dl-backtrace 0.0.12__py3-none-any.whl → 0.0.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dl-backtrace might be problematic. Click here for more details.
- dl_backtrace/pytorch_backtrace/backtrace/backtrace.py +173 -44
- dl_backtrace/pytorch_backtrace/backtrace/utils/__init__.py +3 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/encoder.py +183 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/encoder_decoder.py +489 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/helper.py +95 -0
- dl_backtrace/pytorch_backtrace/backtrace/utils/prop.py +481 -0
- dl_backtrace/tf_backtrace/backtrace/__init__.py +1 -2
- dl_backtrace/tf_backtrace/backtrace/activation_info.py +33 -0
- dl_backtrace/tf_backtrace/backtrace/backtrace.py +506 -279
- dl_backtrace/tf_backtrace/backtrace/models.py +25 -0
- dl_backtrace/tf_backtrace/backtrace/server.py +27 -0
- dl_backtrace/tf_backtrace/backtrace/utils/__init__.py +5 -2
- dl_backtrace/tf_backtrace/backtrace/utils/encoder.py +206 -0
- dl_backtrace/tf_backtrace/backtrace/utils/encoder_decoder.py +501 -0
- dl_backtrace/tf_backtrace/backtrace/utils/helper.py +99 -0
- dl_backtrace/tf_backtrace/backtrace/utils/utils_contrast.py +1132 -0
- dl_backtrace/tf_backtrace/backtrace/utils/utils_prop.py +1582 -0
- dl_backtrace/version.py +2 -2
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/METADATA +3 -2
- dl_backtrace-0.0.16.dist-info/RECORD +29 -0
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/WHEEL +1 -1
- dl_backtrace/tf_backtrace/backtrace/config.py +0 -41
- dl_backtrace/tf_backtrace/backtrace/utils/contrast.py +0 -834
- dl_backtrace/tf_backtrace/backtrace/utils/prop.py +0 -725
- dl_backtrace-0.0.12.dist-info/RECORD +0 -21
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/LICENSE +0 -0
- {dl_backtrace-0.0.12.dist-info → dl_backtrace-0.0.16.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1132 @@
|
|
|
1
|
+
import gc
|
|
2
|
+
import numpy as np
|
|
3
|
+
import tensorflow as tf
|
|
4
|
+
from tensorflow import keras
|
|
5
|
+
from tensorflow.keras import backend as K
|
|
6
|
+
from tensorflow.keras.backend import sigmoid
|
|
7
|
+
from numpy.lib.stride_tricks import as_strided
|
|
8
|
+
|
|
9
|
+
def np_swish(x, beta = 0.75):
|
|
10
|
+
z = 1/(1 + np.exp(-(beta * x)))
|
|
11
|
+
return (x * z)
|
|
12
|
+
|
|
13
|
+
def np_wave(x, alpha = 1.0):
|
|
14
|
+
return ((alpha*x*np.exp(1.0))/(np.exp(-x)+np.exp(x)))
|
|
15
|
+
|
|
16
|
+
def np_pulse(x,alpha = 1.0):
|
|
17
|
+
return (alpha*(1 - np.tanh(x)*np.tanh(x)))
|
|
18
|
+
|
|
19
|
+
def np_absolute(x,alpha = 1.0):
|
|
20
|
+
return (alpha*x*np.tanh(x))
|
|
21
|
+
|
|
22
|
+
def np_hard_sigmoid(x):
|
|
23
|
+
return np.clip(0.2 * x + 0.5, 0, 1)
|
|
24
|
+
|
|
25
|
+
def np_sigmoid(x):
|
|
26
|
+
z = 1/(1+np.exp(-x))
|
|
27
|
+
return z
|
|
28
|
+
|
|
29
|
+
def np_tanh(x):
|
|
30
|
+
z = np.tanh(x)
|
|
31
|
+
return z.astype(np.float32)
|
|
32
|
+
|
|
33
|
+
def calculate_start_wt(arg,scaler=None,thresholding=0.5,task="binary-classification"):
|
|
34
|
+
if arg.ndim == 2:
|
|
35
|
+
if task=="binary-classification" or task=="multi-class-classification":
|
|
36
|
+
x = np.argmax(arg[0])
|
|
37
|
+
m = np.max(arg[0])
|
|
38
|
+
y_pos = np.zeros_like(arg)
|
|
39
|
+
if scaler:
|
|
40
|
+
y_pos[0][x] = scaler
|
|
41
|
+
else:
|
|
42
|
+
y_pos[0][x] = m
|
|
43
|
+
y_neg = np.array(arg)
|
|
44
|
+
if m<1 and arg.shape[-1]==1:
|
|
45
|
+
y_neg[0][x] = 1-m
|
|
46
|
+
else:
|
|
47
|
+
y_neg[0][x] = 0
|
|
48
|
+
if scaler and np.sum(y_neg)>0:
|
|
49
|
+
y_neg = y_neg*(scaler/np.sum(y_neg))
|
|
50
|
+
elif task == "bbox-regression":
|
|
51
|
+
y_pos = np.zeros_like(arg)
|
|
52
|
+
if scaler:
|
|
53
|
+
y_pos[0] = scaler
|
|
54
|
+
num_non_zero_elements = np.count_nonzero(y)
|
|
55
|
+
if num_non_zero_elements > 0:
|
|
56
|
+
y = y / num_non_zero_elements
|
|
57
|
+
else:
|
|
58
|
+
x = np.argmax(arg[0])
|
|
59
|
+
m = np.max(arg[0])
|
|
60
|
+
y_pos[0] = m
|
|
61
|
+
y_neg = np.array(arg)
|
|
62
|
+
if m<1 and arg.shape[-1]==1:
|
|
63
|
+
y_neg[0][x] = 1-m
|
|
64
|
+
else:
|
|
65
|
+
y_neg[0][x] = 0
|
|
66
|
+
if scaler and np.sum(y_neg)>0:
|
|
67
|
+
y_neg = y_neg*(scaler/np.sum(y_neg))
|
|
68
|
+
else:
|
|
69
|
+
x = np.argmax(arg[0])
|
|
70
|
+
m = np.max(arg[0])
|
|
71
|
+
y_pos = np.zeros_like(arg)
|
|
72
|
+
if scaler:
|
|
73
|
+
y_pos[0][x] = scaler
|
|
74
|
+
else:
|
|
75
|
+
y_pos[0][x] = m
|
|
76
|
+
y_neg = np.array(arg)
|
|
77
|
+
if m<1 and arg.shape[-1]==1:
|
|
78
|
+
y_neg[0][x] = 1-m
|
|
79
|
+
else:
|
|
80
|
+
y_neg[0][x] = 0
|
|
81
|
+
if scaler and np.sum(y_neg)>0:
|
|
82
|
+
y_neg = y_neg*(scaler/np.sum(y_neg))
|
|
83
|
+
elif arg.ndim == 4:
|
|
84
|
+
if task == "binary-segmentation":
|
|
85
|
+
indices = np.where(arg > thresholding)
|
|
86
|
+
y_pos = np.zeros(arg.shape)
|
|
87
|
+
if scaler:
|
|
88
|
+
y_pos[indices] = scaler
|
|
89
|
+
num_non_zero_elements = np.count_nonzero(y_pos)
|
|
90
|
+
if num_non_zero_elements > 0:
|
|
91
|
+
y_pos = y_pos / num_non_zero_elements
|
|
92
|
+
else:
|
|
93
|
+
y_pos[indices] = arg[indices]
|
|
94
|
+
|
|
95
|
+
y_neg = np.array(arg)
|
|
96
|
+
m = np.max(arg[0])
|
|
97
|
+
if m<=1:
|
|
98
|
+
y_neg[indices] = 1 - arg[indices]
|
|
99
|
+
else:
|
|
100
|
+
y_neg[indices] = 0
|
|
101
|
+
if scaler and np.sum(y_neg)>0:
|
|
102
|
+
y_neg = y_neg*(scaler/np.sum(y_neg))
|
|
103
|
+
else:
|
|
104
|
+
indices = np.where(arg > thresholding)
|
|
105
|
+
y_pos = np.zeros(arg.shape)
|
|
106
|
+
if scaler:
|
|
107
|
+
y_pos[indices] = scaler
|
|
108
|
+
num_non_zero_elements = np.count_nonzero(y_pos)
|
|
109
|
+
if num_non_zero_elements > 0:
|
|
110
|
+
y_pos = y_pos / num_non_zero_elements
|
|
111
|
+
else:
|
|
112
|
+
y_pos[indices] = arg[indices]
|
|
113
|
+
num_non_zero_elements = np.count_nonzero(y_pos)
|
|
114
|
+
if num_non_zero_elements > 0:
|
|
115
|
+
y_pos = y_pos / num_non_zero_elements
|
|
116
|
+
y_neg = np.array(arg)
|
|
117
|
+
m = np.max(arg[0])
|
|
118
|
+
if m<1:
|
|
119
|
+
y_neg[indices] = 1 - arg[indices]
|
|
120
|
+
else:
|
|
121
|
+
y_neg[indices] = 0
|
|
122
|
+
if scaler and np.sum(y_neg)>0:
|
|
123
|
+
y_neg = y_neg*(scaler/np.sum(y_neg))
|
|
124
|
+
return y_pos[0],y_neg[0]
|
|
125
|
+
|
|
126
|
+
def calculate_base_wt(p_sum=0,n_sum=0,bias=0,wt_pos=0,wt_neg=0):
|
|
127
|
+
t_diff = p_sum + bias - n_sum
|
|
128
|
+
bias = 0
|
|
129
|
+
wt_sign = 1
|
|
130
|
+
if t_diff>0:
|
|
131
|
+
if wt_pos>wt_neg:
|
|
132
|
+
p_agg_wt = wt_pos
|
|
133
|
+
n_agg_wt = wt_neg
|
|
134
|
+
else:
|
|
135
|
+
p_agg_wt = wt_neg
|
|
136
|
+
n_agg_wt = wt_pos
|
|
137
|
+
wt_sign = -1
|
|
138
|
+
elif t_diff<0:
|
|
139
|
+
if wt_pos<wt_neg:
|
|
140
|
+
p_agg_wt = wt_pos
|
|
141
|
+
n_agg_wt = wt_neg
|
|
142
|
+
else:
|
|
143
|
+
p_agg_wt = wt_neg
|
|
144
|
+
n_agg_wt = wt_pos
|
|
145
|
+
wt_sign = -1
|
|
146
|
+
else:
|
|
147
|
+
p_agg_wt = 0
|
|
148
|
+
n_agg_wt = 0
|
|
149
|
+
if p_sum == 0:
|
|
150
|
+
p_sum = 1
|
|
151
|
+
if n_sum == 0:
|
|
152
|
+
n_sum = 1
|
|
153
|
+
return p_agg_wt,n_agg_wt,p_sum,n_sum,wt_sign
|
|
154
|
+
|
|
155
|
+
def calculate_base_wt_array(p_sum=[],n_sum=[],bias=[],wt_pos=[],wt_neg=[]):
|
|
156
|
+
t_diff = p_sum + bias - n_sum
|
|
157
|
+
t_diff_pos = (t_diff>0)
|
|
158
|
+
t_diff_neg = (t_diff<0)
|
|
159
|
+
wt_sign_pos = wt_pos>wt_neg
|
|
160
|
+
wt_sign_neg = wt_pos<wt_neg
|
|
161
|
+
p_agg_wt_pos = np.zeros_like(wt_pos)
|
|
162
|
+
p_agg_wt_neg = np.zeros_like(wt_pos)
|
|
163
|
+
n_agg_wt_pos = np.zeros_like(wt_pos)
|
|
164
|
+
n_agg_wt_neg = np.zeros_like(wt_pos)
|
|
165
|
+
|
|
166
|
+
p_agg_wt_pos += wt_pos*t_diff_pos*wt_sign_pos
|
|
167
|
+
p_agg_wt_pos += wt_pos*t_diff_neg*wt_sign_neg
|
|
168
|
+
|
|
169
|
+
p_agg_wt_neg += wt_neg*t_diff_pos*wt_sign_neg
|
|
170
|
+
p_agg_wt_neg += wt_neg*t_diff_neg*wt_sign_pos
|
|
171
|
+
|
|
172
|
+
n_agg_wt_pos += wt_pos*t_diff_pos*wt_sign_neg
|
|
173
|
+
n_agg_wt_pos += wt_pos*t_diff_neg*wt_sign_pos
|
|
174
|
+
|
|
175
|
+
n_agg_wt_neg += wt_neg*t_diff_pos*wt_sign_pos
|
|
176
|
+
n_agg_wt_neg += wt_neg*t_diff_neg*wt_sign_neg
|
|
177
|
+
|
|
178
|
+
p_sum[p_sum==0] = 1.0
|
|
179
|
+
n_sum[n_sum==0] = 1.0
|
|
180
|
+
|
|
181
|
+
return p_agg_wt_pos,p_agg_wt_neg,n_agg_wt_pos,n_agg_wt_neg,p_sum,n_sum
|
|
182
|
+
|
|
183
|
+
class LSTM_forward(object):
|
|
184
|
+
def __init__(self, num_cells, units, weights, return_sequence=False, go_backwards=False):
|
|
185
|
+
self.num_cells = num_cells
|
|
186
|
+
self.units = units
|
|
187
|
+
self.kernel = weights[0]
|
|
188
|
+
self.recurrent_kernel = weights[1]
|
|
189
|
+
self.bias = weights[2]
|
|
190
|
+
self.return_sequence = return_sequence
|
|
191
|
+
self.go_backwards = go_backwards
|
|
192
|
+
self.recurrent_activation = tf.math.sigmoid
|
|
193
|
+
self.activation = tf.math.tanh
|
|
194
|
+
|
|
195
|
+
self.compute_log = {}
|
|
196
|
+
for i in range(self.num_cells):
|
|
197
|
+
self.compute_log[i] = {}
|
|
198
|
+
self.compute_log[i]["inp"] = None
|
|
199
|
+
self.compute_log[i]["x"] = None
|
|
200
|
+
self.compute_log[i]["hstate"] = [None,None]
|
|
201
|
+
self.compute_log[i]["cstate"] = [None,None]
|
|
202
|
+
self.compute_log[i]["int_arrays"] = {}
|
|
203
|
+
|
|
204
|
+
def compute_carry_and_output(self, x, h_tm1, c_tm1, cell_num):
|
|
205
|
+
"""Computes carry and output using split kernels."""
|
|
206
|
+
x_i, x_f, x_c, x_o = x
|
|
207
|
+
h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = h_tm1
|
|
208
|
+
i = self.recurrent_activation(
|
|
209
|
+
x_i + K.dot(h_tm1_i, self.recurrent_kernel[:, :self.units]))
|
|
210
|
+
f = self.recurrent_activation(x_f + K.dot(
|
|
211
|
+
h_tm1_f, self.recurrent_kernel[:, self.units:self.units * 2]))
|
|
212
|
+
c = f * c_tm1 + i * self.activation(x_c + K.dot(
|
|
213
|
+
h_tm1_c, self.recurrent_kernel[:, self.units * 2:self.units * 3]))
|
|
214
|
+
o = self.recurrent_activation(
|
|
215
|
+
x_o + K.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:]))
|
|
216
|
+
self.compute_log[cell_num]["int_arrays"]["i"] = i
|
|
217
|
+
self.compute_log[cell_num]["int_arrays"]["f"] = f
|
|
218
|
+
self.compute_log[cell_num]["int_arrays"]["c"] = c
|
|
219
|
+
self.compute_log[cell_num]["int_arrays"]["o"] = o
|
|
220
|
+
return c, o
|
|
221
|
+
|
|
222
|
+
def calculate_lstm_cell_wt(self,inputs, states, cell_num, training=None):
|
|
223
|
+
h_tm1 = states[0] # previous memory state
|
|
224
|
+
c_tm1 = states[1] # previous carry state
|
|
225
|
+
self.compute_log[cell_num]["inp"] = inputs
|
|
226
|
+
self.compute_log[cell_num]["hstate"][0] = h_tm1
|
|
227
|
+
self.compute_log[cell_num]["cstate"][0] = c_tm1
|
|
228
|
+
inputs_i = inputs
|
|
229
|
+
inputs_f = inputs
|
|
230
|
+
inputs_c = inputs
|
|
231
|
+
inputs_o = inputs
|
|
232
|
+
k_i, k_f, k_c, k_o = tf.split(
|
|
233
|
+
self.kernel, num_or_size_splits=4, axis=1)
|
|
234
|
+
x_i = K.dot(inputs_i, k_i)
|
|
235
|
+
x_f = K.dot(inputs_f, k_f)
|
|
236
|
+
x_c = K.dot(inputs_c, k_c)
|
|
237
|
+
x_o = K.dot(inputs_o, k_o)
|
|
238
|
+
b_i, b_f, b_c, b_o = tf.split(
|
|
239
|
+
self.bias, num_or_size_splits=4, axis=0)
|
|
240
|
+
x_i = tf.add(x_i, b_i)
|
|
241
|
+
x_f = tf.add(x_f, b_f)
|
|
242
|
+
x_c = tf.add(x_c, b_c)
|
|
243
|
+
x_o = tf.add(x_o, b_o)
|
|
244
|
+
|
|
245
|
+
h_tm1_i = h_tm1
|
|
246
|
+
h_tm1_f = h_tm1
|
|
247
|
+
h_tm1_c = h_tm1
|
|
248
|
+
h_tm1_o = h_tm1
|
|
249
|
+
x = (x_i, x_f, x_c, x_o)
|
|
250
|
+
h_tm1 = (h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o)
|
|
251
|
+
c, o = self.compute_carry_and_output(x, h_tm1, c_tm1, cell_num)
|
|
252
|
+
h = o * self.activation(c)
|
|
253
|
+
self.compute_log[cell_num]["x"] = x
|
|
254
|
+
self.compute_log[cell_num]["hstate"][1] = h
|
|
255
|
+
self.compute_log[cell_num]["cstate"][1] = c
|
|
256
|
+
return h, [h, c]
|
|
257
|
+
|
|
258
|
+
def calculate_lstm_wt(self, input_data):
|
|
259
|
+
hstate = tf.convert_to_tensor(np.zeros((1, self.units)), dtype=tf.float32)
|
|
260
|
+
cstate = tf.convert_to_tensor(np.zeros((1, self.units)), dtype=tf.float32)
|
|
261
|
+
output = []
|
|
262
|
+
for ind in range(input_data.shape[0]):
|
|
263
|
+
inp = tf.convert_to_tensor(input_data[ind,:].reshape((1,input_data.shape[1])), dtype=tf.float32)
|
|
264
|
+
h,s = self.calculate_lstm_cell_wt(inp,[hstate,cstate],ind)
|
|
265
|
+
hstate = s[0]
|
|
266
|
+
cstate = s[1]
|
|
267
|
+
output.append(h)
|
|
268
|
+
return output
|
|
269
|
+
|
|
270
|
+
class LSTM_backtrace(object):
|
|
271
|
+
def __init__(self, num_cells, units, weights, return_sequence=False, go_backwards=False):
|
|
272
|
+
self.num_cells = num_cells
|
|
273
|
+
self.units = units
|
|
274
|
+
self.kernel = weights[0]
|
|
275
|
+
self.recurrent_kernel = weights[1]
|
|
276
|
+
self.bias = weights[2]
|
|
277
|
+
self.return_sequence = return_sequence
|
|
278
|
+
self.go_backwards = go_backwards
|
|
279
|
+
self.recurrent_activation = np_sigmoid
|
|
280
|
+
self.activation = np_tanh
|
|
281
|
+
|
|
282
|
+
self.compute_log = {}
|
|
283
|
+
|
|
284
|
+
def calculate_wt_fc(self, wts, inp, w, b, act):
|
|
285
|
+
wts_pos = wts[0]
|
|
286
|
+
wts_neg = wts[1]
|
|
287
|
+
mul_mat = np.einsum("ij,i->ij",w,inp).T
|
|
288
|
+
wt_mat_pos = np.zeros(mul_mat.shape)
|
|
289
|
+
wt_mat_neg = np.zeros(mul_mat.shape)
|
|
290
|
+
for i in range(mul_mat.shape[0]):
|
|
291
|
+
l1_ind1 = mul_mat[i]
|
|
292
|
+
wt_ind1_pos = wt_mat_pos[i]
|
|
293
|
+
wt_ind1_neg = wt_mat_neg[i]
|
|
294
|
+
wt_pos = wts_pos[i]
|
|
295
|
+
wt_neg = wts_neg[i]
|
|
296
|
+
p_ind = l1_ind1>0
|
|
297
|
+
n_ind = l1_ind1<0
|
|
298
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
299
|
+
n_sum = np.sum(l1_ind1[n_ind])*-1
|
|
300
|
+
if len(b)>0:
|
|
301
|
+
bias = b[i]
|
|
302
|
+
else:
|
|
303
|
+
bias = 0
|
|
304
|
+
if np.sum(n_ind)==0 and np.sum(p_ind)>0:
|
|
305
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_pos
|
|
306
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_neg
|
|
307
|
+
elif np.sum(n_ind)>0 and np.sum(p_ind)==0:
|
|
308
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_pos*-1
|
|
309
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_neg*-1
|
|
310
|
+
else:
|
|
311
|
+
p_agg_wt,n_agg_wt,p_sum,n_sum,wt_sign = calculate_base_wt(p_sum=p_sum,n_sum=n_sum,
|
|
312
|
+
bias=bias,
|
|
313
|
+
wt_pos=wt_pos,wt_neg=wt_neg)
|
|
314
|
+
if wt_sign>0:
|
|
315
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
316
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
317
|
+
else:
|
|
318
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
319
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
320
|
+
wt_mat_pos = wt_mat_pos.sum(axis=0)
|
|
321
|
+
wt_mat_neg = wt_mat_neg.sum(axis=0)
|
|
322
|
+
return wt_mat_pos,wt_mat_neg
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
def calculate_wt_add(self, wts, inp=None):
|
|
326
|
+
wts_pos = wts[0]
|
|
327
|
+
wts_neg = wts[1]
|
|
328
|
+
wt_mat_pos = []
|
|
329
|
+
wt_mat_neg = []
|
|
330
|
+
inp_list = []
|
|
331
|
+
for x in inp:
|
|
332
|
+
wt_mat_pos.append(np.zeros_like(x))
|
|
333
|
+
wt_mat_neg.append(np.zeros_like(x))
|
|
334
|
+
wt_mat_pos = np.array(wt_mat_pos)
|
|
335
|
+
wt_mat_neg = np.array(wt_mat_neg)
|
|
336
|
+
inp_list = np.array(inp)
|
|
337
|
+
for i in range(wt_mat_pos.shape[1]):
|
|
338
|
+
wt_ind1_pos = wt_mat_pos[:,i]
|
|
339
|
+
wt_ind1_neg = wt_mat_neg[:,i]
|
|
340
|
+
wt_pos = wts_pos[i]
|
|
341
|
+
wt_neg = wts_neg[i]
|
|
342
|
+
l1_ind1 = inp_list[:,i]
|
|
343
|
+
p_ind = l1_ind1>0
|
|
344
|
+
n_ind = l1_ind1<0
|
|
345
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
346
|
+
n_sum = np.sum(l1_ind1[n_ind])*-1
|
|
347
|
+
if np.sum(n_ind)==0 and np.sum(p_ind)>0:
|
|
348
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_pos
|
|
349
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_neg
|
|
350
|
+
elif np.sum(n_ind)>0 and np.sum(p_ind)==0:
|
|
351
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_pos*-1
|
|
352
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_neg*-1
|
|
353
|
+
else:
|
|
354
|
+
p_agg_wt,n_agg_wt,p_sum,n_sum,wt_sign = calculate_base_wt(p_sum=p_sum,n_sum=n_sum,
|
|
355
|
+
bias=0.0,
|
|
356
|
+
wt_pos=wt_pos,wt_neg=wt_neg)
|
|
357
|
+
if wt_sign>0:
|
|
358
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
359
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
360
|
+
else:
|
|
361
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
362
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
363
|
+
wt_mat_pos[:,i] = wt_ind1_pos
|
|
364
|
+
wt_mat_neg[:,i] = wt_ind1_neg
|
|
365
|
+
wt_mat_pos = [i.reshape(wts_pos.shape) for i in list(wt_mat_pos)]
|
|
366
|
+
wt_mat_neg = [i.reshape(wts_neg.shape) for i in list(wt_mat_neg)]
|
|
367
|
+
output = []
|
|
368
|
+
for i in range(len(wt_mat_pos)):
|
|
369
|
+
output.append((wt_mat_pos[i],wt_mat_neg[i]))
|
|
370
|
+
|
|
371
|
+
return output
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
def calculate_wt_multiply(self, wts, inp=None):
|
|
376
|
+
wts_pos = wts[0]
|
|
377
|
+
wts_neg = wts[1]
|
|
378
|
+
inp_list = []
|
|
379
|
+
wt_mat_pos = []
|
|
380
|
+
wt_mat_neg = []
|
|
381
|
+
for x in inp:
|
|
382
|
+
wt_mat_pos.append(np.zeros_like(x))
|
|
383
|
+
wt_mat_neg.append(np.zeros_like(x))
|
|
384
|
+
wt_mat_pos = np.array(wt_mat_pos)
|
|
385
|
+
wt_mat_neg = np.array(wt_mat_neg)
|
|
386
|
+
inp_list = np.array(inp)
|
|
387
|
+
inp1 = np.abs(inp[0])
|
|
388
|
+
inp2 = np.abs(inp[1])
|
|
389
|
+
inp_sum = inp1+inp2
|
|
390
|
+
inp_prod = inp1*inp2
|
|
391
|
+
inp1[inp_sum==0] = 0
|
|
392
|
+
inp2[inp_sum==0] = 0
|
|
393
|
+
inp1[inp_prod==0] = 0
|
|
394
|
+
inp2[inp_prod==0] = 0
|
|
395
|
+
inp_sum[inp_sum==0] = 1
|
|
396
|
+
inp_wt1_pos = np.nan_to_num((inp2/inp_sum)*wts_pos)
|
|
397
|
+
inp_wt1_neg = np.nan_to_num((inp2/inp_sum)*wts_neg)
|
|
398
|
+
inp_wt2_pos = np.nan_to_num((inp1/inp_sum)*wts_pos)
|
|
399
|
+
inp_wt2_neg = np.nan_to_num((inp1/inp_sum)*wts_neg)
|
|
400
|
+
return [[inp_wt1_pos,inp_wt1_neg],[inp_wt2_pos,inp_wt2_neg]]
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
def compute_carry_and_output(self, wt_o, wt_c, h_tm1, c_tm1, x, cell_num):
|
|
404
|
+
"""Computes carry and output using split kernels."""
|
|
405
|
+
h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = (h_tm1,h_tm1,h_tm1,h_tm1)
|
|
406
|
+
x_i, x_f, x_c, x_o = x
|
|
407
|
+
f = self.compute_log[cell_num]["int_arrays"]["f"].numpy()[0]
|
|
408
|
+
i = self.compute_log[cell_num]["int_arrays"]["i"].numpy()[0]
|
|
409
|
+
temp1 = np.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:]).astype(np.float32)
|
|
410
|
+
wt_x_o, wt_temp1 = self.calculate_wt_add(wt_o,[x_o,temp1])
|
|
411
|
+
wt_h_tm1_o = self.calculate_wt_fc(wt_temp1, h_tm1_o, self.recurrent_kernel[:, self.units * 3:], [], {"type":None})
|
|
412
|
+
|
|
413
|
+
|
|
414
|
+
temp2 = f*c_tm1
|
|
415
|
+
temp3_1 = np.dot(h_tm1_c, self.recurrent_kernel[:, self.units * 2:self.units * 3])
|
|
416
|
+
temp3_2 = self.activation(x_c + temp3_1)
|
|
417
|
+
temp3_3 = i*temp3_2
|
|
418
|
+
wt_temp2,wt_temp3_3 = self.calculate_wt_add(wt_c,[temp2,temp3_3])
|
|
419
|
+
wt_f, wt_c_tm1 = self.calculate_wt_multiply(wt_temp2,[f,c_tm1])
|
|
420
|
+
wt_i, wt_temp3_2 = self.calculate_wt_multiply(wt_temp3_3,[i,temp3_2])
|
|
421
|
+
wt_x_c,wt_temp3_1 = self.calculate_wt_add(wt_temp3_2,[x_c,temp3_1])
|
|
422
|
+
wt_h_tm1_c = self.calculate_wt_fc(wt_temp3_1, h_tm1_c, self.recurrent_kernel[:, self.units * 2:self.units * 3], [], {"type":None})
|
|
423
|
+
|
|
424
|
+
temp4 = np.dot(h_tm1_f, self.recurrent_kernel[:, self.units:self.units * 2])
|
|
425
|
+
wt_x_f, wt_temp4 = self.calculate_wt_add(wt_f,[x_f,temp4])
|
|
426
|
+
wt_h_tm1_f = self.calculate_wt_fc(wt_temp4, h_tm1_f, self.recurrent_kernel[:, self.units:self.units * 2], [], {"type":None})
|
|
427
|
+
|
|
428
|
+
temp5 = np.dot(h_tm1_i, self.recurrent_kernel[:, :self.units])
|
|
429
|
+
wt_x_i, wt_temp5 = self.calculate_wt_add(wt_i,[x_i,temp5])
|
|
430
|
+
wt_h_tm1_i = self.calculate_wt_fc(wt_temp5, h_tm1_i, self.recurrent_kernel[:, :self.units], [], {"type":None})
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
return (wt_x_i, wt_x_f, wt_x_c, wt_x_o,
|
|
434
|
+
wt_h_tm1_i, wt_h_tm1_f, wt_h_tm1_c, wt_h_tm1_o,
|
|
435
|
+
wt_c_tm1)
|
|
436
|
+
|
|
437
|
+
|
|
438
|
+
def calculate_lstm_cell_wt(self, cell_num, wts_hstate, wts_cstate):
|
|
439
|
+
o = self.compute_log[cell_num]["int_arrays"]["o"].numpy()[0]
|
|
440
|
+
c = self.compute_log[cell_num]["cstate"][1].numpy()[0]
|
|
441
|
+
h_tm1 = self.compute_log[cell_num]["hstate"][0].numpy()[0]
|
|
442
|
+
c_tm1 = self.compute_log[cell_num]["cstate"][0].numpy()[0]
|
|
443
|
+
x = [i.numpy()[0] for i in self.compute_log[cell_num]["x"]]
|
|
444
|
+
wt_o,wt_c = self.calculate_wt_multiply(wts_hstate,[o,self.activation(c)])# h = o * self.activation(c)
|
|
445
|
+
wt_c[0] = wt_c[0]+wts_cstate[0]
|
|
446
|
+
wt_c[1] = wt_c[1]+wts_cstate[1]
|
|
447
|
+
wt_x_i, wt_x_f, wt_x_c, wt_x_o, wt_h_tm1_i, wt_h_tm1_f, wt_h_tm1_c, wt_h_tm1_o, wt_c_tm1 = self.compute_carry_and_output(wt_o, wt_c, h_tm1, c_tm1, x, cell_num)
|
|
448
|
+
wt_h_tm1 = [wt_h_tm1_i[0] + wt_h_tm1_f[0] + wt_h_tm1_c[0] + wt_h_tm1_o[0],
|
|
449
|
+
wt_h_tm1_i[1] + wt_h_tm1_f[1] + wt_h_tm1_c[1] + wt_h_tm1_o[1]]
|
|
450
|
+
inputs = self.compute_log[cell_num]["inp"].numpy()[0]
|
|
451
|
+
k_i, k_f, k_c, k_o = np.split(
|
|
452
|
+
self.kernel, indices_or_sections=4, axis=1)
|
|
453
|
+
b_i, b_f, b_c, b_o = np.split(
|
|
454
|
+
self.bias, indices_or_sections=4, axis=0)
|
|
455
|
+
|
|
456
|
+
wt_inputs_i = self.calculate_wt_fc(wt_x_i, inputs, k_i, b_i, {"type":None})
|
|
457
|
+
wt_inputs_f = self.calculate_wt_fc(wt_x_f, inputs, k_f, b_f, {"type":None})
|
|
458
|
+
wt_inputs_c = self.calculate_wt_fc(wt_x_c, inputs, k_c, b_c, {"type":None})
|
|
459
|
+
wt_inputs_o = self.calculate_wt_fc(wt_x_o, inputs, k_o, b_o, {"type":None})
|
|
460
|
+
|
|
461
|
+
wt_inputs = [wt_inputs_i[0]+wt_inputs_f[0]+wt_inputs_c[0]+wt_inputs_o[0],
|
|
462
|
+
wt_inputs_i[1]+wt_inputs_f[1]+wt_inputs_c[1]+wt_inputs_o[1]]
|
|
463
|
+
|
|
464
|
+
return wt_inputs, wt_h_tm1, wt_c_tm1
|
|
465
|
+
|
|
466
|
+
def calculate_lstm_wt(self,wts_pos, wts_neg, compute_log):
|
|
467
|
+
self.compute_log = compute_log
|
|
468
|
+
output_pos = []
|
|
469
|
+
output_neg = []
|
|
470
|
+
if self.return_sequence:
|
|
471
|
+
temp_wts_hstate = [wts_pos[-1,:],wts_neg[-1,:]]
|
|
472
|
+
else:
|
|
473
|
+
temp_wts_hstate = [wts_pos,wts_neg]
|
|
474
|
+
temp_wts_cstate = [np.zeros_like(self.compute_log[0]["cstate"][1].numpy()[0]),
|
|
475
|
+
np.zeros_like(self.compute_log[0]["cstate"][1].numpy()[0])]
|
|
476
|
+
for ind in range(len(self.compute_log)-1,-1,-1):
|
|
477
|
+
temp_wt_inp, temp_wts_hstate, temp_wts_cstate = self.calculate_lstm_cell_wt(ind, temp_wts_hstate, temp_wts_cstate)
|
|
478
|
+
output_pos.append(temp_wt_inp[0])
|
|
479
|
+
output_neg.append(temp_wt_inp[1])
|
|
480
|
+
if self.return_sequence and ind>0:
|
|
481
|
+
temp_wts_hstate[0] = temp_wts_hstate[0]+wts_pos[ind-1,:]
|
|
482
|
+
temp_wts_hstate[1] = temp_wts_hstate[1]+wts_neg[ind-1,:]
|
|
483
|
+
output_pos.reverse()
|
|
484
|
+
output_pos = np.array(output_pos)
|
|
485
|
+
output_neg.reverse()
|
|
486
|
+
output_neg = np.array(output_neg)
|
|
487
|
+
return output_pos,output_neg
|
|
488
|
+
|
|
489
|
+
def dummy_wt(wts, inp, *args):
|
|
490
|
+
test_wt = np.zeros_like(inp)
|
|
491
|
+
return test_wt
|
|
492
|
+
|
|
493
|
+
def calculate_wt_fc(wts_pos,wts_neg, inp, w, b, act={}):
|
|
494
|
+
mul_mat = np.einsum("ij,i->ij",w.numpy(),inp).T
|
|
495
|
+
wt_mat_pos = np.zeros(mul_mat.shape)
|
|
496
|
+
wt_mat_neg = np.zeros(mul_mat.shape)
|
|
497
|
+
for i in range(mul_mat.shape[0]):
|
|
498
|
+
l1_ind1 = mul_mat[i]
|
|
499
|
+
wt_ind1_pos = wt_mat_pos[i]
|
|
500
|
+
wt_ind1_neg = wt_mat_neg[i]
|
|
501
|
+
wt_pos = wts_pos[i]
|
|
502
|
+
wt_neg = wts_neg[i]
|
|
503
|
+
p_ind = l1_ind1>0
|
|
504
|
+
n_ind = l1_ind1<0
|
|
505
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
506
|
+
n_sum = np.sum(l1_ind1[n_ind])*-1
|
|
507
|
+
if np.sum(n_ind)==0 and np.sum(p_ind)>0:
|
|
508
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_pos
|
|
509
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_neg
|
|
510
|
+
elif np.sum(n_ind)>0 and np.sum(p_ind)==0:
|
|
511
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_pos*-1
|
|
512
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_neg*-1
|
|
513
|
+
else:
|
|
514
|
+
p_agg_wt,n_agg_wt,p_sum,n_sum,wt_sign = calculate_base_wt(p_sum=p_sum,n_sum=n_sum,
|
|
515
|
+
bias=b.numpy()[i],
|
|
516
|
+
wt_pos=wt_pos,wt_neg=wt_neg)
|
|
517
|
+
if wt_sign>0:
|
|
518
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
519
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
520
|
+
else:
|
|
521
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
522
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
523
|
+
wt_mat_pos = wt_mat_pos.sum(axis=0)
|
|
524
|
+
wt_mat_neg = wt_mat_neg.sum(axis=0)
|
|
525
|
+
return wt_mat_pos,wt_mat_neg
|
|
526
|
+
|
|
527
|
+
def calculate_wt_passthru(wts):
|
|
528
|
+
return wts
|
|
529
|
+
|
|
530
|
+
def calculate_wt_rshp(wts,inp=None):
|
|
531
|
+
x = np.reshape(wts,inp.shape)
|
|
532
|
+
return x
|
|
533
|
+
|
|
534
|
+
def calculate_wt_concat(wts,inp=None,axis=-1):
|
|
535
|
+
splits = [i.shape[axis] for i in inp]
|
|
536
|
+
splits = np.cumsum(splits)
|
|
537
|
+
if axis>0:
|
|
538
|
+
axis = axis-1
|
|
539
|
+
x = np.split(wts,indices_or_sections=splits,axis=axis)
|
|
540
|
+
return x
|
|
541
|
+
|
|
542
|
+
def calculate_wt_add(wts_pos,wts_neg,inp=None):
|
|
543
|
+
wts_pos = wts_pos
|
|
544
|
+
wts_neg = wts_neg
|
|
545
|
+
wt_mat_pos = []
|
|
546
|
+
wt_mat_neg = []
|
|
547
|
+
inp_list = []
|
|
548
|
+
|
|
549
|
+
expanded_wts_pos = as_strided(wts_pos,
|
|
550
|
+
shape=(np.prod(wts_pos.shape),),
|
|
551
|
+
strides=(wts_pos.strides[-1],),
|
|
552
|
+
writeable=False, # totally use this to avoid writing to memory in weird places
|
|
553
|
+
)
|
|
554
|
+
expanded_wts_neg = as_strided(wts_neg,
|
|
555
|
+
shape=(np.prod(wts_neg.shape),),
|
|
556
|
+
strides=(wts_neg.strides[-1],),
|
|
557
|
+
writeable=False, # totally use this to avoid writing to memory in weird places
|
|
558
|
+
)
|
|
559
|
+
for x in inp:
|
|
560
|
+
expanded_input = as_strided(x,
|
|
561
|
+
shape=(np.prod(x.shape),),
|
|
562
|
+
strides=(x.strides[-1],),
|
|
563
|
+
writeable=False, # totally use this to avoid writing to memory in weird places
|
|
564
|
+
)
|
|
565
|
+
inp_list.append(expanded_input)
|
|
566
|
+
wt_mat_pos.append(np.zeros_like(expanded_input))
|
|
567
|
+
wt_mat_neg.append(np.zeros_like(expanded_input))
|
|
568
|
+
wt_mat_pos = np.array(wt_mat_pos)
|
|
569
|
+
wt_mat_neg = np.array(wt_mat_neg)
|
|
570
|
+
inp_list = np.array(inp_list)
|
|
571
|
+
for i in range(wt_mat_pos.shape[1]):
|
|
572
|
+
wt_ind1_pos = wt_mat_pos[:,i]
|
|
573
|
+
wt_ind1_neg = wt_mat_neg[:,i]
|
|
574
|
+
wt_pos = expanded_wts_pos[i]
|
|
575
|
+
wt_neg = expanded_wts_neg[i]
|
|
576
|
+
l1_ind1 = inp_list[:,i]
|
|
577
|
+
p_ind = l1_ind1>0
|
|
578
|
+
n_ind = l1_ind1<0
|
|
579
|
+
p_sum = np.sum(l1_ind1[p_ind])
|
|
580
|
+
n_sum = np.sum(l1_ind1[n_ind])*-1
|
|
581
|
+
if np.sum(n_ind)==0 and np.sum(p_ind)>0:
|
|
582
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_pos
|
|
583
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*wt_neg
|
|
584
|
+
elif np.sum(n_ind)>0 and np.sum(p_ind)==0:
|
|
585
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_pos*-1
|
|
586
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*wt_neg*-1
|
|
587
|
+
else:
|
|
588
|
+
p_agg_wt,n_agg_wt,p_sum,n_sum,wt_sign = calculate_base_wt(p_sum=p_sum,n_sum=n_sum,
|
|
589
|
+
bias=0.0,
|
|
590
|
+
wt_pos=wt_pos,wt_neg=wt_neg)
|
|
591
|
+
if wt_sign>0:
|
|
592
|
+
wt_ind1_pos[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
593
|
+
wt_ind1_neg[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
594
|
+
else:
|
|
595
|
+
wt_ind1_neg[p_ind] = (l1_ind1[p_ind]/p_sum)*p_agg_wt
|
|
596
|
+
wt_ind1_pos[n_ind] = (l1_ind1[n_ind]/n_sum)*n_agg_wt*-1
|
|
597
|
+
wt_mat_pos[:,i] = wt_ind1_pos
|
|
598
|
+
wt_mat_neg[:,i] = wt_ind1_neg
|
|
599
|
+
wt_mat_pos = [i.reshape(wts_pos.shape) for i in list(wt_mat_pos)]
|
|
600
|
+
wt_mat_neg = [i.reshape(wts_neg.shape) for i in list(wt_mat_neg)]
|
|
601
|
+
output = []
|
|
602
|
+
for i in range(len(wt_mat_pos)):
|
|
603
|
+
output.append((wt_mat_pos[i],wt_mat_neg[i]))
|
|
604
|
+
return output
|
|
605
|
+
|
|
606
|
+
def calculate_wt_zero_pad(wts_pos,wts_neg,inp,padding):
|
|
607
|
+
wt_mat_pos = wts_pos[padding[0][0]:inp.shape[0]+padding[0][0],padding[1][0]:inp.shape[1]+padding[1][0],:]
|
|
608
|
+
wt_mat_neg = wts_neg[padding[0][0]:inp.shape[0]+padding[0][0],padding[1][0]:inp.shape[1]+padding[1][0],:]
|
|
609
|
+
return wt_mat_pos,wt_mat_neg
|
|
610
|
+
|
|
611
|
+
def calculate_padding(kernel_size, inp, padding, strides, const_val=0.0):
|
|
612
|
+
if padding=='valid':
|
|
613
|
+
return (inp, [[0,0],[0,0],[0,0]])
|
|
614
|
+
else:
|
|
615
|
+
h = inp.shape[0]%strides[0]
|
|
616
|
+
if h==0:
|
|
617
|
+
pad_h = np.max([0,kernel_size[0]-strides[0]])
|
|
618
|
+
else:
|
|
619
|
+
pad_h = np.max([0,kernel_size[0]-h])
|
|
620
|
+
|
|
621
|
+
v = inp.shape[1]%strides[1]
|
|
622
|
+
if v==0:
|
|
623
|
+
pad_v = np.max([0,kernel_size[1]-strides[1]])
|
|
624
|
+
else:
|
|
625
|
+
pad_v = np.max([0,kernel_size[1]-v])
|
|
626
|
+
|
|
627
|
+
paddings = [np.floor([pad_h/2.0,(pad_h+1)/2.0]).astype("int32"),
|
|
628
|
+
np.floor([pad_v/2.0,(pad_v+1)/2.0]).astype("int32"),
|
|
629
|
+
np.zeros((2)).astype("int32")]
|
|
630
|
+
inp_pad = np.pad(inp, paddings, 'constant', constant_values=const_val)
|
|
631
|
+
return (inp_pad,paddings)
|
|
632
|
+
|
|
633
|
+
def calculate_wt_conv_unit(patch, wts_pos, wts_neg, w, b, act):
|
|
634
|
+
k = w.numpy()
|
|
635
|
+
bias = b.numpy()
|
|
636
|
+
conv_out = np.einsum("ijkl,ijk->ijkl",k,patch)
|
|
637
|
+
p_ind = conv_out>0
|
|
638
|
+
p_ind = conv_out*p_ind
|
|
639
|
+
p_sum = np.einsum("ijkl->l",p_ind)
|
|
640
|
+
n_ind = conv_out<0
|
|
641
|
+
n_ind = conv_out*n_ind
|
|
642
|
+
n_sum = np.einsum("ijkl->l",n_ind)*-1.0
|
|
643
|
+
p_agg_wt_pos,p_agg_wt_neg,n_agg_wt_pos,n_agg_wt_neg,p_sum,n_sum = calculate_base_wt_array(p_sum,n_sum,bias,wts_pos,wts_neg)
|
|
644
|
+
wt_mat_pos = np.zeros_like(k)
|
|
645
|
+
wt_mat_neg = np.zeros_like(k)
|
|
646
|
+
|
|
647
|
+
wt_mat_pos = wt_mat_pos+((p_ind/p_sum)*p_agg_wt_pos)
|
|
648
|
+
wt_mat_pos = wt_mat_pos+((n_ind/n_sum)*n_agg_wt_pos)*-1.0
|
|
649
|
+
wt_mat_neg = wt_mat_neg+((p_ind/p_sum)*p_agg_wt_neg)
|
|
650
|
+
wt_mat_neg = wt_mat_neg+((n_ind/n_sum)*n_agg_wt_neg)*-1.0
|
|
651
|
+
wt_mat_pos = np.sum(wt_mat_pos,axis=-1)
|
|
652
|
+
wt_mat_neg = np.sum(wt_mat_neg,axis=-1)
|
|
653
|
+
|
|
654
|
+
return wt_mat_pos, wt_mat_neg
|
|
655
|
+
|
|
656
|
+
def calculate_wt_conv(wts_pos, wts_neg, inp, w, b, padding, strides, act):
|
|
657
|
+
input_padded, paddings = calculate_padding(w.shape, inp, padding, strides)
|
|
658
|
+
out_ds_pos = np.zeros_like(input_padded)
|
|
659
|
+
out_ds_neg = np.zeros_like(input_padded)
|
|
660
|
+
for ind1 in range(wts_pos.shape[0]):
|
|
661
|
+
for ind2 in range(wts_pos.shape[1]):
|
|
662
|
+
indexes = [np.arange(ind1*strides[0], ind1*(strides[0])+w.shape[0]),
|
|
663
|
+
np.arange(ind2*strides[1], ind2*(strides[1])+w.shape[1])]
|
|
664
|
+
# Take slice
|
|
665
|
+
tmp_patch = input_padded[np.ix_(indexes[0],indexes[1])]
|
|
666
|
+
updates_pos,updates_neg = calculate_wt_conv_unit(tmp_patch, wts_pos[ind1,ind2,:], wts_neg[ind1,ind2,:], w, b, act)
|
|
667
|
+
# Build tensor with "filtered" gradient
|
|
668
|
+
out_ds_pos[np.ix_(indexes[0],indexes[1])]+=updates_pos
|
|
669
|
+
out_ds_neg[np.ix_(indexes[0],indexes[1])]+=updates_neg
|
|
670
|
+
out_ds_pos = out_ds_pos[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
671
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
672
|
+
out_ds_neg = out_ds_neg[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
673
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
674
|
+
return out_ds_pos, out_ds_neg
|
|
675
|
+
|
|
676
|
+
def calculate_wt_max_unit(patch, wts, pool_size):
|
|
677
|
+
pmax = np.einsum("ijk,k->ijk",np.ones_like(patch),np.max(np.max(patch,axis=0),axis=0))
|
|
678
|
+
indexes = (patch-pmax)==0
|
|
679
|
+
indexes = indexes.astype(np.float32)
|
|
680
|
+
indexes_norm = 1.0/np.einsum("mnc->c",indexes)
|
|
681
|
+
indexes = np.einsum("ijk,k->ijk",indexes,indexes_norm)
|
|
682
|
+
out = np.einsum("ijk,k->ijk",indexes,wts)
|
|
683
|
+
return out
|
|
684
|
+
|
|
685
|
+
def calculate_wt_maxpool(wts, inp, pool_size, padding, strides):
|
|
686
|
+
input_padded, paddings = calculate_padding(pool_size, inp, padding, strides, -np.inf)
|
|
687
|
+
out_ds = np.zeros_like(input_padded)
|
|
688
|
+
for ind1 in range(wts.shape[0]):
|
|
689
|
+
for ind2 in range(wts.shape[1]):
|
|
690
|
+
indexes = [np.arange(ind1*strides[0], ind1*(strides[0])+pool_size[0]),
|
|
691
|
+
np.arange(ind2*strides[1], ind2*(strides[1])+pool_size[1])]
|
|
692
|
+
# Take slice
|
|
693
|
+
tmp_patch = input_padded[np.ix_(indexes[0],indexes[1])]
|
|
694
|
+
updates = calculate_wt_max_unit(tmp_patch, wts[ind1,ind2,:], pool_size)
|
|
695
|
+
# Build tensor with "filtered" gradient
|
|
696
|
+
out_ds[np.ix_(indexes[0],indexes[1])]+=updates
|
|
697
|
+
out_ds = out_ds[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
698
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
699
|
+
return out_ds
|
|
700
|
+
|
|
701
|
+
def calculate_wt_avg_unit(patch, wts_pos, wts_neg, pool_size):
|
|
702
|
+
p_ind = patch>0
|
|
703
|
+
p_ind = patch*p_ind
|
|
704
|
+
p_sum = np.einsum("ijk->k",p_ind)
|
|
705
|
+
n_ind = patch<0
|
|
706
|
+
n_ind = patch*n_ind
|
|
707
|
+
n_sum = np.einsum("ijk->k",n_ind)*-1.0
|
|
708
|
+
bias = np.zeros_like(wts_pos)
|
|
709
|
+
p_agg_wt_pos,p_agg_wt_neg,n_agg_wt_pos,n_agg_wt_neg,p_sum,n_sum = calculate_base_wt_array(p_sum,n_sum,bias,wts_pos,wts_neg)
|
|
710
|
+
wt_mat_pos = np.zeros_like(patch)
|
|
711
|
+
wt_mat_neg = np.zeros_like(patch)
|
|
712
|
+
|
|
713
|
+
wt_mat_pos = wt_mat_pos+((p_ind/p_sum)*p_agg_wt_pos)
|
|
714
|
+
wt_mat_pos = wt_mat_pos+((n_ind/n_sum)*n_agg_wt_pos)*-1.0
|
|
715
|
+
wt_mat_neg = wt_mat_neg+((p_ind/p_sum)*p_agg_wt_neg)
|
|
716
|
+
wt_mat_neg = wt_mat_neg+((n_ind/n_sum)*n_agg_wt_neg)*-1.0
|
|
717
|
+
return wt_mat_pos, wt_mat_neg
|
|
718
|
+
|
|
719
|
+
def calculate_wt_avgpool(wts_pos, wts_neg, inp, pool_size, padding, strides, act={}):
|
|
720
|
+
input_padded, paddings = calculate_padding(pool_size, inp, padding, strides)
|
|
721
|
+
out_ds_pos = np.zeros_like(input_padded)
|
|
722
|
+
out_ds_neg = np.zeros_like(input_padded)
|
|
723
|
+
for ind1 in range(wts_pos.shape[0]):
|
|
724
|
+
for ind2 in range(wts_pos.shape[1]):
|
|
725
|
+
indexes = [np.arange(ind1*strides[0], ind1*(strides[0])+pool_size[0]),
|
|
726
|
+
np.arange(ind2*strides[1], ind2*(strides[1])+pool_size[1])]
|
|
727
|
+
# Take slice
|
|
728
|
+
tmp_patch = input_padded[np.ix_(indexes[0],indexes[1])]
|
|
729
|
+
updates_pos,updates_neg = calculate_wt_avg_unit(tmp_patch, wts_pos[ind1,ind2,:], wts_neg[ind1,ind2,:],
|
|
730
|
+
pool_size)
|
|
731
|
+
# Build tensor with "filtered" gradient
|
|
732
|
+
out_ds_pos[np.ix_(indexes[0],indexes[1])]+=updates_pos
|
|
733
|
+
out_ds_neg[np.ix_(indexes[0],indexes[1])]+=updates_neg
|
|
734
|
+
out_ds_pos = out_ds_pos[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
735
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
736
|
+
out_ds_neg = out_ds_neg[paddings[0][0]:(paddings[0][0]+inp.shape[0]),
|
|
737
|
+
paddings[1][0]:(paddings[1][0]+inp.shape[1]),:]
|
|
738
|
+
return out_ds_pos,out_ds_neg
|
|
739
|
+
|
|
740
|
+
def calculate_wt_gavgpool(wts_pos,wts_neg,inp):
|
|
741
|
+
channels = wts_pos.shape[0]
|
|
742
|
+
wt_mat_pos = np.zeros_like(inp)
|
|
743
|
+
wt_mat_neg = np.zeros_like(inp)
|
|
744
|
+
for c in range(channels):
|
|
745
|
+
wt_pos = wts_pos[c]
|
|
746
|
+
wt_neg = wts_neg[c]
|
|
747
|
+
temp_wt_pos = wt_mat_pos[...,c]
|
|
748
|
+
temp_wt_neg = wt_mat_neg[...,c]
|
|
749
|
+
x = inp[...,c]
|
|
750
|
+
p_mat = np.copy(x)
|
|
751
|
+
n_mat = np.copy(x)
|
|
752
|
+
p_mat[x<0] = 0
|
|
753
|
+
n_mat[x>0] = 0
|
|
754
|
+
p_sum = np.sum(p_mat)
|
|
755
|
+
n_sum = np.sum(n_mat)*-1
|
|
756
|
+
if n_sum==0 and p_sum>0:
|
|
757
|
+
temp_wt_pos = temp_wt_pos+((p_mat/p_sum)*wt_pos)
|
|
758
|
+
temp_wt_neg = temp_wt_neg+((p_mat/p_sum)*wt_neg)
|
|
759
|
+
elif n_sum>0 and p_sum==0:
|
|
760
|
+
temp_wt_pos = temp_wt_pos+((n_mat/n_sum)*wt_pos*-1)
|
|
761
|
+
temp_wt_neg = temp_wt_neg+((n_mat/n_sum)*wt_neg*-1)
|
|
762
|
+
else:
|
|
763
|
+
p_agg_wt,n_agg_wt,p_sum,n_sum,wt_sign = calculate_base_wt(p_sum=p_sum,n_sum=n_sum,
|
|
764
|
+
bias=0,
|
|
765
|
+
wt_pos=wt_pos,wt_neg=wt_neg)
|
|
766
|
+
if wt_sign>0:
|
|
767
|
+
temp_wt_pos = temp_wt_pos+((p_mat/p_sum)*p_agg_wt)
|
|
768
|
+
temp_wt_neg = temp_wt_neg+((n_mat/n_sum)*n_agg_wt*-1)
|
|
769
|
+
else:
|
|
770
|
+
temp_wt_neg = temp_wt_neg+((p_mat/p_sum)*p_agg_wt)
|
|
771
|
+
temp_wt_pos = temp_wt_pos+((n_mat/n_sum)*n_agg_wt*-1)
|
|
772
|
+
wt_mat_pos[...,c] = temp_wt_pos
|
|
773
|
+
wt_mat_neg[...,c] = temp_wt_neg
|
|
774
|
+
return wt_mat_pos,wt_mat_neg
|
|
775
|
+
|
|
776
|
+
def calculate_wt_gmaxpool_2d(wts, inp):
|
|
777
|
+
channels = wts.shape[0]
|
|
778
|
+
wt_mat = np.zeros_like(inp)
|
|
779
|
+
for c in range(channels):
|
|
780
|
+
wt = wts[c]
|
|
781
|
+
x = inp[..., c]
|
|
782
|
+
max_val = np.max(x)
|
|
783
|
+
max_indexes = (x == max_val).astype(np.float32)
|
|
784
|
+
max_indexes_norm = 1.0 / np.sum(max_indexes)
|
|
785
|
+
max_indexes = max_indexes * max_indexes_norm
|
|
786
|
+
wt_mat[..., c] = max_indexes * wt
|
|
787
|
+
return wt_mat
|
|
788
|
+
|
|
789
|
+
def weight_scaler(arg,scaler=100.0):
|
|
790
|
+
s1 = np.sum(arg)
|
|
791
|
+
scale_factor = s1/scaler
|
|
792
|
+
return arg/scale_factor
|
|
793
|
+
|
|
794
|
+
def weight_normalize(arg,max_val=1.0):
|
|
795
|
+
arg_max = np.max(arg)
|
|
796
|
+
arg_min = np.abs(np.min(arg))
|
|
797
|
+
if arg_max>arg_min:
|
|
798
|
+
return (arg/arg_max)*max_val
|
|
799
|
+
elif arg_min>0:
|
|
800
|
+
return (arg/arg_min)*max_val
|
|
801
|
+
else:
|
|
802
|
+
return arg
|
|
803
|
+
|
|
804
|
+
def calculate_padding_1d(kernel_size, inp, padding, strides, const_val=0.0):
|
|
805
|
+
if padding == 'valid':
|
|
806
|
+
return inp, [0, 0]
|
|
807
|
+
else:
|
|
808
|
+
remainder = inp.shape[0] % strides
|
|
809
|
+
if remainder == 0:
|
|
810
|
+
pad_total = max(0, kernel_size - strides)
|
|
811
|
+
else:
|
|
812
|
+
pad_total = max(0, kernel_size - remainder)
|
|
813
|
+
|
|
814
|
+
pad_left = int(np.floor(pad_total / 2.0))
|
|
815
|
+
pad_right = int(np.ceil(pad_total / 2.0))
|
|
816
|
+
|
|
817
|
+
inp_pad = np.pad(inp, (pad_left, pad_right), 'constant', constant_values=const_val)
|
|
818
|
+
return inp_pad, [pad_left, pad_right]
|
|
819
|
+
|
|
820
|
+
def calculate_wt_conv_unit_1d(patch, wts_pos, wts_neg, w, b, act):
|
|
821
|
+
k = w.numpy()
|
|
822
|
+
bias = b.numpy()
|
|
823
|
+
conv_out = np.einsum("ijk,ij->ijk",k,patch)
|
|
824
|
+
p_ind = conv_out>0
|
|
825
|
+
p_ind = conv_out*p_ind
|
|
826
|
+
p_sum = np.einsum("ijk->k",p_ind)
|
|
827
|
+
n_ind = conv_out<0
|
|
828
|
+
n_ind = conv_out*n_ind
|
|
829
|
+
n_sum = np.einsum("ijk->k",n_ind)*-1.0
|
|
830
|
+
p_agg_wt_pos,p_agg_wt_neg,n_agg_wt_pos,n_agg_wt_neg,p_sum,n_sum = calculate_base_wt_array(p_sum,n_sum,bias,wts_pos,wts_neg)
|
|
831
|
+
wt_mat_pos = np.zeros_like(k)
|
|
832
|
+
wt_mat_neg = np.zeros_like(k)
|
|
833
|
+
|
|
834
|
+
wt_mat_pos = wt_mat_pos+((p_ind/p_sum)*p_agg_wt_pos)
|
|
835
|
+
wt_mat_pos = wt_mat_pos+((n_ind/n_sum)*n_agg_wt_pos)*-1.0
|
|
836
|
+
wt_mat_neg = wt_mat_neg+((p_ind/p_sum)*p_agg_wt_neg)
|
|
837
|
+
wt_mat_neg = wt_mat_neg+((n_ind/n_sum)*n_agg_wt_neg)*-1.0
|
|
838
|
+
wt_mat_pos = np.sum(wt_mat_pos,axis=-1)
|
|
839
|
+
wt_mat_neg = np.sum(wt_mat_neg,axis=-1)
|
|
840
|
+
|
|
841
|
+
return wt_mat_pos, wt_mat_neg
|
|
842
|
+
|
|
843
|
+
def calculate_wt_conv_1d(wts_pos, wts_neg, inp, w, b, padding, stride, act):
|
|
844
|
+
input_padded, paddings = calculate_padding_1d(w.shape[0], inp, padding, stride)
|
|
845
|
+
out_ds_pos = np.zeros_like(input_padded)
|
|
846
|
+
out_ds_neg = np.zeros_like(input_padded)
|
|
847
|
+
for ind in range(wts_pos.shape[0]):
|
|
848
|
+
indexes = np.arange(ind * stride, ind * stride + w.shape[0])
|
|
849
|
+
tmp_patch = input_padded[indexes]
|
|
850
|
+
updates_pos,updates_neg = calculate_wt_conv_unit_1d(tmp_patch, wts_pos[ind, :], wts_neg[ind, :], w, b, act)
|
|
851
|
+
|
|
852
|
+
out_ds_pos[indexes] += updates_pos
|
|
853
|
+
out_ds_neg[indexes] += updates_neg
|
|
854
|
+
|
|
855
|
+
out_ds_pos = out_ds_pos[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
856
|
+
out_ds_neg = out_ds_neg[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
857
|
+
return out_ds_pos, out_ds_neg
|
|
858
|
+
|
|
859
|
+
def calculate_wt_max_unit_1d(patch, wts, pool_size):
|
|
860
|
+
pmax = np.max(patch, axis=0)
|
|
861
|
+
indexes = (patch-pmax)==0
|
|
862
|
+
indexes = indexes.astype(np.float32)
|
|
863
|
+
indexes_norm = 1.0 / np.sum(indexes, axis=0)
|
|
864
|
+
indexes = np.einsum("ij,j->ij", indexes, indexes_norm)
|
|
865
|
+
out = np.einsum("ij,j->ij", indexes, wts)
|
|
866
|
+
return out
|
|
867
|
+
|
|
868
|
+
def calculate_wt_maxpool_1d(wts, inp, pool_size, padding, strides):
|
|
869
|
+
input_padded, paddings = calculate_padding_1d(pool_size, inp, padding, strides, -np.inf)
|
|
870
|
+
out_ds = np.zeros_like(input_padded)
|
|
871
|
+
stride=strides[0]
|
|
872
|
+
pool_size=pool_size[0]
|
|
873
|
+
for ind in range(wts.shape[0]):
|
|
874
|
+
indexes = np.arange(ind * stride, ind * stride + pool_size)
|
|
875
|
+
tmp_patch = input_padded[indexes]
|
|
876
|
+
updates = calculate_wt_max_unit_1d(tmp_patch, wts[ind, :], pool_size)
|
|
877
|
+
out_ds[indexes] += updates
|
|
878
|
+
out_ds = out_ds[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
879
|
+
return out_ds
|
|
880
|
+
|
|
881
|
+
def calculate_wt_avg_unit_1d(patch, wts_pos, wts_neg, pool_size):
|
|
882
|
+
p_ind = patch>0
|
|
883
|
+
p_ind = patch*p_ind
|
|
884
|
+
p_sum = np.sum(p_ind, axis=0)
|
|
885
|
+
n_ind = patch<0
|
|
886
|
+
n_ind = patch*n_ind
|
|
887
|
+
n_sum = np.sum(n_ind, axis=0)*-1.0
|
|
888
|
+
bias = np.zeros_like(wts_pos)
|
|
889
|
+
p_agg_wt_pos,p_agg_wt_neg,n_agg_wt_pos,n_agg_wt_neg,p_sum,n_sum = calculate_base_wt_array(p_sum,n_sum,bias,wts_pos,wts_neg)
|
|
890
|
+
wt_mat_pos = np.zeros_like(patch)
|
|
891
|
+
wt_mat_neg = np.zeros_like(patch)
|
|
892
|
+
|
|
893
|
+
wt_mat_pos = wt_mat_pos+((p_ind/p_sum)*p_agg_wt_pos)
|
|
894
|
+
wt_mat_pos = wt_mat_pos+((n_ind/n_sum)*n_agg_wt_pos)*-1.0
|
|
895
|
+
wt_mat_neg = wt_mat_neg+((p_ind/p_sum)*p_agg_wt_neg)
|
|
896
|
+
wt_mat_neg = wt_mat_neg+((n_ind/n_sum)*n_agg_wt_neg)*-1.0
|
|
897
|
+
return wt_mat_pos, wt_mat_neg
|
|
898
|
+
|
|
899
|
+
def calculate_wt_avgpool_1d(wts_pos, wts_neg, inp, pool_size, padding, strides, act={}):
|
|
900
|
+
input_padded, paddings = calculate_padding_1d(pool_size, inp, padding, strides)
|
|
901
|
+
out_ds_pos = np.zeros_like(input_padded)
|
|
902
|
+
out_ds_neg = np.zeros_like(input_padded)
|
|
903
|
+
stride=strides[0]
|
|
904
|
+
pool_size=pool_size[0]
|
|
905
|
+
for ind in range(wts_pos.shape[0]):
|
|
906
|
+
indexes = np.arange(ind * stride, ind * stride + pool_size)
|
|
907
|
+
tmp_patch = input_padded[indexes]
|
|
908
|
+
updates_pos,updates_neg = calculate_wt_avg_unit_1d(tmp_patch, wts_pos[ind, :], wts_neg[ind, :],pool_size)
|
|
909
|
+
out_ds_pos[indexes] += updates_pos
|
|
910
|
+
out_ds_neg[indexes] += updates_neg
|
|
911
|
+
|
|
912
|
+
out_ds_pos = out_ds_pos[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
913
|
+
out_ds_neg = out_ds_neg[paddings[0]:(paddings[0] + inp.shape[0])]
|
|
914
|
+
return out_ds_pos,out_ds_neg
|
|
915
|
+
|
|
916
|
+
def calculate_wt_gavgpool_1d(wts_pos,wts_neg,inp):
|
|
917
|
+
channels = wts_pos.shape[0]
|
|
918
|
+
wt_mat_pos = np.zeros_like(inp)
|
|
919
|
+
wt_mat_neg = np.zeros_like(inp)
|
|
920
|
+
for c in range(channels):
|
|
921
|
+
wt_pos = wts_pos[c]
|
|
922
|
+
wt_neg = wts_neg[c]
|
|
923
|
+
temp_wt_pos = wt_mat_pos[...,c]
|
|
924
|
+
temp_wt_neg = wt_mat_neg[...,c]
|
|
925
|
+
x = inp[...,c]
|
|
926
|
+
p_mat = np.copy(x)
|
|
927
|
+
n_mat = np.copy(x)
|
|
928
|
+
p_mat[x<0] = 0
|
|
929
|
+
n_mat[x>0] = 0
|
|
930
|
+
p_sum = np.sum(p_mat)
|
|
931
|
+
n_sum = np.sum(n_mat)*-1
|
|
932
|
+
if n_sum==0 and p_sum>0:
|
|
933
|
+
temp_wt_pos = temp_wt_pos+((p_mat/p_sum)*wt_pos)
|
|
934
|
+
temp_wt_neg = temp_wt_neg+((p_mat/p_sum)*wt_neg)
|
|
935
|
+
elif n_sum>0 and p_sum==0:
|
|
936
|
+
temp_wt_pos = temp_wt_pos+((n_mat/n_sum)*wt_pos*-1)
|
|
937
|
+
temp_wt_neg = temp_wt_neg+((n_mat/n_sum)*wt_neg*-1)
|
|
938
|
+
else:
|
|
939
|
+
p_agg_wt,n_agg_wt,p_sum,n_sum,wt_sign = calculate_base_wt(p_sum=p_sum,n_sum=n_sum,
|
|
940
|
+
bias=0,
|
|
941
|
+
wt_pos=wt_pos,wt_neg=wt_neg)
|
|
942
|
+
if wt_sign>0:
|
|
943
|
+
temp_wt_pos = temp_wt_pos+((p_mat/p_sum)*p_agg_wt)
|
|
944
|
+
temp_wt_neg = temp_wt_neg+((n_mat/n_sum)*n_agg_wt*-1)
|
|
945
|
+
else:
|
|
946
|
+
temp_wt_neg = temp_wt_neg+((p_mat/p_sum)*p_agg_wt)
|
|
947
|
+
temp_wt_pos = temp_wt_pos+((n_mat/n_sum)*n_agg_wt*-1)
|
|
948
|
+
wt_mat_pos[...,c] = temp_wt_pos
|
|
949
|
+
wt_mat_neg[...,c] = temp_wt_neg
|
|
950
|
+
return wt_mat_pos,wt_mat_neg
|
|
951
|
+
|
|
952
|
+
def calculate_wt_gmaxpool_1d(wts, inp):
|
|
953
|
+
channels = wts.shape[0]
|
|
954
|
+
wt_mat = np.zeros_like(inp)
|
|
955
|
+
for c in range(channels):
|
|
956
|
+
wt = wts[c]
|
|
957
|
+
x = inp[:, c]
|
|
958
|
+
max_val = np.max(x)
|
|
959
|
+
max_indexes = (x == max_val).astype(np.float32)
|
|
960
|
+
max_indexes_norm = 1.0 / np.sum(max_indexes)
|
|
961
|
+
max_indexes = max_indexes * max_indexes_norm
|
|
962
|
+
wt_mat[:, c] = max_indexes * wt
|
|
963
|
+
return wt_mat
|
|
964
|
+
|
|
965
|
+
def calculate_output_padding_conv2d_transpose(input_shape, kernel_size, padding, strides):
|
|
966
|
+
if padding == 'valid':
|
|
967
|
+
out_shape = [(input_shape[0] - 1) * strides[0] + kernel_size[0],
|
|
968
|
+
(input_shape[1] - 1) * strides[1] + kernel_size[1]]
|
|
969
|
+
return (out_shape, [[0,0],[0,0],[0,0]])
|
|
970
|
+
else: # 'same' padding
|
|
971
|
+
out_shape = [input_shape[0] * strides[0], input_shape[1] * strides[1]]
|
|
972
|
+
pad_h = max(0, (input_shape[0] - 1) * strides[0] + kernel_size[0] - out_shape[0])
|
|
973
|
+
pad_v = max(0, (input_shape[1] - 1) * strides[1] + kernel_size[1] - out_shape[1])
|
|
974
|
+
paddings = [np.floor([pad_h/2.0, (pad_h+1)/2.0]).astype("int32"),
|
|
975
|
+
np.floor([pad_v/2.0, (pad_v+1)/2.0]).astype("int32"),
|
|
976
|
+
np.zeros((2)).astype("int32")]
|
|
977
|
+
return (out_shape, paddings)
|
|
978
|
+
|
|
979
|
+
def calculate_wt_conv2d_transpose_unit(patch, wts_pos, wts_neg, w, b, act):
|
|
980
|
+
|
|
981
|
+
if patch.ndim == 1:
|
|
982
|
+
patch = patch.reshape(1, 1, -1)
|
|
983
|
+
elif patch.ndim == 2:
|
|
984
|
+
patch = patch.reshape(1, *patch.shape)
|
|
985
|
+
elif patch.ndim != 3:
|
|
986
|
+
raise ValueError(f"Unexpected patch shape: {patch.shape}")
|
|
987
|
+
|
|
988
|
+
k = tf.transpose(w, perm=[0, 1, 3, 2]).numpy()
|
|
989
|
+
bias = b.numpy()
|
|
990
|
+
b_ind = bias>0
|
|
991
|
+
bias_pos = bias*b_ind
|
|
992
|
+
b_ind = bias<0
|
|
993
|
+
bias_neg = bias*b_ind*-1.0
|
|
994
|
+
conv_out = np.einsum('ijkl,mnk->ijkl', k, patch)
|
|
995
|
+
p_ind = conv_out > 0
|
|
996
|
+
p_ind = conv_out*p_ind
|
|
997
|
+
n_ind = conv_out < 0
|
|
998
|
+
n_ind = conv_out*n_ind
|
|
999
|
+
p_sum = np.einsum("ijkl->l",p_ind)
|
|
1000
|
+
n_sum = np.einsum("ijkl->l",n_ind)*-1.0
|
|
1001
|
+
p_agg_wt_pos,p_agg_wt_neg,n_agg_wt_pos,n_agg_wt_neg,p_sum,n_sum = calculate_base_wt_array(p_sum,n_sum,bias,wts_pos,wts_neg)
|
|
1002
|
+
wt_mat_pos = np.zeros_like(k)
|
|
1003
|
+
wt_mat_neg = np.zeros_like(k)
|
|
1004
|
+
|
|
1005
|
+
wt_mat_pos = wt_mat_pos+((p_ind/p_sum)*p_agg_wt_pos)
|
|
1006
|
+
wt_mat_pos = wt_mat_pos+((n_ind/n_sum)*n_agg_wt_pos)*-1.0
|
|
1007
|
+
wt_mat_neg = wt_mat_neg+((p_ind/p_sum)*p_agg_wt_neg)
|
|
1008
|
+
wt_mat_neg = wt_mat_neg+((n_ind/n_sum)*n_agg_wt_neg)*-1.0
|
|
1009
|
+
wt_mat_pos = np.sum(wt_mat_pos,axis=-1)
|
|
1010
|
+
wt_mat_neg = np.sum(wt_mat_neg,axis=-1)
|
|
1011
|
+
|
|
1012
|
+
return wt_mat_pos, wt_mat_neg
|
|
1013
|
+
|
|
1014
|
+
def calculate_wt_conv2d_transpose(wts_pos, wts_neg, inp, w, b, padding, strides, act):
|
|
1015
|
+
out_shape, paddings = calculate_output_padding_conv2d_transpose(inp.shape, w.shape, padding, strides)
|
|
1016
|
+
out_ds_pos = np.zeros(out_shape + [w.shape[3]])
|
|
1017
|
+
out_ds_neg = np.zeros(out_shape + [w.shape[3]])
|
|
1018
|
+
for ind1 in range(inp.shape[0]):
|
|
1019
|
+
for ind2 in range(inp.shape[1]):
|
|
1020
|
+
out_ind1 = ind1 * strides[0]
|
|
1021
|
+
out_ind2 = ind2 * strides[1]
|
|
1022
|
+
tmp_patch = inp[ind1, ind2, :]
|
|
1023
|
+
updates_pos,updates_neg = calculate_wt_conv2d_transpose_unit(tmp_patch, wts_pos[ind1,ind2,:], wts_neg[ind1,ind2,:], w, b, act)
|
|
1024
|
+
end_ind1 = min(out_ind1 + w.shape[0], out_shape[0])
|
|
1025
|
+
end_ind2 = min(out_ind2 + w.shape[1], out_shape[1])
|
|
1026
|
+
valid_updates_pos = updates_pos[:end_ind1 - out_ind1, :end_ind2 - out_ind2, :]
|
|
1027
|
+
valid_updates_neg = updates_neg[:end_ind1 - out_ind1, :end_ind2 - out_ind2, :]
|
|
1028
|
+
|
|
1029
|
+
out_ds_pos[out_ind1:end_ind1, out_ind2:end_ind2, :] += valid_updates_pos
|
|
1030
|
+
out_ds_neg[out_ind1:end_ind1, out_ind2:end_ind2, :] += valid_updates_neg
|
|
1031
|
+
|
|
1032
|
+
if padding == 'same':
|
|
1033
|
+
adjusted_out_ds_pos = np.zeros(inp.shape)
|
|
1034
|
+
adjusted_out_ds_neg = np.zeros(inp.shape)
|
|
1035
|
+
for i in range(inp.shape[0]):
|
|
1036
|
+
for j in range(inp.shape[1]):
|
|
1037
|
+
start_i = max(0, i * strides[0])
|
|
1038
|
+
start_j = max(0, j * strides[1])
|
|
1039
|
+
end_i = min(out_ds_pos.shape[0], (i+1) * strides[0])
|
|
1040
|
+
end_j = min(out_ds_pos.shape[1], (j+1) * strides[1])
|
|
1041
|
+
relevant_area_pos = out_ds_pos[start_i:end_i, start_j:end_j, :]
|
|
1042
|
+
adjusted_out_ds_pos[i, j, :] = np.sum(relevant_area_pos, axis=(0, 1))
|
|
1043
|
+
relevant_area_neg = out_ds_neg[start_i:end_i, start_j:end_j, :]
|
|
1044
|
+
adjusted_out_ds_neg[i, j, :] = np.sum(relevant_area_neg, axis=(0, 1))
|
|
1045
|
+
out_ds_pos = adjusted_out_ds_pos
|
|
1046
|
+
out_ds_neg = adjusted_out_ds_neg
|
|
1047
|
+
else:
|
|
1048
|
+
out_ds_pos = out_ds_pos[paddings[0][0]:(paddings[0][0] + inp.shape[0]),
|
|
1049
|
+
paddings[1][0]:(paddings[1][0] + inp.shape[1]), :]
|
|
1050
|
+
out_ds_neg = out_ds_neg[paddings[0][0]:(paddings[0][0] + inp.shape[0]),
|
|
1051
|
+
paddings[1][0]:(paddings[1][0] + inp.shape[1]), :]
|
|
1052
|
+
|
|
1053
|
+
return out_ds_pos,out_ds_neg
|
|
1054
|
+
|
|
1055
|
+
def calculate_output_padding_conv1d_transpose(input_shape, kernel_size, padding, strides):
|
|
1056
|
+
if padding == 'valid':
|
|
1057
|
+
out_shape = [(input_shape[0] - 1) * strides + kernel_size[0]]
|
|
1058
|
+
return (out_shape, [0, 0])
|
|
1059
|
+
else: # 'same' padding
|
|
1060
|
+
out_shape = [input_shape[0] * strides]
|
|
1061
|
+
pad_h = max(0, (input_shape[0] - 1) * strides + kernel_size[0] - out_shape[0])
|
|
1062
|
+
paddings = np.floor([pad_h / 2.0, (pad_h + 1) / 2.0]).astype("int32")
|
|
1063
|
+
return (out_shape, paddings)
|
|
1064
|
+
|
|
1065
|
+
def calculate_wt_conv1d_transpose_unit(patch, wts_pos, wts_neg, w, b, act):
|
|
1066
|
+
if patch.ndim == 1:
|
|
1067
|
+
patch = patch.reshape(1, -1)
|
|
1068
|
+
elif patch.ndim != 2:
|
|
1069
|
+
raise ValueError(f"Unexpected patch shape: {patch.shape}")
|
|
1070
|
+
|
|
1071
|
+
k = tf.transpose(w, perm=[0, 2, 1]).numpy()
|
|
1072
|
+
bias = b.numpy()
|
|
1073
|
+
b_ind = bias > 0
|
|
1074
|
+
bias_pos = bias * b_ind
|
|
1075
|
+
b_ind = bias < 0
|
|
1076
|
+
bias_neg = bias * b_ind * -1.0
|
|
1077
|
+
|
|
1078
|
+
conv_out = np.einsum('ijk,mj->ijk', k, patch)
|
|
1079
|
+
p_ind = conv_out > 0
|
|
1080
|
+
p_ind = conv_out * p_ind
|
|
1081
|
+
n_ind = conv_out < 0
|
|
1082
|
+
n_ind = conv_out * n_ind
|
|
1083
|
+
p_sum = np.einsum("ijk->k", p_ind)
|
|
1084
|
+
n_sum = np.einsum("ijk->k", n_ind) * -1.0
|
|
1085
|
+
|
|
1086
|
+
p_agg_wt_pos, p_agg_wt_neg, n_agg_wt_pos, n_agg_wt_neg, p_sum, n_sum = calculate_base_wt_array(p_sum, n_sum, bias, wts_pos, wts_neg)
|
|
1087
|
+
wt_mat_pos = np.zeros_like(k)
|
|
1088
|
+
wt_mat_neg = np.zeros_like(k)
|
|
1089
|
+
|
|
1090
|
+
wt_mat_pos += (p_ind / p_sum) * p_agg_wt_pos
|
|
1091
|
+
wt_mat_pos += (n_ind / n_sum) * n_agg_wt_pos * -1.0
|
|
1092
|
+
wt_mat_neg += (p_ind / p_sum) * p_agg_wt_neg
|
|
1093
|
+
wt_mat_neg += (n_ind / n_sum) * n_agg_wt_neg * -1.0
|
|
1094
|
+
|
|
1095
|
+
wt_mat_pos = np.sum(wt_mat_pos, axis=-1)
|
|
1096
|
+
wt_mat_neg = np.sum(wt_mat_neg, axis=-1)
|
|
1097
|
+
|
|
1098
|
+
return wt_mat_pos, wt_mat_neg
|
|
1099
|
+
|
|
1100
|
+
def calculate_wt_conv1d_transpose(wts_pos, wts_neg, inp, w, b, padding, strides, act):
|
|
1101
|
+
out_shape, paddings = calculate_output_padding_conv1d_transpose(inp.shape, w.shape, padding, strides)
|
|
1102
|
+
out_ds_pos = np.zeros(out_shape + [w.shape[2]])
|
|
1103
|
+
out_ds_neg = np.zeros(out_shape + [w.shape[2]])
|
|
1104
|
+
|
|
1105
|
+
for ind in range(inp.shape[0]):
|
|
1106
|
+
out_ind = ind * strides
|
|
1107
|
+
tmp_patch = inp[ind, :]
|
|
1108
|
+
updates_pos, updates_neg = calculate_wt_conv1d_transpose_unit(tmp_patch, wts_pos[ind, :], wts_neg[ind, :], w, b, act)
|
|
1109
|
+
end_ind = min(out_ind + w.shape[0], out_shape[0])
|
|
1110
|
+
valid_updates_pos = updates_pos[:end_ind - out_ind, :]
|
|
1111
|
+
valid_updates_neg = updates_neg[:end_ind - out_ind, :]
|
|
1112
|
+
|
|
1113
|
+
out_ds_pos[out_ind:end_ind, :] += valid_updates_pos
|
|
1114
|
+
out_ds_neg[out_ind:end_ind, :] += valid_updates_neg
|
|
1115
|
+
|
|
1116
|
+
if padding == 'same':
|
|
1117
|
+
adjusted_out_ds_pos = np.zeros(inp.shape)
|
|
1118
|
+
adjusted_out_ds_neg = np.zeros(inp.shape)
|
|
1119
|
+
for i in range(inp.shape[0]):
|
|
1120
|
+
start_i = max(0, i * strides)
|
|
1121
|
+
end_i = min(out_ds_pos.shape[0], (i + 1) * strides)
|
|
1122
|
+
relevant_area_pos = out_ds_pos[start_i:end_i, :]
|
|
1123
|
+
adjusted_out_ds_pos[i, :] = np.sum(relevant_area_pos, axis=0)
|
|
1124
|
+
relevant_area_neg = out_ds_neg[start_i:end_i, :]
|
|
1125
|
+
adjusted_out_ds_neg[i, :] = np.sum(relevant_area_neg, axis=0)
|
|
1126
|
+
out_ds_pos = adjusted_out_ds_pos
|
|
1127
|
+
out_ds_neg = adjusted_out_ds_neg
|
|
1128
|
+
else:
|
|
1129
|
+
out_ds_pos = out_ds_pos[paddings[0]:(paddings[0] + inp.shape[0]), :]
|
|
1130
|
+
out_ds_neg = out_ds_neg[paddings[0]:(paddings[0] + inp.shape[0]), :]
|
|
1131
|
+
|
|
1132
|
+
return out_ds_pos, out_ds_neg
|