disdrodb 0.2.0__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/_version.py +2 -2
- disdrodb/accessor/methods.py +10 -3
- disdrodb/api/checks.py +1 -1
- disdrodb/api/io.py +6 -1
- disdrodb/constants.py +1 -1
- disdrodb/etc/products/L1/LPM_V0/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/global.yaml +1 -1
- disdrodb/etc/products/L2E/global.yaml +1 -1
- disdrodb/etc/products/L2M/global.yaml +1 -1
- disdrodb/issue/checks.py +2 -2
- disdrodb/l0/check_configs.py +1 -1
- disdrodb/l0/configs/LPM/l0a_encodings.yml +0 -1
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +0 -4
- disdrodb/l0/configs/LPM/l0b_encodings.yml +9 -9
- disdrodb/l0/configs/LPM/raw_data_format.yml +11 -11
- disdrodb/l0/configs/LPM_V0/bins_diameter.yml +103 -0
- disdrodb/l0/configs/LPM_V0/bins_velocity.yml +103 -0
- disdrodb/l0/configs/LPM_V0/l0a_encodings.yml +45 -0
- disdrodb/l0/configs/LPM_V0/l0b_cf_attrs.yml +180 -0
- disdrodb/l0/configs/LPM_V0/l0b_encodings.yml +410 -0
- disdrodb/l0/configs/LPM_V0/raw_data_format.yml +474 -0
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +8 -8
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +9 -9
- disdrodb/l0/l0a_processing.py +6 -2
- disdrodb/l0/l0b_processing.py +26 -19
- disdrodb/l0/l0c_processing.py +10 -0
- disdrodb/l0/manuals/LPM_V0.pdf +0 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM.py +15 -7
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_PI.py +279 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_T.py +276 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_W.py +2 -2
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_RWANDA_LPM_NC.py +103 -0
- disdrodb/l0/readers/LPM/NORWAY/HAUKELISETER_LPM.py +216 -0
- disdrodb/l0/readers/LPM/NORWAY/NMBU_LPM.py +208 -0
- disdrodb/l0/readers/LPM/UK/WITHWORTH_LPM.py +219 -0
- disdrodb/l0/readers/LPM/USA/CHARLESTON.py +229 -0
- disdrodb/l0/readers/{LPM → LPM_V0}/BELGIUM/ULIEGE.py +33 -49
- disdrodb/l0/readers/LPM_V0/ITALY/GID_LPM_V0.py +240 -0
- disdrodb/l0/readers/PARSIVEL/NASA/LPVEX.py +25 -13
- disdrodb/l0/readers/PARSIVEL/NASA/MC3E.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/BASQUECOUNTRY/EUSKALMET_OTT2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/JAPAN/PRECIP.py +155 -0
- disdrodb/l0/readers/PARSIVEL2/MPI/BCO_PARSIVEL2.py +14 -7
- disdrodb/l0/readers/PARSIVEL2/MPI/BOWTIE.py +8 -3
- disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +28 -5
- disdrodb/l0/readers/PARSIVEL2/NCAR/RELAMPAGO_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/{NASA/GCPEX.py → NORWAY/UIB.py} +54 -29
- disdrodb/l0/readers/PARSIVEL2/PHILIPPINES/PAGASA.py +6 -3
- disdrodb/l0/readers/{PARSIVEL/NASA/PIERS.py → PARSIVEL2/USA/CSU.py} +62 -29
- disdrodb/l0/readers/PARSIVEL2/USA/CW3E.py +48 -21
- disdrodb/l0/readers/{PARSIVEL/NASA/IFLOODS.py → RD80/BRAZIL/ATTO_RD80.py} +50 -34
- disdrodb/l0/readers/{SW250 → SWS250}/BELGIUM/KMI.py +1 -1
- disdrodb/l1/beard_model.py +45 -1
- disdrodb/l1/fall_velocity.py +1 -6
- disdrodb/l1/filters.py +2 -0
- disdrodb/l2/empirical_dsd.py +12 -8
- disdrodb/routines/l0.py +2 -2
- disdrodb/routines/options.py +2 -0
- disdrodb/scattering/axis_ratio.py +3 -0
- disdrodb/scattering/routines.py +1 -1
- disdrodb/summary/routines.py +63 -61
- disdrodb/utils/compression.py +4 -2
- disdrodb/utils/dask.py +31 -11
- disdrodb/utils/manipulations.py +7 -1
- disdrodb/viz/plots.py +5 -3
- {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/METADATA +1 -1
- {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/RECORD +71 -54
- {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/WHEEL +0 -0
- {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/entry_points.txt +0 -0
- {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.2.0.dist-info → disdrodb-0.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,474 @@
|
|
|
1
|
+
start_identifier:
|
|
2
|
+
n_digits: 1
|
|
3
|
+
n_characters: 1
|
|
4
|
+
n_decimals: 0
|
|
5
|
+
n_naturals: 1
|
|
6
|
+
data_range:
|
|
7
|
+
- 0
|
|
8
|
+
- 9
|
|
9
|
+
nan_flags: null
|
|
10
|
+
field_number: "01"
|
|
11
|
+
sensor_serial_number:
|
|
12
|
+
n_digits: 6
|
|
13
|
+
n_characters: 6
|
|
14
|
+
n_decimals: 0
|
|
15
|
+
n_naturals: 6
|
|
16
|
+
data_range:
|
|
17
|
+
- 0
|
|
18
|
+
- 999999
|
|
19
|
+
nan_flags: null
|
|
20
|
+
field_number: "02"
|
|
21
|
+
weather_code_synop_4680_5min:
|
|
22
|
+
n_digits: 2
|
|
23
|
+
n_characters: 2
|
|
24
|
+
n_decimals: 0
|
|
25
|
+
n_naturals: 2
|
|
26
|
+
data_range:
|
|
27
|
+
- -1
|
|
28
|
+
- 89
|
|
29
|
+
nan_flags: -1
|
|
30
|
+
field_number: "03"
|
|
31
|
+
weather_code_metar_4678_5min:
|
|
32
|
+
n_digits: 0
|
|
33
|
+
n_characters: 5
|
|
34
|
+
n_decimals: 0
|
|
35
|
+
n_naturals: 0
|
|
36
|
+
data_range: null
|
|
37
|
+
nan_flags: "?????"
|
|
38
|
+
field_number: "04"
|
|
39
|
+
precipitation_rate_5min:
|
|
40
|
+
n_digits: 6
|
|
41
|
+
n_characters: 7
|
|
42
|
+
n_decimals: 3
|
|
43
|
+
n_naturals: 3
|
|
44
|
+
data_range:
|
|
45
|
+
- 0.0
|
|
46
|
+
- 999.999
|
|
47
|
+
nan_flags: 999.999
|
|
48
|
+
field_number: "05"
|
|
49
|
+
weather_code_synop_4680:
|
|
50
|
+
n_digits: 0
|
|
51
|
+
n_characters: 5
|
|
52
|
+
n_decimals: 0
|
|
53
|
+
n_naturals: 0
|
|
54
|
+
data_range:
|
|
55
|
+
- -1
|
|
56
|
+
- 89
|
|
57
|
+
nan_flags: -1
|
|
58
|
+
field_number: "06"
|
|
59
|
+
weather_code_metar_4678:
|
|
60
|
+
n_digits: 0
|
|
61
|
+
n_characters: 5
|
|
62
|
+
n_decimals: 0
|
|
63
|
+
n_naturals: 0
|
|
64
|
+
data_range: null
|
|
65
|
+
nan_flags: "?????"
|
|
66
|
+
field_number: "07"
|
|
67
|
+
precipitation_rate:
|
|
68
|
+
n_digits: 6
|
|
69
|
+
n_characters: 7
|
|
70
|
+
n_decimals: 3
|
|
71
|
+
n_naturals: 3
|
|
72
|
+
data_range:
|
|
73
|
+
- 0.0
|
|
74
|
+
- 999.999
|
|
75
|
+
nan_flags: 999.999
|
|
76
|
+
field_number: "08"
|
|
77
|
+
precipitation_accumulated:
|
|
78
|
+
n_digits: 6
|
|
79
|
+
n_characters: 7
|
|
80
|
+
n_decimals: 4
|
|
81
|
+
n_naturals: 2
|
|
82
|
+
data_range:
|
|
83
|
+
- 0.0
|
|
84
|
+
- 9999.99
|
|
85
|
+
nan_flags: 9999.99
|
|
86
|
+
field_number: "09"
|
|
87
|
+
sensor_time:
|
|
88
|
+
n_digits: 6
|
|
89
|
+
n_characters: 8
|
|
90
|
+
n_decimals: 6
|
|
91
|
+
n_naturals: 0
|
|
92
|
+
data_range: null
|
|
93
|
+
nan_flags: null
|
|
94
|
+
field_number: "10"
|
|
95
|
+
temperature_interior:
|
|
96
|
+
n_digits: 3
|
|
97
|
+
n_characters: 3
|
|
98
|
+
n_decimals: 3
|
|
99
|
+
n_naturals: 0
|
|
100
|
+
data_range:
|
|
101
|
+
- -30
|
|
102
|
+
- 999
|
|
103
|
+
nan_flags: null
|
|
104
|
+
field_number: "11"
|
|
105
|
+
laser_temperature:
|
|
106
|
+
n_digits: 2
|
|
107
|
+
n_characters: 2
|
|
108
|
+
n_decimals: 2
|
|
109
|
+
n_naturals: 0
|
|
110
|
+
data_range:
|
|
111
|
+
- 0
|
|
112
|
+
- 80
|
|
113
|
+
nan_flags: null
|
|
114
|
+
field_number: "12"
|
|
115
|
+
laser_current_average:
|
|
116
|
+
n_digits: 4
|
|
117
|
+
n_characters: 4
|
|
118
|
+
n_decimals: 4
|
|
119
|
+
n_naturals: 0
|
|
120
|
+
data_range:
|
|
121
|
+
- 0
|
|
122
|
+
- 9999
|
|
123
|
+
nan_flags: null
|
|
124
|
+
field_number: "13"
|
|
125
|
+
control_voltage:
|
|
126
|
+
n_digits: 4
|
|
127
|
+
n_characters: 4
|
|
128
|
+
n_decimals: 4
|
|
129
|
+
n_naturals: 0
|
|
130
|
+
data_range: null
|
|
131
|
+
nan_flags: null
|
|
132
|
+
field_number: "14"
|
|
133
|
+
optical_control_voltage_output:
|
|
134
|
+
n_digits: 4
|
|
135
|
+
n_characters: 4
|
|
136
|
+
n_decimals: 4
|
|
137
|
+
n_naturals: 0
|
|
138
|
+
data_range:
|
|
139
|
+
- 0
|
|
140
|
+
- 9999
|
|
141
|
+
nan_flags: null
|
|
142
|
+
field_number: "15"
|
|
143
|
+
number_particles:
|
|
144
|
+
n_digits: 5
|
|
145
|
+
n_characters: 5
|
|
146
|
+
n_decimals: 5
|
|
147
|
+
n_naturals: 0
|
|
148
|
+
data_range:
|
|
149
|
+
- 0
|
|
150
|
+
- 99999
|
|
151
|
+
nan_flags: null
|
|
152
|
+
field_number: "16"
|
|
153
|
+
number_particles_internal_data:
|
|
154
|
+
n_digits: 8
|
|
155
|
+
n_characters: 9
|
|
156
|
+
n_decimals: 5
|
|
157
|
+
n_naturals: 3
|
|
158
|
+
data_range:
|
|
159
|
+
- 0.0
|
|
160
|
+
- 99999.999
|
|
161
|
+
nan_flags: null
|
|
162
|
+
field_number: "17"
|
|
163
|
+
number_particles_min_speed:
|
|
164
|
+
n_digits: 5
|
|
165
|
+
n_characters: 5
|
|
166
|
+
n_decimals: 5
|
|
167
|
+
n_naturals: 0
|
|
168
|
+
data_range:
|
|
169
|
+
- 0
|
|
170
|
+
- 99999
|
|
171
|
+
nan_flags: null
|
|
172
|
+
field_number: "18"
|
|
173
|
+
number_particles_min_speed_internal_data:
|
|
174
|
+
n_digits: 8
|
|
175
|
+
n_characters: 9
|
|
176
|
+
n_decimals: 5
|
|
177
|
+
n_naturals: 3
|
|
178
|
+
data_range:
|
|
179
|
+
- 0.0
|
|
180
|
+
- 99999.999
|
|
181
|
+
nan_flags: null
|
|
182
|
+
field_number: "19"
|
|
183
|
+
number_particles_max_speed:
|
|
184
|
+
n_digits: 5
|
|
185
|
+
n_characters: 5
|
|
186
|
+
n_decimals: 5
|
|
187
|
+
n_naturals: 0
|
|
188
|
+
data_range:
|
|
189
|
+
- 0
|
|
190
|
+
- 99999
|
|
191
|
+
nan_flags: null
|
|
192
|
+
field_number: "20"
|
|
193
|
+
number_particles_max_speed_internal_data:
|
|
194
|
+
n_digits: 8
|
|
195
|
+
n_characters: 9
|
|
196
|
+
n_decimals: 5
|
|
197
|
+
n_naturals: 3
|
|
198
|
+
data_range:
|
|
199
|
+
- 0.0
|
|
200
|
+
- 99999.999
|
|
201
|
+
nan_flags: null
|
|
202
|
+
field_number: "21"
|
|
203
|
+
number_particles_min_diameter:
|
|
204
|
+
n_digits: 5
|
|
205
|
+
n_characters: 5
|
|
206
|
+
n_decimals: 5
|
|
207
|
+
n_naturals: 0
|
|
208
|
+
data_range:
|
|
209
|
+
- 0
|
|
210
|
+
- 99999
|
|
211
|
+
nan_flags: null
|
|
212
|
+
field_number: "22"
|
|
213
|
+
number_particles_min_diameter_internal_data:
|
|
214
|
+
n_digits: 8
|
|
215
|
+
n_characters: 9
|
|
216
|
+
n_decimals: 5
|
|
217
|
+
n_naturals: 3
|
|
218
|
+
data_range:
|
|
219
|
+
- 0.0
|
|
220
|
+
- 99999.999
|
|
221
|
+
nan_flags: null
|
|
222
|
+
field_number: "23"
|
|
223
|
+
number_particles_no_hydrometeor:
|
|
224
|
+
n_digits: 5
|
|
225
|
+
n_characters: 5
|
|
226
|
+
n_decimals: 5
|
|
227
|
+
n_naturals: 0
|
|
228
|
+
data_range:
|
|
229
|
+
- 0
|
|
230
|
+
- 99999
|
|
231
|
+
nan_flags: null
|
|
232
|
+
field_number: "24"
|
|
233
|
+
number_particles_no_hydrometeor_internal_data:
|
|
234
|
+
n_digits: 8
|
|
235
|
+
n_characters: 9
|
|
236
|
+
n_decimals: 5
|
|
237
|
+
n_naturals: 3
|
|
238
|
+
data_range:
|
|
239
|
+
- 0.0
|
|
240
|
+
- 99999.999
|
|
241
|
+
nan_flags: null
|
|
242
|
+
field_number: "25"
|
|
243
|
+
number_particles_unknown_classification:
|
|
244
|
+
n_digits: 5
|
|
245
|
+
n_characters: 5
|
|
246
|
+
n_decimals: 5
|
|
247
|
+
n_naturals: 0
|
|
248
|
+
data_range:
|
|
249
|
+
- 0
|
|
250
|
+
- 99999
|
|
251
|
+
nan_flags: null
|
|
252
|
+
field_number: "26"
|
|
253
|
+
total_gross_volume_unknown_classification:
|
|
254
|
+
n_digits: 8
|
|
255
|
+
n_characters: 9
|
|
256
|
+
n_decimals: 5
|
|
257
|
+
n_naturals: 3
|
|
258
|
+
data_range:
|
|
259
|
+
- 0.0
|
|
260
|
+
- 99999.999
|
|
261
|
+
nan_flags: null
|
|
262
|
+
field_number: "27"
|
|
263
|
+
number_particles_hail:
|
|
264
|
+
n_digits: 5
|
|
265
|
+
n_characters: 5
|
|
266
|
+
n_decimals: 5
|
|
267
|
+
n_naturals: 0
|
|
268
|
+
data_range:
|
|
269
|
+
- 0
|
|
270
|
+
- 99999
|
|
271
|
+
nan_flags: null
|
|
272
|
+
field_number: "28"
|
|
273
|
+
total_gross_volume_hail:
|
|
274
|
+
n_digits: 8
|
|
275
|
+
n_characters: 9
|
|
276
|
+
n_decimals: 5
|
|
277
|
+
n_naturals: 3
|
|
278
|
+
data_range:
|
|
279
|
+
- 0.0
|
|
280
|
+
- 99999.999
|
|
281
|
+
nan_flags: null
|
|
282
|
+
field_number: "29"
|
|
283
|
+
number_particles_solid_precipitation:
|
|
284
|
+
n_digits: 5
|
|
285
|
+
n_characters: 5
|
|
286
|
+
n_decimals: 5
|
|
287
|
+
n_naturals: 0
|
|
288
|
+
data_range:
|
|
289
|
+
- 0
|
|
290
|
+
- 99999
|
|
291
|
+
nan_flags: null
|
|
292
|
+
field_number: "30"
|
|
293
|
+
total_gross_volume_solid_precipitation:
|
|
294
|
+
n_digits: 8
|
|
295
|
+
n_characters: 9
|
|
296
|
+
n_decimals: 5
|
|
297
|
+
n_naturals: 3
|
|
298
|
+
data_range:
|
|
299
|
+
- 0.0
|
|
300
|
+
- 99999.999
|
|
301
|
+
nan_flags: null
|
|
302
|
+
field_number: "31"
|
|
303
|
+
number_particles_great_pellet:
|
|
304
|
+
n_digits: 5
|
|
305
|
+
n_characters: 5
|
|
306
|
+
n_decimals: 5
|
|
307
|
+
n_naturals: 0
|
|
308
|
+
data_range:
|
|
309
|
+
- 0
|
|
310
|
+
- 99999
|
|
311
|
+
nan_flags: null
|
|
312
|
+
field_number: "32"
|
|
313
|
+
total_gross_volume_great_pellet:
|
|
314
|
+
n_digits: 8
|
|
315
|
+
n_characters: 9
|
|
316
|
+
n_decimals: 5
|
|
317
|
+
n_naturals: 3
|
|
318
|
+
data_range:
|
|
319
|
+
- 0.0
|
|
320
|
+
- 99999.999
|
|
321
|
+
nan_flags: null
|
|
322
|
+
field_number: "33"
|
|
323
|
+
number_particles_small_pellet:
|
|
324
|
+
n_digits: 5
|
|
325
|
+
n_characters: 5
|
|
326
|
+
n_decimals: 5
|
|
327
|
+
n_naturals: 0
|
|
328
|
+
data_range:
|
|
329
|
+
- 0
|
|
330
|
+
- 99999
|
|
331
|
+
nan_flags: null
|
|
332
|
+
field_number: "34"
|
|
333
|
+
total_gross_volume_small_pellet:
|
|
334
|
+
n_digits: 8
|
|
335
|
+
n_characters: 9
|
|
336
|
+
n_decimals: 5
|
|
337
|
+
n_naturals: 3
|
|
338
|
+
data_range:
|
|
339
|
+
- 0.0
|
|
340
|
+
- 99999.999
|
|
341
|
+
nan_flags: null
|
|
342
|
+
field_number: "35"
|
|
343
|
+
number_particles_snowgrain:
|
|
344
|
+
n_digits: 5
|
|
345
|
+
n_characters: 5
|
|
346
|
+
n_decimals: 5
|
|
347
|
+
n_naturals: 0
|
|
348
|
+
data_range:
|
|
349
|
+
- 0
|
|
350
|
+
- 99999
|
|
351
|
+
nan_flags: null
|
|
352
|
+
field_number: "36"
|
|
353
|
+
total_gross_volume_snowgrain:
|
|
354
|
+
n_digits: 8
|
|
355
|
+
n_characters: 9
|
|
356
|
+
n_decimals: 5
|
|
357
|
+
n_naturals: 3
|
|
358
|
+
data_range:
|
|
359
|
+
- 0.0
|
|
360
|
+
- 99999.999
|
|
361
|
+
nan_flags: null
|
|
362
|
+
field_number: "37"
|
|
363
|
+
number_particles_rain:
|
|
364
|
+
n_digits: 5
|
|
365
|
+
n_characters: 5
|
|
366
|
+
n_decimals: 5
|
|
367
|
+
n_naturals: 0
|
|
368
|
+
data_range:
|
|
369
|
+
- 0
|
|
370
|
+
- 99999
|
|
371
|
+
nan_flags: null
|
|
372
|
+
field_number: "38"
|
|
373
|
+
total_gross_volume_rain:
|
|
374
|
+
n_digits: 8
|
|
375
|
+
n_characters: 9
|
|
376
|
+
n_decimals: 5
|
|
377
|
+
n_naturals: 3
|
|
378
|
+
data_range:
|
|
379
|
+
- 0.0
|
|
380
|
+
- 99999.999
|
|
381
|
+
nan_flags: null
|
|
382
|
+
field_number: "39"
|
|
383
|
+
number_particles_small_rain:
|
|
384
|
+
n_digits: 5
|
|
385
|
+
n_characters: 5
|
|
386
|
+
n_decimals: 5
|
|
387
|
+
n_naturals: 0
|
|
388
|
+
data_range:
|
|
389
|
+
- 0
|
|
390
|
+
- 99999
|
|
391
|
+
nan_flags: null
|
|
392
|
+
field_number: "40"
|
|
393
|
+
total_gross_volume_small_rain:
|
|
394
|
+
n_digits: 8
|
|
395
|
+
n_characters: 9
|
|
396
|
+
n_decimals: 5
|
|
397
|
+
n_naturals: 3
|
|
398
|
+
data_range:
|
|
399
|
+
- 0.0
|
|
400
|
+
- 99999.999
|
|
401
|
+
nan_flags: null
|
|
402
|
+
field_number: "41"
|
|
403
|
+
number_particles_drizzle:
|
|
404
|
+
n_digits: 5
|
|
405
|
+
n_characters: 5
|
|
406
|
+
n_decimals: 5
|
|
407
|
+
n_naturals: 0
|
|
408
|
+
data_range:
|
|
409
|
+
- 0
|
|
410
|
+
- 99999
|
|
411
|
+
nan_flags: null
|
|
412
|
+
field_number: "42"
|
|
413
|
+
total_gross_volume_drizzle:
|
|
414
|
+
n_digits: 8
|
|
415
|
+
n_characters: 9
|
|
416
|
+
n_decimals: 5
|
|
417
|
+
n_naturals: 3
|
|
418
|
+
data_range:
|
|
419
|
+
- 0.0
|
|
420
|
+
- 99999.999
|
|
421
|
+
nan_flags: null
|
|
422
|
+
field_number: "43"
|
|
423
|
+
raw_drop_number:
|
|
424
|
+
n_digits: 1317
|
|
425
|
+
n_characters: 1756
|
|
426
|
+
n_decimals: 1317
|
|
427
|
+
n_naturals: 0
|
|
428
|
+
data_range: null
|
|
429
|
+
nan_flags: null
|
|
430
|
+
dimension_order:
|
|
431
|
+
- diameter_bin_center
|
|
432
|
+
- velocity_bin_center
|
|
433
|
+
n_values: 400
|
|
434
|
+
field_number: "81"
|
|
435
|
+
air_temperature:
|
|
436
|
+
n_digits: 4
|
|
437
|
+
n_characters: 5
|
|
438
|
+
n_decimals: 1
|
|
439
|
+
n_naturals: 2
|
|
440
|
+
data_range:
|
|
441
|
+
- -40
|
|
442
|
+
- 70
|
|
443
|
+
nan_flags: 99999
|
|
444
|
+
field_number: "444"
|
|
445
|
+
relative_humidity:
|
|
446
|
+
n_digits: 5
|
|
447
|
+
n_characters: 5
|
|
448
|
+
n_decimals: 0
|
|
449
|
+
n_naturals: 5
|
|
450
|
+
data_range:
|
|
451
|
+
- 0
|
|
452
|
+
- 99999
|
|
453
|
+
nan_flags: 99999
|
|
454
|
+
field_number: "445"
|
|
455
|
+
wind_speed:
|
|
456
|
+
n_digits: 3
|
|
457
|
+
n_characters: 4
|
|
458
|
+
n_decimals: 1
|
|
459
|
+
n_naturals: 2
|
|
460
|
+
data_range:
|
|
461
|
+
- 0
|
|
462
|
+
- 60
|
|
463
|
+
nan_flags: null
|
|
464
|
+
field_number: "446"
|
|
465
|
+
wind_direction:
|
|
466
|
+
n_digits: 3
|
|
467
|
+
n_characters: 3
|
|
468
|
+
n_decimals: 0
|
|
469
|
+
n_naturals: 3
|
|
470
|
+
data_range:
|
|
471
|
+
- 0
|
|
472
|
+
- 360
|
|
473
|
+
nan_flags: 999
|
|
474
|
+
field_number: "447"
|
|
@@ -6,7 +6,7 @@ rainfall_rate_32bit:
|
|
|
6
6
|
data_range:
|
|
7
7
|
- 0
|
|
8
8
|
- 9999.999
|
|
9
|
-
nan_flags:
|
|
9
|
+
nan_flags: 9999.999
|
|
10
10
|
field_number: "01"
|
|
11
11
|
rainfall_accumulated_32bit:
|
|
12
12
|
n_digits: 6
|
|
@@ -16,7 +16,7 @@ rainfall_accumulated_32bit:
|
|
|
16
16
|
data_range:
|
|
17
17
|
- 0
|
|
18
18
|
- 9999.0
|
|
19
|
-
nan_flags:
|
|
19
|
+
nan_flags: 9999.0
|
|
20
20
|
field_number: "02"
|
|
21
21
|
weather_code_synop_4680:
|
|
22
22
|
n_digits: 2
|
|
@@ -62,7 +62,7 @@ reflectivity_32bit:
|
|
|
62
62
|
data_range:
|
|
63
63
|
- -9.999
|
|
64
64
|
- 99.999
|
|
65
|
-
nan_flags:
|
|
65
|
+
nan_flags: 99.999
|
|
66
66
|
field_number: "07"
|
|
67
67
|
mor_visibility:
|
|
68
68
|
n_digits: 4
|
|
@@ -92,7 +92,7 @@ laser_amplitude:
|
|
|
92
92
|
data_range:
|
|
93
93
|
- 0
|
|
94
94
|
- 99999
|
|
95
|
-
nan_flags:
|
|
95
|
+
nan_flags: 99999
|
|
96
96
|
field_number: "10"
|
|
97
97
|
number_particles:
|
|
98
98
|
n_digits: 5
|
|
@@ -102,7 +102,7 @@ number_particles:
|
|
|
102
102
|
data_range:
|
|
103
103
|
- 0
|
|
104
104
|
- 99999
|
|
105
|
-
nan_flags:
|
|
105
|
+
nan_flags: 99999
|
|
106
106
|
field_number: "11"
|
|
107
107
|
sensor_temperature:
|
|
108
108
|
n_digits: 3
|
|
@@ -221,7 +221,7 @@ rainfall_amount_absolute_32bit:
|
|
|
221
221
|
data_range:
|
|
222
222
|
- 0
|
|
223
223
|
- 999.999
|
|
224
|
-
nan_flags:
|
|
224
|
+
nan_flags: 999.999
|
|
225
225
|
field_number: "24"
|
|
226
226
|
error_code:
|
|
227
227
|
n_digits: 3
|
|
@@ -245,7 +245,7 @@ rainfall_rate_16bit:
|
|
|
245
245
|
data_range:
|
|
246
246
|
- 0
|
|
247
247
|
- 9999.999
|
|
248
|
-
nan_flags:
|
|
248
|
+
nan_flags: 9999.999
|
|
249
249
|
field_number: "30"
|
|
250
250
|
rainfall_rate_12bit:
|
|
251
251
|
n_digits: 5
|
|
@@ -273,7 +273,7 @@ reflectivity_16bit:
|
|
|
273
273
|
data_range:
|
|
274
274
|
- -9.99
|
|
275
275
|
- 99.99
|
|
276
|
-
nan_flags:
|
|
276
|
+
nan_flags: 99.99
|
|
277
277
|
field_number: "33"
|
|
278
278
|
raw_drop_concentration:
|
|
279
279
|
n_digits: 0
|
|
@@ -6,7 +6,7 @@ rainfall_rate_32bit:
|
|
|
6
6
|
data_range:
|
|
7
7
|
- 0
|
|
8
8
|
- 9999.999
|
|
9
|
-
nan_flags:
|
|
9
|
+
nan_flags: 9999.999
|
|
10
10
|
field_number: "01"
|
|
11
11
|
rainfall_accumulated_32bit:
|
|
12
12
|
n_digits: 6
|
|
@@ -16,7 +16,7 @@ rainfall_accumulated_32bit:
|
|
|
16
16
|
data_range:
|
|
17
17
|
- 0
|
|
18
18
|
- 9999.0
|
|
19
|
-
nan_flags:
|
|
19
|
+
nan_flags: 9999.0
|
|
20
20
|
field_number: "02"
|
|
21
21
|
weather_code_synop_4680:
|
|
22
22
|
n_digits: 2
|
|
@@ -62,7 +62,7 @@ reflectivity_32bit:
|
|
|
62
62
|
data_range:
|
|
63
63
|
- -9.999
|
|
64
64
|
- 99.999
|
|
65
|
-
nan_flags:
|
|
65
|
+
nan_flags: 99.999
|
|
66
66
|
field_number: "07"
|
|
67
67
|
mor_visibility:
|
|
68
68
|
n_digits: 5
|
|
@@ -92,7 +92,7 @@ laser_amplitude:
|
|
|
92
92
|
data_range:
|
|
93
93
|
- 0
|
|
94
94
|
- 99999
|
|
95
|
-
nan_flags:
|
|
95
|
+
nan_flags: 99999
|
|
96
96
|
field_number: "10"
|
|
97
97
|
number_particles:
|
|
98
98
|
n_digits: 5
|
|
@@ -102,7 +102,7 @@ number_particles:
|
|
|
102
102
|
data_range:
|
|
103
103
|
- 0
|
|
104
104
|
- 99999
|
|
105
|
-
nan_flags:
|
|
105
|
+
nan_flags: 99999
|
|
106
106
|
field_number: "11"
|
|
107
107
|
sensor_temperature:
|
|
108
108
|
n_digits: 3
|
|
@@ -221,7 +221,7 @@ rainfall_amount_absolute_32bit:
|
|
|
221
221
|
data_range:
|
|
222
222
|
- 0
|
|
223
223
|
- 999.999
|
|
224
|
-
nan_flags:
|
|
224
|
+
nan_flags: 999.999
|
|
225
225
|
field_number: "24"
|
|
226
226
|
error_code:
|
|
227
227
|
n_digits: 3
|
|
@@ -305,7 +305,7 @@ reflectivity_16bit:
|
|
|
305
305
|
data_range:
|
|
306
306
|
- -9.99
|
|
307
307
|
- 99.99
|
|
308
|
-
nan_flags:
|
|
308
|
+
nan_flags: 99.99
|
|
309
309
|
field_number: "33"
|
|
310
310
|
rain_kinetic_energy:
|
|
311
311
|
n_digits: 6
|
|
@@ -315,7 +315,7 @@ rain_kinetic_energy:
|
|
|
315
315
|
data_range:
|
|
316
316
|
- 0
|
|
317
317
|
- 9999.99
|
|
318
|
-
nan_flags:
|
|
318
|
+
nan_flags: 9999.99
|
|
319
319
|
field_number: "34"
|
|
320
320
|
snowfall_rate:
|
|
321
321
|
n_digits: 6
|
|
@@ -325,7 +325,7 @@ snowfall_rate:
|
|
|
325
325
|
data_range:
|
|
326
326
|
- 0
|
|
327
327
|
- 999.999
|
|
328
|
-
nan_flags:
|
|
328
|
+
nan_flags: 999.999
|
|
329
329
|
field_number: "35"
|
|
330
330
|
number_particles_all:
|
|
331
331
|
n_digits: 8
|
disdrodb/l0/l0a_processing.py
CHANGED
|
@@ -267,8 +267,8 @@ def remove_issue_timesteps(df, issue_dict, logger=None, verbose=False):
|
|
|
267
267
|
n_initial_rows = len(df)
|
|
268
268
|
|
|
269
269
|
# Retrieve timesteps and time_periods
|
|
270
|
-
timesteps = issue_dict.get("timesteps"
|
|
271
|
-
time_periods = issue_dict.get("time_periods"
|
|
270
|
+
timesteps = issue_dict.get("timesteps")
|
|
271
|
+
time_periods = issue_dict.get("time_periods")
|
|
272
272
|
timesteps = [] if timesteps is None else timesteps
|
|
273
273
|
time_periods = [] if time_periods is None else time_periods
|
|
274
274
|
|
|
@@ -615,6 +615,10 @@ def sanitize_df(
|
|
|
615
615
|
# - Strip first and last delimiter from the raw arrays
|
|
616
616
|
df = strip_delimiter_from_raw_arrays(df)
|
|
617
617
|
|
|
618
|
+
# - Ensure raw drop number variable max value is < 999
|
|
619
|
+
# - Raise error otherwise
|
|
620
|
+
# TODO:
|
|
621
|
+
|
|
618
622
|
# - Remove corrupted rows
|
|
619
623
|
df = remove_corrupted_rows(df)
|
|
620
624
|
|
disdrodb/l0/l0b_processing.py
CHANGED
|
@@ -91,7 +91,7 @@ def format_string_array(string: str, n_values: int) -> np.array:
|
|
|
91
91
|
|
|
92
92
|
e.g. : format_string_array("2,44,22,33", 4) will return [ 2. 44. 22. 33.]
|
|
93
93
|
|
|
94
|
-
If empty string ("") --> Return an arrays of zeros
|
|
94
|
+
If empty string ("") or "" --> Return an arrays of zeros
|
|
95
95
|
If the list length is not n_values -> Return an arrays of np.nan
|
|
96
96
|
|
|
97
97
|
The function strip potential delimiters at start and end before splitting.
|
|
@@ -108,31 +108,38 @@ def format_string_array(string: str, n_values: int) -> np.array:
|
|
|
108
108
|
np.array
|
|
109
109
|
array of float
|
|
110
110
|
"""
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
# -------------------------------------------------------------------------.
|
|
115
|
-
## Assumptions !!!
|
|
116
|
-
# If empty list --> Assume no precipitation recorded. Return an arrays of zeros
|
|
117
|
-
if len(values) == 0:
|
|
111
|
+
# Check for empty string or "0" case
|
|
112
|
+
# - Assume no precipitation recorded. Return an arrays of zeros
|
|
113
|
+
if string in {"", "0"}:
|
|
118
114
|
values = np.zeros(n_values)
|
|
119
115
|
return values
|
|
120
116
|
|
|
121
|
-
#
|
|
117
|
+
# Check for NaN case
|
|
118
|
+
# - Assume no data available. Return an arrays of NaN
|
|
119
|
+
if string == "NaN":
|
|
120
|
+
values = np.zeros(n_values) * np.nan
|
|
121
|
+
return values
|
|
122
|
+
|
|
123
|
+
# Retrieve list of values
|
|
124
|
+
split_str = infer_split_str(string)
|
|
125
|
+
values = np.array(string.strip(split_str).split(split_str))
|
|
126
|
+
|
|
122
127
|
# If the length is not as expected --> Assume data corruption
|
|
123
128
|
# --> Return an array with nan
|
|
124
129
|
if len(values) != n_values:
|
|
125
130
|
values = np.zeros(n_values) * np.nan
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
131
|
+
return values
|
|
132
|
+
|
|
133
|
+
# Otherwise sanitize the list of value
|
|
134
|
+
# Ensure string type
|
|
135
|
+
values = values.astype("str")
|
|
136
|
+
# Replace '' with 0
|
|
137
|
+
values = replace_empty_strings_with_zeros(values)
|
|
138
|
+
# Replace "-9.999" with 0
|
|
139
|
+
values = np.char.replace(values, "-9.999", "0")
|
|
140
|
+
# Cast values to float type
|
|
141
|
+
# --> Note: the disk encoding is specified in the l0b_encodings.yml
|
|
142
|
+
values = values.astype(float)
|
|
136
143
|
return values
|
|
137
144
|
|
|
138
145
|
|
disdrodb/l0/l0c_processing.py
CHANGED
|
@@ -678,6 +678,16 @@ def create_l0c_datasets(
|
|
|
678
678
|
log_info(logger=logger, msg=f"No data between {start_time} and {end_time}.", verbose=verbose)
|
|
679
679
|
return {}
|
|
680
680
|
|
|
681
|
+
# If 1 or 2 timesteps per time block, return empty dictionary
|
|
682
|
+
n_timesteps = len(ds["time"])
|
|
683
|
+
if n_timesteps < 3:
|
|
684
|
+
log_info(
|
|
685
|
+
logger=logger,
|
|
686
|
+
msg=f"Only {n_timesteps} timesteps between {start_time} and {end_time}.",
|
|
687
|
+
verbose=verbose,
|
|
688
|
+
)
|
|
689
|
+
return {}
|
|
690
|
+
|
|
681
691
|
# ---------------------------------------------------------------------------------------.
|
|
682
692
|
# If sample interval is a dataset variable, drop timesteps with unexpected measurement intervals !
|
|
683
693
|
if "sample_interval" in ds:
|