dnt 0.2.1__py3-none-any.whl → 0.3.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (315) hide show
  1. dnt/__init__.py +4 -1
  2. dnt/analysis/__init__.py +3 -1
  3. dnt/analysis/count.py +107 -0
  4. dnt/analysis/interaction2.py +518 -0
  5. dnt/analysis/position.py +12 -0
  6. dnt/analysis/stop.py +92 -33
  7. dnt/analysis/stop2.py +289 -0
  8. dnt/analysis/stop3.py +758 -0
  9. dnt/detect/__init__.py +1 -1
  10. dnt/detect/signal/detector.py +326 -0
  11. dnt/detect/timestamp.py +105 -0
  12. dnt/detect/yolov8/detector.py +182 -35
  13. dnt/detect/yolov8/segmentor.py +171 -0
  14. dnt/engine/__init__.py +8 -0
  15. dnt/engine/bbox_interp.py +83 -0
  16. dnt/engine/bbox_iou.py +20 -0
  17. dnt/engine/cluster.py +31 -0
  18. dnt/engine/iob.py +66 -0
  19. dnt/filter/__init__.py +4 -0
  20. dnt/filter/filter.py +450 -21
  21. dnt/label/__init__.py +1 -1
  22. dnt/label/labeler.py +215 -14
  23. dnt/label/labeler2.py +631 -0
  24. dnt/shared/__init__.py +2 -1
  25. dnt/shared/data/coco.names +0 -0
  26. dnt/shared/data/openimages.names +0 -0
  27. dnt/shared/data/voc.names +0 -0
  28. dnt/shared/download.py +12 -0
  29. dnt/shared/synhcro.py +150 -0
  30. dnt/shared/util.py +17 -4
  31. dnt/third_party/fast-reid/__init__.py +1 -0
  32. dnt/third_party/fast-reid/configs/Base-AGW.yml +19 -0
  33. dnt/third_party/fast-reid/configs/Base-MGN.yml +12 -0
  34. dnt/third_party/fast-reid/configs/Base-SBS.yml +63 -0
  35. dnt/third_party/fast-reid/configs/Base-bagtricks.yml +76 -0
  36. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R101-ibn.yml +12 -0
  37. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50-ibn.yml +11 -0
  38. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50.yml +7 -0
  39. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_S50.yml +11 -0
  40. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R101-ibn.yml +12 -0
  41. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50-ibn.yml +11 -0
  42. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50.yml +7 -0
  43. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_S50.yml +11 -0
  44. dnt/third_party/fast-reid/configs/DukeMTMC/mgn_R50-ibn.yml +11 -0
  45. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R101-ibn.yml +12 -0
  46. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50-ibn.yml +11 -0
  47. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50.yml +7 -0
  48. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_S50.yml +11 -0
  49. dnt/third_party/fast-reid/configs/MOT17/AGW_R101-ibn.yml +12 -0
  50. dnt/third_party/fast-reid/configs/MOT17/AGW_R50-ibn.yml +11 -0
  51. dnt/third_party/fast-reid/configs/MOT17/AGW_R50.yml +7 -0
  52. dnt/third_party/fast-reid/configs/MOT17/AGW_S50.yml +11 -0
  53. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R101-ibn.yml +12 -0
  54. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50-ibn.yml +11 -0
  55. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50.yml +7 -0
  56. dnt/third_party/fast-reid/configs/MOT17/bagtricks_S50.yml +11 -0
  57. dnt/third_party/fast-reid/configs/MOT17/mgn_R50-ibn.yml +11 -0
  58. dnt/third_party/fast-reid/configs/MOT17/sbs_R101-ibn.yml +12 -0
  59. dnt/third_party/fast-reid/configs/MOT17/sbs_R50-ibn.yml +11 -0
  60. dnt/third_party/fast-reid/configs/MOT17/sbs_R50.yml +7 -0
  61. dnt/third_party/fast-reid/configs/MOT17/sbs_S50.yml +11 -0
  62. dnt/third_party/fast-reid/configs/MOT20/AGW_R101-ibn.yml +12 -0
  63. dnt/third_party/fast-reid/configs/MOT20/AGW_R50-ibn.yml +11 -0
  64. dnt/third_party/fast-reid/configs/MOT20/AGW_R50.yml +7 -0
  65. dnt/third_party/fast-reid/configs/MOT20/AGW_S50.yml +11 -0
  66. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R101-ibn.yml +12 -0
  67. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50-ibn.yml +11 -0
  68. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50.yml +7 -0
  69. dnt/third_party/fast-reid/configs/MOT20/bagtricks_S50.yml +11 -0
  70. dnt/third_party/fast-reid/configs/MOT20/mgn_R50-ibn.yml +11 -0
  71. dnt/third_party/fast-reid/configs/MOT20/sbs_R101-ibn.yml +12 -0
  72. dnt/third_party/fast-reid/configs/MOT20/sbs_R50-ibn.yml +11 -0
  73. dnt/third_party/fast-reid/configs/MOT20/sbs_R50.yml +7 -0
  74. dnt/third_party/fast-reid/configs/MOT20/sbs_S50.yml +11 -0
  75. dnt/third_party/fast-reid/configs/MSMT17/AGW_R101-ibn.yml +12 -0
  76. dnt/third_party/fast-reid/configs/MSMT17/AGW_R50-ibn.yml +11 -0
  77. dnt/third_party/fast-reid/configs/MSMT17/AGW_R50.yml +7 -0
  78. dnt/third_party/fast-reid/configs/MSMT17/AGW_S50.yml +11 -0
  79. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R101-ibn.yml +13 -0
  80. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50-ibn.yml +12 -0
  81. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50.yml +7 -0
  82. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_S50.yml +12 -0
  83. dnt/third_party/fast-reid/configs/MSMT17/mgn_R50-ibn.yml +11 -0
  84. dnt/third_party/fast-reid/configs/MSMT17/sbs_R101-ibn.yml +12 -0
  85. dnt/third_party/fast-reid/configs/MSMT17/sbs_R50-ibn.yml +11 -0
  86. dnt/third_party/fast-reid/configs/MSMT17/sbs_R50.yml +7 -0
  87. dnt/third_party/fast-reid/configs/MSMT17/sbs_S50.yml +11 -0
  88. dnt/third_party/fast-reid/configs/Market1501/AGW_R101-ibn.yml +12 -0
  89. dnt/third_party/fast-reid/configs/Market1501/AGW_R50-ibn.yml +11 -0
  90. dnt/third_party/fast-reid/configs/Market1501/AGW_R50.yml +7 -0
  91. dnt/third_party/fast-reid/configs/Market1501/AGW_S50.yml +11 -0
  92. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R101-ibn.yml +12 -0
  93. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50-ibn.yml +11 -0
  94. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50.yml +7 -0
  95. dnt/third_party/fast-reid/configs/Market1501/bagtricks_S50.yml +11 -0
  96. dnt/third_party/fast-reid/configs/Market1501/bagtricks_vit.yml +88 -0
  97. dnt/third_party/fast-reid/configs/Market1501/mgn_R50-ibn.yml +11 -0
  98. dnt/third_party/fast-reid/configs/Market1501/sbs_R101-ibn.yml +12 -0
  99. dnt/third_party/fast-reid/configs/Market1501/sbs_R50-ibn.yml +11 -0
  100. dnt/third_party/fast-reid/configs/Market1501/sbs_R50.yml +7 -0
  101. dnt/third_party/fast-reid/configs/Market1501/sbs_S50.yml +11 -0
  102. dnt/third_party/fast-reid/configs/VERIWild/bagtricks_R50-ibn.yml +35 -0
  103. dnt/third_party/fast-reid/configs/VeRi/sbs_R50-ibn.yml +35 -0
  104. dnt/third_party/fast-reid/configs/VehicleID/bagtricks_R50-ibn.yml +36 -0
  105. dnt/third_party/fast-reid/configs/__init__.py +0 -0
  106. dnt/third_party/fast-reid/fast_reid_interfece.py +175 -0
  107. dnt/third_party/fast-reid/fastreid/__init__.py +6 -0
  108. dnt/third_party/fast-reid/fastreid/config/__init__.py +15 -0
  109. dnt/third_party/fast-reid/fastreid/config/config.py +319 -0
  110. dnt/third_party/fast-reid/fastreid/config/defaults.py +329 -0
  111. dnt/third_party/fast-reid/fastreid/data/__init__.py +17 -0
  112. dnt/third_party/fast-reid/fastreid/data/build.py +194 -0
  113. dnt/third_party/fast-reid/fastreid/data/common.py +58 -0
  114. dnt/third_party/fast-reid/fastreid/data/data_utils.py +202 -0
  115. dnt/third_party/fast-reid/fastreid/data/datasets/AirportALERT.py +50 -0
  116. dnt/third_party/fast-reid/fastreid/data/datasets/__init__.py +43 -0
  117. dnt/third_party/fast-reid/fastreid/data/datasets/bases.py +183 -0
  118. dnt/third_party/fast-reid/fastreid/data/datasets/caviara.py +44 -0
  119. dnt/third_party/fast-reid/fastreid/data/datasets/cuhk03.py +274 -0
  120. dnt/third_party/fast-reid/fastreid/data/datasets/cuhk_sysu.py +58 -0
  121. dnt/third_party/fast-reid/fastreid/data/datasets/dukemtmcreid.py +70 -0
  122. dnt/third_party/fast-reid/fastreid/data/datasets/grid.py +44 -0
  123. dnt/third_party/fast-reid/fastreid/data/datasets/iLIDS.py +45 -0
  124. dnt/third_party/fast-reid/fastreid/data/datasets/lpw.py +49 -0
  125. dnt/third_party/fast-reid/fastreid/data/datasets/market1501.py +89 -0
  126. dnt/third_party/fast-reid/fastreid/data/datasets/msmt17.py +114 -0
  127. dnt/third_party/fast-reid/fastreid/data/datasets/pes3d.py +44 -0
  128. dnt/third_party/fast-reid/fastreid/data/datasets/pku.py +44 -0
  129. dnt/third_party/fast-reid/fastreid/data/datasets/prai.py +43 -0
  130. dnt/third_party/fast-reid/fastreid/data/datasets/prid.py +41 -0
  131. dnt/third_party/fast-reid/fastreid/data/datasets/saivt.py +47 -0
  132. dnt/third_party/fast-reid/fastreid/data/datasets/sensereid.py +47 -0
  133. dnt/third_party/fast-reid/fastreid/data/datasets/shinpuhkan.py +48 -0
  134. dnt/third_party/fast-reid/fastreid/data/datasets/sysu_mm.py +47 -0
  135. dnt/third_party/fast-reid/fastreid/data/datasets/thermalworld.py +43 -0
  136. dnt/third_party/fast-reid/fastreid/data/datasets/vehicleid.py +126 -0
  137. dnt/third_party/fast-reid/fastreid/data/datasets/veri.py +69 -0
  138. dnt/third_party/fast-reid/fastreid/data/datasets/veriwild.py +140 -0
  139. dnt/third_party/fast-reid/fastreid/data/datasets/viper.py +45 -0
  140. dnt/third_party/fast-reid/fastreid/data/datasets/wildtracker.py +59 -0
  141. dnt/third_party/fast-reid/fastreid/data/samplers/__init__.py +18 -0
  142. dnt/third_party/fast-reid/fastreid/data/samplers/data_sampler.py +85 -0
  143. dnt/third_party/fast-reid/fastreid/data/samplers/imbalance_sampler.py +67 -0
  144. dnt/third_party/fast-reid/fastreid/data/samplers/triplet_sampler.py +260 -0
  145. dnt/third_party/fast-reid/fastreid/data/transforms/__init__.py +11 -0
  146. dnt/third_party/fast-reid/fastreid/data/transforms/autoaugment.py +806 -0
  147. dnt/third_party/fast-reid/fastreid/data/transforms/build.py +100 -0
  148. dnt/third_party/fast-reid/fastreid/data/transforms/functional.py +180 -0
  149. dnt/third_party/fast-reid/fastreid/data/transforms/transforms.py +161 -0
  150. dnt/third_party/fast-reid/fastreid/engine/__init__.py +15 -0
  151. dnt/third_party/fast-reid/fastreid/engine/defaults.py +490 -0
  152. dnt/third_party/fast-reid/fastreid/engine/hooks.py +534 -0
  153. dnt/third_party/fast-reid/fastreid/engine/launch.py +103 -0
  154. dnt/third_party/fast-reid/fastreid/engine/train_loop.py +357 -0
  155. dnt/third_party/fast-reid/fastreid/evaluation/__init__.py +6 -0
  156. dnt/third_party/fast-reid/fastreid/evaluation/clas_evaluator.py +81 -0
  157. dnt/third_party/fast-reid/fastreid/evaluation/evaluator.py +176 -0
  158. dnt/third_party/fast-reid/fastreid/evaluation/query_expansion.py +46 -0
  159. dnt/third_party/fast-reid/fastreid/evaluation/rank.py +200 -0
  160. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/__init__.py +20 -0
  161. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/setup.py +32 -0
  162. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/test_cython.py +106 -0
  163. dnt/third_party/fast-reid/fastreid/evaluation/reid_evaluation.py +143 -0
  164. dnt/third_party/fast-reid/fastreid/evaluation/rerank.py +73 -0
  165. dnt/third_party/fast-reid/fastreid/evaluation/roc.py +90 -0
  166. dnt/third_party/fast-reid/fastreid/evaluation/testing.py +88 -0
  167. dnt/third_party/fast-reid/fastreid/layers/__init__.py +19 -0
  168. dnt/third_party/fast-reid/fastreid/layers/activation.py +59 -0
  169. dnt/third_party/fast-reid/fastreid/layers/any_softmax.py +80 -0
  170. dnt/third_party/fast-reid/fastreid/layers/batch_norm.py +205 -0
  171. dnt/third_party/fast-reid/fastreid/layers/context_block.py +113 -0
  172. dnt/third_party/fast-reid/fastreid/layers/drop.py +161 -0
  173. dnt/third_party/fast-reid/fastreid/layers/frn.py +199 -0
  174. dnt/third_party/fast-reid/fastreid/layers/gather_layer.py +30 -0
  175. dnt/third_party/fast-reid/fastreid/layers/helpers.py +31 -0
  176. dnt/third_party/fast-reid/fastreid/layers/non_local.py +54 -0
  177. dnt/third_party/fast-reid/fastreid/layers/pooling.py +124 -0
  178. dnt/third_party/fast-reid/fastreid/layers/se_layer.py +25 -0
  179. dnt/third_party/fast-reid/fastreid/layers/splat.py +109 -0
  180. dnt/third_party/fast-reid/fastreid/layers/weight_init.py +122 -0
  181. dnt/third_party/fast-reid/fastreid/modeling/__init__.py +23 -0
  182. dnt/third_party/fast-reid/fastreid/modeling/backbones/__init__.py +18 -0
  183. dnt/third_party/fast-reid/fastreid/modeling/backbones/build.py +27 -0
  184. dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenet.py +195 -0
  185. dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenetv3.py +283 -0
  186. dnt/third_party/fast-reid/fastreid/modeling/backbones/osnet.py +525 -0
  187. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/__init__.py +4 -0
  188. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/config.py +396 -0
  189. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B0_dds_8gpu.yaml +27 -0
  190. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B1_dds_8gpu.yaml +27 -0
  191. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B2_dds_8gpu.yaml +27 -0
  192. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B3_dds_8gpu.yaml +27 -0
  193. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B4_dds_8gpu.yaml +27 -0
  194. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B5_dds_8gpu.yaml +27 -0
  195. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet.py +281 -0
  196. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnet.py +596 -0
  197. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-1.6GF_dds_8gpu.yaml +26 -0
  198. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-12GF_dds_8gpu.yaml +26 -0
  199. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-16GF_dds_8gpu.yaml +26 -0
  200. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-200MF_dds_8gpu.yaml +26 -0
  201. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-3.2GF_dds_8gpu.yaml +26 -0
  202. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-32GF_dds_8gpu.yaml +26 -0
  203. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-4.0GF_dds_8gpu.yaml +26 -0
  204. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-400MF_dds_8gpu.yaml +26 -0
  205. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-6.4GF_dds_8gpu.yaml +26 -0
  206. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-600MF_dds_8gpu.yaml +26 -0
  207. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-8.0GF_dds_8gpu.yaml +26 -0
  208. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-800MF_dds_8gpu.yaml +26 -0
  209. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-1.6GF_dds_8gpu.yaml +27 -0
  210. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-12GF_dds_8gpu.yaml +27 -0
  211. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-16GF_dds_8gpu.yaml +27 -0
  212. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-200MF_dds_8gpu.yaml +26 -0
  213. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-3.2GF_dds_8gpu.yaml +27 -0
  214. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-32GF_dds_8gpu.yaml +27 -0
  215. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-4.0GF_dds_8gpu.yaml +27 -0
  216. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-400MF_dds_8gpu.yaml +27 -0
  217. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-6.4GF_dds_8gpu.yaml +27 -0
  218. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-600MF_dds_8gpu.yaml +27 -0
  219. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-8.0GF_dds_8gpu.yaml +27 -0
  220. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-800MF_dds_8gpu.yaml +27 -0
  221. dnt/third_party/fast-reid/fastreid/modeling/backbones/repvgg.py +309 -0
  222. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnest.py +365 -0
  223. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnet.py +364 -0
  224. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnext.py +335 -0
  225. dnt/third_party/fast-reid/fastreid/modeling/backbones/shufflenet.py +203 -0
  226. dnt/third_party/fast-reid/fastreid/modeling/backbones/vision_transformer.py +399 -0
  227. dnt/third_party/fast-reid/fastreid/modeling/heads/__init__.py +11 -0
  228. dnt/third_party/fast-reid/fastreid/modeling/heads/build.py +25 -0
  229. dnt/third_party/fast-reid/fastreid/modeling/heads/clas_head.py +36 -0
  230. dnt/third_party/fast-reid/fastreid/modeling/heads/embedding_head.py +151 -0
  231. dnt/third_party/fast-reid/fastreid/modeling/losses/__init__.py +12 -0
  232. dnt/third_party/fast-reid/fastreid/modeling/losses/circle_loss.py +71 -0
  233. dnt/third_party/fast-reid/fastreid/modeling/losses/cross_entroy_loss.py +54 -0
  234. dnt/third_party/fast-reid/fastreid/modeling/losses/focal_loss.py +92 -0
  235. dnt/third_party/fast-reid/fastreid/modeling/losses/triplet_loss.py +113 -0
  236. dnt/third_party/fast-reid/fastreid/modeling/losses/utils.py +48 -0
  237. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/__init__.py +14 -0
  238. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/baseline.py +188 -0
  239. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/build.py +26 -0
  240. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/distiller.py +140 -0
  241. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/mgn.py +394 -0
  242. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/moco.py +126 -0
  243. dnt/third_party/fast-reid/fastreid/solver/__init__.py +8 -0
  244. dnt/third_party/fast-reid/fastreid/solver/build.py +348 -0
  245. dnt/third_party/fast-reid/fastreid/solver/lr_scheduler.py +66 -0
  246. dnt/third_party/fast-reid/fastreid/solver/optim/__init__.py +10 -0
  247. dnt/third_party/fast-reid/fastreid/solver/optim/lamb.py +123 -0
  248. dnt/third_party/fast-reid/fastreid/solver/optim/radam.py +149 -0
  249. dnt/third_party/fast-reid/fastreid/solver/optim/swa.py +246 -0
  250. dnt/third_party/fast-reid/fastreid/utils/__init__.py +6 -0
  251. dnt/third_party/fast-reid/fastreid/utils/checkpoint.py +503 -0
  252. dnt/third_party/fast-reid/fastreid/utils/collect_env.py +158 -0
  253. dnt/third_party/fast-reid/fastreid/utils/comm.py +255 -0
  254. dnt/third_party/fast-reid/fastreid/utils/compute_dist.py +200 -0
  255. dnt/third_party/fast-reid/fastreid/utils/env.py +119 -0
  256. dnt/third_party/fast-reid/fastreid/utils/events.py +461 -0
  257. dnt/third_party/fast-reid/fastreid/utils/faiss_utils.py +127 -0
  258. dnt/third_party/fast-reid/fastreid/utils/file_io.py +520 -0
  259. dnt/third_party/fast-reid/fastreid/utils/history_buffer.py +71 -0
  260. dnt/third_party/fast-reid/fastreid/utils/logger.py +211 -0
  261. dnt/third_party/fast-reid/fastreid/utils/params.py +103 -0
  262. dnt/third_party/fast-reid/fastreid/utils/precision_bn.py +94 -0
  263. dnt/third_party/fast-reid/fastreid/utils/registry.py +66 -0
  264. dnt/third_party/fast-reid/fastreid/utils/summary.py +120 -0
  265. dnt/third_party/fast-reid/fastreid/utils/timer.py +68 -0
  266. dnt/third_party/fast-reid/fastreid/utils/visualizer.py +278 -0
  267. dnt/track/__init__.py +3 -1
  268. dnt/track/botsort/__init__.py +4 -0
  269. dnt/track/botsort/bot_tracker/__init__.py +3 -0
  270. dnt/track/botsort/bot_tracker/basetrack.py +60 -0
  271. dnt/track/botsort/bot_tracker/bot_sort.py +473 -0
  272. dnt/track/botsort/bot_tracker/gmc.py +316 -0
  273. dnt/track/botsort/bot_tracker/kalman_filter.py +269 -0
  274. dnt/track/botsort/bot_tracker/matching.py +194 -0
  275. dnt/track/botsort/bot_tracker/mc_bot_sort.py +505 -0
  276. dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/evaluation.py +14 -4
  277. dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/io.py +19 -36
  278. dnt/track/botsort/bot_tracker/tracking_utils/timer.py +37 -0
  279. dnt/track/botsort/inference.py +96 -0
  280. dnt/track/config.py +120 -0
  281. dnt/track/dsort/configs/bagtricks_R50.yml +7 -0
  282. dnt/track/dsort/configs/deep_sort.yaml +0 -0
  283. dnt/track/dsort/configs/fastreid.yaml +1 -1
  284. dnt/track/dsort/deep_sort/deep/checkpoint/ckpt.t7 +0 -0
  285. dnt/track/dsort/deep_sort/deep/feature_extractor.py +87 -8
  286. dnt/track/dsort/deep_sort/deep_sort.py +31 -21
  287. dnt/track/dsort/deep_sort/sort/detection.py +2 -1
  288. dnt/track/dsort/deep_sort/sort/iou_matching.py +0 -2
  289. dnt/track/dsort/deep_sort/sort/linear_assignment.py +0 -3
  290. dnt/track/dsort/deep_sort/sort/nn_matching.py +5 -5
  291. dnt/track/dsort/deep_sort/sort/preprocessing.py +1 -2
  292. dnt/track/dsort/deep_sort/sort/track.py +2 -1
  293. dnt/track/dsort/deep_sort/sort/tracker.py +1 -1
  294. dnt/track/dsort/dsort.py +44 -27
  295. dnt/track/re_class.py +117 -0
  296. dnt/track/sort/sort.py +9 -7
  297. dnt/track/tracker.py +225 -20
  298. dnt-0.3.1.8.dist-info/METADATA +117 -0
  299. dnt-0.3.1.8.dist-info/RECORD +315 -0
  300. {dnt-0.2.1.dist-info → dnt-0.3.1.8.dist-info}/WHEEL +1 -1
  301. dnt/track/dsort/deep_sort/deep/evaluate.py +0 -15
  302. dnt/track/dsort/deep_sort/deep/original_model.py +0 -106
  303. dnt/track/dsort/deep_sort/deep/test.py +0 -77
  304. dnt/track/dsort/deep_sort/deep/train.py +0 -189
  305. dnt/track/dsort/utils/asserts.py +0 -13
  306. dnt/track/dsort/utils/draw.py +0 -36
  307. dnt/track/dsort/utils/json_logger.py +0 -383
  308. dnt/track/dsort/utils/log.py +0 -17
  309. dnt/track/dsort/utils/parser.py +0 -35
  310. dnt/track/dsort/utils/tools.py +0 -39
  311. dnt-0.2.1.dist-info/METADATA +0 -35
  312. dnt-0.2.1.dist-info/RECORD +0 -60
  313. /dnt/{track/dsort/utils → third_party/fast-reid/checkpoint}/__init__.py +0 -0
  314. {dnt-0.2.1.dist-info → dnt-0.3.1.8.dist-info/licenses}/LICENSE +0 -0
  315. {dnt-0.2.1.dist-info → dnt-0.3.1.8.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,188 @@
1
+ # encoding: utf-8
2
+ """
3
+ @author: liaoxingyu
4
+ @contact: sherlockliao01@gmail.com
5
+ """
6
+
7
+ import torch
8
+ from torch import nn
9
+
10
+ from fastreid.config import configurable
11
+ from fastreid.modeling.backbones import build_backbone
12
+ from fastreid.modeling.heads import build_heads
13
+ from fastreid.modeling.losses import *
14
+ from .build import META_ARCH_REGISTRY
15
+
16
+
17
+ @META_ARCH_REGISTRY.register()
18
+ class Baseline(nn.Module):
19
+ """
20
+ Baseline architecture. Any models that contains the following two components:
21
+ 1. Per-image feature extraction (aka backbone)
22
+ 2. Per-image feature aggregation and loss computation
23
+ """
24
+
25
+ @configurable
26
+ def __init__(
27
+ self,
28
+ *,
29
+ backbone,
30
+ heads,
31
+ pixel_mean,
32
+ pixel_std,
33
+ loss_kwargs=None
34
+ ):
35
+ """
36
+ NOTE: this interface is experimental.
37
+
38
+ Args:
39
+ backbone:
40
+ heads:
41
+ pixel_mean:
42
+ pixel_std:
43
+ """
44
+ super().__init__()
45
+ # backbone
46
+ self.backbone = backbone
47
+
48
+ # head
49
+ self.heads = heads
50
+
51
+ self.loss_kwargs = loss_kwargs
52
+
53
+ self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(1, -1, 1, 1), False)
54
+ self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(1, -1, 1, 1), False)
55
+
56
+ @classmethod
57
+ def from_config(cls, cfg):
58
+ backbone = build_backbone(cfg)
59
+ heads = build_heads(cfg)
60
+ return {
61
+ 'backbone': backbone,
62
+ 'heads': heads,
63
+ 'pixel_mean': cfg.MODEL.PIXEL_MEAN,
64
+ 'pixel_std': cfg.MODEL.PIXEL_STD,
65
+ 'loss_kwargs':
66
+ {
67
+ # loss name
68
+ 'loss_names': cfg.MODEL.LOSSES.NAME,
69
+
70
+ # loss hyperparameters
71
+ 'ce': {
72
+ 'eps': cfg.MODEL.LOSSES.CE.EPSILON,
73
+ 'alpha': cfg.MODEL.LOSSES.CE.ALPHA,
74
+ 'scale': cfg.MODEL.LOSSES.CE.SCALE
75
+ },
76
+ 'tri': {
77
+ 'margin': cfg.MODEL.LOSSES.TRI.MARGIN,
78
+ 'norm_feat': cfg.MODEL.LOSSES.TRI.NORM_FEAT,
79
+ 'hard_mining': cfg.MODEL.LOSSES.TRI.HARD_MINING,
80
+ 'scale': cfg.MODEL.LOSSES.TRI.SCALE
81
+ },
82
+ 'circle': {
83
+ 'margin': cfg.MODEL.LOSSES.CIRCLE.MARGIN,
84
+ 'gamma': cfg.MODEL.LOSSES.CIRCLE.GAMMA,
85
+ 'scale': cfg.MODEL.LOSSES.CIRCLE.SCALE
86
+ },
87
+ 'cosface': {
88
+ 'margin': cfg.MODEL.LOSSES.COSFACE.MARGIN,
89
+ 'gamma': cfg.MODEL.LOSSES.COSFACE.GAMMA,
90
+ 'scale': cfg.MODEL.LOSSES.COSFACE.SCALE
91
+ }
92
+ }
93
+ }
94
+
95
+ @property
96
+ def device(self):
97
+ return self.pixel_mean.device
98
+
99
+ def forward(self, batched_inputs):
100
+ images = self.preprocess_image(batched_inputs)
101
+ features = self.backbone(images)
102
+
103
+ if self.training:
104
+ assert "targets" in batched_inputs, "Person ID annotation are missing in training!"
105
+ targets = batched_inputs["targets"]
106
+
107
+ # PreciseBN flag, When do preciseBN on different dataset, the number of classes in new dataset
108
+ # may be larger than that in the original dataset, so the circle/arcface will
109
+ # throw an error. We just set all the targets to 0 to avoid this problem.
110
+ if targets.sum() < 0: targets.zero_()
111
+
112
+ outputs = self.heads(features, targets)
113
+ losses = self.losses(outputs, targets)
114
+ return losses
115
+ else:
116
+ outputs = self.heads(features)
117
+ return outputs
118
+
119
+ def preprocess_image(self, batched_inputs):
120
+ """
121
+ Normalize and batch the input images.
122
+ """
123
+ if isinstance(batched_inputs, dict):
124
+ images = batched_inputs['images']
125
+ elif isinstance(batched_inputs, torch.Tensor):
126
+ images = batched_inputs
127
+ else:
128
+ raise TypeError("batched_inputs must be dict or torch.Tensor, but get {}".format(type(batched_inputs)))
129
+
130
+ images.sub_(self.pixel_mean).div_(self.pixel_std)
131
+ return images
132
+
133
+ def losses(self, outputs, gt_labels):
134
+ """
135
+ Compute loss from modeling's outputs, the loss function input arguments
136
+ must be the same as the outputs of the model forwarding.
137
+ """
138
+ # model predictions
139
+ # fmt: off
140
+ pred_class_logits = outputs['pred_class_logits'].detach()
141
+ cls_outputs = outputs['cls_outputs']
142
+ pred_features = outputs['features']
143
+ # fmt: on
144
+
145
+ # Log prediction accuracy
146
+ log_accuracy(pred_class_logits, gt_labels)
147
+
148
+ loss_dict = {}
149
+ loss_names = self.loss_kwargs['loss_names']
150
+
151
+ if 'CrossEntropyLoss' in loss_names:
152
+ ce_kwargs = self.loss_kwargs.get('ce')
153
+ loss_dict['loss_cls'] = cross_entropy_loss(
154
+ cls_outputs,
155
+ gt_labels,
156
+ ce_kwargs.get('eps'),
157
+ ce_kwargs.get('alpha')
158
+ ) * ce_kwargs.get('scale')
159
+
160
+ if 'TripletLoss' in loss_names:
161
+ tri_kwargs = self.loss_kwargs.get('tri')
162
+ loss_dict['loss_triplet'] = triplet_loss(
163
+ pred_features,
164
+ gt_labels,
165
+ tri_kwargs.get('margin'),
166
+ tri_kwargs.get('norm_feat'),
167
+ tri_kwargs.get('hard_mining')
168
+ ) * tri_kwargs.get('scale')
169
+
170
+ if 'CircleLoss' in loss_names:
171
+ circle_kwargs = self.loss_kwargs.get('circle')
172
+ loss_dict['loss_circle'] = pairwise_circleloss(
173
+ pred_features,
174
+ gt_labels,
175
+ circle_kwargs.get('margin'),
176
+ circle_kwargs.get('gamma')
177
+ ) * circle_kwargs.get('scale')
178
+
179
+ if 'Cosface' in loss_names:
180
+ cosface_kwargs = self.loss_kwargs.get('cosface')
181
+ loss_dict['loss_cosface'] = pairwise_cosface(
182
+ pred_features,
183
+ gt_labels,
184
+ cosface_kwargs.get('margin'),
185
+ cosface_kwargs.get('gamma'),
186
+ ) * cosface_kwargs.get('scale')
187
+
188
+ return loss_dict
@@ -0,0 +1,26 @@
1
+ # encoding: utf-8
2
+ """
3
+ @author: liaoxingyu
4
+ @contact: sherlockliao01@gmail.com
5
+ """
6
+ import torch
7
+
8
+ from fastreid.utils.registry import Registry
9
+
10
+ META_ARCH_REGISTRY = Registry("META_ARCH") # noqa F401 isort:skip
11
+ META_ARCH_REGISTRY.__doc__ = """
12
+ Registry for meta-architectures, i.e. the whole model.
13
+ The registered object will be called with `obj(cfg)`
14
+ and expected to return a `nn.Module` object.
15
+ """
16
+
17
+
18
+ def build_model(cfg):
19
+ """
20
+ Build the whole model architecture, defined by ``cfg.MODEL.META_ARCHITECTURE``.
21
+ Note that it does not load any weights from ``cfg``.
22
+ """
23
+ meta_arch = cfg.MODEL.META_ARCHITECTURE
24
+ model = META_ARCH_REGISTRY.get(meta_arch)(cfg)
25
+ model.to(torch.device(cfg.MODEL.DEVICE))
26
+ return model
@@ -0,0 +1,140 @@
1
+ # encoding: utf-8
2
+ """
3
+ @author: l1aoxingyu
4
+ @contact: sherlockliao01@gmail.com
5
+ """
6
+
7
+ import logging
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+
12
+ from fastreid.config import get_cfg
13
+ from fastreid.modeling.meta_arch import META_ARCH_REGISTRY, build_model, Baseline
14
+ from fastreid.utils.checkpoint import Checkpointer
15
+
16
+ logger = logging.getLogger(__name__)
17
+
18
+
19
+ @META_ARCH_REGISTRY.register()
20
+ class Distiller(Baseline):
21
+ def __init__(self, cfg):
22
+ super().__init__(cfg)
23
+
24
+ # Get teacher model config
25
+ model_ts = []
26
+ for i in range(len(cfg.KD.MODEL_CONFIG)):
27
+ cfg_t = get_cfg()
28
+ cfg_t.merge_from_file(cfg.KD.MODEL_CONFIG[i])
29
+ cfg_t.defrost()
30
+ cfg_t.MODEL.META_ARCHITECTURE = "Baseline"
31
+ # Change syncBN to BN due to no DDP wrapper
32
+ if cfg_t.MODEL.BACKBONE.NORM == "syncBN":
33
+ cfg_t.MODEL.BACKBONE.NORM = "BN"
34
+ if cfg_t.MODEL.HEADS.NORM == "syncBN":
35
+ cfg_t.MODEL.HEADS.NORM = "BN"
36
+
37
+ model_t = build_model(cfg_t)
38
+
39
+ # No gradients for teacher model
40
+ for param in model_t.parameters():
41
+ param.requires_grad_(False)
42
+
43
+ logger.info("Loading teacher model weights ...")
44
+ Checkpointer(model_t).load(cfg.KD.MODEL_WEIGHTS[i])
45
+
46
+ model_ts.append(model_t)
47
+
48
+ self.ema_enabled = cfg.KD.EMA.ENABLED
49
+ self.ema_momentum = cfg.KD.EMA.MOMENTUM
50
+ if self.ema_enabled:
51
+ cfg_self = cfg.clone()
52
+ cfg_self.defrost()
53
+ cfg_self.MODEL.META_ARCHITECTURE = "Baseline"
54
+ if cfg_self.MODEL.BACKBONE.NORM == "syncBN":
55
+ cfg_self.MODEL.BACKBONE.NORM = "BN"
56
+ if cfg_self.MODEL.HEADS.NORM == "syncBN":
57
+ cfg_self.MODEL.HEADS.NORM = "BN"
58
+ model_self = build_model(cfg_self)
59
+ # No gradients for self model
60
+ for param in model_self.parameters():
61
+ param.requires_grad_(False)
62
+
63
+ if cfg_self.MODEL.WEIGHTS != '':
64
+ logger.info("Loading self distillation model weights ...")
65
+ Checkpointer(model_self).load(cfg_self.MODEL.WEIGHTS)
66
+ else:
67
+ # Make sure the initial state is same
68
+ for param_q, param_k in zip(self.parameters(), model_self.parameters()):
69
+ param_k.data.copy_(param_q.data)
70
+
71
+ model_ts.insert(0, model_self)
72
+
73
+ # Not register teacher model as `nn.Module`, this is
74
+ # make sure teacher model weights not saved
75
+ self.model_ts = model_ts
76
+
77
+ @torch.no_grad()
78
+ def _momentum_update_key_encoder(self, m=0.999):
79
+ """
80
+ Momentum update of the key encoder
81
+ """
82
+ for param_q, param_k in zip(self.parameters(), self.model_ts[0].parameters()):
83
+ param_k.data = param_k.data * m + param_q.data * (1. - m)
84
+
85
+ def forward(self, batched_inputs):
86
+ if self.training:
87
+ images = self.preprocess_image(batched_inputs)
88
+ # student model forward
89
+ s_feat = self.backbone(images)
90
+ assert "targets" in batched_inputs, "Labels are missing in training!"
91
+ targets = batched_inputs["targets"].to(self.device)
92
+
93
+ if targets.sum() < 0: targets.zero_()
94
+
95
+ s_outputs = self.heads(s_feat, targets)
96
+
97
+ t_outputs = []
98
+ # teacher model forward
99
+ with torch.no_grad():
100
+ if self.ema_enabled:
101
+ self._momentum_update_key_encoder(self.ema_momentum) # update self distill model
102
+ for model_t in self.model_ts:
103
+ t_feat = model_t.backbone(images)
104
+ t_output = model_t.heads(t_feat, targets)
105
+ t_outputs.append(t_output)
106
+
107
+ losses = self.losses(s_outputs, t_outputs, targets)
108
+ return losses
109
+
110
+ # Eval mode, just conventional reid feature extraction
111
+ else:
112
+ return super().forward(batched_inputs)
113
+
114
+ def losses(self, s_outputs, t_outputs, gt_labels):
115
+ """
116
+ Compute loss from modeling's outputs, the loss function input arguments
117
+ must be the same as the outputs of the model forwarding.
118
+ """
119
+ loss_dict = super().losses(s_outputs, gt_labels)
120
+
121
+ s_logits = s_outputs['pred_class_logits']
122
+ loss_jsdiv = 0.
123
+ for t_output in t_outputs:
124
+ t_logits = t_output['pred_class_logits'].detach()
125
+ loss_jsdiv += self.jsdiv_loss(s_logits, t_logits)
126
+
127
+ loss_dict["loss_jsdiv"] = loss_jsdiv / len(t_outputs)
128
+
129
+ return loss_dict
130
+
131
+ @staticmethod
132
+ def _kldiv(y_s, y_t, t):
133
+ p_s = F.log_softmax(y_s / t, dim=1)
134
+ p_t = F.softmax(y_t / t, dim=1)
135
+ loss = F.kl_div(p_s, p_t, reduction="sum") * (t ** 2) / y_s.shape[0]
136
+ return loss
137
+
138
+ def jsdiv_loss(self, y_s, y_t, t=16):
139
+ loss = (self._kldiv(y_s, y_t, t) + self._kldiv(y_t, y_s, t)) / 2
140
+ return loss