dragon-ml-toolbox 13.0.0__py3-none-any.whl → 14.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/METADATA +12 -2
- dragon_ml_toolbox-14.7.0.dist-info/RECORD +49 -0
- {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/licenses/LICENSE-THIRD-PARTY.md +10 -0
- ml_tools/MICE_imputation.py +207 -5
- ml_tools/ML_configuration.py +108 -0
- ml_tools/ML_datasetmaster.py +241 -260
- ml_tools/ML_evaluation.py +229 -76
- ml_tools/ML_evaluation_multi.py +45 -16
- ml_tools/ML_inference.py +0 -1
- ml_tools/ML_models.py +135 -55
- ml_tools/ML_models_advanced.py +323 -0
- ml_tools/ML_optimization.py +49 -36
- ml_tools/ML_trainer.py +498 -29
- ml_tools/ML_utilities.py +351 -4
- ml_tools/ML_vision_datasetmaster.py +1492 -0
- ml_tools/ML_vision_evaluation.py +260 -0
- ml_tools/ML_vision_inference.py +428 -0
- ml_tools/ML_vision_models.py +641 -0
- ml_tools/ML_vision_transformers.py +203 -0
- ml_tools/PSO_optimization.py +5 -1
- ml_tools/_ML_vision_recipe.py +88 -0
- ml_tools/__init__.py +1 -0
- ml_tools/_schema.py +96 -0
- ml_tools/custom_logger.py +37 -14
- ml_tools/data_exploration.py +576 -138
- ml_tools/ensemble_evaluation.py +53 -10
- ml_tools/keys.py +43 -1
- ml_tools/math_utilities.py +1 -1
- ml_tools/optimization_tools.py +65 -86
- ml_tools/serde.py +78 -17
- ml_tools/utilities.py +192 -3
- dragon_ml_toolbox-13.0.0.dist-info/RECORD +0 -41
- ml_tools/ML_simple_optimization.py +0 -413
- {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/WHEEL +0 -0
- {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/licenses/LICENSE +0 -0
- {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/top_level.txt +0 -0
ml_tools/ML_trainer.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
from typing import List, Literal, Union, Optional
|
|
1
|
+
from typing import List, Literal, Union, Optional, Callable, Dict, Any, Tuple
|
|
2
2
|
from pathlib import Path
|
|
3
3
|
from torch.utils.data import DataLoader, Dataset
|
|
4
4
|
import torch
|
|
@@ -9,19 +9,22 @@ from .ML_callbacks import Callback, History, TqdmProgressBar, ModelCheckpoint
|
|
|
9
9
|
from .ML_evaluation import classification_metrics, regression_metrics, plot_losses, shap_summary_plot, plot_attention_importance
|
|
10
10
|
from .ML_evaluation_multi import multi_target_regression_metrics, multi_label_classification_metrics, multi_target_shap_summary_plot
|
|
11
11
|
from ._script_info import _script_info
|
|
12
|
-
from .keys import PyTorchLogKeys, PyTorchCheckpointKeys
|
|
12
|
+
from .keys import PyTorchLogKeys, PyTorchCheckpointKeys, DatasetKeys
|
|
13
13
|
from ._logger import _LOGGER
|
|
14
14
|
from .path_manager import make_fullpath
|
|
15
|
+
from .ML_vision_evaluation import segmentation_metrics, object_detection_metrics
|
|
16
|
+
from .ML_configuration import ClassificationMetricsFormat, MultiClassificationMetricsFormat
|
|
15
17
|
|
|
16
18
|
|
|
17
19
|
__all__ = [
|
|
18
|
-
"MLTrainer"
|
|
20
|
+
"MLTrainer",
|
|
21
|
+
"ObjectDetectionTrainer",
|
|
19
22
|
]
|
|
20
23
|
|
|
21
24
|
|
|
22
25
|
class MLTrainer:
|
|
23
26
|
def __init__(self, model: nn.Module, train_dataset: Dataset, test_dataset: Dataset,
|
|
24
|
-
kind: Literal["regression", "classification", "multi_target_regression", "multi_label_classification"],
|
|
27
|
+
kind: Literal["regression", "classification", "multi_target_regression", "multi_label_classification", "segmentation"],
|
|
25
28
|
criterion: nn.Module, optimizer: torch.optim.Optimizer,
|
|
26
29
|
device: Union[Literal['cuda', 'mps', 'cpu'],str], dataloader_workers: int = 2, callbacks: Optional[List[Callback]] = None):
|
|
27
30
|
"""
|
|
@@ -33,7 +36,7 @@ class MLTrainer:
|
|
|
33
36
|
model (nn.Module): The PyTorch model to train.
|
|
34
37
|
train_dataset (Dataset): The training dataset.
|
|
35
38
|
test_dataset (Dataset): The testing/validation dataset.
|
|
36
|
-
kind (str): Can be 'regression', 'classification', 'multi_target_regression', or '
|
|
39
|
+
kind (str): Can be 'regression', 'classification', 'multi_target_regression', 'multi_label_classification', or 'segmentation'.
|
|
37
40
|
criterion (nn.Module): The loss function.
|
|
38
41
|
optimizer (torch.optim.Optimizer): The optimizer.
|
|
39
42
|
device (str): The device to run training on ('cpu', 'cuda', 'mps').
|
|
@@ -46,8 +49,10 @@ class MLTrainer:
|
|
|
46
49
|
- For **single-label, multi-class classification** tasks, `nn.CrossEntropyLoss` is the standard choice.
|
|
47
50
|
|
|
48
51
|
- For **multi-label, binary classification** tasks (where each label is a 0 or 1), `nn.BCEWithLogitsLoss` is the correct choice as it treats each output as an independent binary problem.
|
|
52
|
+
|
|
53
|
+
- For **segmentation** tasks, `nn.CrossEntropyLoss` (for multi-class) or `nn.BCEWithLogitsLoss` (for binary) are common.
|
|
49
54
|
"""
|
|
50
|
-
if kind not in ["regression", "classification", "multi_target_regression", "multi_label_classification"]:
|
|
55
|
+
if kind not in ["regression", "classification", "multi_target_regression", "multi_label_classification", "segmentation"]:
|
|
51
56
|
raise ValueError(f"'{kind}' is not a valid task type.")
|
|
52
57
|
|
|
53
58
|
self.model = model
|
|
@@ -74,6 +79,7 @@ class MLTrainer:
|
|
|
74
79
|
self.epochs = 0 # Total epochs for the fit run
|
|
75
80
|
self.start_epoch = 1
|
|
76
81
|
self.stop_training = False
|
|
82
|
+
self._batch_size = 10
|
|
77
83
|
|
|
78
84
|
def _validate_device(self, device: str) -> torch.device:
|
|
79
85
|
"""Validates the selected device and returns a torch.device object."""
|
|
@@ -191,7 +197,8 @@ class MLTrainer:
|
|
|
191
197
|
shape of `[batch_size]`.
|
|
192
198
|
"""
|
|
193
199
|
self.epochs = epochs
|
|
194
|
-
self.
|
|
200
|
+
self._batch_size = batch_size
|
|
201
|
+
self._create_dataloaders(self._batch_size, shuffle)
|
|
195
202
|
self.model.to(self.device)
|
|
196
203
|
|
|
197
204
|
if resume_from_checkpoint:
|
|
@@ -291,36 +298,53 @@ class MLTrainer:
|
|
|
291
298
|
for features, target in dataloader:
|
|
292
299
|
features = features.to(self.device)
|
|
293
300
|
output = self.model(features).cpu()
|
|
294
|
-
y_true_batch = target.numpy()
|
|
295
301
|
|
|
296
302
|
y_pred_batch = None
|
|
297
303
|
y_prob_batch = None
|
|
304
|
+
y_true_batch = None
|
|
298
305
|
|
|
299
306
|
if self.kind in ["regression", "multi_target_regression"]:
|
|
300
307
|
y_pred_batch = output.numpy()
|
|
308
|
+
y_true_batch = target.numpy()
|
|
301
309
|
|
|
302
310
|
elif self.kind == "classification":
|
|
303
311
|
probs = torch.softmax(output, dim=1)
|
|
304
312
|
preds = torch.argmax(probs, dim=1)
|
|
305
313
|
y_pred_batch = preds.numpy()
|
|
306
314
|
y_prob_batch = probs.numpy()
|
|
315
|
+
y_true_batch = target.numpy()
|
|
307
316
|
|
|
308
317
|
elif self.kind == "multi_label_classification":
|
|
309
318
|
probs = torch.sigmoid(output)
|
|
310
319
|
preds = (probs >= classification_threshold).int()
|
|
311
320
|
y_pred_batch = preds.numpy()
|
|
312
321
|
y_prob_batch = probs.numpy()
|
|
322
|
+
y_true_batch = target.numpy()
|
|
323
|
+
|
|
324
|
+
elif self.kind == "segmentation":
|
|
325
|
+
# output shape [N, C, H, W]
|
|
326
|
+
probs = torch.softmax(output, dim=1)
|
|
327
|
+
preds = torch.argmax(probs, dim=1) # shape [N, H, W]
|
|
328
|
+
y_pred_batch = preds.numpy()
|
|
329
|
+
y_prob_batch = probs.numpy() # Probs are [N, C, H, W]
|
|
330
|
+
|
|
331
|
+
# Handle target shape [N, 1, H, W] -> [N, H, W]
|
|
332
|
+
if target.ndim == 4 and target.shape[1] == 1:
|
|
333
|
+
target = target.squeeze(1)
|
|
334
|
+
y_true_batch = target.numpy()
|
|
313
335
|
|
|
314
336
|
yield y_pred_batch, y_prob_batch, y_true_batch
|
|
315
337
|
|
|
316
|
-
def evaluate(self,
|
|
338
|
+
def evaluate(self,
|
|
339
|
+
save_dir: Union[str, Path],
|
|
340
|
+
data: Optional[Union[DataLoader, Dataset]] = None,
|
|
341
|
+
format_configuration: Optional[Union[ClassificationMetricsFormat, MultiClassificationMetricsFormat]]=None):
|
|
317
342
|
"""
|
|
318
343
|
Evaluates the model, routing to the correct evaluation function based on task `kind`.
|
|
319
344
|
|
|
320
345
|
Args:
|
|
321
346
|
save_dir (str | Path): Directory to save all reports and plots.
|
|
322
347
|
data (DataLoader | Dataset | None): The data to evaluate on. If None, defaults to the trainer's internal test_dataset.
|
|
323
|
-
classification_threshold (float): Probability threshold for multi-label tasks.
|
|
324
348
|
"""
|
|
325
349
|
dataset_for_names = None
|
|
326
350
|
eval_loader = None
|
|
@@ -333,7 +357,7 @@ class MLTrainer:
|
|
|
333
357
|
elif isinstance(data, Dataset):
|
|
334
358
|
# Create a new loader from the provided dataset
|
|
335
359
|
eval_loader = DataLoader(data,
|
|
336
|
-
batch_size=
|
|
360
|
+
batch_size=self._batch_size,
|
|
337
361
|
shuffle=False,
|
|
338
362
|
num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
|
|
339
363
|
pin_memory=(self.device.type == "cuda"))
|
|
@@ -344,20 +368,21 @@ class MLTrainer:
|
|
|
344
368
|
raise ValueError()
|
|
345
369
|
# Create a fresh DataLoader from the test_dataset
|
|
346
370
|
eval_loader = DataLoader(self.test_dataset,
|
|
347
|
-
batch_size=
|
|
371
|
+
batch_size=self._batch_size,
|
|
348
372
|
shuffle=False,
|
|
349
373
|
num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
|
|
350
374
|
pin_memory=(self.device.type == "cuda"))
|
|
375
|
+
|
|
351
376
|
dataset_for_names = self.test_dataset
|
|
352
377
|
|
|
353
378
|
if eval_loader is None:
|
|
354
379
|
_LOGGER.error("Cannot evaluate. No valid data was provided or found.")
|
|
355
380
|
raise ValueError()
|
|
356
381
|
|
|
357
|
-
print("\n--- Model Evaluation ---")
|
|
382
|
+
# print("\n--- Model Evaluation ---")
|
|
358
383
|
|
|
359
384
|
all_preds, all_probs, all_true = [], [], []
|
|
360
|
-
for y_pred_b, y_prob_b, y_true_b in self._predict_for_eval(eval_loader
|
|
385
|
+
for y_pred_b, y_prob_b, y_true_b in self._predict_for_eval(eval_loader):
|
|
361
386
|
if y_pred_b is not None: all_preds.append(y_pred_b)
|
|
362
387
|
if y_prob_b is not None: all_probs.append(y_prob_b)
|
|
363
388
|
if y_true_b is not None: all_true.append(y_true_b)
|
|
@@ -375,7 +400,19 @@ class MLTrainer:
|
|
|
375
400
|
regression_metrics(y_true.flatten(), y_pred.flatten(), save_dir)
|
|
376
401
|
|
|
377
402
|
elif self.kind == "classification":
|
|
378
|
-
|
|
403
|
+
# Parse configuration
|
|
404
|
+
if format_configuration and isinstance(format_configuration, ClassificationMetricsFormat):
|
|
405
|
+
classification_metrics(save_dir=save_dir,
|
|
406
|
+
y_true=y_true,
|
|
407
|
+
y_pred=y_pred,
|
|
408
|
+
y_prob=y_prob,
|
|
409
|
+
cmap=format_configuration.cmap,
|
|
410
|
+
class_map=format_configuration.class_map,
|
|
411
|
+
ROC_PR_line=format_configuration.ROC_PR_line,
|
|
412
|
+
calibration_bins=format_configuration.calibration_bins,
|
|
413
|
+
font_size=format_configuration.font_size)
|
|
414
|
+
else:
|
|
415
|
+
classification_metrics(save_dir, y_true, y_pred, y_prob)
|
|
379
416
|
|
|
380
417
|
elif self.kind == "multi_target_regression":
|
|
381
418
|
try:
|
|
@@ -397,9 +434,44 @@ class MLTrainer:
|
|
|
397
434
|
if y_prob is None:
|
|
398
435
|
_LOGGER.error("Evaluation for multi_label_classification requires probabilities (y_prob).")
|
|
399
436
|
return
|
|
400
|
-
|
|
437
|
+
|
|
438
|
+
if format_configuration and isinstance(format_configuration, MultiClassificationMetricsFormat):
|
|
439
|
+
multi_label_classification_metrics(y_true=y_true,
|
|
440
|
+
y_prob=y_prob,
|
|
441
|
+
target_names=target_names,
|
|
442
|
+
save_dir=save_dir,
|
|
443
|
+
threshold=format_configuration.threshold,
|
|
444
|
+
ROC_PR_line=format_configuration.ROC_PR_line,
|
|
445
|
+
cmap=format_configuration.cmap,
|
|
446
|
+
font_size=format_configuration.font_size)
|
|
447
|
+
else:
|
|
448
|
+
multi_label_classification_metrics(y_true, y_prob, target_names, save_dir)
|
|
449
|
+
|
|
450
|
+
elif self.kind == "segmentation":
|
|
451
|
+
class_names = None
|
|
452
|
+
try:
|
|
453
|
+
# Try to get 'classes' from VisionDatasetMaker
|
|
454
|
+
if hasattr(dataset_for_names, 'classes'):
|
|
455
|
+
class_names = dataset_for_names.classes # type: ignore
|
|
456
|
+
# Fallback for Subset
|
|
457
|
+
elif hasattr(dataset_for_names, 'dataset') and hasattr(dataset_for_names.dataset, 'classes'): # type: ignore
|
|
458
|
+
class_names = dataset_for_names.dataset.classes # type: ignore
|
|
459
|
+
except AttributeError:
|
|
460
|
+
pass # class_names is still None
|
|
401
461
|
|
|
402
|
-
|
|
462
|
+
if class_names is None:
|
|
463
|
+
try:
|
|
464
|
+
# Fallback to 'target_names'
|
|
465
|
+
class_names = dataset_for_names.target_names # type: ignore
|
|
466
|
+
except AttributeError:
|
|
467
|
+
# Fallback to inferring from labels
|
|
468
|
+
labels = np.unique(y_true)
|
|
469
|
+
class_names = [f"Class {i}" for i in labels]
|
|
470
|
+
_LOGGER.warning(f"Dataset has no 'classes' or 'target_names' attribute. Using generic names.")
|
|
471
|
+
|
|
472
|
+
segmentation_metrics(y_true, y_pred, save_dir, class_names=class_names)
|
|
473
|
+
|
|
474
|
+
# print("\n--- Training History ---")
|
|
403
475
|
plot_losses(self.history, save_dir=save_dir)
|
|
404
476
|
|
|
405
477
|
def explain(self,
|
|
@@ -408,7 +480,7 @@ class MLTrainer:
|
|
|
408
480
|
n_samples: int = 300,
|
|
409
481
|
feature_names: Optional[List[str]] = None,
|
|
410
482
|
target_names: Optional[List[str]] = None,
|
|
411
|
-
explainer_type: Literal['deep', 'kernel'] = '
|
|
483
|
+
explainer_type: Literal['deep', 'kernel'] = 'kernel'):
|
|
412
484
|
"""
|
|
413
485
|
Explains model predictions using SHAP and saves all artifacts.
|
|
414
486
|
|
|
@@ -422,11 +494,11 @@ class MLTrainer:
|
|
|
422
494
|
explain_dataset (Dataset | None): A specific dataset to explain.
|
|
423
495
|
If None, the trainer's test dataset is used.
|
|
424
496
|
n_samples (int): The number of samples to use for both background and explanation.
|
|
425
|
-
feature_names (list[str] | None): Feature names.
|
|
497
|
+
feature_names (list[str] | None): Feature names. If None, the names will be extracted from the Dataset and raise an error on failure.
|
|
426
498
|
target_names (list[str] | None): Target names for multi-target tasks.
|
|
427
499
|
save_dir (str | Path): Directory to save all SHAP artifacts.
|
|
428
500
|
explainer_type (Literal['deep', 'kernel']): The explainer to use.
|
|
429
|
-
- 'deep':
|
|
501
|
+
- 'deep': Uses shap.DeepExplainer. Fast and efficient for PyTorch models.
|
|
430
502
|
- 'kernel': Uses shap.KernelExplainer. Model-agnostic but EXTREMELY slow and memory-intensive. Use with a very low 'n_samples'< 100.
|
|
431
503
|
"""
|
|
432
504
|
# Internal helper to create a dataloader and get a random sample
|
|
@@ -456,7 +528,7 @@ class MLTrainer:
|
|
|
456
528
|
rand_indices = torch.randperm(full_data.size(0))[:num_samples]
|
|
457
529
|
return full_data[rand_indices]
|
|
458
530
|
|
|
459
|
-
print(f"\n--- Preparing SHAP Data (sampling up to {n_samples} instances) ---")
|
|
531
|
+
# print(f"\n--- Preparing SHAP Data (sampling up to {n_samples} instances) ---")
|
|
460
532
|
|
|
461
533
|
# 1. Get background data from the trainer's train_dataset
|
|
462
534
|
background_data = _get_random_sample(self.train_dataset, n_samples)
|
|
@@ -474,10 +546,10 @@ class MLTrainer:
|
|
|
474
546
|
# attempt to get feature names
|
|
475
547
|
if feature_names is None:
|
|
476
548
|
# _LOGGER.info("`feature_names` not provided. Attempting to extract from dataset...")
|
|
477
|
-
if hasattr(target_dataset,
|
|
549
|
+
if hasattr(target_dataset, DatasetKeys.FEATURE_NAMES):
|
|
478
550
|
feature_names = target_dataset.feature_names # type: ignore
|
|
479
551
|
else:
|
|
480
|
-
_LOGGER.error("Could not extract `feature_names` from the dataset. It must be provided if the dataset object does not have a
|
|
552
|
+
_LOGGER.error(f"Could not extract `feature_names` from the dataset. It must be provided if the dataset object does not have a '{DatasetKeys.FEATURE_NAMES}' attribute.")
|
|
481
553
|
raise ValueError()
|
|
482
554
|
|
|
483
555
|
# move model to device
|
|
@@ -498,7 +570,7 @@ class MLTrainer:
|
|
|
498
570
|
# try to get target names
|
|
499
571
|
if target_names is None:
|
|
500
572
|
target_names = []
|
|
501
|
-
if hasattr(target_dataset,
|
|
573
|
+
if hasattr(target_dataset, DatasetKeys.TARGET_NAMES):
|
|
502
574
|
target_names = target_dataset.target_names # type: ignore
|
|
503
575
|
else:
|
|
504
576
|
# Infer number of targets from the model's output layer
|
|
@@ -549,7 +621,7 @@ class MLTrainer:
|
|
|
549
621
|
yield attention_weights
|
|
550
622
|
|
|
551
623
|
def explain_attention(self, save_dir: Union[str, Path],
|
|
552
|
-
feature_names: Optional[List[str]],
|
|
624
|
+
feature_names: Optional[List[str]] = None,
|
|
553
625
|
explain_dataset: Optional[Dataset] = None,
|
|
554
626
|
plot_n_features: int = 10):
|
|
555
627
|
"""
|
|
@@ -559,18 +631,17 @@ class MLTrainer:
|
|
|
559
631
|
|
|
560
632
|
Args:
|
|
561
633
|
save_dir (str | Path): Directory to save the plot and summary data.
|
|
562
|
-
feature_names (List[str] | None): Names for the features for plot labeling. If
|
|
634
|
+
feature_names (List[str] | None): Names for the features for plot labeling. If None, the names will be extracted from the Dataset and raise an error on failure.
|
|
563
635
|
explain_dataset (Dataset, optional): A specific dataset to explain. If None, the trainer's test dataset is used.
|
|
564
636
|
plot_n_features (int): Number of top features to plot.
|
|
565
637
|
"""
|
|
566
638
|
|
|
567
|
-
print("\n--- Attention Analysis ---")
|
|
639
|
+
# print("\n--- Attention Analysis ---")
|
|
568
640
|
|
|
569
641
|
# --- Step 1: Check if the model supports this explanation ---
|
|
570
642
|
if not getattr(self.model, 'has_interpretable_attention', False):
|
|
571
643
|
_LOGGER.warning(
|
|
572
|
-
"Model is not flagged for interpretable attention analysis. "
|
|
573
|
-
"Skipping. This is the correct behavior for models like MultiHeadAttentionMLP."
|
|
644
|
+
"Model is not flagged for interpretable attention analysis. Skipping. This is the correct behavior for models like MultiHeadAttentionMLP."
|
|
574
645
|
)
|
|
575
646
|
return
|
|
576
647
|
|
|
@@ -580,6 +651,14 @@ class MLTrainer:
|
|
|
580
651
|
_LOGGER.error("The explanation dataset is empty or invalid. Skipping attention analysis.")
|
|
581
652
|
return
|
|
582
653
|
|
|
654
|
+
# Get feature names
|
|
655
|
+
if feature_names is None:
|
|
656
|
+
if hasattr(dataset_to_use, DatasetKeys.FEATURE_NAMES):
|
|
657
|
+
feature_names = dataset_to_use.feature_names # type: ignore
|
|
658
|
+
else:
|
|
659
|
+
_LOGGER.error(f"Could not extract `feature_names` from the dataset for attention plot. It must be provided if the dataset object does not have a '{DatasetKeys.FEATURE_NAMES}' attribute.")
|
|
660
|
+
raise ValueError()
|
|
661
|
+
|
|
583
662
|
explain_loader = DataLoader(
|
|
584
663
|
dataset=dataset_to_use, batch_size=32, shuffle=False,
|
|
585
664
|
num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
|
|
@@ -629,7 +708,397 @@ class MLTrainer:
|
|
|
629
708
|
self.device = self._validate_device(device)
|
|
630
709
|
self.model.to(self.device)
|
|
631
710
|
_LOGGER.info(f"Trainer and model moved to {self.device}.")
|
|
711
|
+
|
|
712
|
+
|
|
713
|
+
# Object Detection Trainer
|
|
714
|
+
class ObjectDetectionTrainer:
|
|
715
|
+
def __init__(self, model: nn.Module, train_dataset: Dataset, test_dataset: Dataset,
|
|
716
|
+
collate_fn: Callable, optimizer: torch.optim.Optimizer,
|
|
717
|
+
device: Union[Literal['cuda', 'mps', 'cpu'],str], dataloader_workers: int = 2, callbacks: Optional[List[Callback]] = None):
|
|
718
|
+
"""
|
|
719
|
+
Automates the training process of an Object Detection Model (e.g., DragonFastRCNN).
|
|
720
|
+
|
|
721
|
+
Built-in Callbacks: `History`, `TqdmProgressBar`
|
|
722
|
+
|
|
723
|
+
Args:
|
|
724
|
+
model (nn.Module): The PyTorch object detection model to train.
|
|
725
|
+
train_dataset (Dataset): The training dataset.
|
|
726
|
+
test_dataset (Dataset): The testing/validation dataset.
|
|
727
|
+
collate_fn (Callable): The collate function from `ObjectDetectionDatasetMaker.collate_fn`.
|
|
728
|
+
optimizer (torch.optim.Optimizer): The optimizer.
|
|
729
|
+
device (str): The device to run training on ('cpu', 'cuda', 'mps').
|
|
730
|
+
dataloader_workers (int): Subprocesses for data loading.
|
|
731
|
+
callbacks (List[Callback] | None): A list of callbacks to use during training.
|
|
732
|
+
|
|
733
|
+
## Note:
|
|
734
|
+
This trainer is specialized. It does not take a `criterion` because object detection models like Faster R-CNN return a dictionary of losses directly from their forward pass during training.
|
|
735
|
+
"""
|
|
736
|
+
self.model = model
|
|
737
|
+
self.train_dataset = train_dataset
|
|
738
|
+
self.test_dataset = test_dataset
|
|
739
|
+
self.kind = "object_detection"
|
|
740
|
+
self.collate_fn = collate_fn
|
|
741
|
+
self.criterion = None # Criterion is handled inside the model
|
|
742
|
+
self.optimizer = optimizer
|
|
743
|
+
self.scheduler = None
|
|
744
|
+
self.device = self._validate_device(device)
|
|
745
|
+
self.dataloader_workers = dataloader_workers
|
|
746
|
+
|
|
747
|
+
# Callback handler - History and TqdmProgressBar are added by default
|
|
748
|
+
default_callbacks = [History(), TqdmProgressBar()]
|
|
749
|
+
user_callbacks = callbacks if callbacks is not None else []
|
|
750
|
+
self.callbacks = default_callbacks + user_callbacks
|
|
751
|
+
self._set_trainer_on_callbacks()
|
|
752
|
+
|
|
753
|
+
# Internal state
|
|
754
|
+
self.train_loader = None
|
|
755
|
+
self.test_loader = None
|
|
756
|
+
self.history = {}
|
|
757
|
+
self.epoch = 0
|
|
758
|
+
self.epochs = 0 # Total epochs for the fit run
|
|
759
|
+
self.start_epoch = 1
|
|
760
|
+
self.stop_training = False
|
|
761
|
+
self._batch_size = 10
|
|
762
|
+
|
|
763
|
+
def _validate_device(self, device: str) -> torch.device:
|
|
764
|
+
"""Validates the selected device and returns a torch.device object."""
|
|
765
|
+
device_lower = device.lower()
|
|
766
|
+
if "cuda" in device_lower and not torch.cuda.is_available():
|
|
767
|
+
_LOGGER.warning("CUDA not available, switching to CPU.")
|
|
768
|
+
device = "cpu"
|
|
769
|
+
elif device_lower == "mps" and not torch.backends.mps.is_available():
|
|
770
|
+
_LOGGER.warning("Apple Metal Performance Shaders (MPS) not available, switching to CPU.")
|
|
771
|
+
device = "cpu"
|
|
772
|
+
return torch.device(device)
|
|
773
|
+
|
|
774
|
+
def _set_trainer_on_callbacks(self):
|
|
775
|
+
"""Gives each callback a reference to this trainer instance."""
|
|
776
|
+
for callback in self.callbacks:
|
|
777
|
+
callback.set_trainer(self)
|
|
778
|
+
|
|
779
|
+
def _create_dataloaders(self, batch_size: int, shuffle: bool):
|
|
780
|
+
"""Initializes the DataLoaders with the object detection collate_fn."""
|
|
781
|
+
# Ensure stability on MPS devices by setting num_workers to 0
|
|
782
|
+
loader_workers = 0 if self.device.type == 'mps' else self.dataloader_workers
|
|
783
|
+
|
|
784
|
+
self.train_loader = DataLoader(
|
|
785
|
+
dataset=self.train_dataset,
|
|
786
|
+
batch_size=batch_size,
|
|
787
|
+
shuffle=shuffle,
|
|
788
|
+
num_workers=loader_workers,
|
|
789
|
+
pin_memory=("cuda" in self.device.type),
|
|
790
|
+
collate_fn=self.collate_fn # Use the provided collate function
|
|
791
|
+
)
|
|
792
|
+
|
|
793
|
+
self.test_loader = DataLoader(
|
|
794
|
+
dataset=self.test_dataset,
|
|
795
|
+
batch_size=batch_size,
|
|
796
|
+
shuffle=False,
|
|
797
|
+
num_workers=loader_workers,
|
|
798
|
+
pin_memory=("cuda" in self.device.type),
|
|
799
|
+
collate_fn=self.collate_fn # Use the provided collate function
|
|
800
|
+
)
|
|
801
|
+
|
|
802
|
+
def _load_checkpoint(self, path: Union[str, Path]):
|
|
803
|
+
"""Loads a training checkpoint to resume training."""
|
|
804
|
+
p = make_fullpath(path, enforce="file")
|
|
805
|
+
_LOGGER.info(f"Loading checkpoint from '{p.name}' to resume training...")
|
|
806
|
+
|
|
807
|
+
try:
|
|
808
|
+
checkpoint = torch.load(p, map_location=self.device)
|
|
809
|
+
|
|
810
|
+
if PyTorchCheckpointKeys.MODEL_STATE not in checkpoint or PyTorchCheckpointKeys.OPTIMIZER_STATE not in checkpoint:
|
|
811
|
+
_LOGGER.error(f"Checkpoint file '{p.name}' is invalid. Missing 'model_state_dict' or 'optimizer_state_dict'.")
|
|
812
|
+
raise KeyError()
|
|
813
|
+
|
|
814
|
+
self.model.load_state_dict(checkpoint[PyTorchCheckpointKeys.MODEL_STATE])
|
|
815
|
+
self.optimizer.load_state_dict(checkpoint[PyTorchCheckpointKeys.OPTIMIZER_STATE])
|
|
816
|
+
self.start_epoch = checkpoint.get(PyTorchCheckpointKeys.EPOCH, 0) + 1 # Resume on the *next* epoch
|
|
817
|
+
|
|
818
|
+
# --- Scheduler State Loading Logic ---
|
|
819
|
+
scheduler_state_exists = PyTorchCheckpointKeys.SCHEDULER_STATE in checkpoint
|
|
820
|
+
scheduler_object_exists = self.scheduler is not None
|
|
821
|
+
|
|
822
|
+
if scheduler_object_exists and scheduler_state_exists:
|
|
823
|
+
# Case 1: Both exist. Attempt to load.
|
|
824
|
+
try:
|
|
825
|
+
self.scheduler.load_state_dict(checkpoint[PyTorchCheckpointKeys.SCHEDULER_STATE]) # type: ignore
|
|
826
|
+
scheduler_name = self.scheduler.__class__.__name__
|
|
827
|
+
_LOGGER.info(f"Restored LR scheduler state for: {scheduler_name}")
|
|
828
|
+
except Exception as e:
|
|
829
|
+
# Loading failed, likely a mismatch
|
|
830
|
+
scheduler_name = self.scheduler.__class__.__name__
|
|
831
|
+
_LOGGER.error(f"Failed to load scheduler state for '{scheduler_name}'. A different scheduler type might have been used.")
|
|
832
|
+
raise e
|
|
833
|
+
|
|
834
|
+
elif scheduler_object_exists and not scheduler_state_exists:
|
|
835
|
+
# Case 2: Scheduler provided, but no state in checkpoint.
|
|
836
|
+
scheduler_name = self.scheduler.__class__.__name__
|
|
837
|
+
_LOGGER.warning(f"'{scheduler_name}' was provided, but no scheduler state was found in the checkpoint. The scheduler will start from its initial state.")
|
|
838
|
+
|
|
839
|
+
elif not scheduler_object_exists and scheduler_state_exists:
|
|
840
|
+
# Case 3: State in checkpoint, but no scheduler provided.
|
|
841
|
+
_LOGGER.error("Checkpoint contains an LR scheduler state, but no LRScheduler callback was provided.")
|
|
842
|
+
raise ValueError()
|
|
843
|
+
|
|
844
|
+
# Restore callback states
|
|
845
|
+
for cb in self.callbacks:
|
|
846
|
+
if isinstance(cb, ModelCheckpoint) and PyTorchCheckpointKeys.BEST_SCORE in checkpoint:
|
|
847
|
+
cb.best = checkpoint[PyTorchCheckpointKeys.BEST_SCORE]
|
|
848
|
+
_LOGGER.info(f"Restored {cb.__class__.__name__} 'best' score to: {cb.best:.4f}")
|
|
849
|
+
|
|
850
|
+
_LOGGER.info(f"Checkpoint loaded. Resuming training from epoch {self.start_epoch}.")
|
|
851
|
+
|
|
852
|
+
except Exception as e:
|
|
853
|
+
_LOGGER.error(f"Failed to load checkpoint from '{p}': {e}")
|
|
854
|
+
raise
|
|
855
|
+
|
|
856
|
+
def fit(self,
|
|
857
|
+
epochs: int = 10,
|
|
858
|
+
batch_size: int = 10,
|
|
859
|
+
shuffle: bool = True,
|
|
860
|
+
resume_from_checkpoint: Optional[Union[str, Path]] = None):
|
|
861
|
+
"""
|
|
862
|
+
Starts the training-validation process of the model.
|
|
863
|
+
|
|
864
|
+
Returns the "History" callback dictionary.
|
|
865
|
+
|
|
866
|
+
Args:
|
|
867
|
+
epochs (int): The total number of epochs to train for.
|
|
868
|
+
batch_size (int): The number of samples per batch.
|
|
869
|
+
shuffle (bool): Whether to shuffle the training data at each epoch.
|
|
870
|
+
resume_from_checkpoint (str | Path | None): Optional path to a checkpoint to resume training.
|
|
871
|
+
"""
|
|
872
|
+
self.epochs = epochs
|
|
873
|
+
self._batch_size = batch_size
|
|
874
|
+
self._create_dataloaders(self._batch_size, shuffle)
|
|
875
|
+
self.model.to(self.device)
|
|
876
|
+
|
|
877
|
+
if resume_from_checkpoint:
|
|
878
|
+
self._load_checkpoint(resume_from_checkpoint)
|
|
879
|
+
|
|
880
|
+
# Reset stop_training flag on the trainer
|
|
881
|
+
self.stop_training = False
|
|
882
|
+
|
|
883
|
+
self._callbacks_hook('on_train_begin')
|
|
884
|
+
|
|
885
|
+
for epoch in range(self.start_epoch, self.epochs + 1):
|
|
886
|
+
self.epoch = epoch
|
|
887
|
+
epoch_logs = {}
|
|
888
|
+
self._callbacks_hook('on_epoch_begin', epoch, logs=epoch_logs)
|
|
889
|
+
|
|
890
|
+
train_logs = self._train_step()
|
|
891
|
+
epoch_logs.update(train_logs)
|
|
892
|
+
|
|
893
|
+
val_logs = self._validation_step()
|
|
894
|
+
epoch_logs.update(val_logs)
|
|
895
|
+
|
|
896
|
+
self._callbacks_hook('on_epoch_end', epoch, logs=epoch_logs)
|
|
897
|
+
|
|
898
|
+
# Check the early stopping flag
|
|
899
|
+
if self.stop_training:
|
|
900
|
+
break
|
|
901
|
+
|
|
902
|
+
self._callbacks_hook('on_train_end')
|
|
903
|
+
return self.history
|
|
904
|
+
|
|
905
|
+
def _train_step(self):
|
|
906
|
+
self.model.train()
|
|
907
|
+
running_loss = 0.0
|
|
908
|
+
for batch_idx, (images, targets) in enumerate(self.train_loader): # type: ignore
|
|
909
|
+
# images is a tuple of tensors, targets is a tuple of dicts
|
|
910
|
+
batch_size = len(images)
|
|
911
|
+
|
|
912
|
+
# Create a log dictionary for the batch
|
|
913
|
+
batch_logs = {
|
|
914
|
+
PyTorchLogKeys.BATCH_INDEX: batch_idx,
|
|
915
|
+
PyTorchLogKeys.BATCH_SIZE: batch_size
|
|
916
|
+
}
|
|
917
|
+
self._callbacks_hook('on_batch_begin', batch_idx, logs=batch_logs)
|
|
918
|
+
|
|
919
|
+
# Move data to device
|
|
920
|
+
images = list(img.to(self.device) for img in images)
|
|
921
|
+
targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
|
|
922
|
+
|
|
923
|
+
self.optimizer.zero_grad()
|
|
924
|
+
|
|
925
|
+
# Model returns a loss dict when in train() mode and targets are passed
|
|
926
|
+
loss_dict = self.model(images, targets)
|
|
927
|
+
|
|
928
|
+
if not loss_dict:
|
|
929
|
+
# No losses returned, skip batch
|
|
930
|
+
_LOGGER.warning(f"Model returned no losses for batch {batch_idx}. Skipping.")
|
|
931
|
+
batch_logs[PyTorchLogKeys.BATCH_LOSS] = 0
|
|
932
|
+
self._callbacks_hook('on_batch_end', batch_idx, logs=batch_logs)
|
|
933
|
+
continue
|
|
934
|
+
|
|
935
|
+
# Sum all losses
|
|
936
|
+
loss: torch.Tensor = sum(l for l in loss_dict.values()) # type: ignore
|
|
937
|
+
|
|
938
|
+
loss.backward()
|
|
939
|
+
self.optimizer.step()
|
|
940
|
+
|
|
941
|
+
# Calculate batch loss and update running loss for the epoch
|
|
942
|
+
batch_loss = loss.item()
|
|
943
|
+
running_loss += batch_loss * batch_size
|
|
944
|
+
|
|
945
|
+
# Add the batch loss to the logs and call the end-of-batch hook
|
|
946
|
+
batch_logs[PyTorchLogKeys.BATCH_LOSS] = batch_loss # type: ignore
|
|
947
|
+
self._callbacks_hook('on_batch_end', batch_idx, logs=batch_logs)
|
|
948
|
+
|
|
949
|
+
return {PyTorchLogKeys.TRAIN_LOSS: running_loss / len(self.train_loader.dataset)} # type: ignore
|
|
950
|
+
|
|
951
|
+
def _validation_step(self):
|
|
952
|
+
self.model.train() # Set to train mode even for validation loss calculation
|
|
953
|
+
# as model internals (e.g., proposals) might differ,
|
|
954
|
+
# but we still need loss_dict.
|
|
955
|
+
# We use torch.no_grad() to prevent gradient updates.
|
|
956
|
+
running_loss = 0.0
|
|
957
|
+
with torch.no_grad():
|
|
958
|
+
for images, targets in self.test_loader: # type: ignore
|
|
959
|
+
batch_size = len(images)
|
|
960
|
+
|
|
961
|
+
# Move data to device
|
|
962
|
+
images = list(img.to(self.device) for img in images)
|
|
963
|
+
targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
|
|
964
|
+
|
|
965
|
+
# Get loss dict
|
|
966
|
+
loss_dict = self.model(images, targets)
|
|
967
|
+
|
|
968
|
+
if not loss_dict:
|
|
969
|
+
_LOGGER.warning("Model returned no losses during validation step. Skipping batch.")
|
|
970
|
+
continue # Skip if no losses
|
|
971
|
+
|
|
972
|
+
# Sum all losses
|
|
973
|
+
loss: torch.Tensor = sum(l for l in loss_dict.values()) # type: ignore
|
|
974
|
+
|
|
975
|
+
running_loss += loss.item() * batch_size
|
|
976
|
+
|
|
977
|
+
logs = {PyTorchLogKeys.VAL_LOSS: running_loss / len(self.test_loader.dataset)} # type: ignore
|
|
978
|
+
return logs
|
|
979
|
+
|
|
980
|
+
def evaluate(self, save_dir: Union[str, Path], data: Optional[Union[DataLoader, Dataset]] = None):
|
|
981
|
+
"""
|
|
982
|
+
Evaluates the model using object detection mAP metrics.
|
|
983
|
+
|
|
984
|
+
Args:
|
|
985
|
+
save_dir (str | Path): Directory to save all reports and plots.
|
|
986
|
+
data (DataLoader | Dataset | None): The data to evaluate on. If None, defaults to the trainer's internal test_dataset.
|
|
987
|
+
"""
|
|
988
|
+
dataset_for_names = None
|
|
989
|
+
eval_loader = None
|
|
990
|
+
|
|
991
|
+
if isinstance(data, DataLoader):
|
|
992
|
+
eval_loader = data
|
|
993
|
+
if hasattr(data, 'dataset'):
|
|
994
|
+
dataset_for_names = data.dataset
|
|
995
|
+
elif isinstance(data, Dataset):
|
|
996
|
+
# Create a new loader from the provided dataset
|
|
997
|
+
eval_loader = DataLoader(data,
|
|
998
|
+
batch_size=self._batch_size,
|
|
999
|
+
shuffle=False,
|
|
1000
|
+
num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
|
|
1001
|
+
pin_memory=(self.device.type == "cuda"),
|
|
1002
|
+
collate_fn=self.collate_fn)
|
|
1003
|
+
dataset_for_names = data
|
|
1004
|
+
else: # data is None, use the trainer's default test dataset
|
|
1005
|
+
if self.test_dataset is None:
|
|
1006
|
+
_LOGGER.error("Cannot evaluate. No data provided and no test_dataset available in the trainer.")
|
|
1007
|
+
raise ValueError()
|
|
1008
|
+
# Create a fresh DataLoader from the test_dataset
|
|
1009
|
+
eval_loader = DataLoader(
|
|
1010
|
+
self.test_dataset,
|
|
1011
|
+
batch_size=self._batch_size,
|
|
1012
|
+
shuffle=False,
|
|
1013
|
+
num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
|
|
1014
|
+
pin_memory=(self.device.type == "cuda"),
|
|
1015
|
+
collate_fn=self.collate_fn
|
|
1016
|
+
)
|
|
1017
|
+
dataset_for_names = self.test_dataset
|
|
1018
|
+
|
|
1019
|
+
if eval_loader is None:
|
|
1020
|
+
_LOGGER.error("Cannot evaluate. No valid data was provided or found.")
|
|
1021
|
+
raise ValueError()
|
|
1022
|
+
|
|
1023
|
+
# print("\n--- Model Evaluation ---")
|
|
1024
|
+
|
|
1025
|
+
all_predictions = []
|
|
1026
|
+
all_targets = []
|
|
1027
|
+
|
|
1028
|
+
self.model.eval() # Set model to evaluation mode
|
|
1029
|
+
self.model.to(self.device)
|
|
1030
|
+
|
|
1031
|
+
with torch.no_grad():
|
|
1032
|
+
for images, targets in eval_loader:
|
|
1033
|
+
# Move images to device
|
|
1034
|
+
images = list(img.to(self.device) for img in images)
|
|
1035
|
+
|
|
1036
|
+
# Model returns predictions when in eval() mode
|
|
1037
|
+
predictions = self.model(images)
|
|
1038
|
+
|
|
1039
|
+
# Move predictions and targets to CPU for aggregation
|
|
1040
|
+
cpu_preds = [{k: v.to('cpu') for k, v in p.items()} for p in predictions]
|
|
1041
|
+
cpu_targets = [{k: v.to('cpu') for k, v in t.items()} for t in targets]
|
|
1042
|
+
|
|
1043
|
+
all_predictions.extend(cpu_preds)
|
|
1044
|
+
all_targets.extend(cpu_targets)
|
|
1045
|
+
|
|
1046
|
+
if not all_targets:
|
|
1047
|
+
_LOGGER.error("Evaluation failed: No data was processed.")
|
|
1048
|
+
return
|
|
1049
|
+
|
|
1050
|
+
# Get class names from the dataset for the report
|
|
1051
|
+
class_names = None
|
|
1052
|
+
try:
|
|
1053
|
+
# Try to get 'classes' from ObjectDetectionDatasetMaker
|
|
1054
|
+
if hasattr(dataset_for_names, 'classes'):
|
|
1055
|
+
class_names = dataset_for_names.classes # type: ignore
|
|
1056
|
+
# Fallback for Subset
|
|
1057
|
+
elif hasattr(dataset_for_names, 'dataset') and hasattr(dataset_for_names.dataset, 'classes'): # type: ignore
|
|
1058
|
+
class_names = dataset_for_names.dataset.classes # type: ignore
|
|
1059
|
+
except AttributeError:
|
|
1060
|
+
_LOGGER.warning("Could not find 'classes' attribute on dataset. Per-class metrics will not be named.")
|
|
1061
|
+
pass # class_names is still None
|
|
1062
|
+
|
|
1063
|
+
# --- Routing Logic ---
|
|
1064
|
+
object_detection_metrics(
|
|
1065
|
+
preds=all_predictions,
|
|
1066
|
+
targets=all_targets,
|
|
1067
|
+
save_dir=save_dir,
|
|
1068
|
+
class_names=class_names,
|
|
1069
|
+
print_output=False
|
|
1070
|
+
)
|
|
1071
|
+
|
|
1072
|
+
# print("\n--- Training History ---")
|
|
1073
|
+
plot_losses(self.history, save_dir=save_dir)
|
|
1074
|
+
|
|
1075
|
+
def _callbacks_hook(self, method_name: str, *args, **kwargs):
|
|
1076
|
+
"""Calls the specified method on all callbacks."""
|
|
1077
|
+
for callback in self.callbacks:
|
|
1078
|
+
method = getattr(callback, method_name)
|
|
1079
|
+
method(*args, **kwargs)
|
|
1080
|
+
|
|
1081
|
+
def to_cpu(self):
|
|
1082
|
+
"""
|
|
1083
|
+
Moves the model to the CPU and updates the trainer's device setting.
|
|
1084
|
+
|
|
1085
|
+
This is useful for running operations that require the CPU.
|
|
1086
|
+
"""
|
|
1087
|
+
self.device = torch.device('cpu')
|
|
1088
|
+
self.model.to(self.device)
|
|
1089
|
+
_LOGGER.info("Trainer and model moved to CPU.")
|
|
632
1090
|
|
|
1091
|
+
def to_device(self, device: str):
|
|
1092
|
+
"""
|
|
1093
|
+
Moves the model to the specified device and updates the trainer's device setting.
|
|
1094
|
+
|
|
1095
|
+
Args:
|
|
1096
|
+
device (str): The target device (e.g., 'cuda', 'mps', 'cpu').
|
|
1097
|
+
"""
|
|
1098
|
+
self.device = self._validate_device(device)
|
|
1099
|
+
self.model.to(self.device)
|
|
1100
|
+
_LOGGER.info(f"Trainer and model moved to {self.device}.")
|
|
1101
|
+
|
|
633
1102
|
|
|
634
1103
|
def info():
|
|
635
1104
|
_script_info(__all__)
|