diffusers 0.30.2__py3-none-any.whl → 0.31.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (173) hide show
  1. diffusers/__init__.py +38 -2
  2. diffusers/configuration_utils.py +12 -0
  3. diffusers/dependency_versions_table.py +1 -1
  4. diffusers/image_processor.py +257 -54
  5. diffusers/loaders/__init__.py +2 -0
  6. diffusers/loaders/ip_adapter.py +5 -1
  7. diffusers/loaders/lora_base.py +14 -7
  8. diffusers/loaders/lora_conversion_utils.py +332 -0
  9. diffusers/loaders/lora_pipeline.py +707 -41
  10. diffusers/loaders/peft.py +1 -0
  11. diffusers/loaders/single_file_utils.py +81 -4
  12. diffusers/loaders/textual_inversion.py +2 -0
  13. diffusers/loaders/unet.py +39 -8
  14. diffusers/models/__init__.py +4 -0
  15. diffusers/models/adapter.py +53 -53
  16. diffusers/models/attention.py +86 -10
  17. diffusers/models/attention_processor.py +169 -133
  18. diffusers/models/autoencoders/autoencoder_kl.py +71 -11
  19. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +287 -85
  20. diffusers/models/controlnet_flux.py +536 -0
  21. diffusers/models/controlnet_sd3.py +7 -3
  22. diffusers/models/controlnet_sparsectrl.py +0 -1
  23. diffusers/models/embeddings.py +238 -61
  24. diffusers/models/embeddings_flax.py +23 -9
  25. diffusers/models/model_loading_utils.py +182 -14
  26. diffusers/models/modeling_utils.py +283 -46
  27. diffusers/models/normalization.py +79 -0
  28. diffusers/models/transformers/__init__.py +1 -0
  29. diffusers/models/transformers/auraflow_transformer_2d.py +1 -0
  30. diffusers/models/transformers/cogvideox_transformer_3d.py +58 -36
  31. diffusers/models/transformers/pixart_transformer_2d.py +9 -1
  32. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  33. diffusers/models/transformers/transformer_flux.py +161 -44
  34. diffusers/models/transformers/transformer_sd3.py +7 -1
  35. diffusers/models/unets/unet_2d_condition.py +8 -8
  36. diffusers/models/unets/unet_motion_model.py +41 -63
  37. diffusers/models/upsampling.py +6 -6
  38. diffusers/pipelines/__init__.py +40 -7
  39. diffusers/pipelines/animatediff/__init__.py +2 -0
  40. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  41. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +44 -20
  42. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  43. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +2 -0
  44. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -66
  45. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  46. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -1
  47. diffusers/pipelines/auto_pipeline.py +39 -8
  48. diffusers/pipelines/cogvideo/__init__.py +6 -0
  49. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +32 -34
  50. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +794 -0
  51. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +837 -0
  52. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +825 -0
  53. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  54. diffusers/pipelines/cogview3/__init__.py +47 -0
  55. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  56. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  57. diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -1
  58. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -0
  59. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +8 -0
  60. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +36 -13
  61. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +9 -1
  62. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -1
  63. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +17 -3
  64. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  65. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +3 -1
  66. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  67. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  68. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  69. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  70. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  71. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  72. diffusers/pipelines/flux/__init__.py +10 -0
  73. diffusers/pipelines/flux/pipeline_flux.py +53 -20
  74. diffusers/pipelines/flux/pipeline_flux_controlnet.py +984 -0
  75. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +988 -0
  76. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1182 -0
  77. diffusers/pipelines/flux/pipeline_flux_img2img.py +850 -0
  78. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1015 -0
  79. diffusers/pipelines/free_noise_utils.py +365 -5
  80. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +15 -3
  81. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  82. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  83. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  84. diffusers/pipelines/kolors/tokenizer.py +4 -0
  85. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  86. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  87. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  88. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  89. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  90. diffusers/pipelines/lumina/pipeline_lumina.py +2 -2
  91. diffusers/pipelines/pag/__init__.py +6 -0
  92. diffusers/pipelines/pag/pag_utils.py +8 -2
  93. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -1
  94. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1544 -0
  95. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +2 -2
  96. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1685 -0
  97. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +17 -5
  98. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  99. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +1 -1
  100. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  101. diffusers/pipelines/pag/pipeline_pag_sd_3.py +12 -3
  102. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  103. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1091 -0
  104. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  105. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  106. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  107. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  108. diffusers/pipelines/pipeline_loading_utils.py +225 -27
  109. diffusers/pipelines/pipeline_utils.py +123 -180
  110. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +1 -1
  111. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +1 -1
  112. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  113. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  114. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +28 -6
  115. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  116. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  117. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  118. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +12 -3
  119. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +20 -4
  120. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +3 -3
  121. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  122. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  123. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  124. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -4
  125. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -14
  126. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -14
  127. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  128. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  129. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  130. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  131. diffusers/quantizers/__init__.py +16 -0
  132. diffusers/quantizers/auto.py +126 -0
  133. diffusers/quantizers/base.py +233 -0
  134. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  135. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +558 -0
  136. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  137. diffusers/quantizers/quantization_config.py +391 -0
  138. diffusers/schedulers/scheduling_ddim.py +4 -1
  139. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  140. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  141. diffusers/schedulers/scheduling_ddpm.py +4 -1
  142. diffusers/schedulers/scheduling_ddpm_parallel.py +4 -1
  143. diffusers/schedulers/scheduling_deis_multistep.py +78 -1
  144. diffusers/schedulers/scheduling_dpmsolver_multistep.py +82 -1
  145. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +80 -1
  146. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  147. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +82 -1
  148. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  149. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  150. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  151. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  152. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  153. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  154. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  155. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  156. diffusers/schedulers/scheduling_sasolver.py +78 -1
  157. diffusers/schedulers/scheduling_unclip.py +4 -1
  158. diffusers/schedulers/scheduling_unipc_multistep.py +78 -1
  159. diffusers/training_utils.py +48 -18
  160. diffusers/utils/__init__.py +2 -1
  161. diffusers/utils/dummy_pt_objects.py +60 -0
  162. diffusers/utils/dummy_torch_and_transformers_objects.py +195 -0
  163. diffusers/utils/hub_utils.py +16 -4
  164. diffusers/utils/import_utils.py +31 -8
  165. diffusers/utils/loading_utils.py +28 -4
  166. diffusers/utils/peft_utils.py +3 -3
  167. diffusers/utils/testing_utils.py +59 -0
  168. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/METADATA +7 -6
  169. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/RECORD +173 -147
  170. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/WHEEL +1 -1
  171. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/LICENSE +0 -0
  172. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/entry_points.txt +0 -0
  173. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1015 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
22
+
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...models.autoencoders import AutoencoderKL
26
+ from ...models.transformers import FluxTransformer2DModel
27
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
28
+ from ...utils import (
29
+ USE_PEFT_BACKEND,
30
+ is_torch_xla_available,
31
+ logging,
32
+ replace_example_docstring,
33
+ scale_lora_layers,
34
+ unscale_lora_layers,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline
38
+ from .pipeline_output import FluxPipelineOutput
39
+
40
+
41
+ if is_torch_xla_available():
42
+ import torch_xla.core.xla_model as xm
43
+
44
+ XLA_AVAILABLE = True
45
+ else:
46
+ XLA_AVAILABLE = False
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> import torch
55
+ >>> from diffusers import FluxInpaintPipeline
56
+ >>> from diffusers.utils import load_image
57
+
58
+ >>> pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
59
+ >>> pipe.to("cuda")
60
+ >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
61
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
62
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
63
+ >>> source = load_image(img_url)
64
+ >>> mask = load_image(mask_url)
65
+ >>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]
66
+ >>> image.save("flux_inpainting.png")
67
+ ```
68
+ """
69
+
70
+
71
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
72
+ def calculate_shift(
73
+ image_seq_len,
74
+ base_seq_len: int = 256,
75
+ max_seq_len: int = 4096,
76
+ base_shift: float = 0.5,
77
+ max_shift: float = 1.16,
78
+ ):
79
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
80
+ b = base_shift - m * base_seq_len
81
+ mu = image_seq_len * m + b
82
+ return mu
83
+
84
+
85
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
86
+ def retrieve_latents(
87
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
88
+ ):
89
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
90
+ return encoder_output.latent_dist.sample(generator)
91
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
92
+ return encoder_output.latent_dist.mode()
93
+ elif hasattr(encoder_output, "latents"):
94
+ return encoder_output.latents
95
+ else:
96
+ raise AttributeError("Could not access latents of provided encoder_output")
97
+
98
+
99
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
100
+ def retrieve_timesteps(
101
+ scheduler,
102
+ num_inference_steps: Optional[int] = None,
103
+ device: Optional[Union[str, torch.device]] = None,
104
+ timesteps: Optional[List[int]] = None,
105
+ sigmas: Optional[List[float]] = None,
106
+ **kwargs,
107
+ ):
108
+ r"""
109
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
110
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
111
+
112
+ Args:
113
+ scheduler (`SchedulerMixin`):
114
+ The scheduler to get timesteps from.
115
+ num_inference_steps (`int`):
116
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
117
+ must be `None`.
118
+ device (`str` or `torch.device`, *optional*):
119
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
120
+ timesteps (`List[int]`, *optional*):
121
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
122
+ `num_inference_steps` and `sigmas` must be `None`.
123
+ sigmas (`List[float]`, *optional*):
124
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
125
+ `num_inference_steps` and `timesteps` must be `None`.
126
+
127
+ Returns:
128
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
129
+ second element is the number of inference steps.
130
+ """
131
+ if timesteps is not None and sigmas is not None:
132
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
133
+ if timesteps is not None:
134
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
135
+ if not accepts_timesteps:
136
+ raise ValueError(
137
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
138
+ f" timestep schedules. Please check whether you are using the correct scheduler."
139
+ )
140
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
141
+ timesteps = scheduler.timesteps
142
+ num_inference_steps = len(timesteps)
143
+ elif sigmas is not None:
144
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
145
+ if not accept_sigmas:
146
+ raise ValueError(
147
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
148
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
149
+ )
150
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
151
+ timesteps = scheduler.timesteps
152
+ num_inference_steps = len(timesteps)
153
+ else:
154
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
155
+ timesteps = scheduler.timesteps
156
+ return timesteps, num_inference_steps
157
+
158
+
159
+ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
160
+ r"""
161
+ The Flux pipeline for image inpainting.
162
+
163
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
164
+
165
+ Args:
166
+ transformer ([`FluxTransformer2DModel`]):
167
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
168
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
169
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
170
+ vae ([`AutoencoderKL`]):
171
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
172
+ text_encoder ([`CLIPTextModel`]):
173
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
174
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
175
+ text_encoder_2 ([`T5EncoderModel`]):
176
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
177
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
178
+ tokenizer (`CLIPTokenizer`):
179
+ Tokenizer of class
180
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
181
+ tokenizer_2 (`T5TokenizerFast`):
182
+ Second Tokenizer of class
183
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
184
+ """
185
+
186
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
187
+ _optional_components = []
188
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
189
+
190
+ def __init__(
191
+ self,
192
+ scheduler: FlowMatchEulerDiscreteScheduler,
193
+ vae: AutoencoderKL,
194
+ text_encoder: CLIPTextModel,
195
+ tokenizer: CLIPTokenizer,
196
+ text_encoder_2: T5EncoderModel,
197
+ tokenizer_2: T5TokenizerFast,
198
+ transformer: FluxTransformer2DModel,
199
+ ):
200
+ super().__init__()
201
+
202
+ self.register_modules(
203
+ vae=vae,
204
+ text_encoder=text_encoder,
205
+ text_encoder_2=text_encoder_2,
206
+ tokenizer=tokenizer,
207
+ tokenizer_2=tokenizer_2,
208
+ transformer=transformer,
209
+ scheduler=scheduler,
210
+ )
211
+ self.vae_scale_factor = (
212
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
213
+ )
214
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
215
+ self.mask_processor = VaeImageProcessor(
216
+ vae_scale_factor=self.vae_scale_factor,
217
+ vae_latent_channels=self.vae.config.latent_channels,
218
+ do_normalize=False,
219
+ do_binarize=True,
220
+ do_convert_grayscale=True,
221
+ )
222
+ self.tokenizer_max_length = (
223
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
224
+ )
225
+ self.default_sample_size = 64
226
+
227
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
228
+ def _get_t5_prompt_embeds(
229
+ self,
230
+ prompt: Union[str, List[str]] = None,
231
+ num_images_per_prompt: int = 1,
232
+ max_sequence_length: int = 512,
233
+ device: Optional[torch.device] = None,
234
+ dtype: Optional[torch.dtype] = None,
235
+ ):
236
+ device = device or self._execution_device
237
+ dtype = dtype or self.text_encoder.dtype
238
+
239
+ prompt = [prompt] if isinstance(prompt, str) else prompt
240
+ batch_size = len(prompt)
241
+
242
+ if isinstance(self, TextualInversionLoaderMixin):
243
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
244
+
245
+ text_inputs = self.tokenizer_2(
246
+ prompt,
247
+ padding="max_length",
248
+ max_length=max_sequence_length,
249
+ truncation=True,
250
+ return_length=False,
251
+ return_overflowing_tokens=False,
252
+ return_tensors="pt",
253
+ )
254
+ text_input_ids = text_inputs.input_ids
255
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
256
+
257
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
258
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
259
+ logger.warning(
260
+ "The following part of your input was truncated because `max_sequence_length` is set to "
261
+ f" {max_sequence_length} tokens: {removed_text}"
262
+ )
263
+
264
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
265
+
266
+ dtype = self.text_encoder_2.dtype
267
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
268
+
269
+ _, seq_len, _ = prompt_embeds.shape
270
+
271
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
272
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
273
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
274
+
275
+ return prompt_embeds
276
+
277
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
278
+ def _get_clip_prompt_embeds(
279
+ self,
280
+ prompt: Union[str, List[str]],
281
+ num_images_per_prompt: int = 1,
282
+ device: Optional[torch.device] = None,
283
+ ):
284
+ device = device or self._execution_device
285
+
286
+ prompt = [prompt] if isinstance(prompt, str) else prompt
287
+ batch_size = len(prompt)
288
+
289
+ if isinstance(self, TextualInversionLoaderMixin):
290
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
291
+
292
+ text_inputs = self.tokenizer(
293
+ prompt,
294
+ padding="max_length",
295
+ max_length=self.tokenizer_max_length,
296
+ truncation=True,
297
+ return_overflowing_tokens=False,
298
+ return_length=False,
299
+ return_tensors="pt",
300
+ )
301
+
302
+ text_input_ids = text_inputs.input_ids
303
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
304
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
305
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
306
+ logger.warning(
307
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
308
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
309
+ )
310
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
311
+
312
+ # Use pooled output of CLIPTextModel
313
+ prompt_embeds = prompt_embeds.pooler_output
314
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
315
+
316
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
317
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
318
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
319
+
320
+ return prompt_embeds
321
+
322
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
323
+ def encode_prompt(
324
+ self,
325
+ prompt: Union[str, List[str]],
326
+ prompt_2: Union[str, List[str]],
327
+ device: Optional[torch.device] = None,
328
+ num_images_per_prompt: int = 1,
329
+ prompt_embeds: Optional[torch.FloatTensor] = None,
330
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
331
+ max_sequence_length: int = 512,
332
+ lora_scale: Optional[float] = None,
333
+ ):
334
+ r"""
335
+
336
+ Args:
337
+ prompt (`str` or `List[str]`, *optional*):
338
+ prompt to be encoded
339
+ prompt_2 (`str` or `List[str]`, *optional*):
340
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
341
+ used in all text-encoders
342
+ device: (`torch.device`):
343
+ torch device
344
+ num_images_per_prompt (`int`):
345
+ number of images that should be generated per prompt
346
+ prompt_embeds (`torch.FloatTensor`, *optional*):
347
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
348
+ provided, text embeddings will be generated from `prompt` input argument.
349
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
350
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
351
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
352
+ lora_scale (`float`, *optional*):
353
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
354
+ """
355
+ device = device or self._execution_device
356
+
357
+ # set lora scale so that monkey patched LoRA
358
+ # function of text encoder can correctly access it
359
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
360
+ self._lora_scale = lora_scale
361
+
362
+ # dynamically adjust the LoRA scale
363
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
364
+ scale_lora_layers(self.text_encoder, lora_scale)
365
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
366
+ scale_lora_layers(self.text_encoder_2, lora_scale)
367
+
368
+ prompt = [prompt] if isinstance(prompt, str) else prompt
369
+
370
+ if prompt_embeds is None:
371
+ prompt_2 = prompt_2 or prompt
372
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
373
+
374
+ # We only use the pooled prompt output from the CLIPTextModel
375
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
376
+ prompt=prompt,
377
+ device=device,
378
+ num_images_per_prompt=num_images_per_prompt,
379
+ )
380
+ prompt_embeds = self._get_t5_prompt_embeds(
381
+ prompt=prompt_2,
382
+ num_images_per_prompt=num_images_per_prompt,
383
+ max_sequence_length=max_sequence_length,
384
+ device=device,
385
+ )
386
+
387
+ if self.text_encoder is not None:
388
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
389
+ # Retrieve the original scale by scaling back the LoRA layers
390
+ unscale_lora_layers(self.text_encoder, lora_scale)
391
+
392
+ if self.text_encoder_2 is not None:
393
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
394
+ # Retrieve the original scale by scaling back the LoRA layers
395
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
396
+
397
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
398
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
399
+
400
+ return prompt_embeds, pooled_prompt_embeds, text_ids
401
+
402
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
403
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
404
+ if isinstance(generator, list):
405
+ image_latents = [
406
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
407
+ for i in range(image.shape[0])
408
+ ]
409
+ image_latents = torch.cat(image_latents, dim=0)
410
+ else:
411
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
412
+
413
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
414
+
415
+ return image_latents
416
+
417
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
418
+ def get_timesteps(self, num_inference_steps, strength, device):
419
+ # get the original timestep using init_timestep
420
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
421
+
422
+ t_start = int(max(num_inference_steps - init_timestep, 0))
423
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
424
+ if hasattr(self.scheduler, "set_begin_index"):
425
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
426
+
427
+ return timesteps, num_inference_steps - t_start
428
+
429
+ def check_inputs(
430
+ self,
431
+ prompt,
432
+ prompt_2,
433
+ image,
434
+ mask_image,
435
+ strength,
436
+ height,
437
+ width,
438
+ output_type,
439
+ prompt_embeds=None,
440
+ pooled_prompt_embeds=None,
441
+ callback_on_step_end_tensor_inputs=None,
442
+ padding_mask_crop=None,
443
+ max_sequence_length=None,
444
+ ):
445
+ if strength < 0 or strength > 1:
446
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
447
+
448
+ if height % 8 != 0 or width % 8 != 0:
449
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
450
+
451
+ if callback_on_step_end_tensor_inputs is not None and not all(
452
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
453
+ ):
454
+ raise ValueError(
455
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
456
+ )
457
+
458
+ if prompt is not None and prompt_embeds is not None:
459
+ raise ValueError(
460
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
461
+ " only forward one of the two."
462
+ )
463
+ elif prompt_2 is not None and prompt_embeds is not None:
464
+ raise ValueError(
465
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
466
+ " only forward one of the two."
467
+ )
468
+ elif prompt is None and prompt_embeds is None:
469
+ raise ValueError(
470
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
471
+ )
472
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
473
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
474
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
475
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
476
+
477
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
478
+ raise ValueError(
479
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
480
+ )
481
+
482
+ if padding_mask_crop is not None:
483
+ if not isinstance(image, PIL.Image.Image):
484
+ raise ValueError(
485
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
486
+ )
487
+ if not isinstance(mask_image, PIL.Image.Image):
488
+ raise ValueError(
489
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
490
+ f" {type(mask_image)}."
491
+ )
492
+ if output_type != "pil":
493
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
494
+
495
+ if max_sequence_length is not None and max_sequence_length > 512:
496
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
497
+
498
+ @staticmethod
499
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
500
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
501
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
502
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
503
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
504
+
505
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
506
+
507
+ latent_image_ids = latent_image_ids.reshape(
508
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
509
+ )
510
+
511
+ return latent_image_ids.to(device=device, dtype=dtype)
512
+
513
+ @staticmethod
514
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
515
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
516
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
517
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
518
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
519
+
520
+ return latents
521
+
522
+ @staticmethod
523
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
524
+ def _unpack_latents(latents, height, width, vae_scale_factor):
525
+ batch_size, num_patches, channels = latents.shape
526
+
527
+ height = height // vae_scale_factor
528
+ width = width // vae_scale_factor
529
+
530
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
531
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
532
+
533
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
534
+
535
+ return latents
536
+
537
+ def prepare_latents(
538
+ self,
539
+ image,
540
+ timestep,
541
+ batch_size,
542
+ num_channels_latents,
543
+ height,
544
+ width,
545
+ dtype,
546
+ device,
547
+ generator,
548
+ latents=None,
549
+ ):
550
+ if isinstance(generator, list) and len(generator) != batch_size:
551
+ raise ValueError(
552
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
553
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
554
+ )
555
+
556
+ height = 2 * (int(height) // self.vae_scale_factor)
557
+ width = 2 * (int(width) // self.vae_scale_factor)
558
+
559
+ shape = (batch_size, num_channels_latents, height, width)
560
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
561
+
562
+ image = image.to(device=device, dtype=dtype)
563
+ image_latents = self._encode_vae_image(image=image, generator=generator)
564
+
565
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
566
+ # expand init_latents for batch_size
567
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
568
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
569
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
570
+ raise ValueError(
571
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
572
+ )
573
+ else:
574
+ image_latents = torch.cat([image_latents], dim=0)
575
+
576
+ if latents is None:
577
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
578
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
579
+ else:
580
+ noise = latents.to(device)
581
+ latents = noise
582
+
583
+ noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
584
+ image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
585
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
586
+ return latents, noise, image_latents, latent_image_ids
587
+
588
+ def prepare_mask_latents(
589
+ self,
590
+ mask,
591
+ masked_image,
592
+ batch_size,
593
+ num_channels_latents,
594
+ num_images_per_prompt,
595
+ height,
596
+ width,
597
+ dtype,
598
+ device,
599
+ generator,
600
+ ):
601
+ height = 2 * (int(height) // self.vae_scale_factor)
602
+ width = 2 * (int(width) // self.vae_scale_factor)
603
+ # resize the mask to latents shape as we concatenate the mask to the latents
604
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
605
+ # and half precision
606
+ mask = torch.nn.functional.interpolate(mask, size=(height, width))
607
+ mask = mask.to(device=device, dtype=dtype)
608
+
609
+ batch_size = batch_size * num_images_per_prompt
610
+
611
+ masked_image = masked_image.to(device=device, dtype=dtype)
612
+
613
+ if masked_image.shape[1] == 16:
614
+ masked_image_latents = masked_image
615
+ else:
616
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
617
+
618
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
619
+
620
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
621
+ if mask.shape[0] < batch_size:
622
+ if not batch_size % mask.shape[0] == 0:
623
+ raise ValueError(
624
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
625
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
626
+ " of masks that you pass is divisible by the total requested batch size."
627
+ )
628
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
629
+ if masked_image_latents.shape[0] < batch_size:
630
+ if not batch_size % masked_image_latents.shape[0] == 0:
631
+ raise ValueError(
632
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
633
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
634
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
635
+ )
636
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
637
+
638
+ # aligning device to prevent device errors when concating it with the latent model input
639
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
640
+
641
+ masked_image_latents = self._pack_latents(
642
+ masked_image_latents,
643
+ batch_size,
644
+ num_channels_latents,
645
+ height,
646
+ width,
647
+ )
648
+ mask = self._pack_latents(
649
+ mask.repeat(1, num_channels_latents, 1, 1),
650
+ batch_size,
651
+ num_channels_latents,
652
+ height,
653
+ width,
654
+ )
655
+
656
+ return mask, masked_image_latents
657
+
658
+ @property
659
+ def guidance_scale(self):
660
+ return self._guidance_scale
661
+
662
+ @property
663
+ def joint_attention_kwargs(self):
664
+ return self._joint_attention_kwargs
665
+
666
+ @property
667
+ def num_timesteps(self):
668
+ return self._num_timesteps
669
+
670
+ @property
671
+ def interrupt(self):
672
+ return self._interrupt
673
+
674
+ @torch.no_grad()
675
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
676
+ def __call__(
677
+ self,
678
+ prompt: Union[str, List[str]] = None,
679
+ prompt_2: Optional[Union[str, List[str]]] = None,
680
+ image: PipelineImageInput = None,
681
+ mask_image: PipelineImageInput = None,
682
+ masked_image_latents: PipelineImageInput = None,
683
+ height: Optional[int] = None,
684
+ width: Optional[int] = None,
685
+ padding_mask_crop: Optional[int] = None,
686
+ strength: float = 0.6,
687
+ num_inference_steps: int = 28,
688
+ timesteps: List[int] = None,
689
+ guidance_scale: float = 7.0,
690
+ num_images_per_prompt: Optional[int] = 1,
691
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
692
+ latents: Optional[torch.FloatTensor] = None,
693
+ prompt_embeds: Optional[torch.FloatTensor] = None,
694
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
695
+ output_type: Optional[str] = "pil",
696
+ return_dict: bool = True,
697
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
698
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
699
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
700
+ max_sequence_length: int = 512,
701
+ ):
702
+ r"""
703
+ Function invoked when calling the pipeline for generation.
704
+
705
+ Args:
706
+ prompt (`str` or `List[str]`, *optional*):
707
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
708
+ instead.
709
+ prompt_2 (`str` or `List[str]`, *optional*):
710
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
711
+ will be used instead
712
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
713
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
714
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
715
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
716
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
717
+ latents as `image`, but if passing latents directly it is not encoded again.
718
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
719
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
720
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
721
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
722
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
723
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
724
+ 1)`, or `(H, W)`.
725
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
726
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
727
+ latents tensor will ge generated by `mask_image`.
728
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
729
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
730
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
731
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
732
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
733
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
734
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
735
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
736
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
737
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
738
+ the image is large and contain information irrelevant for inpainting, such as background.
739
+ strength (`float`, *optional*, defaults to 1.0):
740
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
741
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
742
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
743
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
744
+ essentially ignores `image`.
745
+ num_inference_steps (`int`, *optional*, defaults to 50):
746
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
747
+ expense of slower inference.
748
+ timesteps (`List[int]`, *optional*):
749
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
750
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
751
+ passed will be used. Must be in descending order.
752
+ guidance_scale (`float`, *optional*, defaults to 7.0):
753
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
754
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
755
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
756
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
757
+ usually at the expense of lower image quality.
758
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
759
+ The number of images to generate per prompt.
760
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
761
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
762
+ to make generation deterministic.
763
+ latents (`torch.FloatTensor`, *optional*):
764
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
765
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
766
+ tensor will ge generated by sampling using the supplied random `generator`.
767
+ prompt_embeds (`torch.FloatTensor`, *optional*):
768
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
769
+ provided, text embeddings will be generated from `prompt` input argument.
770
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
771
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
772
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
773
+ output_type (`str`, *optional*, defaults to `"pil"`):
774
+ The output format of the generate image. Choose between
775
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
776
+ return_dict (`bool`, *optional*, defaults to `True`):
777
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
778
+ joint_attention_kwargs (`dict`, *optional*):
779
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
780
+ `self.processor` in
781
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
782
+ callback_on_step_end (`Callable`, *optional*):
783
+ A function that calls at the end of each denoising steps during the inference. The function is called
784
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
785
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
786
+ `callback_on_step_end_tensor_inputs`.
787
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
788
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
789
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
790
+ `._callback_tensor_inputs` attribute of your pipeline class.
791
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
792
+
793
+ Examples:
794
+
795
+ Returns:
796
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
797
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
798
+ images.
799
+ """
800
+
801
+ height = height or self.default_sample_size * self.vae_scale_factor
802
+ width = width or self.default_sample_size * self.vae_scale_factor
803
+
804
+ # 1. Check inputs. Raise error if not correct
805
+ self.check_inputs(
806
+ prompt,
807
+ prompt_2,
808
+ image,
809
+ mask_image,
810
+ strength,
811
+ height,
812
+ width,
813
+ output_type=output_type,
814
+ prompt_embeds=prompt_embeds,
815
+ pooled_prompt_embeds=pooled_prompt_embeds,
816
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
817
+ padding_mask_crop=padding_mask_crop,
818
+ max_sequence_length=max_sequence_length,
819
+ )
820
+
821
+ self._guidance_scale = guidance_scale
822
+ self._joint_attention_kwargs = joint_attention_kwargs
823
+ self._interrupt = False
824
+
825
+ # 2. Preprocess mask and image
826
+ if padding_mask_crop is not None:
827
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
828
+ resize_mode = "fill"
829
+ else:
830
+ crops_coords = None
831
+ resize_mode = "default"
832
+
833
+ original_image = image
834
+ init_image = self.image_processor.preprocess(
835
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
836
+ )
837
+ init_image = init_image.to(dtype=torch.float32)
838
+
839
+ # 3. Define call parameters
840
+ if prompt is not None and isinstance(prompt, str):
841
+ batch_size = 1
842
+ elif prompt is not None and isinstance(prompt, list):
843
+ batch_size = len(prompt)
844
+ else:
845
+ batch_size = prompt_embeds.shape[0]
846
+
847
+ device = self._execution_device
848
+
849
+ lora_scale = (
850
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
851
+ )
852
+ (
853
+ prompt_embeds,
854
+ pooled_prompt_embeds,
855
+ text_ids,
856
+ ) = self.encode_prompt(
857
+ prompt=prompt,
858
+ prompt_2=prompt_2,
859
+ prompt_embeds=prompt_embeds,
860
+ pooled_prompt_embeds=pooled_prompt_embeds,
861
+ device=device,
862
+ num_images_per_prompt=num_images_per_prompt,
863
+ max_sequence_length=max_sequence_length,
864
+ lora_scale=lora_scale,
865
+ )
866
+
867
+ # 4.Prepare timesteps
868
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
869
+ image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor)
870
+ mu = calculate_shift(
871
+ image_seq_len,
872
+ self.scheduler.config.base_image_seq_len,
873
+ self.scheduler.config.max_image_seq_len,
874
+ self.scheduler.config.base_shift,
875
+ self.scheduler.config.max_shift,
876
+ )
877
+ timesteps, num_inference_steps = retrieve_timesteps(
878
+ self.scheduler,
879
+ num_inference_steps,
880
+ device,
881
+ timesteps,
882
+ sigmas,
883
+ mu=mu,
884
+ )
885
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
886
+
887
+ if num_inference_steps < 1:
888
+ raise ValueError(
889
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
890
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
891
+ )
892
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
893
+
894
+ # 5. Prepare latent variables
895
+ num_channels_latents = self.transformer.config.in_channels // 4
896
+ num_channels_transformer = self.transformer.config.in_channels
897
+
898
+ latents, noise, image_latents, latent_image_ids = self.prepare_latents(
899
+ init_image,
900
+ latent_timestep,
901
+ batch_size * num_images_per_prompt,
902
+ num_channels_latents,
903
+ height,
904
+ width,
905
+ prompt_embeds.dtype,
906
+ device,
907
+ generator,
908
+ latents,
909
+ )
910
+
911
+ mask_condition = self.mask_processor.preprocess(
912
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
913
+ )
914
+
915
+ if masked_image_latents is None:
916
+ masked_image = init_image * (mask_condition < 0.5)
917
+ else:
918
+ masked_image = masked_image_latents
919
+
920
+ mask, masked_image_latents = self.prepare_mask_latents(
921
+ mask_condition,
922
+ masked_image,
923
+ batch_size,
924
+ num_channels_latents,
925
+ num_images_per_prompt,
926
+ height,
927
+ width,
928
+ prompt_embeds.dtype,
929
+ device,
930
+ generator,
931
+ )
932
+
933
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
934
+ self._num_timesteps = len(timesteps)
935
+
936
+ # handle guidance
937
+ if self.transformer.config.guidance_embeds:
938
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
939
+ guidance = guidance.expand(latents.shape[0])
940
+ else:
941
+ guidance = None
942
+
943
+ # 6. Denoising loop
944
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
945
+ for i, t in enumerate(timesteps):
946
+ if self.interrupt:
947
+ continue
948
+
949
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
950
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
951
+ noise_pred = self.transformer(
952
+ hidden_states=latents,
953
+ timestep=timestep / 1000,
954
+ guidance=guidance,
955
+ pooled_projections=pooled_prompt_embeds,
956
+ encoder_hidden_states=prompt_embeds,
957
+ txt_ids=text_ids,
958
+ img_ids=latent_image_ids,
959
+ joint_attention_kwargs=self.joint_attention_kwargs,
960
+ return_dict=False,
961
+ )[0]
962
+
963
+ # compute the previous noisy sample x_t -> x_t-1
964
+ latents_dtype = latents.dtype
965
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
966
+
967
+ # for 64 channel transformer only.
968
+ init_latents_proper = image_latents
969
+ init_mask = mask
970
+
971
+ if i < len(timesteps) - 1:
972
+ noise_timestep = timesteps[i + 1]
973
+ init_latents_proper = self.scheduler.scale_noise(
974
+ init_latents_proper, torch.tensor([noise_timestep]), noise
975
+ )
976
+
977
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
978
+
979
+ if latents.dtype != latents_dtype:
980
+ if torch.backends.mps.is_available():
981
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
982
+ latents = latents.to(latents_dtype)
983
+
984
+ if callback_on_step_end is not None:
985
+ callback_kwargs = {}
986
+ for k in callback_on_step_end_tensor_inputs:
987
+ callback_kwargs[k] = locals()[k]
988
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
989
+
990
+ latents = callback_outputs.pop("latents", latents)
991
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
992
+
993
+ # call the callback, if provided
994
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
995
+ progress_bar.update()
996
+
997
+ if XLA_AVAILABLE:
998
+ xm.mark_step()
999
+
1000
+ if output_type == "latent":
1001
+ image = latents
1002
+
1003
+ else:
1004
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1005
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1006
+ image = self.vae.decode(latents, return_dict=False)[0]
1007
+ image = self.image_processor.postprocess(image, output_type=output_type)
1008
+
1009
+ # Offload all models
1010
+ self.maybe_free_model_hooks()
1011
+
1012
+ if not return_dict:
1013
+ return (image,)
1014
+
1015
+ return FluxPipelineOutput(images=image)