dl-backtrace 0.0.12__py3-none-any.whl → 0.0.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dl-backtrace might be problematic. Click here for more details.
- dl_backtrace/pytorch_backtrace/backtrace/backtrace.py +173 -44
- dl_backtrace/pytorch_backtrace/backtrace/utils/__init__.py +3 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/encoder.py +183 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/encoder_decoder.py +489 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/helper.py +95 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/prop.py +481 -0
- dl_backtrace/tf_backtrace/backtrace/__init__.py +1 -2
- dl_backtrace/tf_backtrace/backtrace/activation_info.py +33 -0
- dl_backtrace/tf_backtrace/backtrace/backtrace.py +506 -279
- dl_backtrace/tf_backtrace/backtrace/models.py +25 -0
- dl_backtrace/tf_backtrace/backtrace/server.py +27 -0
- dl_backtrace/tf_backtrace/backtrace/utils/__init__.py +5 -2
- dl_backtrace/tf_backtrace/backtrace/utils/encoder.py +206 -0
- dl_backtrace/tf_backtrace/backtrace/utils/encoder_decoder.py +501 -0
- dl_backtrace/tf_backtrace/backtrace/utils/helper.py +99 -0
- dl_backtrace/tf_backtrace/backtrace/utils/utils_contrast.py +1132 -0
- dl_backtrace/tf_backtrace/backtrace/utils/utils_prop.py +1582 -0
- dl_backtrace/version.py +2 -2
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/METADATA +3 -2
- dl_backtrace-0.0.16.dist-info/RECORD +29 -0
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/WHEEL +1 -1
- dl_backtrace/tf_backtrace/backtrace/config.py +0 -41
- dl_backtrace/tf_backtrace/backtrace/utils/contrast.py +0 -834
- dl_backtrace/tf_backtrace/backtrace/utils/prop.py +0 -725
- dl_backtrace-0.0.12.dist-info/RECORD +0 -21
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/LICENSE +0 -0
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1582 @@
|
|
|
1
|
+
import gc
|
|
2
|
+
import numpy as np # type: ignore
|
|
3
|
+
import tensorflow as tf # type: ignore
|
|
4
|
+
from tensorflow import keras
|
|
5
|
+
from tensorflow.keras import backend as K # type: ignore
|
|
6
|
+
from tensorflow.keras.backend import sigmoid # type: ignore
|
|
7
|
+
from numpy.lib.stride_tricks import as_strided # type: ignore
|
|
8
|
+
|
|
9
|
+
def np_swish(x, beta=0.75):
|
|
10
|
+
z = 1 / (1 + np.exp(-(beta * x)))
|
|
11
|
+
return x * z
|
|
12
|
+
|
|
13
|
+
def np_wave(x, alpha=1.0):
|
|
14
|
+
return (alpha * x * np.exp(1.0)) / (np.exp(-x) + np.exp(x))
|
|
15
|
+
|
|
16
|
+
def np_pulse(x, alpha=1.0):
|
|
17
|
+
return alpha * (1 - np.tanh(x) * np.tanh(x))
|
|
18
|
+
|
|
19
|
+
def np_absolute(x, alpha=1.0):
|
|
20
|
+
return alpha * x * np.tanh(x)
|
|
21
|
+
|
|
22
|
+
def np_hard_sigmoid(x):
|
|
23
|
+
return np.clip(0.2 * x + 0.5, 0, 1)
|
|
24
|
+
|
|
25
|
+
def np_sigmoid(x):
|
|
26
|
+
z = 1 / (1 + np.exp(-x))
|
|
27
|
+
return z
|
|
28
|
+
|
|
29
|
+
def np_tanh(x):
|
|
30
|
+
z = np.tanh(x)
|
|
31
|
+
return z.astype(np.float32)
|
|
32
|
+
|
|
33
|
+
class LSTM_forward(object):
|
|
34
|
+
def __init__(
|
|
35
|
+
self, num_cells, units, weights, return_sequence=False, go_backwards=False
|
|
36
|
+
):
|
|
37
|
+
self.num_cells = num_cells
|
|
38
|
+
self.units = units
|
|
39
|
+
self.kernel = weights[0]
|
|
40
|
+
self.recurrent_kernel = weights[1]
|
|
41
|
+
self.bias = weights[2]
|
|
42
|
+
self.return_sequence = return_sequence
|
|
43
|
+
self.go_backwards = go_backwards
|
|
44
|
+
self.recurrent_activation = tf.math.sigmoid
|
|
45
|
+
self.activation = tf.math.tanh
|
|
46
|
+
|
|
47
|
+
self.compute_log = {}
|
|
48
|
+
for i in range(self.num_cells):
|
|
49
|
+
self.compute_log[i] = {}
|
|
50
|
+
self.compute_log[i]["inp"] = None
|
|
51
|
+
self.compute_log[i]["x"] = None
|
|
52
|
+
self.compute_log[i]["hstate"] = [None, None]
|
|
53
|
+
self.compute_log[i]["cstate"] = [None, None]
|
|
54
|
+
self.compute_log[i]["int_arrays"] = {}
|
|
55
|
+
|
|
56
|
+
def compute_carry_and_output(self, x, h_tm1, c_tm1, cell_num):
|
|
57
|
+
"""Computes carry and output using split kernels."""
|
|
58
|
+
x_i, x_f, x_c, x_o = x
|
|
59
|
+
h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = h_tm1
|
|
60
|
+
i = self.recurrent_activation(
|
|
61
|
+
x_i + K.dot(h_tm1_i, self.recurrent_kernel[:, : self.units])
|
|
62
|
+
)
|
|
63
|
+
f = self.recurrent_activation(
|
|
64
|
+
x_f + K.dot(h_tm1_f, self.recurrent_kernel[:, self.units : self.units * 2])
|
|
65
|
+
)
|
|
66
|
+
c = f * c_tm1 + i * self.activation(
|
|
67
|
+
x_c
|
|
68
|
+
+ K.dot(h_tm1_c, self.recurrent_kernel[:, self.units * 2 : self.units * 3])
|
|
69
|
+
)
|
|
70
|
+
o = self.recurrent_activation(
|
|
71
|
+
x_o + K.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3 :])
|
|
72
|
+
)
|
|
73
|
+
self.compute_log[cell_num]["int_arrays"]["i"] = i
|
|
74
|
+
self.compute_log[cell_num]["int_arrays"]["f"] = f
|
|
75
|
+
self.compute_log[cell_num]["int_arrays"]["c"] = c
|
|
76
|
+
self.compute_log[cell_num]["int_arrays"]["o"] = o
|
|
77
|
+
return c, o
|
|
78
|
+
|
|
79
|
+
def calculate_lstm_cell_wt(self, inputs, states, cell_num, training=None):
|
|
80
|
+
h_tm1 = states[0] # previous memory state
|
|
81
|
+
c_tm1 = states[1] # previous carry state
|
|
82
|
+
self.compute_log[cell_num]["inp"] = inputs
|
|
83
|
+
self.compute_log[cell_num]["hstate"][0] = h_tm1
|
|
84
|
+
self.compute_log[cell_num]["cstate"][0] = c_tm1
|
|
85
|
+
inputs_i = inputs
|
|
86
|
+
inputs_f = inputs
|
|
87
|
+
inputs_c = inputs
|
|
88
|
+
inputs_o = inputs
|
|
89
|
+
k_i, k_f, k_c, k_o = tf.split(self.kernel, num_or_size_splits=4, axis=1)
|
|
90
|
+
x_i = K.dot(inputs_i, k_i)
|
|
91
|
+
x_f = K.dot(inputs_f, k_f)
|
|
92
|
+
x_c = K.dot(inputs_c, k_c)
|
|
93
|
+
x_o = K.dot(inputs_o, k_o)
|
|
94
|
+
b_i, b_f, b_c, b_o = tf.split(self.bias, num_or_size_splits=4, axis=0)
|
|
95
|
+
x_i = tf.add(x_i, b_i)
|
|
96
|
+
x_f = tf.add(x_f, b_f)
|
|
97
|
+
x_c = tf.add(x_c, b_c)
|
|
98
|
+
x_o = tf.add(x_o, b_o)
|
|
99
|
+
|
|
100
|
+
h_tm1_i = h_tm1
|
|
101
|
+
h_tm1_f = h_tm1
|
|
102
|
+
h_tm1_c = h_tm1
|
|
103
|
+
h_tm1_o = h_tm1
|
|
104
|
+
x = (x_i, x_f, x_c, x_o)
|
|
105
|
+
h_tm1 = (h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o)
|
|
106
|
+
c, o = self.compute_carry_and_output(x, h_tm1, c_tm1, cell_num)
|
|
107
|
+
h = o * self.activation(c)
|
|
108
|
+
self.compute_log[cell_num]["x"] = x
|
|
109
|
+
self.compute_log[cell_num]["hstate"][1] = h
|
|
110
|
+
self.compute_log[cell_num]["cstate"][1] = c
|
|
111
|
+
return h, [h, c]
|
|
112
|
+
|
|
113
|
+
def calculate_lstm_wt(self, input_data):
|
|
114
|
+
hstate = tf.convert_to_tensor(np.zeros((1, self.units)), dtype=tf.float32)
|
|
115
|
+
cstate = tf.convert_to_tensor(np.zeros((1, self.units)), dtype=tf.float32)
|
|
116
|
+
output = []
|
|
117
|
+
for ind in range(input_data.shape[0]):
|
|
118
|
+
inp = tf.convert_to_tensor(
|
|
119
|
+
input_data[ind, :].reshape((1, input_data.shape[1])), dtype=tf.float32
|
|
120
|
+
)
|
|
121
|
+
h, s = self.calculate_lstm_cell_wt(inp, [hstate, cstate], ind)
|
|
122
|
+
hstate = s[0]
|
|
123
|
+
cstate = s[1]
|
|
124
|
+
output.append(h)
|
|
125
|
+
return output
|
|
126
|
+
|
|
127
|
+
class LSTM_backtrace(object):
|
|
128
|
+
def __init__(
|
|
129
|
+
self, num_cells, units, weights, return_sequence=False, go_backwards=False
|
|
130
|
+
):
|
|
131
|
+
self.num_cells = num_cells
|
|
132
|
+
self.units = units
|
|
133
|
+
self.kernel = weights[0]
|
|
134
|
+
self.recurrent_kernel = weights[1]
|
|
135
|
+
self.bias = weights[2]
|
|
136
|
+
self.return_sequence = return_sequence
|
|
137
|
+
self.go_backwards = go_backwards
|
|
138
|
+
self.recurrent_activation = np_sigmoid
|
|
139
|
+
self.activation = np_tanh
|
|
140
|
+
|
|
141
|
+
self.compute_log = {}
|
|
142
|
+
|
|
143
|
+
def calculate_wt_fc(self, wts, inp, w, b, act):
|
|
144
|
+
mul_mat = np.einsum("ij,i->ij", w, inp).T
|
|
145
|
+
wt_mat = np.zeros(mul_mat.shape)
|
|
146
|
+
for i in range(mul_mat.shape[0]):
|
|
147
|
+
l1_ind1 = mul_mat[i]
|
|
148
|
+
wt_ind1 = wt_mat[i]
|
|
149
|
+
wt = wts[i]
|
|
150
|
+
p_ind = l1_ind1 > 0
|
|
151
|
+
n_ind = l1_ind1 < 0
|
|
152
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
153
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
154
|
+
if len(b) > 0:
|
|
155
|
+
if b[i] > 0:
|
|
156
|
+
pbias = b[i]
|
|
157
|
+
nbias = 0
|
|
158
|
+
else:
|
|
159
|
+
pbias = 0
|
|
160
|
+
nbias = b[i] * -1
|
|
161
|
+
else:
|
|
162
|
+
pbias = 0
|
|
163
|
+
nbias = 0
|
|
164
|
+
t_sum = p_sum + pbias - n_sum - nbias
|
|
165
|
+
if act["type"] == "mono":
|
|
166
|
+
if act["range"]["l"]:
|
|
167
|
+
if t_sum < act["range"]["l"]:
|
|
168
|
+
p_sum = 0
|
|
169
|
+
if act["range"]["u"]:
|
|
170
|
+
if t_sum > act["range"]["u"]:
|
|
171
|
+
n_sum = 0
|
|
172
|
+
elif act["type"] == "non_mono":
|
|
173
|
+
t_act = act["func"](t_sum)
|
|
174
|
+
p_act = act["func"](p_sum + pbias)
|
|
175
|
+
n_act = act["func"](-1 * (n_sum + nbias))
|
|
176
|
+
if act["range"]["l"]:
|
|
177
|
+
if t_sum < act["range"]["l"]:
|
|
178
|
+
p_sum = 0
|
|
179
|
+
if act["range"]["u"]:
|
|
180
|
+
if t_sum > act["range"]["u"]:
|
|
181
|
+
n_sum = 0
|
|
182
|
+
if p_sum > 0 and n_sum > 0:
|
|
183
|
+
if t_act == p_act:
|
|
184
|
+
n_sum = 0
|
|
185
|
+
elif t_act == n_act:
|
|
186
|
+
p_sum = 0
|
|
187
|
+
if p_sum > 0:
|
|
188
|
+
p_agg_wt = (p_sum + pbias) / (p_sum + n_sum + pbias + nbias)
|
|
189
|
+
p_agg_wt = p_agg_wt * (p_sum / (p_sum + pbias))
|
|
190
|
+
else:
|
|
191
|
+
p_agg_wt = 0
|
|
192
|
+
if n_sum > 0:
|
|
193
|
+
n_agg_wt = (n_sum + nbias) / (p_sum + n_sum + pbias + nbias)
|
|
194
|
+
n_agg_wt = n_agg_wt * (n_sum / (n_sum + nbias))
|
|
195
|
+
else:
|
|
196
|
+
n_agg_wt = 0
|
|
197
|
+
if p_sum == 0:
|
|
198
|
+
p_sum = 1
|
|
199
|
+
if n_sum == 0:
|
|
200
|
+
n_sum = 1
|
|
201
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
202
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
203
|
+
wt_mat = wt_mat.sum(axis=0)
|
|
204
|
+
return wt_mat
|
|
205
|
+
|
|
206
|
+
def calculate_wt_add(self, wts, inp=None):
|
|
207
|
+
wt_mat = []
|
|
208
|
+
inp_list = []
|
|
209
|
+
for x in inp:
|
|
210
|
+
wt_mat.append(np.zeros_like(x))
|
|
211
|
+
wt_mat = np.array(wt_mat)
|
|
212
|
+
inp_list = np.array(inp)
|
|
213
|
+
for i in range(wt_mat.shape[1]):
|
|
214
|
+
wt_ind1 = wt_mat[:, i]
|
|
215
|
+
wt = wts[i]
|
|
216
|
+
l1_ind1 = inp_list[:, i]
|
|
217
|
+
p_ind = l1_ind1 > 0
|
|
218
|
+
n_ind = l1_ind1 < 0
|
|
219
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
220
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
221
|
+
t_sum = p_sum - n_sum
|
|
222
|
+
p_agg_wt = 0
|
|
223
|
+
n_agg_wt = 0
|
|
224
|
+
if p_sum + n_sum > 0:
|
|
225
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
226
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
227
|
+
if p_sum == 0:
|
|
228
|
+
p_sum = 1
|
|
229
|
+
if n_sum == 0:
|
|
230
|
+
n_sum = 1
|
|
231
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
232
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
233
|
+
wt_mat[:, i] = wt_ind1
|
|
234
|
+
wt_mat = [i.reshape(wts.shape) for i in list(wt_mat)]
|
|
235
|
+
return wt_mat
|
|
236
|
+
|
|
237
|
+
def calculate_wt_multiply(self, wts, inp=None):
|
|
238
|
+
wt_mat = []
|
|
239
|
+
inp_list = []
|
|
240
|
+
for x in inp:
|
|
241
|
+
wt_mat.append(np.zeros_like(x))
|
|
242
|
+
wt_mat = np.array(wt_mat)
|
|
243
|
+
inp_list = np.array(inp)
|
|
244
|
+
inp_prod = inp[0] * inp[1]
|
|
245
|
+
inp_diff1 = np.abs(inp_prod - inp[0])
|
|
246
|
+
inp_diff2 = np.abs(inp_prod - inp[1])
|
|
247
|
+
inp_diff_sum = inp_diff1 + inp_diff2
|
|
248
|
+
inp_wt1 = (inp_diff1 / inp_diff_sum) * wts
|
|
249
|
+
inp_wt2 = (inp_diff2 / inp_diff_sum) * wts
|
|
250
|
+
return [inp_wt1, inp_wt2]
|
|
251
|
+
|
|
252
|
+
def compute_carry_and_output(self, wt_o, wt_c, h_tm1, c_tm1, x, cell_num):
|
|
253
|
+
"""Computes carry and output using split kernels."""
|
|
254
|
+
h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = (h_tm1, h_tm1, h_tm1, h_tm1)
|
|
255
|
+
x_i, x_f, x_c, x_o = x
|
|
256
|
+
f = self.compute_log[cell_num]["int_arrays"]["f"].numpy()[0]
|
|
257
|
+
i = self.compute_log[cell_num]["int_arrays"]["i"].numpy()[0]
|
|
258
|
+
# o = self.recurrent_activation(
|
|
259
|
+
# x_o + np.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:])).astype(np.float32)
|
|
260
|
+
temp1 = np.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3 :]).astype(
|
|
261
|
+
np.float32
|
|
262
|
+
)
|
|
263
|
+
wt_x_o, wt_temp1 = self.calculate_wt_add(wt_o, [x_o, temp1])
|
|
264
|
+
wt_h_tm1_o = self.calculate_wt_fc(
|
|
265
|
+
wt_temp1,
|
|
266
|
+
h_tm1_o,
|
|
267
|
+
self.recurrent_kernel[:, self.units * 3 :],
|
|
268
|
+
[],
|
|
269
|
+
{"type": None},
|
|
270
|
+
)
|
|
271
|
+
|
|
272
|
+
# c = f * c_tm1 + i * self.activation(x_c + np.dot(
|
|
273
|
+
# h_tm1_c, self.recurrent_kernel[:, self.units * 2:self.units * 3])).astype(np.float32)
|
|
274
|
+
temp2 = f * c_tm1
|
|
275
|
+
temp3_1 = np.dot(
|
|
276
|
+
h_tm1_c, self.recurrent_kernel[:, self.units * 2 : self.units * 3]
|
|
277
|
+
)
|
|
278
|
+
temp3_2 = self.activation(x_c + temp3_1)
|
|
279
|
+
temp3_3 = i * temp3_2
|
|
280
|
+
wt_temp2, wt_temp3_3 = self.calculate_wt_add(wt_c, [temp2, temp3_3])
|
|
281
|
+
wt_f, wt_c_tm1 = self.calculate_wt_multiply(wt_temp2, [f, c_tm1])
|
|
282
|
+
wt_i, wt_temp3_2 = self.calculate_wt_multiply(wt_temp3_3, [i, temp3_2])
|
|
283
|
+
wt_x_c, wt_temp3_1 = self.calculate_wt_add(wt_temp3_2, [x_c, temp3_1])
|
|
284
|
+
wt_h_tm1_c = self.calculate_wt_fc(
|
|
285
|
+
wt_temp3_1,
|
|
286
|
+
h_tm1_c,
|
|
287
|
+
self.recurrent_kernel[:, self.units * 2 : self.units * 3],
|
|
288
|
+
[],
|
|
289
|
+
{"type": None},
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
# f = self.recurrent_activation(x_f + np.dot(
|
|
293
|
+
# h_tm1_f, self.recurrent_kernel[:, self.units:self.units * 2])).astype(np.float32)
|
|
294
|
+
temp4 = np.dot(h_tm1_f, self.recurrent_kernel[:, self.units : self.units * 2])
|
|
295
|
+
wt_x_f, wt_temp4 = self.calculate_wt_add(wt_f, [x_f, temp4])
|
|
296
|
+
wt_h_tm1_f = self.calculate_wt_fc(
|
|
297
|
+
wt_temp4,
|
|
298
|
+
h_tm1_f,
|
|
299
|
+
self.recurrent_kernel[:, self.units : self.units * 2],
|
|
300
|
+
[],
|
|
301
|
+
{"type": None},
|
|
302
|
+
)
|
|
303
|
+
|
|
304
|
+
# i = self.recurrent_activation(
|
|
305
|
+
# x_i + np.dot(h_tm1_i, self.recurrent_kernel[:, :self.units])).astype(np.float32)
|
|
306
|
+
temp5 = np.dot(h_tm1_i, self.recurrent_kernel[:, : self.units])
|
|
307
|
+
wt_x_i, wt_temp5 = self.calculate_wt_add(wt_i, [x_i, temp5])
|
|
308
|
+
wt_h_tm1_i = self.calculate_wt_fc(
|
|
309
|
+
wt_temp5,
|
|
310
|
+
h_tm1_i,
|
|
311
|
+
self.recurrent_kernel[:, : self.units],
|
|
312
|
+
[],
|
|
313
|
+
{"type": None},
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
return (
|
|
317
|
+
wt_x_i,
|
|
318
|
+
wt_x_f,
|
|
319
|
+
wt_x_c,
|
|
320
|
+
wt_x_o,
|
|
321
|
+
wt_h_tm1_i,
|
|
322
|
+
wt_h_tm1_f,
|
|
323
|
+
wt_h_tm1_c,
|
|
324
|
+
wt_h_tm1_o,
|
|
325
|
+
wt_c_tm1,
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
def calculate_lstm_cell_wt(self, cell_num, wts_hstate, wts_cstate):
|
|
329
|
+
o = self.compute_log[cell_num]["int_arrays"]["o"].numpy()[0]
|
|
330
|
+
c = self.compute_log[cell_num]["cstate"][1].numpy()[0]
|
|
331
|
+
h_tm1 = self.compute_log[cell_num]["hstate"][0].numpy()[0]
|
|
332
|
+
c_tm1 = self.compute_log[cell_num]["cstate"][0].numpy()[0]
|
|
333
|
+
x = [i.numpy()[0] for i in self.compute_log[cell_num]["x"]]
|
|
334
|
+
wt_o, wt_c = self.calculate_wt_multiply(
|
|
335
|
+
wts_hstate, [o, self.activation(c)]
|
|
336
|
+
) # h = o * self.activation(c)
|
|
337
|
+
wt_c = wt_c + wts_cstate
|
|
338
|
+
(
|
|
339
|
+
wt_x_i,
|
|
340
|
+
wt_x_f,
|
|
341
|
+
wt_x_c,
|
|
342
|
+
wt_x_o,
|
|
343
|
+
wt_h_tm1_i,
|
|
344
|
+
wt_h_tm1_f,
|
|
345
|
+
wt_h_tm1_c,
|
|
346
|
+
wt_h_tm1_o,
|
|
347
|
+
wt_c_tm1,
|
|
348
|
+
) = self.compute_carry_and_output(wt_o, wt_c, h_tm1, c_tm1, x, cell_num)
|
|
349
|
+
wt_h_tm1 = wt_h_tm1_i + wt_h_tm1_f + wt_h_tm1_c + wt_h_tm1_o
|
|
350
|
+
inputs = self.compute_log[cell_num]["inp"].numpy()[0]
|
|
351
|
+
k_i, k_f, k_c, k_o = np.split(self.kernel, indices_or_sections=4, axis=1)
|
|
352
|
+
b_i, b_f, b_c, b_o = np.split(self.bias, indices_or_sections=4, axis=0)
|
|
353
|
+
|
|
354
|
+
wt_inputs_i = self.calculate_wt_fc(wt_x_i, inputs, k_i, b_i, {"type": None})
|
|
355
|
+
wt_inputs_f = self.calculate_wt_fc(wt_x_f, inputs, k_f, b_f, {"type": None})
|
|
356
|
+
wt_inputs_c = self.calculate_wt_fc(wt_x_c, inputs, k_c, b_c, {"type": None})
|
|
357
|
+
wt_inputs_o = self.calculate_wt_fc(wt_x_o, inputs, k_o, b_o, {"type": None})
|
|
358
|
+
|
|
359
|
+
wt_inputs = wt_inputs_i + wt_inputs_f + wt_inputs_c + wt_inputs_o
|
|
360
|
+
|
|
361
|
+
return wt_inputs, wt_h_tm1, wt_c_tm1
|
|
362
|
+
|
|
363
|
+
def calculate_lstm_wt(self, wts, compute_log):
|
|
364
|
+
self.compute_log = compute_log
|
|
365
|
+
output = []
|
|
366
|
+
if self.return_sequence:
|
|
367
|
+
temp_wts_hstate = wts[-1, :]
|
|
368
|
+
else:
|
|
369
|
+
temp_wts_hstate = wts
|
|
370
|
+
temp_wts_cstate = np.zeros_like(self.compute_log[0]["cstate"][1].numpy()[0])
|
|
371
|
+
for ind in range(len(self.compute_log) - 1, -1, -1):
|
|
372
|
+
temp_wt_inp, temp_wts_hstate, temp_wts_cstate = self.calculate_lstm_cell_wt(
|
|
373
|
+
ind, temp_wts_hstate, temp_wts_cstate
|
|
374
|
+
)
|
|
375
|
+
output.append(temp_wt_inp)
|
|
376
|
+
if self.return_sequence and ind > 0:
|
|
377
|
+
temp_wts_hstate = temp_wts_hstate + wts[ind - 1, :]
|
|
378
|
+
output.reverse()
|
|
379
|
+
return np.array(output)
|
|
380
|
+
|
|
381
|
+
def dummy_wt(wts, inp, *args):
|
|
382
|
+
test_wt = np.zeros_like(inp)
|
|
383
|
+
return test_wt
|
|
384
|
+
|
|
385
|
+
def calculate_wt_fc(wts, inp, w, b, act):
|
|
386
|
+
mul_mat = np.einsum("ij,i->ij", w.numpy(), inp).T
|
|
387
|
+
wt_mat = np.zeros(mul_mat.shape)
|
|
388
|
+
for i in range(mul_mat.shape[0]):
|
|
389
|
+
l1_ind1 = mul_mat[i]
|
|
390
|
+
wt_ind1 = wt_mat[i]
|
|
391
|
+
wt = wts[i]
|
|
392
|
+
p_ind = l1_ind1 > 0
|
|
393
|
+
n_ind = l1_ind1 < 0
|
|
394
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
395
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
396
|
+
if b.numpy()[i] > 0:
|
|
397
|
+
pbias = b.numpy()[i]
|
|
398
|
+
nbias = 0
|
|
399
|
+
else:
|
|
400
|
+
pbias = 0
|
|
401
|
+
nbias = b.numpy()[i] * -1
|
|
402
|
+
t_sum = p_sum + pbias - n_sum - nbias
|
|
403
|
+
if act["type"] == "mono":
|
|
404
|
+
if act["range"]["l"]:
|
|
405
|
+
if t_sum < act["range"]["l"]:
|
|
406
|
+
p_sum = 0
|
|
407
|
+
if act["range"]["u"]:
|
|
408
|
+
if t_sum > act["range"]["u"]:
|
|
409
|
+
n_sum = 0
|
|
410
|
+
elif act["type"] == "non_mono":
|
|
411
|
+
t_act = act["func"](t_sum)
|
|
412
|
+
p_act = act["func"](p_sum + pbias)
|
|
413
|
+
n_act = act["func"](-1 * (n_sum + nbias))
|
|
414
|
+
if act["range"]["l"]:
|
|
415
|
+
if t_sum < act["range"]["l"]:
|
|
416
|
+
p_sum = 0
|
|
417
|
+
if act["range"]["u"]:
|
|
418
|
+
if t_sum > act["range"]["u"]:
|
|
419
|
+
n_sum = 0
|
|
420
|
+
if p_sum > 0 and n_sum > 0:
|
|
421
|
+
if t_act == p_act:
|
|
422
|
+
n_sum = 0
|
|
423
|
+
elif t_act == n_act:
|
|
424
|
+
p_sum = 0
|
|
425
|
+
if p_sum > 0:
|
|
426
|
+
p_agg_wt = (p_sum + pbias) / (p_sum + n_sum + pbias + nbias)
|
|
427
|
+
p_agg_wt = p_agg_wt * (p_sum / (p_sum + pbias))
|
|
428
|
+
else:
|
|
429
|
+
p_agg_wt = 0
|
|
430
|
+
if n_sum > 0:
|
|
431
|
+
n_agg_wt = (n_sum + nbias) / (p_sum + n_sum + pbias + nbias)
|
|
432
|
+
n_agg_wt = n_agg_wt * (n_sum / (n_sum + nbias))
|
|
433
|
+
else:
|
|
434
|
+
n_agg_wt = 0
|
|
435
|
+
if p_sum == 0:
|
|
436
|
+
p_sum = 1
|
|
437
|
+
if n_sum == 0:
|
|
438
|
+
n_sum = 1
|
|
439
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
440
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
441
|
+
|
|
442
|
+
wt_mat = wt_mat.sum(axis=0)
|
|
443
|
+
return wt_mat
|
|
444
|
+
|
|
445
|
+
def calculate_wt_rshp(wts, inp=None):
|
|
446
|
+
x = np.reshape(wts, inp.shape)
|
|
447
|
+
return x
|
|
448
|
+
|
|
449
|
+
def calculate_wt_concat(wts, inp=None, axis=-1):
|
|
450
|
+
splits = [i.shape[axis] for i in inp]
|
|
451
|
+
splits = np.cumsum(splits)
|
|
452
|
+
if axis > 0:
|
|
453
|
+
axis = axis - 1
|
|
454
|
+
x = np.split(wts, indices_or_sections=splits, axis=axis)
|
|
455
|
+
return x
|
|
456
|
+
|
|
457
|
+
def calculate_wt_add(wts, inp=None):
|
|
458
|
+
wt_mat = []
|
|
459
|
+
inp_list = []
|
|
460
|
+
expanded_wts = as_strided(
|
|
461
|
+
wts,
|
|
462
|
+
shape=(np.prod(wts.shape),),
|
|
463
|
+
strides=(wts.strides[-1],),
|
|
464
|
+
writeable=False, # totally use this to avoid writing to memory in weird places
|
|
465
|
+
)
|
|
466
|
+
|
|
467
|
+
for x in inp:
|
|
468
|
+
expanded_input = as_strided(
|
|
469
|
+
x,
|
|
470
|
+
shape=(np.prod(x.shape),),
|
|
471
|
+
strides=(x.strides[-1],),
|
|
472
|
+
writeable=False, # totally use this to avoid writing to memory in weird places
|
|
473
|
+
)
|
|
474
|
+
inp_list.append(expanded_input)
|
|
475
|
+
wt_mat.append(np.zeros_like(expanded_input))
|
|
476
|
+
wt_mat = np.array(wt_mat)
|
|
477
|
+
inp_list = np.array(inp_list)
|
|
478
|
+
for i in range(wt_mat.shape[1]):
|
|
479
|
+
wt_ind1 = wt_mat[:, i]
|
|
480
|
+
wt = expanded_wts[i]
|
|
481
|
+
l1_ind1 = inp_list[:, i]
|
|
482
|
+
p_ind = l1_ind1 > 0
|
|
483
|
+
n_ind = l1_ind1 < 0
|
|
484
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
485
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
486
|
+
t_sum = p_sum - n_sum
|
|
487
|
+
p_agg_wt = 0
|
|
488
|
+
n_agg_wt = 0
|
|
489
|
+
if p_sum + n_sum > 0:
|
|
490
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
491
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
492
|
+
if p_sum == 0:
|
|
493
|
+
p_sum = 1
|
|
494
|
+
if n_sum == 0:
|
|
495
|
+
n_sum = 1
|
|
496
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
497
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
498
|
+
wt_mat[:, i] = wt_ind1
|
|
499
|
+
wt_mat = [i.reshape(wts.shape) for i in list(wt_mat)]
|
|
500
|
+
return wt_mat
|
|
501
|
+
|
|
502
|
+
def calculate_start_wt(arg, scaler=None,thresholding=0.5,task="binary-classification"):
|
|
503
|
+
if arg.ndim == 2:
|
|
504
|
+
if task == "binary-classification" or task == "multi-class classification":
|
|
505
|
+
x = np.argmax(arg[0])
|
|
506
|
+
m = np.max(arg[0])
|
|
507
|
+
y = np.zeros(arg.shape)
|
|
508
|
+
if scaler:
|
|
509
|
+
y[0][x] = scaler
|
|
510
|
+
else:
|
|
511
|
+
y[0][x] = m
|
|
512
|
+
elif task == "bbox-regression":
|
|
513
|
+
y = np.zeros(arg.shape)
|
|
514
|
+
if scaler:
|
|
515
|
+
y[0] = scaler
|
|
516
|
+
num_non_zero_elements = np.count_nonzero(y)
|
|
517
|
+
if num_non_zero_elements > 0:
|
|
518
|
+
y = y / num_non_zero_elements
|
|
519
|
+
else:
|
|
520
|
+
m = np.max(arg[0])
|
|
521
|
+
x = np.argmax(arg[0])
|
|
522
|
+
y[0][x] = m
|
|
523
|
+
else:
|
|
524
|
+
x = np.argmax(arg[0])
|
|
525
|
+
m = np.max(arg[0])
|
|
526
|
+
y = np.zeros(arg.shape)
|
|
527
|
+
if scaler:
|
|
528
|
+
y[0][x] = scaler
|
|
529
|
+
else:
|
|
530
|
+
y[0][x] = m
|
|
531
|
+
|
|
532
|
+
elif arg.ndim == 4 and task == "binary-segmentation":
|
|
533
|
+
indices = np.where(arg > thresholding)
|
|
534
|
+
y = np.zeros(arg.shape)
|
|
535
|
+
if scaler:
|
|
536
|
+
y[indices] = scaler
|
|
537
|
+
num_non_zero_elements = np.count_nonzero(y)
|
|
538
|
+
if num_non_zero_elements > 0:
|
|
539
|
+
y = y / num_non_zero_elements
|
|
540
|
+
else:
|
|
541
|
+
y[indices] = arg[indices]
|
|
542
|
+
|
|
543
|
+
else:
|
|
544
|
+
x = np.argmax(arg[0])
|
|
545
|
+
m = np.max(arg[0])
|
|
546
|
+
y = np.zeros(arg.shape)
|
|
547
|
+
if scaler:
|
|
548
|
+
y[0][x] = scaler
|
|
549
|
+
else:
|
|
550
|
+
y[0][x] = m
|
|
551
|
+
return y[0]
|
|
552
|
+
|
|
553
|
+
def calculate_wt_passthru(wts):
|
|
554
|
+
return wts
|
|
555
|
+
|
|
556
|
+
def calculate_wt_zero_pad(wts,inp,padding):
|
|
557
|
+
wt_mat = wts[padding[0][0]:inp.shape[0]+padding[0][0],padding[1][0]:inp.shape[1]+padding[1][0],:]
|
|
558
|
+
return wt_mat
|
|
559
|
+
|
|
560
|
+
def calculate_padding(kernel_size, inp, padding, strides, const_val=0.0):
|
|
561
|
+
if padding=='valid':
|
|
562
|
+
return (inp, [[0,0],[0,0],[0,0]])
|
|
563
|
+
else:
|
|
564
|
+
h = inp.shape[0]%strides[0]
|
|
565
|
+
if h==0:
|
|
566
|
+
pad_h = np.max([0,kernel_size[0]-strides[0]])
|
|
567
|
+
else:
|
|
568
|
+
pad_h = np.max([0,kernel_size[0]-h])
|
|
569
|
+
|
|
570
|
+
v = inp.shape[1]%strides[1]
|
|
571
|
+
if v==0:
|
|
572
|
+
pad_v = np.max([0,kernel_size[1]-strides[1]])
|
|
573
|
+
else:
|
|
574
|
+
pad_v = np.max([0,kernel_size[1]-v])
|
|
575
|
+
|
|
576
|
+
paddings = [np.floor([pad_h/2.0,(pad_h+1)/2.0]).astype("int32"),
|
|
577
|
+
np.floor([pad_v/2.0,(pad_v+1)/2.0]).astype("int32"),
|
|
578
|
+
np.zeros((2)).astype("int32")]
|
|
579
|
+
inp_pad = np.pad(inp, paddings, 'constant', constant_values=const_val)
|
|
580
|
+
return (inp_pad,paddings)
|
|
581
|
+
|
|
582
|
+
def calculate_wt_conv_unit(patch, wts, w, b, act):
|
|
583
|
+
k = w.numpy()
|
|
584
|
+
bias = b.numpy()
|
|
585
|
+
b_ind = bias>0
|
|
586
|
+
bias_pos = bias*b_ind
|
|
587
|
+
b_ind = bias<0
|
|
588
|
+
bias_neg = bias*b_ind*-1.0
|
|
589
|
+
conv_out = np.einsum("ijkl,ijk->ijkl",k,patch)
|
|
590
|
+
p_ind = conv_out>0
|
|
591
|
+
p_ind = conv_out*p_ind
|
|
592
|
+
p_sum = np.einsum("ijkl->l",p_ind)
|
|
593
|
+
n_ind = conv_out<0
|
|
594
|
+
n_ind = conv_out*n_ind
|
|
595
|
+
n_sum = np.einsum("ijkl->l",n_ind)*-1.0
|
|
596
|
+
t_sum = p_sum+n_sum
|
|
597
|
+
wt_mat = np.zeros_like(k)
|
|
598
|
+
p_saturate = p_sum>0
|
|
599
|
+
n_saturate = n_sum>0
|
|
600
|
+
if act["type"]=='mono':
|
|
601
|
+
if act["range"]["l"]:
|
|
602
|
+
temp_ind = t_sum > act["range"]["l"]
|
|
603
|
+
p_saturate = temp_ind
|
|
604
|
+
if act["range"]["u"]:
|
|
605
|
+
temp_ind = t_sum < act["range"]["u"]
|
|
606
|
+
n_saturate = temp_ind
|
|
607
|
+
elif act["type"]=='non_mono':
|
|
608
|
+
t_act = act["func"](t_sum)
|
|
609
|
+
p_act = act["func"](p_sum + bias_pos)
|
|
610
|
+
n_act = act["func"](-1*(n_sum + bias_neg))
|
|
611
|
+
if act["range"]["l"]:
|
|
612
|
+
temp_ind = t_sum > act["range"]["l"]
|
|
613
|
+
p_saturate = p_saturate*temp_ind
|
|
614
|
+
if act["range"]["u"]:
|
|
615
|
+
temp_ind = t_sum < act["range"]["u"]
|
|
616
|
+
n_saturate = n_saturate*temp_ind
|
|
617
|
+
temp_ind = np.abs(t_act - p_act)>1e-5
|
|
618
|
+
n_saturate = n_saturate*temp_ind
|
|
619
|
+
temp_ind = np.abs(t_act - n_act)>1e-5
|
|
620
|
+
p_saturate = p_saturate*temp_ind
|
|
621
|
+
p_agg_wt = (1.0/(p_sum+n_sum+bias_pos+bias_neg))*wts*p_saturate
|
|
622
|
+
n_agg_wt = (1.0/(p_sum+n_sum+bias_pos+bias_neg))*wts*n_saturate
|
|
623
|
+
|
|
624
|
+
wt_mat = wt_mat+(p_ind*p_agg_wt)
|
|
625
|
+
wt_mat = wt_mat+(n_ind*n_agg_wt*-1.0)
|
|
626
|
+
wt_mat = np.sum(wt_mat,axis=-1)
|
|
627
|
+
return wt_mat
|
|
628
|
+
|
|
629
|
+
def calculate_wt_conv(wts, inp, w, b, padding, strides, act):
|
|
630
|
+
input_padded, paddings = calculate_padding(w.shape, inp, padding, strides)
|
|
631
|
+
out_ds = np.zeros_like(input_padded)
|
|
632
|
+
for ind1 in range(wts.shape[0]):
|
|
633
|
+
for ind2 in range(wts.shape[1]):
|
|
634
|
+
indexes = [np.arange(ind1*strides[0], ind1*(strides[0])+w.shape[0]),
|
|
635
|
+
np.arange(ind2*strides[1], ind2*(strides[1])+w.shape[1])]
|
|
636
|
+
# Take slice
|
|
637
|
+
tmp_patch = input_padded[np.ix_(indexes[0],indexes[1])]
|
|
638
|
+
updates = calculate_wt_conv_unit(tmp_patch, wts[ind1,ind2,:], w, b, act)
|
|
639
|
+
# Build tensor with "filtered" gradient
|
|
640
|
+
out_ds[np.ix_(indexes[0],indexes[1])]+=updates
|
|
641
|
+
out_ds = out_ds[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
642
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
643
|
+
return out_ds
|
|
644
|
+
|
|
645
|
+
def calculate_wt_max_unit(patch, wts, pool_size):
|
|
646
|
+
pmax = np.einsum("ijk,k->ijk",np.ones_like(patch),np.max(np.max(patch,axis=0),axis=0))
|
|
647
|
+
indexes = (patch-pmax)==0
|
|
648
|
+
indexes = indexes.astype(np.float32)
|
|
649
|
+
indexes_norm = 1.0/np.einsum("mnc->c",indexes)
|
|
650
|
+
indexes = np.einsum("ijk,k->ijk",indexes,indexes_norm)
|
|
651
|
+
out = np.einsum("ijk,k->ijk",indexes,wts)
|
|
652
|
+
return out
|
|
653
|
+
|
|
654
|
+
def calculate_wt_maxpool(wts, inp, pool_size, padding, strides):
|
|
655
|
+
input_padded, paddings = calculate_padding(pool_size, inp, padding, strides, -np.inf)
|
|
656
|
+
out_ds = np.zeros_like(input_padded)
|
|
657
|
+
for ind1 in range(wts.shape[0]):
|
|
658
|
+
for ind2 in range(wts.shape[1]):
|
|
659
|
+
indexes = [np.arange(ind1*strides[0], ind1*(strides[0])+pool_size[0]),
|
|
660
|
+
np.arange(ind2*strides[1], ind2*(strides[1])+pool_size[1])]
|
|
661
|
+
# Take slice
|
|
662
|
+
tmp_patch = input_padded[np.ix_(indexes[0],indexes[1])]
|
|
663
|
+
updates = calculate_wt_max_unit(tmp_patch, wts[ind1,ind2,:], pool_size)
|
|
664
|
+
# Build tensor with "filtered" gradient
|
|
665
|
+
out_ds[np.ix_(indexes[0],indexes[1])]+=updates
|
|
666
|
+
out_ds = out_ds[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
667
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
668
|
+
return out_ds
|
|
669
|
+
|
|
670
|
+
def calculate_wt_avg_unit(patch, wts, pool_size):
|
|
671
|
+
p_ind = patch>0
|
|
672
|
+
p_ind = patch*p_ind
|
|
673
|
+
p_sum = np.einsum("ijk->k",p_ind)
|
|
674
|
+
n_ind = patch<0
|
|
675
|
+
n_ind = patch*n_ind
|
|
676
|
+
n_sum = np.einsum("ijk->k",n_ind)*-1.0
|
|
677
|
+
t_sum = p_sum+n_sum
|
|
678
|
+
wt_mat = np.zeros_like(patch)
|
|
679
|
+
p_saturate = p_sum>0
|
|
680
|
+
n_saturate = n_sum>0
|
|
681
|
+
t_sum[t_sum==0] = 1.0
|
|
682
|
+
p_agg_wt = (1.0/(t_sum))*wts*p_saturate
|
|
683
|
+
n_agg_wt = (1.0/(t_sum))*wts*n_saturate
|
|
684
|
+
wt_mat = wt_mat+(p_ind*p_agg_wt)
|
|
685
|
+
wt_mat = wt_mat+(n_ind*n_agg_wt*-1.0)
|
|
686
|
+
return wt_mat
|
|
687
|
+
|
|
688
|
+
def calculate_wt_avgpool(wts, inp, pool_size, padding, strides):
|
|
689
|
+
input_padded, paddings = calculate_padding(pool_size, inp, padding, strides, -np.inf)
|
|
690
|
+
out_ds = np.zeros_like(input_padded)
|
|
691
|
+
for ind1 in range(wts.shape[0]):
|
|
692
|
+
for ind2 in range(wts.shape[1]):
|
|
693
|
+
indexes = [np.arange(ind1*strides[0], ind1*(strides[0])+pool_size[0]),
|
|
694
|
+
np.arange(ind2*strides[1], ind2*(strides[1])+pool_size[1])]
|
|
695
|
+
# Take slice
|
|
696
|
+
tmp_patch = input_padded[np.ix_(indexes[0],indexes[1])]
|
|
697
|
+
updates = calculate_wt_avg_unit(tmp_patch, wts[ind1,ind2,:], pool_size)
|
|
698
|
+
# Build tensor with "filtered" gradient
|
|
699
|
+
out_ds[np.ix_(indexes[0],indexes[1])]+=updates
|
|
700
|
+
out_ds = out_ds[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
701
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
702
|
+
return out_ds
|
|
703
|
+
|
|
704
|
+
def calculate_wt_gavgpool(wts,inp):
|
|
705
|
+
channels = wts.shape[0]
|
|
706
|
+
wt_mat = np.zeros_like(inp)
|
|
707
|
+
for c in range(channels):
|
|
708
|
+
wt = wts[c]
|
|
709
|
+
temp_wt = wt_mat[...,c]
|
|
710
|
+
x = inp[...,c]
|
|
711
|
+
p_mat = np.copy(x)
|
|
712
|
+
n_mat = np.copy(x)
|
|
713
|
+
p_mat[p_mat<0] = 0
|
|
714
|
+
n_mat[n_mat>0] = 0
|
|
715
|
+
p_sum = np.sum(p_mat)
|
|
716
|
+
n_sum = np.sum(n_mat)*-1
|
|
717
|
+
p_agg_wt = 0.0
|
|
718
|
+
n_agg_wt = 0.0
|
|
719
|
+
if p_sum+n_sum > 0.0:
|
|
720
|
+
p_agg_wt = p_sum/(p_sum+n_sum)
|
|
721
|
+
n_agg_wt = n_sum/(p_sum+n_sum)
|
|
722
|
+
if p_sum == 0.0:
|
|
723
|
+
p_sum = 1.0
|
|
724
|
+
if n_sum == 0.0:
|
|
725
|
+
n_sum = 1.0
|
|
726
|
+
temp_wt = temp_wt+((p_mat/p_sum)*wt*p_agg_wt)
|
|
727
|
+
temp_wt = temp_wt+((n_mat/n_sum)*wt*n_agg_wt*-1.0)
|
|
728
|
+
wt_mat[...,c] = temp_wt
|
|
729
|
+
return wt_mat
|
|
730
|
+
|
|
731
|
+
def calculate_wt_gmaxpool_2d(wts, inp):
|
|
732
|
+
channels = wts.shape[0]
|
|
733
|
+
wt_mat = np.zeros_like(inp)
|
|
734
|
+
for c in range(channels):
|
|
735
|
+
wt = wts[c]
|
|
736
|
+
x = inp[..., c]
|
|
737
|
+
max_val = np.max(x)
|
|
738
|
+
max_indexes = (x == max_val).astype(np.float32)
|
|
739
|
+
max_indexes_norm = 1.0 / np.sum(max_indexes)
|
|
740
|
+
max_indexes = max_indexes * max_indexes_norm
|
|
741
|
+
wt_mat[..., c] = max_indexes * wt
|
|
742
|
+
return wt_mat
|
|
743
|
+
|
|
744
|
+
def calculate_padding_1d(kernel_size, inp, padding, strides, const_val=0.0):
|
|
745
|
+
if padding == 'valid':
|
|
746
|
+
return inp, [0, 0]
|
|
747
|
+
else:
|
|
748
|
+
remainder = inp.shape[0] % strides
|
|
749
|
+
if remainder == 0:
|
|
750
|
+
pad_total = max(0, kernel_size - strides)
|
|
751
|
+
else:
|
|
752
|
+
pad_total = max(0, kernel_size - remainder)
|
|
753
|
+
|
|
754
|
+
pad_left = int(np.floor(pad_total / 2.0))
|
|
755
|
+
pad_right = int(np.ceil(pad_total / 2.0))
|
|
756
|
+
|
|
757
|
+
inp_pad = np.pad(inp, (pad_left, pad_right), 'constant', constant_values=const_val)
|
|
758
|
+
return inp_pad, [pad_left, pad_right]
|
|
759
|
+
|
|
760
|
+
def calculate_wt_conv_unit_1d(patch, wts, w, b, act):
|
|
761
|
+
k = w.numpy()
|
|
762
|
+
bias = b.numpy()
|
|
763
|
+
b_ind = bias > 0
|
|
764
|
+
bias_pos = bias * b_ind
|
|
765
|
+
b_ind = bias < 0
|
|
766
|
+
bias_neg = bias * b_ind * -1.0
|
|
767
|
+
conv_out = np.einsum("ijk,ij->ijk", k, patch)
|
|
768
|
+
p_ind = conv_out > 0
|
|
769
|
+
p_ind = conv_out * p_ind
|
|
770
|
+
p_sum = np.einsum("ijk->k",p_ind)
|
|
771
|
+
n_ind = conv_out < 0
|
|
772
|
+
n_ind = conv_out * n_ind
|
|
773
|
+
n_sum = np.einsum("ijk->k",n_ind) * -1.0
|
|
774
|
+
t_sum = p_sum + n_sum
|
|
775
|
+
wt_mat = np.zeros_like(k)
|
|
776
|
+
p_saturate = p_sum > 0
|
|
777
|
+
n_saturate = n_sum > 0
|
|
778
|
+
if act["type"] == 'mono':
|
|
779
|
+
if act["range"]["l"]:
|
|
780
|
+
temp_ind = t_sum > act["range"]["l"]
|
|
781
|
+
p_saturate = temp_ind
|
|
782
|
+
if act["range"]["u"]:
|
|
783
|
+
temp_ind = t_sum < act["range"]["u"]
|
|
784
|
+
n_saturate = temp_ind
|
|
785
|
+
elif act["type"] == 'non_mono':
|
|
786
|
+
t_act = act["func"](t_sum)
|
|
787
|
+
p_act = act["func"](p_sum + bias_pos)
|
|
788
|
+
n_act = act["func"](-1 * (n_sum + bias_neg))
|
|
789
|
+
if act["range"]["l"]:
|
|
790
|
+
temp_ind = t_sum > act["range"]["l"]
|
|
791
|
+
p_saturate = p_saturate * temp_ind
|
|
792
|
+
if act["range"]["u"]:
|
|
793
|
+
temp_ind = t_sum < act["range"]["u"]
|
|
794
|
+
n_saturate = n_saturate * temp_ind
|
|
795
|
+
temp_ind = np.abs(t_act - p_act) > 1e-5
|
|
796
|
+
n_saturate = n_saturate * temp_ind
|
|
797
|
+
temp_ind = np.abs(t_act - n_act) > 1e-5
|
|
798
|
+
p_saturate = p_saturate * temp_ind
|
|
799
|
+
p_agg_wt = (1.0 / (p_sum + n_sum + bias_pos + bias_neg)) * wts * p_saturate
|
|
800
|
+
n_agg_wt = (1.0 / (p_sum + n_sum + bias_pos + bias_neg)) * wts * n_saturate
|
|
801
|
+
|
|
802
|
+
wt_mat = wt_mat + (p_ind * p_agg_wt)
|
|
803
|
+
wt_mat = wt_mat + (n_ind * n_agg_wt * -1.0)
|
|
804
|
+
wt_mat = np.sum(wt_mat, axis=-1)
|
|
805
|
+
return wt_mat
|
|
806
|
+
|
|
807
|
+
def calculate_wt_conv_1d(wts, inp, w, b, padding, stride, act):
|
|
808
|
+
input_padded, paddings = calculate_padding_1d(w.shape[0], inp, padding, stride)
|
|
809
|
+
out_ds = np.zeros_like(input_padded)
|
|
810
|
+
for ind in range(wts.shape[0]):
|
|
811
|
+
indexes = np.arange(ind * stride, ind * stride + w.shape[0])
|
|
812
|
+
tmp_patch = input_padded[indexes]
|
|
813
|
+
updates = calculate_wt_conv_unit_1d(tmp_patch, wts[ind, :], w, b, act)
|
|
814
|
+
out_ds[indexes] += updates
|
|
815
|
+
out_ds = out_ds[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
816
|
+
return out_ds
|
|
817
|
+
|
|
818
|
+
def calculate_wt_max_unit_1d(patch, wts):
|
|
819
|
+
pmax = np.max(patch, axis=0)
|
|
820
|
+
indexes = (patch - pmax) == 0
|
|
821
|
+
indexes = indexes.astype(np.float32)
|
|
822
|
+
indexes_norm = 1.0 / np.sum(indexes, axis=0)
|
|
823
|
+
indexes = np.einsum("ij,j->ij", indexes, indexes_norm)
|
|
824
|
+
out = np.einsum("ij,j->ij", indexes, wts)
|
|
825
|
+
return out
|
|
826
|
+
|
|
827
|
+
def calculate_wt_maxpool_1d(wts, inp, pool_size, padding, stride):
|
|
828
|
+
input_padded, paddings = calculate_padding_1d(pool_size, inp, padding, stride, -np.inf)
|
|
829
|
+
out_ds = np.zeros_like(input_padded)
|
|
830
|
+
stride=stride[0]
|
|
831
|
+
pool_size=pool_size[0]
|
|
832
|
+
for ind in range(wts.shape[0]):
|
|
833
|
+
indexes = np.arange(ind * stride, ind * stride + pool_size)
|
|
834
|
+
tmp_patch = input_padded[indexes]
|
|
835
|
+
updates = calculate_wt_max_unit_1d(tmp_patch, wts[ind, :])
|
|
836
|
+
out_ds[indexes] += updates
|
|
837
|
+
out_ds = out_ds[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
838
|
+
return out_ds
|
|
839
|
+
|
|
840
|
+
def calculate_wt_avg_unit_1d(patch, wts):
|
|
841
|
+
p_ind = patch > 0
|
|
842
|
+
p_ind = patch * p_ind
|
|
843
|
+
p_sum = np.sum(p_ind, axis=0)
|
|
844
|
+
n_ind = patch < 0
|
|
845
|
+
n_ind = patch * n_ind
|
|
846
|
+
n_sum = np.sum(n_ind, axis=0) * -1.0
|
|
847
|
+
t_sum = p_sum + n_sum
|
|
848
|
+
wt_mat = np.zeros_like(patch)
|
|
849
|
+
p_saturate = p_sum > 0
|
|
850
|
+
n_saturate = n_sum > 0
|
|
851
|
+
t_sum[t_sum == 0] = 1.0
|
|
852
|
+
p_agg_wt = (1.0 / t_sum) * wts * p_saturate
|
|
853
|
+
n_agg_wt = (1.0 / t_sum) * wts * n_saturate
|
|
854
|
+
wt_mat = wt_mat + (p_ind * p_agg_wt)
|
|
855
|
+
wt_mat = wt_mat + (n_ind * n_agg_wt * -1.0)
|
|
856
|
+
return wt_mat
|
|
857
|
+
|
|
858
|
+
def calculate_wt_avgpool_1d(wts, inp, pool_size, padding, stride):
|
|
859
|
+
input_padded, paddings = calculate_padding_1d(pool_size, inp, padding, stride, 0)
|
|
860
|
+
out_ds = np.zeros_like(input_padded)
|
|
861
|
+
stride=stride[0]
|
|
862
|
+
pool_size=pool_size[0]
|
|
863
|
+
for ind in range(wts.shape[0]):
|
|
864
|
+
indexes = np.arange(ind * stride, ind * stride + pool_size)
|
|
865
|
+
tmp_patch = input_padded[indexes]
|
|
866
|
+
updates = calculate_wt_avg_unit_1d(tmp_patch, wts[ind, :])
|
|
867
|
+
out_ds[indexes] += updates
|
|
868
|
+
out_ds = out_ds[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
869
|
+
return out_ds
|
|
870
|
+
|
|
871
|
+
def calculate_wt_gavgpool_1d(wts, inp):
|
|
872
|
+
channels = wts.shape[0]
|
|
873
|
+
wt_mat = np.zeros_like(inp)
|
|
874
|
+
for c in range(channels):
|
|
875
|
+
wt = wts[c]
|
|
876
|
+
temp_wt = wt_mat[:, c]
|
|
877
|
+
x = inp[:, c]
|
|
878
|
+
p_mat = np.copy(x)
|
|
879
|
+
n_mat = np.copy(x)
|
|
880
|
+
p_mat[p_mat < 0] = 0
|
|
881
|
+
n_mat[n_mat > 0] = 0
|
|
882
|
+
p_sum = np.sum(p_mat)
|
|
883
|
+
n_sum = np.sum(n_mat) * -1
|
|
884
|
+
p_agg_wt = 0.0
|
|
885
|
+
n_agg_wt = 0.0
|
|
886
|
+
if p_sum + n_sum > 0.0:
|
|
887
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
888
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
889
|
+
if p_sum == 0.0:
|
|
890
|
+
p_sum = 1.0
|
|
891
|
+
if n_sum == 0.0:
|
|
892
|
+
n_sum = 1.0
|
|
893
|
+
temp_wt = temp_wt + ((p_mat / p_sum) * wt * p_agg_wt)
|
|
894
|
+
temp_wt = temp_wt + ((n_mat / n_sum) * wt * n_agg_wt * -1.0)
|
|
895
|
+
wt_mat[:, c] = temp_wt
|
|
896
|
+
return wt_mat
|
|
897
|
+
|
|
898
|
+
def calculate_wt_gmaxpool_1d(wts, inp):
|
|
899
|
+
channels = wts.shape[0]
|
|
900
|
+
wt_mat = np.zeros_like(inp)
|
|
901
|
+
for c in range(channels):
|
|
902
|
+
wt = wts[c]
|
|
903
|
+
x = inp[:, c]
|
|
904
|
+
max_val = np.max(x)
|
|
905
|
+
max_indexes = (x == max_val).astype(np.float32)
|
|
906
|
+
max_indexes_norm = 1.0 / np.sum(max_indexes)
|
|
907
|
+
max_indexes = max_indexes * max_indexes_norm
|
|
908
|
+
wt_mat[:, c] = max_indexes * wt
|
|
909
|
+
return wt_mat
|
|
910
|
+
|
|
911
|
+
|
|
912
|
+
def calculate_output_padding_conv2d_transpose(input_shape, kernel_size, padding, strides):
|
|
913
|
+
if padding == 'valid':
|
|
914
|
+
out_shape = [(input_shape[0] - 1) * strides[0] + kernel_size[0],
|
|
915
|
+
(input_shape[1] - 1) * strides[1] + kernel_size[1]]
|
|
916
|
+
paddings = [[0, 0], [0, 0], [0, 0]]
|
|
917
|
+
else: # 'same' padding
|
|
918
|
+
out_shape = [input_shape[0] * strides[0], input_shape[1] * strides[1]]
|
|
919
|
+
pad_h = max(0, (input_shape[0] - 1) * strides[0] + kernel_size[0] - out_shape[0])
|
|
920
|
+
pad_v = max(0, (input_shape[1] - 1) * strides[1] + kernel_size[1] - out_shape[1])
|
|
921
|
+
paddings = [[pad_h // 2, pad_h - pad_h // 2],
|
|
922
|
+
[pad_v // 2, pad_v - pad_v // 2],
|
|
923
|
+
[0, 0]]
|
|
924
|
+
|
|
925
|
+
return out_shape, paddings
|
|
926
|
+
|
|
927
|
+
def calculate_wt_conv2d_transpose_unit(patch, wts, w, b, act):
|
|
928
|
+
if patch.ndim == 1:
|
|
929
|
+
patch = patch.reshape(1, 1, -1)
|
|
930
|
+
elif patch.ndim == 2:
|
|
931
|
+
patch = patch.reshape(1, *patch.shape)
|
|
932
|
+
elif patch.ndim != 3:
|
|
933
|
+
raise ValueError(f"Unexpected patch shape: {patch.shape}")
|
|
934
|
+
|
|
935
|
+
k = tf.transpose(w, perm=[0, 1, 3, 2]).numpy()
|
|
936
|
+
bias = b.numpy()
|
|
937
|
+
b_ind = bias > 0
|
|
938
|
+
bias_pos = bias * b_ind
|
|
939
|
+
b_ind = bias < 0
|
|
940
|
+
bias_neg = bias * b_ind * -1.0
|
|
941
|
+
|
|
942
|
+
conv_out = np.einsum('ijkl,mnk->ijkl', k, patch)
|
|
943
|
+
p_ind = conv_out > 0
|
|
944
|
+
p_ind = conv_out * p_ind
|
|
945
|
+
n_ind = conv_out < 0
|
|
946
|
+
n_ind = conv_out * n_ind
|
|
947
|
+
|
|
948
|
+
p_sum = np.einsum("ijkl->l", p_ind)
|
|
949
|
+
n_sum = np.einsum("ijkl->l", n_ind) * -1.0
|
|
950
|
+
t_sum = p_sum + n_sum
|
|
951
|
+
|
|
952
|
+
wt_mat = np.zeros_like(k)
|
|
953
|
+
p_saturate = p_sum > 0
|
|
954
|
+
n_saturate = n_sum > 0
|
|
955
|
+
|
|
956
|
+
if act["type"] == 'mono':
|
|
957
|
+
if act["range"]["l"]:
|
|
958
|
+
p_saturate = t_sum > act["range"]["l"]
|
|
959
|
+
if act["range"]["u"]:
|
|
960
|
+
n_saturate = t_sum < act["range"]["u"]
|
|
961
|
+
elif act["type"] == 'non_mono':
|
|
962
|
+
t_act = act["func"](t_sum)
|
|
963
|
+
p_act = act["func"](p_sum + bias_pos)
|
|
964
|
+
n_act = act["func"](-1 * (n_sum + bias_neg))
|
|
965
|
+
if act["range"]["l"]:
|
|
966
|
+
temp_ind = t_sum > act["range"]["l"]
|
|
967
|
+
p_saturate = p_saturate * temp_ind
|
|
968
|
+
if act["range"]["u"]:
|
|
969
|
+
temp_ind = t_sum < act["range"]["u"]
|
|
970
|
+
n_saturate = n_saturate * temp_ind
|
|
971
|
+
temp_ind = np.abs(t_act - p_act) > 1e-5
|
|
972
|
+
n_saturate = n_saturate * temp_ind
|
|
973
|
+
temp_ind = np.abs(t_act - n_act) > 1e-5
|
|
974
|
+
p_saturate = p_saturate * temp_ind
|
|
975
|
+
|
|
976
|
+
p_agg_wt = (1.0 / (p_sum + n_sum + bias_pos + bias_neg)) * wts * p_saturate
|
|
977
|
+
n_agg_wt = (1.0 / (p_sum + n_sum + bias_pos + bias_neg)) * wts * n_saturate
|
|
978
|
+
|
|
979
|
+
wt_mat = wt_mat + (p_ind * p_agg_wt)
|
|
980
|
+
wt_mat = wt_mat + (n_ind * n_agg_wt * -1.0)
|
|
981
|
+
wt_mat = np.sum(wt_mat, axis=-1)
|
|
982
|
+
return wt_mat
|
|
983
|
+
|
|
984
|
+
def calculate_wt_conv2d_transpose(wts, inp, w, b, padding, strides, act):
|
|
985
|
+
out_shape, paddings = calculate_output_padding_conv2d_transpose(inp.shape, w.shape, padding, strides)
|
|
986
|
+
out_ds = np.zeros(out_shape + [w.shape[3]])
|
|
987
|
+
|
|
988
|
+
for ind1 in range(inp.shape[0]):
|
|
989
|
+
for ind2 in range(inp.shape[1]):
|
|
990
|
+
out_ind1 = ind1 * strides[0]
|
|
991
|
+
out_ind2 = ind2 * strides[1]
|
|
992
|
+
tmp_patch = inp[ind1, ind2, :]
|
|
993
|
+
updates = calculate_wt_conv2d_transpose_unit(tmp_patch, wts[ind1, ind2, :], w, b, act)
|
|
994
|
+
end_ind1 = min(out_ind1 + w.shape[0], out_shape[0])
|
|
995
|
+
end_ind2 = min(out_ind2 + w.shape[1], out_shape[1])
|
|
996
|
+
valid_updates = updates[:end_ind1 - out_ind1, :end_ind2 - out_ind2, :]
|
|
997
|
+
out_ds[out_ind1:end_ind1, out_ind2:end_ind2, :] += valid_updates
|
|
998
|
+
|
|
999
|
+
if padding == 'same':
|
|
1000
|
+
adjusted_out_ds = np.zeros(inp.shape)
|
|
1001
|
+
for i in range(inp.shape[0]):
|
|
1002
|
+
for j in range(inp.shape[1]):
|
|
1003
|
+
start_i = max(0, i * strides[0])
|
|
1004
|
+
start_j = max(0, j * strides[1])
|
|
1005
|
+
end_i = min(out_ds.shape[0], (i+1) * strides[0])
|
|
1006
|
+
end_j = min(out_ds.shape[1], (j+1) * strides[1])
|
|
1007
|
+
relevant_area = out_ds[start_i:end_i, start_j:end_j, :]
|
|
1008
|
+
adjusted_out_ds[i, j, :] = np.sum(relevant_area, axis=(0, 1))
|
|
1009
|
+
out_ds = adjusted_out_ds
|
|
1010
|
+
else:
|
|
1011
|
+
out_ds = out_ds[paddings[0][0]:(paddings[0][0] + inp.shape[0]),
|
|
1012
|
+
paddings[1][0]:(paddings[1][0] + inp.shape[1]), :]
|
|
1013
|
+
|
|
1014
|
+
return out_ds
|
|
1015
|
+
|
|
1016
|
+
|
|
1017
|
+
def calculate_output_padding_conv1d_transpose(input_shape, kernel_size, padding, strides):
|
|
1018
|
+
if padding == 'valid':
|
|
1019
|
+
out_shape = [(input_shape[0] - 1) * strides + kernel_size[0]]
|
|
1020
|
+
paddings = [[0, 0], [0, 0]]
|
|
1021
|
+
else: # 'same' padding
|
|
1022
|
+
out_shape = [input_shape[0] * strides]
|
|
1023
|
+
pad_h = max(0, (input_shape[0] - 1) * strides + kernel_size[0] - out_shape[0])
|
|
1024
|
+
paddings = [[pad_h // 2, pad_h // 2],
|
|
1025
|
+
[0, 0]]
|
|
1026
|
+
|
|
1027
|
+
return out_shape, paddings
|
|
1028
|
+
|
|
1029
|
+
def calculate_wt_conv1d_transpose_unit(patch, wts, w, b, act):
|
|
1030
|
+
if patch.ndim == 1:
|
|
1031
|
+
patch = patch.reshape(1, -1)
|
|
1032
|
+
elif patch.ndim != 2:
|
|
1033
|
+
raise ValueError(f"Unexpected patch shape: {patch.shape}")
|
|
1034
|
+
k = tf.transpose(w, perm=[0, 2, 1]).numpy()
|
|
1035
|
+
bias = b.numpy()
|
|
1036
|
+
b_ind = bias > 0
|
|
1037
|
+
bias_pos = bias * b_ind
|
|
1038
|
+
b_ind = bias < 0
|
|
1039
|
+
bias_neg = bias * b_ind * -1.0
|
|
1040
|
+
conv_out = np.einsum('ijk,mj->ijk', k, patch)
|
|
1041
|
+
p_ind = conv_out > 0
|
|
1042
|
+
p_ind = conv_out * p_ind
|
|
1043
|
+
n_ind = conv_out < 0
|
|
1044
|
+
n_ind = conv_out * n_ind
|
|
1045
|
+
|
|
1046
|
+
p_sum = np.einsum("ijl->l", p_ind)
|
|
1047
|
+
n_sum = np.einsum("ijl->l", n_ind) * -1.0
|
|
1048
|
+
t_sum = p_sum + n_sum
|
|
1049
|
+
|
|
1050
|
+
wt_mat = np.zeros_like(k)
|
|
1051
|
+
p_saturate = p_sum > 0
|
|
1052
|
+
n_saturate = n_sum > 0
|
|
1053
|
+
|
|
1054
|
+
if act["type"] == 'mono':
|
|
1055
|
+
if act["range"]["l"]:
|
|
1056
|
+
p_saturate = t_sum > act["range"]["l"]
|
|
1057
|
+
if act["range"]["u"]:
|
|
1058
|
+
n_saturate = t_sum < act["range"]["u"]
|
|
1059
|
+
elif act["type"] == 'non_mono':
|
|
1060
|
+
t_act = act["func"](t_sum)
|
|
1061
|
+
p_act = act["func"](p_sum + bias_pos)
|
|
1062
|
+
n_act = act["func"](-1 * (n_sum + bias_neg))
|
|
1063
|
+
if act["range"]["l"]:
|
|
1064
|
+
temp_ind = t_sum > act["range"]["l"]
|
|
1065
|
+
p_saturate = p_saturate * temp_ind
|
|
1066
|
+
if act["range"]["u"]:
|
|
1067
|
+
temp_ind = t_sum < act["range"]["u"]
|
|
1068
|
+
n_saturate = n_saturate * temp_ind
|
|
1069
|
+
temp_ind = np.abs(t_act - p_act) > 1e-5
|
|
1070
|
+
n_saturate = n_saturate * temp_ind
|
|
1071
|
+
temp_ind = np.abs(t_act - n_act) > 1e-5
|
|
1072
|
+
p_saturate = p_saturate * temp_ind
|
|
1073
|
+
|
|
1074
|
+
p_agg_wt = (1.0 / (p_sum + n_sum + bias_pos + bias_neg)) * wts * p_saturate
|
|
1075
|
+
n_agg_wt = (1.0 / (p_sum + n_sum + bias_pos + bias_neg)) * wts * n_saturate
|
|
1076
|
+
wt_mat = wt_mat + (p_ind * p_agg_wt)
|
|
1077
|
+
wt_mat = wt_mat + (n_ind * n_agg_wt * -1.0)
|
|
1078
|
+
wt_mat = np.sum(wt_mat, axis=-1)
|
|
1079
|
+
return wt_mat
|
|
1080
|
+
|
|
1081
|
+
def calculate_wt_conv1d_transpose(wts, inp, w, b, padding, strides, act):
|
|
1082
|
+
out_shape, paddings = calculate_output_padding_conv1d_transpose(inp.shape, w.shape, padding, strides)
|
|
1083
|
+
out_ds = np.zeros(out_shape + [w.shape[2]])
|
|
1084
|
+
for ind in range(inp.shape[0]):
|
|
1085
|
+
out_ind = ind * strides
|
|
1086
|
+
tmp_patch = inp[ind, :]
|
|
1087
|
+
updates = calculate_wt_conv1d_transpose_unit(tmp_patch, wts[ind, :], w, b, act)
|
|
1088
|
+
end_ind = min(out_ind + w.shape[0], out_shape[0])
|
|
1089
|
+
valid_updates = updates[:end_ind - out_ind, :]
|
|
1090
|
+
out_ds[out_ind:end_ind, :] += valid_updates
|
|
1091
|
+
|
|
1092
|
+
if padding == 'same':
|
|
1093
|
+
adjusted_out_ds = np.zeros(inp.shape)
|
|
1094
|
+
for i in range(inp.shape[0]):
|
|
1095
|
+
start_i = max(0, i * strides)
|
|
1096
|
+
end_i = min(out_ds.shape[0], (i + 1) * strides)
|
|
1097
|
+
relevant_area = out_ds[start_i:end_i, :]
|
|
1098
|
+
adjusted_out_ds[i, :] = np.sum(relevant_area, axis=0)
|
|
1099
|
+
out_ds = adjusted_out_ds
|
|
1100
|
+
else:
|
|
1101
|
+
out_ds = out_ds[paddings[0][0]:(paddings[0][0] + inp.shape[0]), :]
|
|
1102
|
+
return out_ds
|
|
1103
|
+
|
|
1104
|
+
####################################################################
|
|
1105
|
+
################### Encoder Model ####################
|
|
1106
|
+
####################################################################
|
|
1107
|
+
def stabilize(matrix, epsilon=1e-6):
|
|
1108
|
+
return matrix + epsilon * np.sign(matrix)
|
|
1109
|
+
|
|
1110
|
+
|
|
1111
|
+
def calculate_relevance_V(wts, value_output):
|
|
1112
|
+
# Initialize wt_mat with zeros
|
|
1113
|
+
wt_mat_V = np.zeros((wts.shape[0], wts.shape[1], *value_output.shape))
|
|
1114
|
+
|
|
1115
|
+
for i in range(wts.shape[0]):
|
|
1116
|
+
for j in range(wts.shape[1]):
|
|
1117
|
+
l1_ind1 = value_output
|
|
1118
|
+
wt_ind1 = wt_mat_V[i, j]
|
|
1119
|
+
wt = wts[i, j]
|
|
1120
|
+
|
|
1121
|
+
p_ind = l1_ind1 > 0
|
|
1122
|
+
n_ind = l1_ind1 < 0
|
|
1123
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
1124
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
1125
|
+
|
|
1126
|
+
if p_sum > 0:
|
|
1127
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
1128
|
+
else:
|
|
1129
|
+
p_agg_wt = 0
|
|
1130
|
+
if n_sum > 0:
|
|
1131
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
1132
|
+
else:
|
|
1133
|
+
n_agg_wt = 0
|
|
1134
|
+
|
|
1135
|
+
if p_sum == 0:
|
|
1136
|
+
p_sum = 1
|
|
1137
|
+
if n_sum == 0:
|
|
1138
|
+
n_sum = 1
|
|
1139
|
+
|
|
1140
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
1141
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
1142
|
+
|
|
1143
|
+
wt_mat_V = np.sum(wt_mat_V, axis=(0,1))
|
|
1144
|
+
return wt_mat_V
|
|
1145
|
+
|
|
1146
|
+
|
|
1147
|
+
def calculate_relevance_QK(wts, QK_output):
|
|
1148
|
+
# Initialize wt_mat with zeros
|
|
1149
|
+
wt_mat_QK = np.zeros((wts.shape[0], wts.shape[1], *QK_output.shape))
|
|
1150
|
+
|
|
1151
|
+
for i in range(wts.shape[0]):
|
|
1152
|
+
for j in range(wts.shape[1]):
|
|
1153
|
+
l1_ind1 = QK_output
|
|
1154
|
+
wt_ind1 = wt_mat_QK[i, j]
|
|
1155
|
+
wt = wts[i, j]
|
|
1156
|
+
|
|
1157
|
+
p_ind = l1_ind1 > 0
|
|
1158
|
+
n_ind = l1_ind1 < 0
|
|
1159
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
1160
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
1161
|
+
|
|
1162
|
+
t_sum = p_sum - n_sum
|
|
1163
|
+
|
|
1164
|
+
# This layer has a softmax activation function
|
|
1165
|
+
act = {
|
|
1166
|
+
"name": "softmax",
|
|
1167
|
+
"range": {"l": -1, "u": 2},
|
|
1168
|
+
"type": "mono",
|
|
1169
|
+
"func": None,
|
|
1170
|
+
}
|
|
1171
|
+
|
|
1172
|
+
if act["type"] == "mono":
|
|
1173
|
+
if act["range"]["l"]:
|
|
1174
|
+
if t_sum < act["range"]["l"]:
|
|
1175
|
+
p_sum = 0
|
|
1176
|
+
if act["range"]["u"]:
|
|
1177
|
+
if t_sum > act["range"]["u"]:
|
|
1178
|
+
n_sum = 0
|
|
1179
|
+
|
|
1180
|
+
if p_sum > 0:
|
|
1181
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
1182
|
+
else:
|
|
1183
|
+
p_agg_wt = 0
|
|
1184
|
+
|
|
1185
|
+
if n_sum > 0:
|
|
1186
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
1187
|
+
else:
|
|
1188
|
+
n_agg_wt = 0
|
|
1189
|
+
|
|
1190
|
+
if p_sum == 0:
|
|
1191
|
+
p_sum = 1
|
|
1192
|
+
if n_sum == 0:
|
|
1193
|
+
n_sum = 1
|
|
1194
|
+
|
|
1195
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
1196
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
1197
|
+
|
|
1198
|
+
wt_mat_QK = np.sum(wt_mat_QK, axis=(0, 1))
|
|
1199
|
+
return wt_mat_QK
|
|
1200
|
+
|
|
1201
|
+
|
|
1202
|
+
def calculate_wt_self_attention(wts, inp, w):
|
|
1203
|
+
'''
|
|
1204
|
+
Input:
|
|
1205
|
+
wts: relevance score of the layer
|
|
1206
|
+
inp: input to the layer
|
|
1207
|
+
w: weights of the layer- ['W_q', 'W_k', 'W_v', 'W_o']
|
|
1208
|
+
|
|
1209
|
+
Outputs:
|
|
1210
|
+
Step-1: outputs = torch.matmul(input_a, input_b)
|
|
1211
|
+
Step-2: outputs = F.softmax(inputs, dim=dim, dtype=dtype)
|
|
1212
|
+
Step-3: outputs = input_a * input_b
|
|
1213
|
+
'''
|
|
1214
|
+
query_output = np.einsum('ij,kj->ik', inp, w['W_q'].T)
|
|
1215
|
+
key_output = np.einsum('ij,kj->ik', inp, w['W_k'].T)
|
|
1216
|
+
value_output = np.einsum('ij,kj->ik', inp, w['W_v'].T)
|
|
1217
|
+
|
|
1218
|
+
# --------------- Relevance Calculation for Step-3 -----------------------
|
|
1219
|
+
relevance_V = wts / 2
|
|
1220
|
+
relevance_QK = wts / 2
|
|
1221
|
+
|
|
1222
|
+
# --------------- Relevance Calculation for V --------------------------------
|
|
1223
|
+
wt_mat_V = calculate_relevance_V(relevance_V, value_output)
|
|
1224
|
+
|
|
1225
|
+
# --------------- Transformed Relevance QK ----------------------------------
|
|
1226
|
+
QK_output = np.einsum('ij,kj->ik', query_output, key_output)
|
|
1227
|
+
wt_mat_QK = calculate_relevance_QK(relevance_QK, QK_output)
|
|
1228
|
+
|
|
1229
|
+
# --------------- Relevance Calculation for K and Q --------------------------------
|
|
1230
|
+
stabilized_QK_output = stabilize(QK_output * 2)
|
|
1231
|
+
norm_wt_mat_QK = wt_mat_QK / stabilized_QK_output
|
|
1232
|
+
wt_mat_Q = np.einsum('ij,jk->ik', norm_wt_mat_QK, key_output) * query_output
|
|
1233
|
+
wt_mat_K = np.einsum('ij,ik->kj', query_output, norm_wt_mat_QK) * key_output
|
|
1234
|
+
|
|
1235
|
+
wt_mat = wt_mat_V + wt_mat_K + wt_mat_Q
|
|
1236
|
+
return wt_mat
|
|
1237
|
+
|
|
1238
|
+
|
|
1239
|
+
def calculate_wt_feed_forward(wts, inp, w):
|
|
1240
|
+
intermediate_output = np.einsum('ij,jk->ik', inp, w['W_int'])
|
|
1241
|
+
feed_forward_output = np.einsum('ij,jk->ik', intermediate_output, w['W_out'])
|
|
1242
|
+
|
|
1243
|
+
relevance_input = np.zeros(inp.shape)
|
|
1244
|
+
relevance_out = np.zeros(intermediate_output.shape)
|
|
1245
|
+
|
|
1246
|
+
# Relevance propagation for 2nd layer
|
|
1247
|
+
for i in range(wts.shape[0]):
|
|
1248
|
+
R2 = wts[i]
|
|
1249
|
+
contribution_matrix2 = np.einsum('ij,j->ij', w['W_out'].T, intermediate_output[i])
|
|
1250
|
+
wt_mat2 = np.zeros(contribution_matrix2.shape)
|
|
1251
|
+
|
|
1252
|
+
for j in range(contribution_matrix2.shape[0]):
|
|
1253
|
+
l1_ind1 = contribution_matrix2[j]
|
|
1254
|
+
wt_ind1 = wt_mat2[j]
|
|
1255
|
+
wt = R2[j]
|
|
1256
|
+
|
|
1257
|
+
p_ind = l1_ind1 > 0
|
|
1258
|
+
n_ind = l1_ind1 < 0
|
|
1259
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
1260
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
1261
|
+
|
|
1262
|
+
if p_sum > 0:
|
|
1263
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
1264
|
+
else:
|
|
1265
|
+
p_agg_wt = 0
|
|
1266
|
+
|
|
1267
|
+
if n_sum > 0:
|
|
1268
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
1269
|
+
else:
|
|
1270
|
+
n_agg_wt = 0
|
|
1271
|
+
|
|
1272
|
+
if p_sum == 0:
|
|
1273
|
+
p_sum = 1
|
|
1274
|
+
if n_sum == 0:
|
|
1275
|
+
n_sum = 1
|
|
1276
|
+
|
|
1277
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
1278
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
1279
|
+
|
|
1280
|
+
relevance_out[i] = wt_mat2.sum(axis=0)
|
|
1281
|
+
|
|
1282
|
+
# Relevance propagation for 1st layer
|
|
1283
|
+
for i in range(relevance_out.shape[0]):
|
|
1284
|
+
R1 = relevance_out[i]
|
|
1285
|
+
contribution_matrix1 = np.einsum('ij,j->ij', w['W_int'].T, inp[i])
|
|
1286
|
+
wt_mat1 = np.zeros(contribution_matrix1.shape)
|
|
1287
|
+
|
|
1288
|
+
for j in range(contribution_matrix1.shape[0]):
|
|
1289
|
+
l1_ind1 = contribution_matrix1[j]
|
|
1290
|
+
wt_ind1 = wt_mat1[j]
|
|
1291
|
+
wt = R1[j]
|
|
1292
|
+
|
|
1293
|
+
p_ind = l1_ind1 > 0
|
|
1294
|
+
n_ind = l1_ind1 < 0
|
|
1295
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
1296
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
1297
|
+
|
|
1298
|
+
t_sum = p_sum - n_sum
|
|
1299
|
+
|
|
1300
|
+
# This layer has a ReLU activation function
|
|
1301
|
+
act = {
|
|
1302
|
+
"name": "relu",
|
|
1303
|
+
"range": {"l": 0, "u": None},
|
|
1304
|
+
"type": "mono",
|
|
1305
|
+
"func": None,
|
|
1306
|
+
}
|
|
1307
|
+
|
|
1308
|
+
if act["type"] == "mono":
|
|
1309
|
+
if act["range"]["l"]:
|
|
1310
|
+
if t_sum < act["range"]["l"]:
|
|
1311
|
+
p_sum = 0
|
|
1312
|
+
if act["range"]["u"]:
|
|
1313
|
+
if t_sum > act["range"]["u"]:
|
|
1314
|
+
n_sum = 0
|
|
1315
|
+
|
|
1316
|
+
if p_sum > 0:
|
|
1317
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
1318
|
+
else:
|
|
1319
|
+
p_agg_wt = 0
|
|
1320
|
+
|
|
1321
|
+
if n_sum > 0:
|
|
1322
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
1323
|
+
else:
|
|
1324
|
+
n_agg_wt = 0
|
|
1325
|
+
|
|
1326
|
+
if p_sum == 0:
|
|
1327
|
+
p_sum = 1
|
|
1328
|
+
if n_sum == 0:
|
|
1329
|
+
n_sum = 1
|
|
1330
|
+
|
|
1331
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
1332
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
1333
|
+
|
|
1334
|
+
relevance_input[i] = wt_mat1.sum(axis=0)
|
|
1335
|
+
|
|
1336
|
+
return relevance_input
|
|
1337
|
+
|
|
1338
|
+
|
|
1339
|
+
def calculate_wt_pooler(wts, inp, w):
|
|
1340
|
+
'''
|
|
1341
|
+
Input:
|
|
1342
|
+
wts: relevance score of the layer
|
|
1343
|
+
inp: input to the layer
|
|
1344
|
+
w: weights of the layer- ['W_p', 'b_p']
|
|
1345
|
+
'''
|
|
1346
|
+
relevance_inp = np.zeros(inp.shape)
|
|
1347
|
+
|
|
1348
|
+
for i in range(inp.shape[0]):
|
|
1349
|
+
# Compute contribution matrix
|
|
1350
|
+
contribution_matrix = np.einsum('ij,j->ij', w['W_p'], inp[i])
|
|
1351
|
+
wt_mat = np.zeros(contribution_matrix.shape)
|
|
1352
|
+
|
|
1353
|
+
# Iterate over each unit
|
|
1354
|
+
for j in range(contribution_matrix.shape[0]):
|
|
1355
|
+
l1_ind1 = contribution_matrix[j]
|
|
1356
|
+
wt_ind1 = wt_mat[j]
|
|
1357
|
+
wt = wts[j]
|
|
1358
|
+
|
|
1359
|
+
p_ind = l1_ind1 > 0
|
|
1360
|
+
n_ind = l1_ind1 < 0
|
|
1361
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
1362
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
1363
|
+
|
|
1364
|
+
# Calculate biases
|
|
1365
|
+
pbias = max(w['b_p'][j], 0)
|
|
1366
|
+
nbias = min(w['b_p'][j], 0) * -1
|
|
1367
|
+
|
|
1368
|
+
t_sum = p_sum + pbias - n_sum - nbias
|
|
1369
|
+
|
|
1370
|
+
# This layer has a tanh activation function
|
|
1371
|
+
act = {
|
|
1372
|
+
"name": "tanh",
|
|
1373
|
+
"range": {"l": -2, "u": 2},
|
|
1374
|
+
"type": "mono",
|
|
1375
|
+
"func": None
|
|
1376
|
+
}
|
|
1377
|
+
|
|
1378
|
+
# Apply activation function constraints
|
|
1379
|
+
if act["type"] == "mono":
|
|
1380
|
+
if act["range"]["l"]:
|
|
1381
|
+
if t_sum < act["range"]["l"]:
|
|
1382
|
+
p_sum = 0
|
|
1383
|
+
if act["range"]["u"]:
|
|
1384
|
+
if t_sum > act["range"]["u"]:
|
|
1385
|
+
n_sum = 0
|
|
1386
|
+
|
|
1387
|
+
# Aggregate weights based on positive and negative contributions
|
|
1388
|
+
p_agg_wt = 0
|
|
1389
|
+
n_agg_wt = 0
|
|
1390
|
+
if p_sum > 0:
|
|
1391
|
+
p_agg_wt = (p_sum + pbias) / (p_sum + n_sum + pbias + nbias)
|
|
1392
|
+
p_agg_wt *= (p_sum / (p_sum + pbias))
|
|
1393
|
+
|
|
1394
|
+
if n_sum > 0:
|
|
1395
|
+
n_agg_wt = (n_sum + nbias) / (p_sum + n_sum + pbias + nbias)
|
|
1396
|
+
n_agg_wt *= (n_sum / (n_sum + nbias))
|
|
1397
|
+
|
|
1398
|
+
# Prevent division by zero
|
|
1399
|
+
if p_sum == 0:
|
|
1400
|
+
p_sum = 1
|
|
1401
|
+
if n_sum == 0:
|
|
1402
|
+
n_sum = 1
|
|
1403
|
+
|
|
1404
|
+
# Update weight matrix
|
|
1405
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
1406
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
1407
|
+
|
|
1408
|
+
# Calculate relevance for each token
|
|
1409
|
+
relevance_inp[i] = wt_mat.sum(axis=0)
|
|
1410
|
+
|
|
1411
|
+
relevance_inp *= (100 / np.sum(relevance_inp))
|
|
1412
|
+
return relevance_inp
|
|
1413
|
+
|
|
1414
|
+
|
|
1415
|
+
def calculate_wt_classifier(wts, inp, w):
|
|
1416
|
+
'''
|
|
1417
|
+
Input:
|
|
1418
|
+
wts: relevance score of the layer
|
|
1419
|
+
inp: input to the layer
|
|
1420
|
+
w: weights of the layer- ['W_cls', 'b_cls']
|
|
1421
|
+
'''
|
|
1422
|
+
mul_mat = np.einsum("ij, i->ij", w['W_cls'], inp).T
|
|
1423
|
+
wt_mat = np.zeros(mul_mat.shape)
|
|
1424
|
+
|
|
1425
|
+
for i in range(mul_mat.shape[0]):
|
|
1426
|
+
l1_ind1 = mul_mat[i]
|
|
1427
|
+
wt_ind1 = wt_mat[i]
|
|
1428
|
+
wt = wts[i]
|
|
1429
|
+
|
|
1430
|
+
p_ind = l1_ind1 > 0
|
|
1431
|
+
n_ind = l1_ind1 < 0
|
|
1432
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
1433
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
1434
|
+
|
|
1435
|
+
if w['b_cls'][i] > 0:
|
|
1436
|
+
pbias = w['b_cls'][i]
|
|
1437
|
+
nbias = 0
|
|
1438
|
+
else:
|
|
1439
|
+
pbias = 0
|
|
1440
|
+
nbias = w['b_cls'][i]
|
|
1441
|
+
|
|
1442
|
+
t_sum = p_sum + pbias - n_sum - nbias
|
|
1443
|
+
|
|
1444
|
+
# This layer has a softmax activation function
|
|
1445
|
+
act = {
|
|
1446
|
+
"name": "softmax",
|
|
1447
|
+
"range": {"l": -1, "u": 2},
|
|
1448
|
+
"type": "mono",
|
|
1449
|
+
"func": None,
|
|
1450
|
+
}
|
|
1451
|
+
|
|
1452
|
+
if act["type"] == "mono":
|
|
1453
|
+
if act["range"]["l"]:
|
|
1454
|
+
if t_sum < act["range"]["l"]:
|
|
1455
|
+
p_sum = 0
|
|
1456
|
+
if act["range"]["u"]:
|
|
1457
|
+
if t_sum > act["range"]["u"]:
|
|
1458
|
+
n_sum = 0
|
|
1459
|
+
|
|
1460
|
+
if p_sum > 0:
|
|
1461
|
+
p_agg_wt = (p_sum + pbias) / (p_sum + n_sum + pbias + nbias)
|
|
1462
|
+
p_agg_wt = p_agg_wt * (p_sum / (p_sum + pbias))
|
|
1463
|
+
else:
|
|
1464
|
+
p_agg_wt = 0
|
|
1465
|
+
if n_sum > 0:
|
|
1466
|
+
n_agg_wt = (n_sum + nbias) / (p_sum + n_sum + pbias + nbias)
|
|
1467
|
+
n_agg_wt = n_agg_wt * (n_sum / (n_sum + nbias))
|
|
1468
|
+
else:
|
|
1469
|
+
n_agg_wt = 0
|
|
1470
|
+
|
|
1471
|
+
if p_sum == 0:
|
|
1472
|
+
p_sum = 1
|
|
1473
|
+
if n_sum == 0:
|
|
1474
|
+
n_sum = 1
|
|
1475
|
+
|
|
1476
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
1477
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
1478
|
+
|
|
1479
|
+
wt_mat = wt_mat.sum(axis=0)
|
|
1480
|
+
return wt_mat
|
|
1481
|
+
|
|
1482
|
+
|
|
1483
|
+
####################################################################
|
|
1484
|
+
################### Encoder-Decoder Model ####################
|
|
1485
|
+
####################################################################
|
|
1486
|
+
|
|
1487
|
+
def calculate_enc_dec_start_wt(arg, indices):
|
|
1488
|
+
y = np.zeros(arg.shape, dtype=np.float64)
|
|
1489
|
+
value = 1 / arg.shape[0]
|
|
1490
|
+
|
|
1491
|
+
for i in range(arg.shape[0]):
|
|
1492
|
+
y[i][indices[i]] = value
|
|
1493
|
+
|
|
1494
|
+
return y
|
|
1495
|
+
|
|
1496
|
+
|
|
1497
|
+
def calculate_wt_lm_head(wts, inp, w):
|
|
1498
|
+
'''
|
|
1499
|
+
Input:
|
|
1500
|
+
wts: relevance score of the layer
|
|
1501
|
+
inp: input to the layer
|
|
1502
|
+
w: weights of the layer- ['W_lm_head']
|
|
1503
|
+
'''
|
|
1504
|
+
relevance_input = np.zeros(inp.shape)
|
|
1505
|
+
|
|
1506
|
+
for i in range(wts.shape[0]):
|
|
1507
|
+
R = wts[i]
|
|
1508
|
+
contribution_matrix = np.einsum('ij,j->ij', w['W_lm_head'], inp[i])
|
|
1509
|
+
wt_mat = np.zeros(contribution_matrix.shape)
|
|
1510
|
+
|
|
1511
|
+
for j in range(contribution_matrix.shape[0]):
|
|
1512
|
+
l1_ind1 = contribution_matrix[j]
|
|
1513
|
+
wt_ind1 = wt_mat[j]
|
|
1514
|
+
wt = R[j]
|
|
1515
|
+
|
|
1516
|
+
p_ind = l1_ind1 > 0
|
|
1517
|
+
n_ind = l1_ind1 < 0
|
|
1518
|
+
|
|
1519
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
1520
|
+
n_sum = np.sum(l1_ind1[n_ind]) * -1
|
|
1521
|
+
|
|
1522
|
+
if p_sum > 0:
|
|
1523
|
+
p_agg_wt = p_sum / (p_sum + n_sum)
|
|
1524
|
+
else:
|
|
1525
|
+
p_agg_wt = 0
|
|
1526
|
+
|
|
1527
|
+
if n_sum > 0:
|
|
1528
|
+
n_agg_wt = n_sum / (p_sum + n_sum)
|
|
1529
|
+
else:
|
|
1530
|
+
n_agg_wt = 0
|
|
1531
|
+
|
|
1532
|
+
if p_sum == 0:
|
|
1533
|
+
p_sum = 1
|
|
1534
|
+
if n_sum == 0:
|
|
1535
|
+
n_sum = 1
|
|
1536
|
+
|
|
1537
|
+
wt_ind1[p_ind] = (l1_ind1[p_ind] / p_sum) * wt * p_agg_wt
|
|
1538
|
+
wt_ind1[n_ind] = (l1_ind1[n_ind] / n_sum) * wt * n_agg_wt * -1.0
|
|
1539
|
+
|
|
1540
|
+
relevance_input[i] = wt_mat.sum(axis=0)
|
|
1541
|
+
|
|
1542
|
+
return relevance_input
|
|
1543
|
+
|
|
1544
|
+
|
|
1545
|
+
def calculate_wt_cross_attention(wts, inp, w):
|
|
1546
|
+
'''
|
|
1547
|
+
Input:
|
|
1548
|
+
wts: relevance score of the layer
|
|
1549
|
+
inp: input to the layer
|
|
1550
|
+
w: weights of the layer- ['W_q', 'W_k', 'W_v', 'W_o']
|
|
1551
|
+
inputs: dict_keys(['query', 'key', 'value'])
|
|
1552
|
+
|
|
1553
|
+
Outputs:
|
|
1554
|
+
Step-1: outputs = torch.matmul(input_a, input_b)
|
|
1555
|
+
Step-2: outputs = F.softmax(inputs, dim=dim, dtype=dtype)
|
|
1556
|
+
Step-3: outputs = input_a * input_b
|
|
1557
|
+
'''
|
|
1558
|
+
k_v_inp, q_inp = inp
|
|
1559
|
+
query_output = np.einsum('ij,kj->ik', q_inp, w['W_q'].T)
|
|
1560
|
+
key_output = np.einsum('ij,kj->ik', k_v_inp, w['W_k'].T)
|
|
1561
|
+
value_output = np.einsum('ij,kj->ik', k_v_inp, w['W_v'].T)
|
|
1562
|
+
|
|
1563
|
+
# --------------- Relevance Calculation for Step-3 -----------------------
|
|
1564
|
+
relevance_V = wts / 2
|
|
1565
|
+
relevance_QK = wts / 2
|
|
1566
|
+
|
|
1567
|
+
# --------------- Relevance Calculation for V --------------------------------
|
|
1568
|
+
wt_mat_V = calculate_relevance_V(relevance_V, value_output)
|
|
1569
|
+
|
|
1570
|
+
# --------------- Transformed Relevance QK ----------------------------------
|
|
1571
|
+
QK_output = np.einsum('ij,kj->ik', query_output, key_output)
|
|
1572
|
+
wt_mat_QK = calculate_relevance_QK(relevance_QK, QK_output)
|
|
1573
|
+
|
|
1574
|
+
# --------------- Relevance Calculation for K and Q --------------------------------
|
|
1575
|
+
stabilized_QK_output = stabilize(QK_output * 2)
|
|
1576
|
+
norm_wt_mat_QK = wt_mat_QK / stabilized_QK_output
|
|
1577
|
+
wt_mat_Q = np.einsum('ij,jk->ik', norm_wt_mat_QK, key_output) * query_output
|
|
1578
|
+
wt_mat_K = np.einsum('ij,ik->kj', query_output, norm_wt_mat_QK) * key_output
|
|
1579
|
+
|
|
1580
|
+
wt_mat_KV = wt_mat_V + wt_mat_K
|
|
1581
|
+
wt_mat = [wt_mat_KV, wt_mat_Q]
|
|
1582
|
+
return wt_mat
|