dsipts 1.1.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dsipts might be problematic. Click here for more details.
- dsipts/__init__.py +48 -0
- dsipts/data_management/__init__.py +0 -0
- dsipts/data_management/monash.py +338 -0
- dsipts/data_management/public_datasets.py +162 -0
- dsipts/data_structure/__init__.py +0 -0
- dsipts/data_structure/data_structure.py +1167 -0
- dsipts/data_structure/modifiers.py +213 -0
- dsipts/data_structure/utils.py +173 -0
- dsipts/models/Autoformer.py +199 -0
- dsipts/models/CrossFormer.py +152 -0
- dsipts/models/D3VAE.py +196 -0
- dsipts/models/Diffusion.py +818 -0
- dsipts/models/DilatedConv.py +342 -0
- dsipts/models/DilatedConvED.py +310 -0
- dsipts/models/Duet.py +197 -0
- dsipts/models/ITransformer.py +167 -0
- dsipts/models/Informer.py +180 -0
- dsipts/models/LinearTS.py +222 -0
- dsipts/models/PatchTST.py +181 -0
- dsipts/models/Persistent.py +44 -0
- dsipts/models/RNN.py +213 -0
- dsipts/models/Samformer.py +139 -0
- dsipts/models/TFT.py +269 -0
- dsipts/models/TIDE.py +296 -0
- dsipts/models/TTM.py +252 -0
- dsipts/models/TimeXER.py +184 -0
- dsipts/models/VQVAEA.py +299 -0
- dsipts/models/VVA.py +247 -0
- dsipts/models/__init__.py +0 -0
- dsipts/models/autoformer/__init__.py +0 -0
- dsipts/models/autoformer/layers.py +352 -0
- dsipts/models/base.py +439 -0
- dsipts/models/base_v2.py +444 -0
- dsipts/models/crossformer/__init__.py +0 -0
- dsipts/models/crossformer/attn.py +118 -0
- dsipts/models/crossformer/cross_decoder.py +77 -0
- dsipts/models/crossformer/cross_embed.py +18 -0
- dsipts/models/crossformer/cross_encoder.py +99 -0
- dsipts/models/d3vae/__init__.py +0 -0
- dsipts/models/d3vae/diffusion_process.py +169 -0
- dsipts/models/d3vae/embedding.py +108 -0
- dsipts/models/d3vae/encoder.py +326 -0
- dsipts/models/d3vae/model.py +211 -0
- dsipts/models/d3vae/neural_operations.py +314 -0
- dsipts/models/d3vae/resnet.py +153 -0
- dsipts/models/d3vae/utils.py +630 -0
- dsipts/models/duet/__init__.py +0 -0
- dsipts/models/duet/layers.py +438 -0
- dsipts/models/duet/masked.py +202 -0
- dsipts/models/informer/__init__.py +0 -0
- dsipts/models/informer/attn.py +185 -0
- dsipts/models/informer/decoder.py +50 -0
- dsipts/models/informer/embed.py +125 -0
- dsipts/models/informer/encoder.py +100 -0
- dsipts/models/itransformer/Embed.py +142 -0
- dsipts/models/itransformer/SelfAttention_Family.py +355 -0
- dsipts/models/itransformer/Transformer_EncDec.py +134 -0
- dsipts/models/itransformer/__init__.py +0 -0
- dsipts/models/patchtst/__init__.py +0 -0
- dsipts/models/patchtst/layers.py +569 -0
- dsipts/models/samformer/__init__.py +0 -0
- dsipts/models/samformer/utils.py +154 -0
- dsipts/models/tft/__init__.py +0 -0
- dsipts/models/tft/sub_nn.py +234 -0
- dsipts/models/timexer/Layers.py +127 -0
- dsipts/models/timexer/__init__.py +0 -0
- dsipts/models/ttm/__init__.py +0 -0
- dsipts/models/ttm/configuration_tinytimemixer.py +307 -0
- dsipts/models/ttm/consts.py +16 -0
- dsipts/models/ttm/modeling_tinytimemixer.py +2099 -0
- dsipts/models/ttm/utils.py +438 -0
- dsipts/models/utils.py +624 -0
- dsipts/models/vva/__init__.py +0 -0
- dsipts/models/vva/minigpt.py +83 -0
- dsipts/models/vva/vqvae.py +459 -0
- dsipts/models/xlstm/__init__.py +0 -0
- dsipts/models/xlstm/xLSTM.py +255 -0
- dsipts-1.1.5.dist-info/METADATA +31 -0
- dsipts-1.1.5.dist-info/RECORD +81 -0
- dsipts-1.1.5.dist-info/WHEEL +5 -0
- dsipts-1.1.5.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,307 @@
|
|
|
1
|
+
# Copyright contributors to the TSFM project
|
|
2
|
+
#
|
|
3
|
+
"""TinyTimeMixer model configuration"""
|
|
4
|
+
|
|
5
|
+
from typing import Optional, Union
|
|
6
|
+
|
|
7
|
+
from transformers.utils import logging
|
|
8
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
TINYTIMEMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class TinyTimeMixerConfig(PretrainedConfig):
|
|
15
|
+
r"""
|
|
16
|
+
This is the configuration class to store the configuration of a [`TinyTimeMixerModel`]. It is used to instantiate a
|
|
17
|
+
TinyTimeMixer model according to the specified arguments, defining the model architecture. Instantiating a
|
|
18
|
+
configuration with the defaults will yield a similar configuration to that of the TinyTimeMixer {} architecture.
|
|
19
|
+
|
|
20
|
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
21
|
+
documentation from [`PretrainedConfig`] for more information.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
context_length (`int`, *optional*, defaults to 64)
|
|
25
|
+
The context/history length for the input sequence.
|
|
26
|
+
patch_length (`int`, *optional*, defaults to 8)
|
|
27
|
+
The patch length for the input sequence.
|
|
28
|
+
num_input_channels (`int`):
|
|
29
|
+
Number of input variates. For Univariate, set it to 1.
|
|
30
|
+
patch_stride (`int`, *optional*, defaults to 8):
|
|
31
|
+
Amount of points to stride. If its value is same as patch_length, we get non-overlapping patches.
|
|
32
|
+
d_model (`int`, *optional*, defaults to 16):
|
|
33
|
+
Hidden feature size of the model.
|
|
34
|
+
prediction_length (`int`, *optional*, defaults to 16)
|
|
35
|
+
Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon.
|
|
36
|
+
num_parallel_samples (`int`, *optional*, defaults to 100):
|
|
37
|
+
The number of samples to generate in parallel for probabilistic forecast.
|
|
38
|
+
expansion_factor (`int`, *optional*, defaults to 2):
|
|
39
|
+
Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model.
|
|
40
|
+
num_layers (`int`, *optional*, defaults to 3):
|
|
41
|
+
Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model.
|
|
42
|
+
dropout (`float`, *optional*, defaults to 0.2):
|
|
43
|
+
The dropout probability the `TinyTimeMixer` backbone. Recommended range is 0.2-0.7
|
|
44
|
+
mode (`str`, *optional*, defaults to `"common_channel"`):
|
|
45
|
+
Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In
|
|
46
|
+
"common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel
|
|
47
|
+
mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In
|
|
48
|
+
"mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred
|
|
49
|
+
approach when channel correlations are very important to model)
|
|
50
|
+
gated_attn (`bool`, *optional*, defaults to `True`):
|
|
51
|
+
Enable Gated Attention.
|
|
52
|
+
norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`):
|
|
53
|
+
Normalization layer (BatchNorm or LayerNorm).
|
|
54
|
+
self_attn (`bool`, *optional*, defaults to `False`):
|
|
55
|
+
Enable Tiny self attention across patches. This can be enabled when the output of Vanilla TinyTimeMixer with
|
|
56
|
+
gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling
|
|
57
|
+
across patches.
|
|
58
|
+
self_attn_heads (`int`, *optional*, defaults to 1):
|
|
59
|
+
Number of self-attention heads. Works only when `self_attn` is set to `True`.
|
|
60
|
+
use_positional_encoding (`bool`, *optional*, defaults to `False`):
|
|
61
|
+
Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is
|
|
62
|
+
set to `True`.
|
|
63
|
+
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
|
|
64
|
+
Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when
|
|
65
|
+
`use_positional_encoding` is set to `True`
|
|
66
|
+
scaling (`string` or `bool`, *optional*, defaults to `"std"`):
|
|
67
|
+
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
|
|
68
|
+
scaler is set to "mean".
|
|
69
|
+
loss (`string`, *optional*, defaults to `"mse"`):
|
|
70
|
+
The loss function to finetune or pretrain the the model. Allowed values are "mse" or "mae" or "pinball" or "huber".
|
|
71
|
+
Use pinball loss for probabilistic forecasts of different quantiles.
|
|
72
|
+
Distribution head (nll) is currently disabled and not allowed.
|
|
73
|
+
init_std (`float`, *optional*, defaults to 0.02):
|
|
74
|
+
The standard deviation of the truncated normal weight initialization distribution.
|
|
75
|
+
post_init (`bool`, *optional*, defaults to `False`):
|
|
76
|
+
Whether to use custom weight initialization from `transformers` library, or the default initialization in
|
|
77
|
+
`PyTorch`. Setting it to `False` performs `PyTorch` weight initialization.
|
|
78
|
+
norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
79
|
+
A value added to the denominator for numerical stability of normalization.
|
|
80
|
+
adaptive_patching_levels (`int`, *optional*, defaults to 0):
|
|
81
|
+
If adaptive_patching_levels is i, then we will have i levels with each level having n_layers.
|
|
82
|
+
Level id starts with 0. num_patches at level i will be multipled by (2^i) and num_features at level i will be divided by (2^i).
|
|
83
|
+
For Ex. if adaptive_patching_levels is 3 - then we will have 3 levels:
|
|
84
|
+
level 2: num_features//(2^2), num_patches*(2^2)
|
|
85
|
+
level 1: num_features//(2^1), num_patches*(2^1)
|
|
86
|
+
level 0: num_features//(2^0), num_patches*(2^0)
|
|
87
|
+
adaptive_patching_levels = 1 is same as one level PatchTSMixer. This module gets disabled when adaptive_patching_levels is 0 or neg value. Defaults to 0 (off mode).
|
|
88
|
+
resolution_prefix_tuning (`bool`, *optional*, defaults to `False`):
|
|
89
|
+
Enable if your dataloader has time resolution information as defined in `get_freq_mapping` function in `modelling_tinytimemixer`.
|
|
90
|
+
frequency_token_vocab_size (`int`, *optional*, defaults to 5):
|
|
91
|
+
Vocab size to use when resolution_prefix_tuning is enabled.
|
|
92
|
+
head_dropout (`float`, *optional*, defaults to 0.2):
|
|
93
|
+
The dropout probability the `TinyTimeMixer` head.
|
|
94
|
+
distribution_output (`string`, *optional*, defaults to `"student_t"`):
|
|
95
|
+
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
|
|
96
|
+
"negative_binomial".
|
|
97
|
+
prediction_channel_indices (`list`, *optional*):
|
|
98
|
+
List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all
|
|
99
|
+
channels and we explicitly filter the channels in prediction and target before loss computation. Please provide the indices
|
|
100
|
+
in sorted ascending order.
|
|
101
|
+
exogenous_channel_indices (`list`, *optional*):
|
|
102
|
+
List of channel indices whose values are known in the forecast period. Please provide the indices
|
|
103
|
+
in sorted ascending order.
|
|
104
|
+
decoder_num_layers (`int`, *optional*, defaults to 8):
|
|
105
|
+
Number of layers to use in decoder
|
|
106
|
+
decoder_d_model(`int`, *optional*, defaults to 16):
|
|
107
|
+
Defines the hidden feature size of the decoder.
|
|
108
|
+
decoder_adaptive_patching_levels (`int`, *optional*, defaults to 0):
|
|
109
|
+
Adaptive Patching levels for decoder. Preferable to set it to 0 for decoder to keep it light weight.
|
|
110
|
+
decoder_raw_residual (`bool`, *optional*, defaults to `False`):
|
|
111
|
+
Flag to enable merging of raw embedding with encoder embedding for decoder input. Defaults to False.
|
|
112
|
+
decoder_mode (`string`, *optional*, defaults to `"common_channel"`):
|
|
113
|
+
Decoder channel mode. Use `"common_channel" for channel-independent modelling and `"mix_channel"` for channel-mixing modelling
|
|
114
|
+
use_decoder (`bool`, *optional*, defaults to `True`):
|
|
115
|
+
Enable to use decoder.
|
|
116
|
+
enable_forecast_channel_mixing (`bool`, *optional*, defaults to `False`):
|
|
117
|
+
Enable if we want to reconcile forecasts across all channels and also to enable exogenous infusion, if you have them.
|
|
118
|
+
fcm_gated_attn (`bool`, *optional*, defaults to `True`):
|
|
119
|
+
Enable gated attention in forecast channel mixing block.
|
|
120
|
+
fcm_context_length (`int`, *optional*, defaults to `1):
|
|
121
|
+
Surrounding context length to use. For Ex. If we want to consider 2 lag point before and after a data point, provide value 2 for `fcm_context_length`
|
|
122
|
+
fcm_use_mixer (`bool`, *optional*, defaults to `True`):
|
|
123
|
+
Enable Mixing in forecast channel mixing block.
|
|
124
|
+
fcm_mix_layers (`int`, *optional*, defaults to 2):
|
|
125
|
+
Number of mixer layers to use if fcm_use_mixer is enabled
|
|
126
|
+
fcm_prepend_past (`bool`, *optional*, defaults to `True`):
|
|
127
|
+
Prepend last context for forecast reconciliation
|
|
128
|
+
fcm_prepend_past_offset (`int`, *optional*, defaults to None):
|
|
129
|
+
|
|
130
|
+
categorical_vocab_size_list (`list`, *optional*):
|
|
131
|
+
List of vocab size for all the tokenized categorical variables to use. Pass it in the same order as used in the foreward call param `static_categorical_values`.
|
|
132
|
+
prediction_filter_length (`int`,*optional*, defaults to None):
|
|
133
|
+
Actual length in the prediction output to use for loss calculations.
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
Example:
|
|
137
|
+
|
|
138
|
+
```python
|
|
139
|
+
>>> from transformers import TinyTimeMixerConfig, TinyTimeMixerModel
|
|
140
|
+
|
|
141
|
+
>>> # Initializing a default TinyTimeMixer configuration
|
|
142
|
+
>>> configuration = TinyTimeMixerConfig()
|
|
143
|
+
|
|
144
|
+
>>> # Randomly initializing a model (with random weights) from the configuration
|
|
145
|
+
>>> model = TinyTimeMixerModel(configuration)
|
|
146
|
+
|
|
147
|
+
>>> # Accessing the model configuration
|
|
148
|
+
>>> configuration = model.config
|
|
149
|
+
```"""
|
|
150
|
+
|
|
151
|
+
model_type = "tinytimemixer"
|
|
152
|
+
attribute_map = {
|
|
153
|
+
"hidden_size": "d_model",
|
|
154
|
+
"num_hidden_layers": "num_layers",
|
|
155
|
+
}
|
|
156
|
+
|
|
157
|
+
def __init__(
|
|
158
|
+
self,
|
|
159
|
+
# Time series specific configuration
|
|
160
|
+
context_length: int = 64,
|
|
161
|
+
patch_length: int = 8,
|
|
162
|
+
num_input_channels: int = 1,
|
|
163
|
+
prediction_length: int = 16,
|
|
164
|
+
patch_stride: int = 8,
|
|
165
|
+
prediction_channel_indices: Optional[list] = None,
|
|
166
|
+
exogenous_channel_indices: Optional[list] = None,
|
|
167
|
+
# General model configuration
|
|
168
|
+
d_model: int = 16,
|
|
169
|
+
expansion_factor: int = 2,
|
|
170
|
+
num_layers: int = 3,
|
|
171
|
+
dropout: float = 0.2,
|
|
172
|
+
mode: str = "common_channel",
|
|
173
|
+
gated_attn: bool = True,
|
|
174
|
+
norm_mlp: str = "LayerNorm",
|
|
175
|
+
self_attn: bool = False,
|
|
176
|
+
self_attn_heads: int = 1,
|
|
177
|
+
use_positional_encoding: bool = False,
|
|
178
|
+
positional_encoding_type: str = "sincos",
|
|
179
|
+
scaling: Optional[Union[str, bool]] = "std",
|
|
180
|
+
loss: Optional[str] = "mse",
|
|
181
|
+
init_std: float = 0.02,
|
|
182
|
+
post_init: bool = False,
|
|
183
|
+
norm_eps: float = 1e-5,
|
|
184
|
+
adaptive_patching_levels: int = 0,
|
|
185
|
+
resolution_prefix_tuning: bool = False,
|
|
186
|
+
frequency_token_vocab_size: int = 5,
|
|
187
|
+
# General head configuration
|
|
188
|
+
head_dropout: float = 0.2,
|
|
189
|
+
distribution_output: str = "student_t",
|
|
190
|
+
num_parallel_samples: int = 100,
|
|
191
|
+
# decoder parameters
|
|
192
|
+
decoder_num_layers: int = 8,
|
|
193
|
+
decoder_d_model: int = 8,
|
|
194
|
+
decoder_adaptive_patching_levels: int = 0,
|
|
195
|
+
decoder_raw_residual: bool = False,
|
|
196
|
+
decoder_mode: str = "common_channel",
|
|
197
|
+
use_decoder: bool = True,
|
|
198
|
+
# forecast channel mixing wit exog support
|
|
199
|
+
enable_forecast_channel_mixing: bool = False,
|
|
200
|
+
fcm_gated_attn: bool = True,
|
|
201
|
+
fcm_context_length: int = 1,
|
|
202
|
+
fcm_use_mixer: bool = False,
|
|
203
|
+
fcm_mix_layers: int = 2,
|
|
204
|
+
fcm_prepend_past: bool = True,
|
|
205
|
+
fcm_prepend_past_offset: Optional[int] = None,
|
|
206
|
+
# static categorical
|
|
207
|
+
categorical_vocab_size_list: Optional[list] = None,
|
|
208
|
+
# prediction length filtering
|
|
209
|
+
prediction_filter_length: Optional[int] = None,
|
|
210
|
+
# initialization parameters
|
|
211
|
+
init_linear: str = "pytorch",
|
|
212
|
+
init_embed: str = "pytorch",
|
|
213
|
+
quantile: float = 0.5,
|
|
214
|
+
huber_delta: float = 1,
|
|
215
|
+
# masked prediction,
|
|
216
|
+
mask_value: int = 0,
|
|
217
|
+
**kwargs,
|
|
218
|
+
):
|
|
219
|
+
self.num_input_channels = num_input_channels
|
|
220
|
+
self.context_length = context_length
|
|
221
|
+
self.patch_length = patch_length
|
|
222
|
+
self.expansion_factor = expansion_factor
|
|
223
|
+
self.num_layers = num_layers
|
|
224
|
+
self.dropout = dropout
|
|
225
|
+
self.mode = mode
|
|
226
|
+
self.gated_attn = gated_attn
|
|
227
|
+
self.norm_mlp = norm_mlp
|
|
228
|
+
self.scaling = scaling
|
|
229
|
+
self.head_dropout = head_dropout
|
|
230
|
+
|
|
231
|
+
self.patch_last = True
|
|
232
|
+
self.use_positional_encoding = use_positional_encoding
|
|
233
|
+
self.positional_encoding_type = positional_encoding_type
|
|
234
|
+
self.prediction_length = prediction_length
|
|
235
|
+
self.prediction_channel_indices = prediction_channel_indices
|
|
236
|
+
self.self_attn = self_attn
|
|
237
|
+
self.self_attn_heads = self_attn_heads
|
|
238
|
+
self.init_std = init_std
|
|
239
|
+
self.post_init = post_init
|
|
240
|
+
self.distribution_output = distribution_output
|
|
241
|
+
self.loss = loss
|
|
242
|
+
self.num_parallel_samples = num_parallel_samples
|
|
243
|
+
self.norm_eps = norm_eps
|
|
244
|
+
|
|
245
|
+
self.use_decoder = use_decoder
|
|
246
|
+
|
|
247
|
+
self.adaptive_patching_levels = adaptive_patching_levels
|
|
248
|
+
self.resolution_prefix_tuning = resolution_prefix_tuning
|
|
249
|
+
self.exogenous_channel_indices = exogenous_channel_indices
|
|
250
|
+
self.decoder_num_layers = decoder_num_layers
|
|
251
|
+
self.decoder_adaptive_patching_levels = decoder_adaptive_patching_levels
|
|
252
|
+
self.decoder_raw_residual = decoder_raw_residual
|
|
253
|
+
self.decoder_mode = decoder_mode
|
|
254
|
+
self.fcm_gated_attn = fcm_gated_attn
|
|
255
|
+
self.fcm_context_length = fcm_context_length
|
|
256
|
+
self.fcm_use_mixer = fcm_use_mixer
|
|
257
|
+
self.fcm_mix_layers = fcm_mix_layers
|
|
258
|
+
self.fcm_prepend_past = fcm_prepend_past
|
|
259
|
+
self.fcm_prepend_past_offset = fcm_prepend_past_offset
|
|
260
|
+
self.enable_forecast_channel_mixing = enable_forecast_channel_mixing
|
|
261
|
+
self.frequency_token_vocab_size = frequency_token_vocab_size
|
|
262
|
+
|
|
263
|
+
self.d_model = d_model
|
|
264
|
+
self.patch_stride = patch_stride
|
|
265
|
+
self.decoder_d_model = decoder_d_model
|
|
266
|
+
self.categorical_vocab_size_list = categorical_vocab_size_list
|
|
267
|
+
self.init_processing = False
|
|
268
|
+
self.prediction_filter_length = prediction_filter_length
|
|
269
|
+
self.init_linear = init_linear
|
|
270
|
+
self.init_embed = init_embed
|
|
271
|
+
self.quantile = quantile
|
|
272
|
+
self.huber_delta = huber_delta
|
|
273
|
+
self.mask_value = mask_value
|
|
274
|
+
self.masked_context_length = None
|
|
275
|
+
|
|
276
|
+
super().__init__(**kwargs)
|
|
277
|
+
|
|
278
|
+
def check_and_init_preprocessing(self):
|
|
279
|
+
self.init_processing = True
|
|
280
|
+
|
|
281
|
+
if not hasattr(self, "num_patches"):
|
|
282
|
+
context_length = (
|
|
283
|
+
self.masked_context_length if self.masked_context_length is not None else self.context_length
|
|
284
|
+
)
|
|
285
|
+
self.num_patches = (max(context_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
|
|
286
|
+
|
|
287
|
+
if self.resolution_prefix_tuning:
|
|
288
|
+
self.num_patches += 1
|
|
289
|
+
|
|
290
|
+
if self.prediction_filter_length is not None:
|
|
291
|
+
if self.prediction_filter_length > self.prediction_length or self.prediction_filter_length <= 0:
|
|
292
|
+
raise ValueError("prediction_filter_length should be positive and less than prediction_length")
|
|
293
|
+
|
|
294
|
+
if self.loss == "nll" and self.enable_forecast_channel_mixing:
|
|
295
|
+
raise ValueError("Distribution head cannot be enabled when enable_forecast_channel_mixing is set to True")
|
|
296
|
+
|
|
297
|
+
if self.prediction_channel_indices is not None:
|
|
298
|
+
self.prediction_channel_indices.sort()
|
|
299
|
+
|
|
300
|
+
if self.exogenous_channel_indices is not None:
|
|
301
|
+
self.exogenous_channel_indices.sort()
|
|
302
|
+
|
|
303
|
+
if self.exogenous_channel_indices is not None and self.prediction_channel_indices is None:
|
|
304
|
+
self.prediction_channel_indices = list(
|
|
305
|
+
set(range(self.num_input_channels)) - set(self.exogenous_channel_indices)
|
|
306
|
+
)
|
|
307
|
+
self.prediction_channel_indices.sort()
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
DEFAULT_FREQUENCY_MAPPING = {
|
|
2
|
+
"oov": 0,
|
|
3
|
+
"min": 1, # minutely
|
|
4
|
+
"2min": 2,
|
|
5
|
+
"5min": 3,
|
|
6
|
+
"10min": 4,
|
|
7
|
+
"15min": 5,
|
|
8
|
+
"30min": 6,
|
|
9
|
+
"h": 7, # hourly
|
|
10
|
+
"H": 7, # hourly, for compatibility
|
|
11
|
+
"d": 8, # daily, for compatibility
|
|
12
|
+
"D": 8, # daily
|
|
13
|
+
"W": 9, # weekly
|
|
14
|
+
}
|
|
15
|
+
|
|
16
|
+
TTM_LOW_RESOLUTION_MODELS_MAX_CONTEXT = 512
|