dragon-ml-toolbox 13.0.0__py3-none-any.whl → 14.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/METADATA +12 -2
  2. dragon_ml_toolbox-14.7.0.dist-info/RECORD +49 -0
  3. {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/licenses/LICENSE-THIRD-PARTY.md +10 -0
  4. ml_tools/MICE_imputation.py +207 -5
  5. ml_tools/ML_configuration.py +108 -0
  6. ml_tools/ML_datasetmaster.py +241 -260
  7. ml_tools/ML_evaluation.py +229 -76
  8. ml_tools/ML_evaluation_multi.py +45 -16
  9. ml_tools/ML_inference.py +0 -1
  10. ml_tools/ML_models.py +135 -55
  11. ml_tools/ML_models_advanced.py +323 -0
  12. ml_tools/ML_optimization.py +49 -36
  13. ml_tools/ML_trainer.py +498 -29
  14. ml_tools/ML_utilities.py +351 -4
  15. ml_tools/ML_vision_datasetmaster.py +1492 -0
  16. ml_tools/ML_vision_evaluation.py +260 -0
  17. ml_tools/ML_vision_inference.py +428 -0
  18. ml_tools/ML_vision_models.py +641 -0
  19. ml_tools/ML_vision_transformers.py +203 -0
  20. ml_tools/PSO_optimization.py +5 -1
  21. ml_tools/_ML_vision_recipe.py +88 -0
  22. ml_tools/__init__.py +1 -0
  23. ml_tools/_schema.py +96 -0
  24. ml_tools/custom_logger.py +37 -14
  25. ml_tools/data_exploration.py +576 -138
  26. ml_tools/ensemble_evaluation.py +53 -10
  27. ml_tools/keys.py +43 -1
  28. ml_tools/math_utilities.py +1 -1
  29. ml_tools/optimization_tools.py +65 -86
  30. ml_tools/serde.py +78 -17
  31. ml_tools/utilities.py +192 -3
  32. dragon_ml_toolbox-13.0.0.dist-info/RECORD +0 -41
  33. ml_tools/ML_simple_optimization.py +0 -413
  34. {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/WHEEL +0 -0
  35. {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/licenses/LICENSE +0 -0
  36. {dragon_ml_toolbox-13.0.0.dist-info → dragon_ml_toolbox-14.7.0.dist-info}/top_level.txt +0 -0
@@ -17,9 +17,10 @@ from ._script_info import _script_info
17
17
  from .ML_inference import PyTorchInferenceHandler
18
18
  from .keys import PyTorchInferenceKeys
19
19
  from .SQL import DatabaseManager
20
- from .optimization_tools import _save_result
20
+ from .optimization_tools import _save_result, create_optimization_bounds
21
21
  from .utilities import save_dataframe_filename
22
22
  from .math_utilities import discretize_categorical_values
23
+ from ._schema import FeatureSchema
23
24
 
24
25
 
25
26
  __all__ = [
@@ -40,66 +41,76 @@ class MLOptimizer:
40
41
  SNES and CEM algorithms do not accept bounds, the given bounds will be used as an initial starting point.
41
42
 
42
43
  Example:
43
- >>> # 1. Get categorical info from preprocessing steps
44
- >>> # e.g., from data_exploration.encode_categorical_features
45
- >>> cat_mappings = {'feature_C': {'A': 0, 'B': 1}, 'feature_D': {'X': 0, 'Y': 1}}
46
- >>> # e.g., from data_exploration.create_transformer_categorical_map
47
- >>> # Assumes feature_C is at index 2 (cardinality 2) and feature_D is at index 3 (cardinality 2)
48
- >>> cat_index_map = {2: 2, 3: 2}
44
+ >>> # 1. Get the final schema from data exploration
45
+ >>> schema = data_exploration.finalize_feature_schema(...)
46
+ >>> # 2. Define bounds for continuous features
47
+ >>> cont_bounds = {'feature_A': (0, 100), 'feature_B': (-10, 10)}
49
48
  >>>
50
- >>> # 2. Initialize the optimizer
49
+ >>> # 3. Initialize the optimizer
51
50
  >>> optimizer = MLOptimizer(
52
51
  ... inference_handler=my_handler,
53
- ... bounds=(lower_bounds, upper_bounds), # Bounds for ALL features
52
+ ... schema=schema,
53
+ ... continuous_bounds_map=cont_bounds,
54
54
  ... task="max",
55
55
  ... algorithm="Genetic",
56
- ... categorical_index_map=cat_index_map,
57
- ... categorical_mappings=cat_mappings,
58
56
  ... )
59
- >>> # 3. Run the optimization
57
+ >>> # 4. Run the optimization
60
58
  >>> best_result = optimizer.run(
61
59
  ... num_generations=100,
62
60
  ... target_name="my_target",
63
- ... feature_names=my_feature_names,
64
61
  ... save_dir="/path/to/results",
65
62
  ... save_format="csv"
66
63
  ... )
67
64
  """
68
65
  def __init__(self,
69
66
  inference_handler: PyTorchInferenceHandler,
70
- bounds: Tuple[List[float], List[float]],
67
+ schema: FeatureSchema,
68
+ continuous_bounds_map: Dict[str, Tuple[float, float]],
71
69
  task: Literal["min", "max"],
72
70
  algorithm: Literal["SNES", "CEM", "Genetic"] = "Genetic",
73
71
  population_size: int = 200,
74
- categorical_index_map: Optional[Dict[int, int]] = None,
75
- categorical_mappings: Optional[Dict[str, Dict[str, int]]] = None,
76
72
  discretize_start_at_zero: bool = True,
77
73
  **searcher_kwargs):
78
74
  """
79
75
  Initializes the optimizer by creating the EvoTorch problem and searcher.
80
76
 
81
77
  Args:
82
- inference_handler (PyTorchInferenceHandler): An initialized inference handler containing the model and weights.
83
- bounds (tuple[list[float], list[float]]): A tuple containing the lower and upper bounds for ALL solution features.
84
- Use the `optimization_tools.create_optimization_bounds()` helper to easily generate this and ensure unbiased categorical bounds.
78
+ inference_handler (PyTorchInferenceHandler):
79
+ An initialized inference handler containing the model.
80
+ schema (FeatureSchema):
81
+ The definitive schema object from data_exploration.
82
+ continuous_bounds_map (Dict[str, Tuple[float, float]]):
83
+ A dictionary mapping the *name* of each **continuous** feature
84
+ to its (min_bound, max_bound) tuple.
85
85
  task (str): The optimization goal, either "min" or "max".
86
86
  algorithm (str): The search algorithm to use ("SNES", "CEM", "Genetic").
87
87
  population_size (int): Population size for CEM and GeneticAlgorithm.
88
- categorical_index_map (Dict[int, int] | None): Used to discretize values after optimization. Maps {column_index: cardinality}.
89
- categorical_mappings (Dict[str, Dict[str, int]] | None): Used to map discrete integer values back to strings (e.g., {0: 'Category_A'}) before saving.
90
88
  discretize_start_at_zero (bool):
91
89
  True if the discrete encoding starts at 0 (e.g., [0, 1, 2]).
92
90
  False if it starts at 1 (e.g., [1, 2, 3]).
93
- **searcher_kwargs: Additional keyword arguments for the selected search algorithm's constructor.
91
+ **searcher_kwargs: Additional keyword arguments for the selected
92
+ search algorithm's constructor.
94
93
  """
95
- # Make a fitness function
94
+ # --- Store schema ---
95
+ self.schema = schema
96
+
97
+ # --- 1. Create bounds from schema ---
98
+ # This is the new, robust way to get bounds
99
+ bounds = create_optimization_bounds(
100
+ schema=schema,
101
+ continuous_bounds_map=continuous_bounds_map,
102
+ start_at_zero=discretize_start_at_zero
103
+ )
104
+
105
+ # --- 2. Make a fitness function ---
96
106
  self.evaluator = FitnessEvaluator(
97
107
  inference_handler=inference_handler,
98
- categorical_index_map=categorical_index_map,
108
+ # Get categorical info from the schema
109
+ categorical_index_map=schema.categorical_index_map,
99
110
  discretize_start_at_zero=discretize_start_at_zero
100
111
  )
101
112
 
102
- # Call the existing factory function to get the problem and searcher factory
113
+ # --- 3. Create the problem and searcher factory ---
103
114
  self.problem, self.searcher_factory = create_pytorch_problem(
104
115
  evaluator=self.evaluator,
105
116
  bounds=bounds,
@@ -108,36 +119,36 @@ class MLOptimizer:
108
119
  population_size=population_size,
109
120
  **searcher_kwargs
110
121
  )
111
- # Store categorical info to pass to the run function
112
- self.categorical_map = categorical_index_map
113
- self.categorical_mappings = categorical_mappings
122
+
123
+ # --- 4. Store other info needed by run() ---
114
124
  self.discretize_start_at_zero = discretize_start_at_zero
115
125
 
116
126
  def run(self,
117
127
  num_generations: int,
118
128
  target_name: str,
119
129
  save_dir: Union[str, Path],
120
- feature_names: Optional[List[str]],
121
130
  save_format: Literal['csv', 'sqlite', 'both'],
122
131
  repetitions: int = 1,
123
132
  verbose: bool = True) -> Optional[dict]:
124
133
  """
125
134
  Runs the evolutionary optimization process using the pre-configured settings.
126
135
 
136
+ The `feature_names` are automatically pulled from the `FeatureSchema`
137
+ provided during initialization.
138
+
127
139
  Args:
128
140
  num_generations (int): The total number of generations for each repetition.
129
141
  target_name (str): Target name used for the CSV filename and/or SQL table.
130
142
  save_dir (str | Path): The directory where result files will be saved.
131
- feature_names (List[str] | None): Names of the solution features for labeling output.
132
- If None, generic names like 'feature_0', 'feature_1', ... , will be created.
133
143
  save_format (Literal['csv', 'sqlite', 'both']): The format for saving results.
134
144
  repetitions (int): The number of independent times to run the optimization.
135
145
  verbose (bool): If True, enables detailed logging.
136
146
 
137
147
  Returns:
138
- Optional[dict]: A dictionary with the best result if repetitions is 1, otherwise None.
148
+ Optional[dict]: A dictionary with the best result if repetitions is 1,
149
+ otherwise None.
139
150
  """
140
- # Call the existing run function with the stored problem, searcher, and categorical info
151
+ # Call the existing run function, passing info from the schema
141
152
  return run_optimization(
142
153
  problem=self.problem,
143
154
  searcher_factory=self.searcher_factory,
@@ -145,11 +156,13 @@ class MLOptimizer:
145
156
  target_name=target_name,
146
157
  save_dir=save_dir,
147
158
  save_format=save_format,
148
- feature_names=feature_names,
159
+ # Get the definitive feature names (as a list) from the schema
160
+ feature_names=list(self.schema.feature_names),
161
+ # Get categorical info from the schema
162
+ categorical_map=self.schema.categorical_index_map,
163
+ categorical_mappings=self.schema.categorical_mappings,
149
164
  repetitions=repetitions,
150
165
  verbose=verbose,
151
- categorical_map=self.categorical_map,
152
- categorical_mappings=self.categorical_mappings,
153
166
  discretize_start_at_zero=self.discretize_start_at_zero
154
167
  )
155
168