hVDQ6jL9oev7I,21765
|
|
33
|
+
dsipts/models/autoformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
34
|
+
dsipts/models/autoformer/layers.py,sha256=xHt8V1lKdD1cIvgxXdDbI_EqOz4zgOQ6LP8l7M1pAxM,13276
|
|
35
|
+
dsipts/models/crossformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
36
|
+
dsipts/models/crossformer/attn.py,sha256=nUPdhU0wul222We8lvtr7SGeMy2VA_86vaMhnzH1t9g,4580
|
|
37
|
+
dsipts/models/crossformer/cross_decoder.py,sha256=mTo7urCnXrEgynYgyQSjRdE1T8s5fSE1daUaFyATeHU,3032
|
|
38
|
+
dsipts/models/crossformer/cross_embed.py,sha256=SkOHN5KwRObNYzu858Q40EMSgqCkBzNq2SYwoJ0SdcQ,609
|
|
39
|
+
dsipts/models/crossformer/cross_encoder.py,sha256=_ivTGddvvN82Q1E_TRPnLDwC2_s3xOIQXfUQ5lVbOZU,3238
|
|
40
|
+
dsipts/models/d3vae/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
41
|
+
dsipts/models/d3vae/diffusion_process.py,sha256=qbe-8da4TnPb-152W6JVyUKqllVgfOda43Yr_e3XebE,6050
|
|
42
|
+
dsipts/models/d3vae/embedding.py,sha256=3S6QnOtjcJJYIFm0UcNhO12HSj6MisCTYm3ky3zuhmQ,3797
|
|
43
|
+
dsipts/models/d3vae/encoder.py,sha256=c6cq9xKzT_xGcCf6hZy1UE2mxCPtuKwUsQXr1JJKfnE,13114
|
|
44
|
+
dsipts/models/d3vae/model.py,sha256=s6tqGdZ9dQdPXRLsNxHIbPpSs07t-tJttjTHCeibL48,9238
|
|
45
|
+
dsipts/models/d3vae/neural_operations.py,sha256=C70kUtQ0ox9MeXBdu4rPDqt022_hVtcN_MNOD8y1cqI,10594
|
|
46
|
+
dsipts/models/d3vae/resnet.py,sha256=3bnlrEBM2DGiAJV8TeSv2tm27Gm-_P6hee41t8QQFL8,5520
|
|
47
|
+
dsipts/models/d3vae/utils.py,sha256=fmUsE_67uwizjeR1_pDdsndyQddbqt27Lv31XBEn-gw,23798
|
|
48
|
+
dsipts/models/duet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
49
|
+
dsipts/models/duet/layers.py,sha256=ikMAKr4DzhGt9J1KuBBQzVYXMHZUZVsV29P6TVJCa_Y,18141
|
|
50
|
+
dsipts/models/duet/masked.py,sha256=lkdAB5kwAgV7QfBSVP_QeDr_mB09Rz4302p-KwZpUV4,7111
|
|
51
|
+
dsipts/models/informer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
52
|
+
dsipts/models/informer/attn.py,sha256=ghrQGfAqt-Z_7qU5D_aixobmwk6pBKMLAdaNfg-QZbo,6839
|
|
53
|
+
dsipts/models/informer/decoder.py,sha256=gvMfwI6Lyi0JIZlXqx6TVDYEUwRHFDYekzfbEb0A2ck,1759
|
|
54
|
+
dsipts/models/informer/embed.py,sha256=hYBIhZvaF9RUuMxF8_-ybpnOvQ2mgqzn3zPFv8Okx6k,4449
|
|
55
|
+
dsipts/models/informer/encoder.py,sha256=H9O_2hOJDcISj_CFbFcZR-tU3n-NtQFnlpNy3G5p8tY,3573
|
|
56
|
+
dsipts/models/itransformer/Embed.py,sha256=BM6v2BsRuLNGPEN4L2HSyC1VHXjWTx63L0WH8_FJpsA,5122
|
|
57
|
+
dsipts/models/itransformer/SelfAttention_Family.py,sha256=739Jvoo1vJ6TR53zG6msc71DdkC0dUgVZ0ZdP58Dd_s,13674
|
|
58
|
+
dsipts/models/itransformer/Transformer_EncDec.py,sha256=kkHdKKJ48gFaaW2MHy0YFd5xvaM3YoN9Jk4wsKO8RP4,4898
|
|
59
|
+
dsipts/models/itransformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
60
|
+
dsipts/models/patchtst/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
61
|
+
dsipts/models/patchtst/layers.py,sha256=o8s--1NQcE9ItlkHse_NUxix0xfxJ9yNSmy98PMVvyc,24177
|
|
62
|
+
dsipts/models/samformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
63
|
+
dsipts/models/samformer/utils.py,sha256=62p5fzippKwZpqZBQghrHyA_ANeaFa-TC5EM4L6Q7DE,5583
|
|
64
|
+
dsipts/models/tft/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
65
|
+
dsipts/models/tft/sub_nn.py,sha256=6UDI0BvxEcF5N1_Wx3-WL0PO99k8QtI7JTsEAaosb5k,8881
|
|
66
|
+
dsipts/models/timexer/Layers.py,sha256=-QG4a70sBQFoRoE6CfisOkKhm4kIdB21DBtQ4V-7fHw,4699
|
|
67
|
+
dsipts/models/timexer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
68
|
+
dsipts/models/ttm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
69
|
+
dsipts/models/ttm/configuration_tinytimemixer.py,sha256=b_cvewRZQuPSuJx0GEDFIY85hThf7612ynukDciYlZE,16414
|
|
70
|
+
dsipts/models/ttm/consts.py,sha256=tPL5yxHR9fQaSMaOREcj-7ML8lZ_FX5ZPiLwkBo2814,340
|
|
71
|
+
dsipts/models/ttm/modeling_tinytimemixer.py,sha256=55G12e_Vei2aK9g-C5PDwwri-ujXbkQ5cpH4nUkbiiU,87006
|
|
72
|
+
dsipts/models/ttm/utils.py,sha256=dpBUg1Nci_9-MBnWMHiZUW7WWAQ4oRn_it3X5FdCOhE,26379
|
|
73
|
+
dsipts/models/vva/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
74
|
+
dsipts/models/vva/minigpt.py,sha256=bg0JddqSD322uxSGexen3nPXL_hGTsk3vNLR62d7-w8,3551
|
|
75
|
+
dsipts/models/vva/vqvae.py,sha256=RzCQ_M9xBprp7_x20dSV3EQqlO0FjPUGWV-qdyKrQsM,19680
|
|
76
|
+
dsipts/models/xlstm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
77
|
+
dsipts/models/xlstm/xLSTM.py,sha256=ZKZZmffmIq1Vb71CR4GSyM8viqVx-u0FChxhcNgHub8,10081
|
|
78
|
+
dsipts-1.1.5.dist-info/METADATA,sha256=qR-kBKMsp_LN4nGOzRE6piEsaiDaD5WUB8-ASMRWbAQ,1082
|
|
79
|
+
dsipts-1.1.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
80
|
+
dsipts-1.1.5.dist-info/top_level.txt,sha256=i6o0rf5ScFwZK21E89dSKjVNjUBkrEQpn0-Vij43748,7
|
|
81
|
+
dsipts-1.1.5.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
dsipts
|