disdrodb 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. disdrodb/_version.py +2 -2
  2. disdrodb/accessor/methods.py +10 -3
  3. disdrodb/api/checks.py +1 -1
  4. disdrodb/api/io.py +6 -1
  5. disdrodb/constants.py +1 -1
  6. disdrodb/etc/products/L1/LPM_V0/1MIN.yaml +13 -0
  7. disdrodb/etc/products/L1/global.yaml +1 -1
  8. disdrodb/etc/products/L2E/global.yaml +1 -1
  9. disdrodb/etc/products/L2M/global.yaml +1 -1
  10. disdrodb/issue/checks.py +2 -2
  11. disdrodb/l0/check_configs.py +1 -1
  12. disdrodb/l0/configs/LPM/l0a_encodings.yml +0 -1
  13. disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +0 -4
  14. disdrodb/l0/configs/LPM/l0b_encodings.yml +9 -9
  15. disdrodb/l0/configs/LPM/raw_data_format.yml +11 -11
  16. disdrodb/l0/configs/LPM_V0/bins_diameter.yml +103 -0
  17. disdrodb/l0/configs/LPM_V0/bins_velocity.yml +103 -0
  18. disdrodb/l0/configs/LPM_V0/l0a_encodings.yml +45 -0
  19. disdrodb/l0/configs/LPM_V0/l0b_cf_attrs.yml +180 -0
  20. disdrodb/l0/configs/LPM_V0/l0b_encodings.yml +410 -0
  21. disdrodb/l0/configs/LPM_V0/raw_data_format.yml +474 -0
  22. disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +8 -8
  23. disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +9 -9
  24. disdrodb/l0/l0a_processing.py +6 -2
  25. disdrodb/l0/l0b_processing.py +26 -19
  26. disdrodb/l0/l0c_processing.py +10 -0
  27. disdrodb/l0/manuals/LPM_V0.pdf +0 -0
  28. disdrodb/l0/readers/LPM/ITALY/GID_LPM.py +15 -7
  29. disdrodb/l0/readers/LPM/ITALY/GID_LPM_PI.py +279 -0
  30. disdrodb/l0/readers/LPM/ITALY/GID_LPM_T.py +276 -0
  31. disdrodb/l0/readers/LPM/ITALY/GID_LPM_W.py +2 -2
  32. disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_RWANDA_LPM_NC.py +103 -0
  33. disdrodb/l0/readers/LPM/NORWAY/HAUKELISETER_LPM.py +216 -0
  34. disdrodb/l0/readers/LPM/NORWAY/NMBU_LPM.py +208 -0
  35. disdrodb/l0/readers/LPM/UK/WITHWORTH_LPM.py +219 -0
  36. disdrodb/l0/readers/LPM/USA/CHARLESTON.py +229 -0
  37. disdrodb/l0/readers/{LPM → LPM_V0}/BELGIUM/ULIEGE.py +33 -49
  38. disdrodb/l0/readers/LPM_V0/ITALY/GID_LPM_V0.py +240 -0
  39. disdrodb/l0/readers/PARSIVEL/NASA/LPVEX.py +25 -13
  40. disdrodb/l0/readers/PARSIVEL/NASA/MC3E.py +1 -1
  41. disdrodb/l0/readers/PARSIVEL2/BASQUECOUNTRY/EUSKALMET_OTT2.py +1 -1
  42. disdrodb/l0/readers/PARSIVEL2/JAPAN/PRECIP.py +155 -0
  43. disdrodb/l0/readers/PARSIVEL2/MPI/BCO_PARSIVEL2.py +14 -7
  44. disdrodb/l0/readers/PARSIVEL2/MPI/BOWTIE.py +8 -3
  45. disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +28 -5
  46. disdrodb/l0/readers/PARSIVEL2/NCAR/RELAMPAGO_PARSIVEL2.py +1 -1
  47. disdrodb/l0/readers/PARSIVEL2/{NASA/GCPEX.py → NORWAY/UIB.py} +54 -29
  48. disdrodb/l0/readers/PARSIVEL2/PHILIPPINES/PAGASA.py +6 -3
  49. disdrodb/l0/readers/{PARSIVEL/NASA/PIERS.py → PARSIVEL2/USA/CSU.py} +62 -29
  50. disdrodb/l0/readers/PARSIVEL2/USA/CW3E.py +48 -21
  51. disdrodb/l0/readers/{PARSIVEL/NASA/IFLOODS.py → RD80/BRAZIL/ATTO_RD80.py} +50 -34
  52. disdrodb/l0/readers/{SW250 → SWS250}/BELGIUM/KMI.py +1 -1
  53. disdrodb/l1/beard_model.py +45 -1
  54. disdrodb/l1/fall_velocity.py +1 -6
  55. disdrodb/l1/filters.py +2 -0
  56. disdrodb/l2/empirical_dsd.py +12 -8
  57. disdrodb/routines/l0.py +2 -2
  58. disdrodb/routines/options.py +2 -0
  59. disdrodb/scattering/axis_ratio.py +3 -0
  60. disdrodb/scattering/routines.py +1 -1
  61. disdrodb/summary/routines.py +63 -61
  62. disdrodb/utils/compression.py +4 -2
  63. disdrodb/utils/dask.py +31 -11
  64. disdrodb/utils/manipulations.py +7 -1
  65. disdrodb/viz/plots.py +5 -3
  66. {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/METADATA +1 -1
  67. {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/RECORD +71 -54
  68. {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/WHEEL +0 -0
  69. {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/entry_points.txt +0 -0
  70. {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/licenses/LICENSE +0 -0
  71. {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,103 @@
1
+ # -----------------------------------------------------------------------------.
2
+ # Copyright (c) 2021-2023 DISDRODB developers
3
+ #
4
+ # This program is free software: you can redistribute it and/or modify
5
+ # it under the terms of the GNU General Public License as published by
6
+ # the Free Software Foundation, either version 3 of the License, or
7
+ # (at your option) any later version.
8
+ #
9
+ # This program is distributed in the hope that it will be useful,
10
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
11
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
+ # GNU General Public License for more details.
13
+ #
14
+ # You should have received a copy of the GNU General Public License
15
+ # along with this program. If not, see <http://www.gnu.org/licenses/>.
16
+ # -----------------------------------------------------------------------------.
17
+ """Reader for RWANDA DELFT Thies LPM sensor in netCDF format."""
18
+
19
+ from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
20
+ from disdrodb.l0.l0b_nc_processing import open_raw_netcdf_file, standardize_raw_dataset
21
+
22
+
23
+ @is_documented_by(reader_generic_docstring)
24
+ def reader(
25
+ filepath,
26
+ logger=None,
27
+ ):
28
+ """Reader."""
29
+ ##------------------------------------------------------------------------.
30
+ #### Open the netCDF
31
+ ds = open_raw_netcdf_file(filepath=filepath, logger=logger)
32
+
33
+ ##------------------------------------------------------------------------.
34
+ #### Adapt the dataframe to adhere to DISDRODB L0 standards
35
+ # Add time coordinate
36
+ ds["time"] = ds["time"].astype("M8[s]")
37
+ ds["time"].attrs.pop("comment", None)
38
+ ds["time"].attrs.pop("units", None)
39
+ ds = ds.set_coords("time")
40
+
41
+ # Define dictionary mapping dataset variables to select and rename
42
+ dict_names = {
43
+ ### Dimensions
44
+ "diameter_classes": "diameter_bin_center",
45
+ "velocity_classes": "velocity_bin_center",
46
+ ### Variables
47
+ "weather_code_synop_4680": "weather_code_synop_4680",
48
+ "weather_code_synop_4677": "weather_code_synop_4677",
49
+ "weather_code_metar_4678": "weather_code_metar_4678",
50
+ "liquid_precip_intensity": "rainfall_rate",
51
+ "solid_precip_intensity": "snowfall_rate",
52
+ "all_precip_intensity": "precipitation_rate",
53
+ "reflectivity": "reflectivity",
54
+ "visibility": "mor_visibility",
55
+ "measurement_quality": "quality_index",
56
+ "maximum_diameter_hail": "max_hail_diameter",
57
+ "status_laser": "laser_status",
58
+ "status_output_laser_power": "control_output_laser_power_status",
59
+ "interior_temperature": "temperature_interior",
60
+ "temperature_of_laser_driver": "laser_temperature",
61
+ "mean_value_laser_current": "laser_current_average",
62
+ "control_voltage": "control_voltage",
63
+ "optical_control_output": "optical_control_voltage_output",
64
+ "voltage_sensor_supply": "sensor_voltage_supply",
65
+ "current_heating_laser_head": "current_heating_pane_transmitter_head",
66
+ "current_heating_receiver_head": "current_heating_pane_receiver_head",
67
+ "ambient_temperature": "temperature_ambient",
68
+ "voltage_heating_supply": "current_heating_voltage_supply",
69
+ "current_heating_housing": "current_heating_house",
70
+ "current_heating_heads": "current_heating_heads",
71
+ "current_heating_carriers": "current_heating_carriers",
72
+ "number_of_all_measured_particles": "number_particles",
73
+ "number_of_particles_slower_than_0.15": "number_particles_min_speed",
74
+ "number_of_particles_faster_than_20": "number_particles_max_speed",
75
+ "number_of_particles_smaller_than_0.15": "number_particles_min_diameter",
76
+ "number_of_particles_with_unknown_classification": "number_particles_unknown_classification",
77
+ "total_volume_gross_particles_unknown_classification": "number_particles_unknown_classification_internal_data",
78
+ "number_of_particles_class_1": "number_particles_class_1",
79
+ "total_volume_gross_of_class_1": "number_particles_class_1_internal_data",
80
+ "number_of_particles_class_2": "number_particles_class_2",
81
+ "total_volume_gross_of_class_2": "number_particles_class_2_internal_data",
82
+ "number_of_particles_class_3": "number_particles_class_3",
83
+ "total_volume_gross_of_class_3": "number_particles_class_3_internal_data",
84
+ "number_of_particles_class_4": "number_particles_class_4",
85
+ "total_volume_gross_of_class_4": "number_particles_class_4_internal_data",
86
+ "number_of_particles_class_5": "number_particles_class_5",
87
+ "total_volume_gross_of_class_5": "number_particles_class_5_internal_data",
88
+ "number_of_particles_class_6": "number_particles_class_6",
89
+ "total_volume_gross_of_class_6": "number_particles_class_6_internal_data",
90
+ "number_of_particles_class_7": "number_particles_class_7",
91
+ "total_volume_gross_of_class_7": "number_particles_class_7_internal_data",
92
+ "number_of_particles_class_8": "number_particles_class_8",
93
+ "total_volume_gross_of_class_8": "number_particles_class_8_internal_data",
94
+ "number_of_particles_class_9": "number_particles_class_9",
95
+ "total_volume_gross_of_class_9": "number_particles_class_9_internal_data",
96
+ "raw_data": "raw_drop_number",
97
+ }
98
+
99
+ # Rename dataset variables and columns and infill missing variables
100
+ ds = standardize_raw_dataset(ds=ds, dict_names=dict_names, sensor_name="LPM")
101
+
102
+ # Return the dataset adhering to DISDRODB L0B standards
103
+ return ds
@@ -0,0 +1,216 @@
1
+ #!/usr/bin/env python3
2
+
3
+ # -----------------------------------------------------------------------------.
4
+ # Copyright (c) 2021-2023 DISDRODB developers
5
+ #
6
+ # This program is free software: you can redistribute it and/or modify
7
+ # it under the terms of the GNU General Public License as published by
8
+ # the Free Software Foundation, either version 3 of the License, or
9
+ # (at your option) any later version.
10
+ #
11
+ # This program is distributed in the hope that it will be useful,
12
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
13
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
+ # GNU General Public License for more details.
15
+ #
16
+ # You should have received a copy of the GNU General Public License
17
+ # along with this program. If not, see <http://www.gnu.org/licenses/>.
18
+ # -----------------------------------------------------------------------------.
19
+ """DISDRODB reader for Haukeliseter Test Site LPM sensors."""
20
+ import numpy as np
21
+ import pandas as pd
22
+
23
+ from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
24
+ from disdrodb.l0.l0a_processing import read_raw_text_file
25
+
26
+
27
+ @is_documented_by(reader_generic_docstring)
28
+ def reader(
29
+ filepath,
30
+ logger=None,
31
+ ):
32
+ """Reader."""
33
+ ##------------------------------------------------------------------------.
34
+ #### - Define raw data headers
35
+ column_names = ["TO_PARSE"]
36
+
37
+ ##------------------------------------------------------------------------.
38
+ #### Define reader options
39
+ # - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
40
+ reader_kwargs = {}
41
+
42
+ # - Define delimiter
43
+ reader_kwargs["delimiter"] = "\\n"
44
+
45
+ # - Avoid first column to become df index !!!
46
+ reader_kwargs["index_col"] = False
47
+
48
+ # - Define encoding
49
+ reader_kwargs["encoding"] = "ISO-8859-1"
50
+
51
+ # - Since column names are expected to be passed explicitly, header is set to None
52
+ reader_kwargs["header"] = None
53
+
54
+ # - Number of rows to be skipped at the beginning of the file
55
+ reader_kwargs["skiprows"] = None
56
+
57
+ # - Define behaviour when encountering bad lines
58
+ reader_kwargs["on_bad_lines"] = "skip"
59
+
60
+ # - Define reader engine
61
+ # - C engine is faster
62
+ # - Python engine is more feature-complete
63
+ reader_kwargs["engine"] = "python"
64
+
65
+ # - Define on-the-fly decompression of on-disk data
66
+ # - Available: gzip, bz2, zip
67
+ reader_kwargs["compression"] = "infer"
68
+
69
+ # - Strings to recognize as NA/NaN and replace with standard NA flags
70
+ # - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
71
+ # '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
72
+ # 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
73
+ reader_kwargs["na_values"] = ["na", "", "error"]
74
+
75
+ ##------------------------------------------------------------------------.
76
+ #### Read the data
77
+ df = read_raw_text_file(
78
+ filepath=filepath,
79
+ column_names=column_names,
80
+ reader_kwargs=reader_kwargs,
81
+ logger=logger,
82
+ )
83
+
84
+ ##------------------------------------------------------------------------.
85
+ #### Adapt the dataframe to adhere to DISDRODB L0 standards
86
+ # Raise error if empty file
87
+ if len(df) == 0:
88
+ raise ValueError(f"{filepath} is empty.")
89
+
90
+ # Select only rows with expected number of delimiters
91
+ df = df[df["TO_PARSE"].str.count(";").isin([520, 521])]
92
+
93
+ # Raise error if no data left
94
+ if len(df) == 0:
95
+ raise ValueError(f"No valid data in {filepath}.")
96
+
97
+ # Retrieve most frequent number of delimiters
98
+ possible_delimiters, counts = np.unique(df["TO_PARSE"].str.count(";"), return_counts=True)
99
+ n_delimiters = possible_delimiters[np.argmax(counts)]
100
+
101
+ if n_delimiters == 520:
102
+ n = 79
103
+ columns_to_drop = ["device_address", "sensor_serial_number"]
104
+ else: # n_delimiters == 521
105
+ n = 80
106
+ columns_to_drop = ["start_identifier", "device_address", "sensor_serial_number"]
107
+
108
+ # Split by ; delimiter (before raw drop number)
109
+ df = df["TO_PARSE"].str.split(";", expand=True, n=n)
110
+
111
+ # Assign column names
112
+ names = [
113
+ "time",
114
+ *columns_to_drop,
115
+ "sensor_date",
116
+ "sensor_time",
117
+ "weather_code_synop_4677_5min",
118
+ "weather_code_synop_4680_5min",
119
+ "weather_code_metar_4678_5min",
120
+ "precipitation_rate_5min",
121
+ "weather_code_synop_4677",
122
+ "weather_code_synop_4680",
123
+ "weather_code_metar_4678",
124
+ "precipitation_rate",
125
+ "rainfall_rate",
126
+ "snowfall_rate",
127
+ "precipitation_accumulated",
128
+ "mor_visibility",
129
+ "reflectivity",
130
+ "quality_index",
131
+ "max_hail_diameter",
132
+ "laser_status",
133
+ "static_signal_status",
134
+ "laser_temperature_analog_status",
135
+ "laser_temperature_digital_status",
136
+ "laser_current_analog_status",
137
+ "laser_current_digital_status",
138
+ "sensor_voltage_supply_status",
139
+ "current_heating_pane_transmitter_head_status",
140
+ "current_heating_pane_receiver_head_status",
141
+ "temperature_sensor_status",
142
+ "current_heating_voltage_supply_status",
143
+ "current_heating_house_status",
144
+ "current_heating_heads_status",
145
+ "current_heating_carriers_status",
146
+ "control_output_laser_power_status",
147
+ "reserved_status",
148
+ "temperature_interior",
149
+ "laser_temperature",
150
+ "laser_current_average",
151
+ "control_voltage",
152
+ "optical_control_voltage_output",
153
+ "sensor_voltage_supply",
154
+ "current_heating_pane_transmitter_head",
155
+ "current_heating_pane_receiver_head",
156
+ "temperature_ambient",
157
+ "current_heating_voltage_supply",
158
+ "current_heating_house",
159
+ "current_heating_heads",
160
+ "current_heating_carriers",
161
+ "number_particles",
162
+ "number_particles_internal_data",
163
+ "number_particles_min_speed",
164
+ "number_particles_min_speed_internal_data",
165
+ "number_particles_max_speed",
166
+ "number_particles_max_speed_internal_data",
167
+ "number_particles_min_diameter",
168
+ "number_particles_min_diameter_internal_data",
169
+ "number_particles_no_hydrometeor",
170
+ "number_particles_no_hydrometeor_internal_data",
171
+ "number_particles_unknown_classification",
172
+ "number_particles_unknown_classification_internal_data",
173
+ "number_particles_class_1",
174
+ "number_particles_class_1_internal_data",
175
+ "number_particles_class_2",
176
+ "number_particles_class_2_internal_data",
177
+ "number_particles_class_3",
178
+ "number_particles_class_3_internal_data",
179
+ "number_particles_class_4",
180
+ "number_particles_class_4_internal_data",
181
+ "number_particles_class_5",
182
+ "number_particles_class_5_internal_data",
183
+ "number_particles_class_6",
184
+ "number_particles_class_6_internal_data",
185
+ "number_particles_class_7",
186
+ "number_particles_class_7_internal_data",
187
+ "number_particles_class_8",
188
+ "number_particles_class_8_internal_data",
189
+ "number_particles_class_9",
190
+ "number_particles_class_9_internal_data",
191
+ "raw_drop_number",
192
+ ]
193
+ df.columns = names
194
+
195
+ # Remove checksum from raw_drop_number
196
+ df["raw_drop_number"] = df["raw_drop_number"].str.rsplit(";", n=2, expand=True)[0]
197
+
198
+ # Define datetime "time" column
199
+ if n_delimiters == 520:
200
+ time_str = df["time"].str.extract(r"(\d{8}_\d{6})")[0]
201
+ df["time"] = pd.to_datetime(time_str, format="%Y%m%d_%H%M%S", errors="coerce")
202
+ else:
203
+ time_str = df["time"].str.extract(r"(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})")[0]
204
+ df["time"] = pd.to_datetime(time_str, format="%Y-%m-%d %H:%M:%S", errors="coerce")
205
+
206
+ # Drop rows with invalid raw_drop_number
207
+ df = df[df["raw_drop_number"].astype(str).str.len() == 1759]
208
+
209
+ # Drop columns not agreeing with DISDRODB L0 standards
210
+ variables_to_drop = [
211
+ *columns_to_drop,
212
+ "sensor_date",
213
+ "sensor_time",
214
+ ]
215
+ df = df.drop(columns=variables_to_drop)
216
+ return df
@@ -0,0 +1,208 @@
1
+ #!/usr/bin/env python3
2
+
3
+ # -----------------------------------------------------------------------------.
4
+ # Copyright (c) 2021-2023 DISDRODB developers
5
+ #
6
+ # This program is free software: you can redistribute it and/or modify
7
+ # it under the terms of the GNU General Public License as published by
8
+ # the Free Software Foundation, either version 3 of the License, or
9
+ # (at your option) any later version.
10
+ #
11
+ # This program is distributed in the hope that it will be useful,
12
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
13
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
+ # GNU General Public License for more details.
15
+ #
16
+ # You should have received a copy of the GNU General Public License
17
+ # along with this program. If not, see <http://www.gnu.org/licenses/>.
18
+ # -----------------------------------------------------------------------------.
19
+ """DISDRODB reader for NMBU BIOKLIM LPM sensor."""
20
+ import os
21
+
22
+ import pandas as pd
23
+
24
+ from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
25
+ from disdrodb.l0.l0a_processing import read_raw_text_file
26
+
27
+
28
+ @is_documented_by(reader_generic_docstring)
29
+ def reader(
30
+ filepath,
31
+ logger=None,
32
+ ):
33
+ """Reader."""
34
+ ##------------------------------------------------------------------------.
35
+ #### - Define raw data headers
36
+ column_names = ["TO_PARSE"]
37
+
38
+ ##------------------------------------------------------------------------.
39
+ #### Define reader options
40
+ # - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
41
+ reader_kwargs = {}
42
+
43
+ # - Define delimiter
44
+ reader_kwargs["delimiter"] = "\\n"
45
+
46
+ # - Avoid first column to become df index !!!
47
+ reader_kwargs["index_col"] = False
48
+
49
+ # Since column names are expected to be passed explicitly, header is set to None
50
+ reader_kwargs["header"] = None
51
+
52
+ # - Number of rows to be skipped at the beginning of the file
53
+ reader_kwargs["skiprows"] = None
54
+
55
+ # - Define behaviour when encountering bad lines
56
+ reader_kwargs["on_bad_lines"] = "skip"
57
+
58
+ # - Define reader engine
59
+ # - C engine is faster
60
+ # - Python engine is more feature-complete
61
+ reader_kwargs["engine"] = "python"
62
+
63
+ # - Define on-the-fly decompression of on-disk data
64
+ # - Available: gzip, bz2, zip
65
+ reader_kwargs["compression"] = "infer"
66
+
67
+ # - Strings to recognize as NA/NaN and replace with standard NA flags
68
+ # - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
69
+ # '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
70
+ # 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
71
+ reader_kwargs["na_values"] = ["na", "", "error"]
72
+
73
+ ##------------------------------------------------------------------------.
74
+ #### Read the data
75
+ df = read_raw_text_file(
76
+ filepath=filepath,
77
+ column_names=column_names,
78
+ reader_kwargs=reader_kwargs,
79
+ logger=logger,
80
+ )
81
+
82
+ ##------------------------------------------------------------------------.
83
+ #### Adapt the dataframe to adhere to DISDRODB L0 standards
84
+ # Raise error if empty file
85
+ if len(df) == 0:
86
+ raise ValueError(f"{filepath} is empty.")
87
+
88
+ # Select only rows with expected number of delimiters
89
+ df = df[df["TO_PARSE"].str.count(";") == 525]
90
+
91
+ # Raise error if no data left
92
+ if len(df) == 0:
93
+ raise ValueError(f"No valid data in {filepath}.")
94
+
95
+ # Split by ; delimiter (before raw drop number)
96
+ df = df["TO_PARSE"].str.split(";", expand=True, n=80)
97
+
98
+ # Assign column names
99
+ names = [
100
+ "time",
101
+ "start_identifier",
102
+ "device_address",
103
+ "sensor_serial_number",
104
+ "sensor_date",
105
+ "sensor_time",
106
+ "weather_code_synop_4677_5min",
107
+ "weather_code_synop_4680_5min",
108
+ "weather_code_metar_4678_5min",
109
+ "precipitation_rate_5min",
110
+ "weather_code_synop_4677",
111
+ "weather_code_synop_4680",
112
+ "weather_code_metar_4678",
113
+ "precipitation_rate",
114
+ "rainfall_rate",
115
+ "snowfall_rate",
116
+ "precipitation_accumulated",
117
+ "mor_visibility",
118
+ "reflectivity",
119
+ "quality_index",
120
+ "max_hail_diameter",
121
+ "laser_status",
122
+ "static_signal_status",
123
+ "laser_temperature_analog_status",
124
+ "laser_temperature_digital_status",
125
+ "laser_current_analog_status",
126
+ "laser_current_digital_status",
127
+ "sensor_voltage_supply_status",
128
+ "current_heating_pane_transmitter_head_status",
129
+ "current_heating_pane_receiver_head_status",
130
+ "temperature_sensor_status",
131
+ "current_heating_voltage_supply_status",
132
+ "current_heating_house_status",
133
+ "current_heating_heads_status",
134
+ "current_heating_carriers_status",
135
+ "control_output_laser_power_status",
136
+ "reserved_status",
137
+ "temperature_interior",
138
+ "laser_temperature",
139
+ "laser_current_average",
140
+ "control_voltage",
141
+ "optical_control_voltage_output",
142
+ "sensor_voltage_supply",
143
+ "current_heating_pane_transmitter_head",
144
+ "current_heating_pane_receiver_head",
145
+ "temperature_ambient",
146
+ "current_heating_voltage_supply",
147
+ "current_heating_house",
148
+ "current_heating_heads",
149
+ "current_heating_carriers",
150
+ "number_particles",
151
+ "number_particles_internal_data",
152
+ "number_particles_min_speed",
153
+ "number_particles_min_speed_internal_data",
154
+ "number_particles_max_speed",
155
+ "number_particles_max_speed_internal_data",
156
+ "number_particles_min_diameter",
157
+ "number_particles_min_diameter_internal_data",
158
+ "number_particles_no_hydrometeor",
159
+ "number_particles_no_hydrometeor_internal_data",
160
+ "number_particles_unknown_classification",
161
+ "number_particles_unknown_classification_internal_data",
162
+ "number_particles_class_1",
163
+ "number_particles_class_1_internal_data",
164
+ "number_particles_class_2",
165
+ "number_particles_class_2_internal_data",
166
+ "number_particles_class_3",
167
+ "number_particles_class_3_internal_data",
168
+ "number_particles_class_4",
169
+ "number_particles_class_4_internal_data",
170
+ "number_particles_class_5",
171
+ "number_particles_class_5_internal_data",
172
+ "number_particles_class_6",
173
+ "number_particles_class_6_internal_data",
174
+ "number_particles_class_7",
175
+ "number_particles_class_7_internal_data",
176
+ "number_particles_class_8",
177
+ "number_particles_class_8_internal_data",
178
+ "number_particles_class_9",
179
+ "number_particles_class_9_internal_data",
180
+ "raw_drop_number",
181
+ ]
182
+ df.columns = names
183
+
184
+ # Remove checksum from raw_drop_number
185
+ df["raw_drop_number"] = df["raw_drop_number"].str.rsplit(";", n=6, expand=True)[0]
186
+
187
+ # Define datetime "time" column
188
+ # df["time"] = df["sensor_date"] + "-" + df["sensor_time"]
189
+ date_str = os.path.basename(filepath).split(".")[0]
190
+ time_str = date_str + "T" + df["time"]
191
+ df["time"] = pd.to_datetime(time_str, format="%Y-%m-%dT%H:%M:%S", errors="coerce")
192
+
193
+ # Drop row if start_identifier different than 00
194
+ # df = df[df["start_identifier"].astype(str) == "00"]
195
+
196
+ # Drop rows with invalid raw_drop_number
197
+ df = df[df["raw_drop_number"].astype(str).str.len() == 1759]
198
+
199
+ # Drop columns not agreeing with DISDRODB L0 standards
200
+ columns_to_drop = [
201
+ "start_identifier",
202
+ "device_address",
203
+ "sensor_serial_number",
204
+ "sensor_date",
205
+ "sensor_time",
206
+ ]
207
+ df = df.drop(columns=columns_to_drop)
208
+ return df