diffusers 0.30.2__py3-none-any.whl → 0.31.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (173) hide show
  1. diffusers/__init__.py +38 -2
  2. diffusers/configuration_utils.py +12 -0
  3. diffusers/dependency_versions_table.py +1 -1
  4. diffusers/image_processor.py +257 -54
  5. diffusers/loaders/__init__.py +2 -0
  6. diffusers/loaders/ip_adapter.py +5 -1
  7. diffusers/loaders/lora_base.py +14 -7
  8. diffusers/loaders/lora_conversion_utils.py +332 -0
  9. diffusers/loaders/lora_pipeline.py +707 -41
  10. diffusers/loaders/peft.py +1 -0
  11. diffusers/loaders/single_file_utils.py +81 -4
  12. diffusers/loaders/textual_inversion.py +2 -0
  13. diffusers/loaders/unet.py +39 -8
  14. diffusers/models/__init__.py +4 -0
  15. diffusers/models/adapter.py +53 -53
  16. diffusers/models/attention.py +86 -10
  17. diffusers/models/attention_processor.py +169 -133
  18. diffusers/models/autoencoders/autoencoder_kl.py +71 -11
  19. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +287 -85
  20. diffusers/models/controlnet_flux.py +536 -0
  21. diffusers/models/controlnet_sd3.py +7 -3
  22. diffusers/models/controlnet_sparsectrl.py +0 -1
  23. diffusers/models/embeddings.py +238 -61
  24. diffusers/models/embeddings_flax.py +23 -9
  25. diffusers/models/model_loading_utils.py +182 -14
  26. diffusers/models/modeling_utils.py +283 -46
  27. diffusers/models/normalization.py +79 -0
  28. diffusers/models/transformers/__init__.py +1 -0
  29. diffusers/models/transformers/auraflow_transformer_2d.py +1 -0
  30. diffusers/models/transformers/cogvideox_transformer_3d.py +58 -36
  31. diffusers/models/transformers/pixart_transformer_2d.py +9 -1
  32. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  33. diffusers/models/transformers/transformer_flux.py +161 -44
  34. diffusers/models/transformers/transformer_sd3.py +7 -1
  35. diffusers/models/unets/unet_2d_condition.py +8 -8
  36. diffusers/models/unets/unet_motion_model.py +41 -63
  37. diffusers/models/upsampling.py +6 -6
  38. diffusers/pipelines/__init__.py +40 -7
  39. diffusers/pipelines/animatediff/__init__.py +2 -0
  40. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  41. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +44 -20
  42. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  43. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +2 -0
  44. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -66
  45. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  46. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -1
  47. diffusers/pipelines/auto_pipeline.py +39 -8
  48. diffusers/pipelines/cogvideo/__init__.py +6 -0
  49. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +32 -34
  50. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +794 -0
  51. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +837 -0
  52. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +825 -0
  53. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  54. diffusers/pipelines/cogview3/__init__.py +47 -0
  55. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  56. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  57. diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -1
  58. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -0
  59. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +8 -0
  60. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +36 -13
  61. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +9 -1
  62. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -1
  63. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +17 -3
  64. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  65. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +3 -1
  66. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  67. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  68. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  69. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  70. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  71. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  72. diffusers/pipelines/flux/__init__.py +10 -0
  73. diffusers/pipelines/flux/pipeline_flux.py +53 -20
  74. diffusers/pipelines/flux/pipeline_flux_controlnet.py +984 -0
  75. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +988 -0
  76. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1182 -0
  77. diffusers/pipelines/flux/pipeline_flux_img2img.py +850 -0
  78. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1015 -0
  79. diffusers/pipelines/free_noise_utils.py +365 -5
  80. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +15 -3
  81. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  82. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  83. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  84. diffusers/pipelines/kolors/tokenizer.py +4 -0
  85. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  86. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  87. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  88. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  89. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  90. diffusers/pipelines/lumina/pipeline_lumina.py +2 -2
  91. diffusers/pipelines/pag/__init__.py +6 -0
  92. diffusers/pipelines/pag/pag_utils.py +8 -2
  93. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -1
  94. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1544 -0
  95. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +2 -2
  96. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1685 -0
  97. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +17 -5
  98. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  99. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +1 -1
  100. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  101. diffusers/pipelines/pag/pipeline_pag_sd_3.py +12 -3
  102. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  103. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1091 -0
  104. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  105. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  106. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  107. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  108. diffusers/pipelines/pipeline_loading_utils.py +225 -27
  109. diffusers/pipelines/pipeline_utils.py +123 -180
  110. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +1 -1
  111. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +1 -1
  112. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  113. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  114. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +28 -6
  115. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  116. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  117. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  118. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +12 -3
  119. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +20 -4
  120. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +3 -3
  121. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  122. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  123. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  124. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -4
  125. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -14
  126. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -14
  127. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  128. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  129. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  130. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  131. diffusers/quantizers/__init__.py +16 -0
  132. diffusers/quantizers/auto.py +126 -0
  133. diffusers/quantizers/base.py +233 -0
  134. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  135. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +558 -0
  136. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  137. diffusers/quantizers/quantization_config.py +391 -0
  138. diffusers/schedulers/scheduling_ddim.py +4 -1
  139. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  140. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  141. diffusers/schedulers/scheduling_ddpm.py +4 -1
  142. diffusers/schedulers/scheduling_ddpm_parallel.py +4 -1
  143. diffusers/schedulers/scheduling_deis_multistep.py +78 -1
  144. diffusers/schedulers/scheduling_dpmsolver_multistep.py +82 -1
  145. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +80 -1
  146. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  147. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +82 -1
  148. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  149. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  150. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  151. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  152. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  153. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  154. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  155. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  156. diffusers/schedulers/scheduling_sasolver.py +78 -1
  157. diffusers/schedulers/scheduling_unclip.py +4 -1
  158. diffusers/schedulers/scheduling_unipc_multistep.py +78 -1
  159. diffusers/training_utils.py +48 -18
  160. diffusers/utils/__init__.py +2 -1
  161. diffusers/utils/dummy_pt_objects.py +60 -0
  162. diffusers/utils/dummy_torch_and_transformers_objects.py +195 -0
  163. diffusers/utils/hub_utils.py +16 -4
  164. diffusers/utils/import_utils.py +31 -8
  165. diffusers/utils/loading_utils.py +28 -4
  166. diffusers/utils/peft_utils.py +3 -3
  167. diffusers/utils/testing_utils.py +59 -0
  168. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/METADATA +7 -6
  169. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/RECORD +173 -147
  170. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/WHEEL +1 -1
  171. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/LICENSE +0 -0
  172. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/entry_points.txt +0 -0
  173. {diffusers-0.30.2.dist-info → diffusers-0.31.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,850 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import FluxTransformer2DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+ from .pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+
55
+ >>> from diffusers import FluxImg2ImgPipeline
56
+ >>> from diffusers.utils import load_image
57
+
58
+ >>> device = "cuda"
59
+ >>> pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
60
+ >>> pipe = pipe.to(device)
61
+
62
+ >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
63
+ >>> init_image = load_image(url).resize((1024, 1024))
64
+
65
+ >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
66
+
67
+ >>> images = pipe(
68
+ ... prompt=prompt, image=init_image, num_inference_steps=4, strength=0.95, guidance_scale=0.0
69
+ ... ).images[0]
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
75
+ def calculate_shift(
76
+ image_seq_len,
77
+ base_seq_len: int = 256,
78
+ max_seq_len: int = 4096,
79
+ base_shift: float = 0.5,
80
+ max_shift: float = 1.16,
81
+ ):
82
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
83
+ b = base_shift - m * base_seq_len
84
+ mu = image_seq_len * m + b
85
+ return mu
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
89
+ def retrieve_latents(
90
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
91
+ ):
92
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
93
+ return encoder_output.latent_dist.sample(generator)
94
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
95
+ return encoder_output.latent_dist.mode()
96
+ elif hasattr(encoder_output, "latents"):
97
+ return encoder_output.latents
98
+ else:
99
+ raise AttributeError("Could not access latents of provided encoder_output")
100
+
101
+
102
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
103
+ def retrieve_timesteps(
104
+ scheduler,
105
+ num_inference_steps: Optional[int] = None,
106
+ device: Optional[Union[str, torch.device]] = None,
107
+ timesteps: Optional[List[int]] = None,
108
+ sigmas: Optional[List[float]] = None,
109
+ **kwargs,
110
+ ):
111
+ r"""
112
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
113
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
114
+
115
+ Args:
116
+ scheduler (`SchedulerMixin`):
117
+ The scheduler to get timesteps from.
118
+ num_inference_steps (`int`):
119
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
120
+ must be `None`.
121
+ device (`str` or `torch.device`, *optional*):
122
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
123
+ timesteps (`List[int]`, *optional*):
124
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
125
+ `num_inference_steps` and `sigmas` must be `None`.
126
+ sigmas (`List[float]`, *optional*):
127
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
128
+ `num_inference_steps` and `timesteps` must be `None`.
129
+
130
+ Returns:
131
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
132
+ second element is the number of inference steps.
133
+ """
134
+ if timesteps is not None and sigmas is not None:
135
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
136
+ if timesteps is not None:
137
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accepts_timesteps:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" timestep schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ elif sigmas is not None:
147
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accept_sigmas:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ else:
157
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ return timesteps, num_inference_steps
160
+
161
+
162
+ class FluxImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
163
+ r"""
164
+ The Flux pipeline for image inpainting.
165
+
166
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
167
+
168
+ Args:
169
+ transformer ([`FluxTransformer2DModel`]):
170
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
171
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
172
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
173
+ vae ([`AutoencoderKL`]):
174
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
175
+ text_encoder ([`CLIPTextModel`]):
176
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
177
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
178
+ text_encoder_2 ([`T5EncoderModel`]):
179
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
180
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
181
+ tokenizer (`CLIPTokenizer`):
182
+ Tokenizer of class
183
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
184
+ tokenizer_2 (`T5TokenizerFast`):
185
+ Second Tokenizer of class
186
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
187
+ """
188
+
189
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
190
+ _optional_components = []
191
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
192
+
193
+ def __init__(
194
+ self,
195
+ scheduler: FlowMatchEulerDiscreteScheduler,
196
+ vae: AutoencoderKL,
197
+ text_encoder: CLIPTextModel,
198
+ tokenizer: CLIPTokenizer,
199
+ text_encoder_2: T5EncoderModel,
200
+ tokenizer_2: T5TokenizerFast,
201
+ transformer: FluxTransformer2DModel,
202
+ ):
203
+ super().__init__()
204
+
205
+ self.register_modules(
206
+ vae=vae,
207
+ text_encoder=text_encoder,
208
+ text_encoder_2=text_encoder_2,
209
+ tokenizer=tokenizer,
210
+ tokenizer_2=tokenizer_2,
211
+ transformer=transformer,
212
+ scheduler=scheduler,
213
+ )
214
+ self.vae_scale_factor = (
215
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
216
+ )
217
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
218
+ self.tokenizer_max_length = (
219
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
220
+ )
221
+ self.default_sample_size = 64
222
+
223
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
224
+ def _get_t5_prompt_embeds(
225
+ self,
226
+ prompt: Union[str, List[str]] = None,
227
+ num_images_per_prompt: int = 1,
228
+ max_sequence_length: int = 512,
229
+ device: Optional[torch.device] = None,
230
+ dtype: Optional[torch.dtype] = None,
231
+ ):
232
+ device = device or self._execution_device
233
+ dtype = dtype or self.text_encoder.dtype
234
+
235
+ prompt = [prompt] if isinstance(prompt, str) else prompt
236
+ batch_size = len(prompt)
237
+
238
+ if isinstance(self, TextualInversionLoaderMixin):
239
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
240
+
241
+ text_inputs = self.tokenizer_2(
242
+ prompt,
243
+ padding="max_length",
244
+ max_length=max_sequence_length,
245
+ truncation=True,
246
+ return_length=False,
247
+ return_overflowing_tokens=False,
248
+ return_tensors="pt",
249
+ )
250
+ text_input_ids = text_inputs.input_ids
251
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
252
+
253
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
254
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
255
+ logger.warning(
256
+ "The following part of your input was truncated because `max_sequence_length` is set to "
257
+ f" {max_sequence_length} tokens: {removed_text}"
258
+ )
259
+
260
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
261
+
262
+ dtype = self.text_encoder_2.dtype
263
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
264
+
265
+ _, seq_len, _ = prompt_embeds.shape
266
+
267
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
268
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
269
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
270
+
271
+ return prompt_embeds
272
+
273
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
274
+ def _get_clip_prompt_embeds(
275
+ self,
276
+ prompt: Union[str, List[str]],
277
+ num_images_per_prompt: int = 1,
278
+ device: Optional[torch.device] = None,
279
+ ):
280
+ device = device or self._execution_device
281
+
282
+ prompt = [prompt] if isinstance(prompt, str) else prompt
283
+ batch_size = len(prompt)
284
+
285
+ if isinstance(self, TextualInversionLoaderMixin):
286
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
287
+
288
+ text_inputs = self.tokenizer(
289
+ prompt,
290
+ padding="max_length",
291
+ max_length=self.tokenizer_max_length,
292
+ truncation=True,
293
+ return_overflowing_tokens=False,
294
+ return_length=False,
295
+ return_tensors="pt",
296
+ )
297
+
298
+ text_input_ids = text_inputs.input_ids
299
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
300
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
301
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
302
+ logger.warning(
303
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
304
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
305
+ )
306
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
307
+
308
+ # Use pooled output of CLIPTextModel
309
+ prompt_embeds = prompt_embeds.pooler_output
310
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
311
+
312
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
313
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
314
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
315
+
316
+ return prompt_embeds
317
+
318
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
319
+ def encode_prompt(
320
+ self,
321
+ prompt: Union[str, List[str]],
322
+ prompt_2: Union[str, List[str]],
323
+ device: Optional[torch.device] = None,
324
+ num_images_per_prompt: int = 1,
325
+ prompt_embeds: Optional[torch.FloatTensor] = None,
326
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
327
+ max_sequence_length: int = 512,
328
+ lora_scale: Optional[float] = None,
329
+ ):
330
+ r"""
331
+
332
+ Args:
333
+ prompt (`str` or `List[str]`, *optional*):
334
+ prompt to be encoded
335
+ prompt_2 (`str` or `List[str]`, *optional*):
336
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
337
+ used in all text-encoders
338
+ device: (`torch.device`):
339
+ torch device
340
+ num_images_per_prompt (`int`):
341
+ number of images that should be generated per prompt
342
+ prompt_embeds (`torch.FloatTensor`, *optional*):
343
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
344
+ provided, text embeddings will be generated from `prompt` input argument.
345
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
346
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
347
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
348
+ lora_scale (`float`, *optional*):
349
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
350
+ """
351
+ device = device or self._execution_device
352
+
353
+ # set lora scale so that monkey patched LoRA
354
+ # function of text encoder can correctly access it
355
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
356
+ self._lora_scale = lora_scale
357
+
358
+ # dynamically adjust the LoRA scale
359
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
360
+ scale_lora_layers(self.text_encoder, lora_scale)
361
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
362
+ scale_lora_layers(self.text_encoder_2, lora_scale)
363
+
364
+ prompt = [prompt] if isinstance(prompt, str) else prompt
365
+
366
+ if prompt_embeds is None:
367
+ prompt_2 = prompt_2 or prompt
368
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
369
+
370
+ # We only use the pooled prompt output from the CLIPTextModel
371
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
372
+ prompt=prompt,
373
+ device=device,
374
+ num_images_per_prompt=num_images_per_prompt,
375
+ )
376
+ prompt_embeds = self._get_t5_prompt_embeds(
377
+ prompt=prompt_2,
378
+ num_images_per_prompt=num_images_per_prompt,
379
+ max_sequence_length=max_sequence_length,
380
+ device=device,
381
+ )
382
+
383
+ if self.text_encoder is not None:
384
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
385
+ # Retrieve the original scale by scaling back the LoRA layers
386
+ unscale_lora_layers(self.text_encoder, lora_scale)
387
+
388
+ if self.text_encoder_2 is not None:
389
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
390
+ # Retrieve the original scale by scaling back the LoRA layers
391
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
392
+
393
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
394
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
395
+
396
+ return prompt_embeds, pooled_prompt_embeds, text_ids
397
+
398
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
399
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
400
+ if isinstance(generator, list):
401
+ image_latents = [
402
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
403
+ for i in range(image.shape[0])
404
+ ]
405
+ image_latents = torch.cat(image_latents, dim=0)
406
+ else:
407
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
408
+
409
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
410
+
411
+ return image_latents
412
+
413
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
414
+ def get_timesteps(self, num_inference_steps, strength, device):
415
+ # get the original timestep using init_timestep
416
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
417
+
418
+ t_start = int(max(num_inference_steps - init_timestep, 0))
419
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
420
+ if hasattr(self.scheduler, "set_begin_index"):
421
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
422
+
423
+ return timesteps, num_inference_steps - t_start
424
+
425
+ def check_inputs(
426
+ self,
427
+ prompt,
428
+ prompt_2,
429
+ strength,
430
+ height,
431
+ width,
432
+ prompt_embeds=None,
433
+ pooled_prompt_embeds=None,
434
+ callback_on_step_end_tensor_inputs=None,
435
+ max_sequence_length=None,
436
+ ):
437
+ if strength < 0 or strength > 1:
438
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
439
+
440
+ if height % 8 != 0 or width % 8 != 0:
441
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
442
+
443
+ if callback_on_step_end_tensor_inputs is not None and not all(
444
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
445
+ ):
446
+ raise ValueError(
447
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
448
+ )
449
+
450
+ if prompt is not None and prompt_embeds is not None:
451
+ raise ValueError(
452
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
453
+ " only forward one of the two."
454
+ )
455
+ elif prompt_2 is not None and prompt_embeds is not None:
456
+ raise ValueError(
457
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
458
+ " only forward one of the two."
459
+ )
460
+ elif prompt is None and prompt_embeds is None:
461
+ raise ValueError(
462
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
463
+ )
464
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
465
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
466
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
467
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
468
+
469
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
470
+ raise ValueError(
471
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
472
+ )
473
+
474
+ if max_sequence_length is not None and max_sequence_length > 512:
475
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
476
+
477
+ @staticmethod
478
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
479
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
480
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
481
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
482
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
483
+
484
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
485
+
486
+ latent_image_ids = latent_image_ids.reshape(
487
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
488
+ )
489
+
490
+ return latent_image_ids.to(device=device, dtype=dtype)
491
+
492
+ @staticmethod
493
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
494
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
495
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
496
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
497
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
498
+
499
+ return latents
500
+
501
+ @staticmethod
502
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
503
+ def _unpack_latents(latents, height, width, vae_scale_factor):
504
+ batch_size, num_patches, channels = latents.shape
505
+
506
+ height = height // vae_scale_factor
507
+ width = width // vae_scale_factor
508
+
509
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
510
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
511
+
512
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
513
+
514
+ return latents
515
+
516
+ def prepare_latents(
517
+ self,
518
+ image,
519
+ timestep,
520
+ batch_size,
521
+ num_channels_latents,
522
+ height,
523
+ width,
524
+ dtype,
525
+ device,
526
+ generator,
527
+ latents=None,
528
+ ):
529
+ if isinstance(generator, list) and len(generator) != batch_size:
530
+ raise ValueError(
531
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
532
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
533
+ )
534
+
535
+ height = 2 * (int(height) // self.vae_scale_factor)
536
+ width = 2 * (int(width) // self.vae_scale_factor)
537
+
538
+ shape = (batch_size, num_channels_latents, height, width)
539
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
540
+
541
+ if latents is not None:
542
+ return latents.to(device=device, dtype=dtype), latent_image_ids
543
+
544
+ image = image.to(device=device, dtype=dtype)
545
+ image_latents = self._encode_vae_image(image=image, generator=generator)
546
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
547
+ # expand init_latents for batch_size
548
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
549
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
550
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
551
+ raise ValueError(
552
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
553
+ )
554
+ else:
555
+ image_latents = torch.cat([image_latents], dim=0)
556
+
557
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
558
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
559
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
560
+ return latents, latent_image_ids
561
+
562
+ @property
563
+ def guidance_scale(self):
564
+ return self._guidance_scale
565
+
566
+ @property
567
+ def joint_attention_kwargs(self):
568
+ return self._joint_attention_kwargs
569
+
570
+ @property
571
+ def num_timesteps(self):
572
+ return self._num_timesteps
573
+
574
+ @property
575
+ def interrupt(self):
576
+ return self._interrupt
577
+
578
+ @torch.no_grad()
579
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
580
+ def __call__(
581
+ self,
582
+ prompt: Union[str, List[str]] = None,
583
+ prompt_2: Optional[Union[str, List[str]]] = None,
584
+ image: PipelineImageInput = None,
585
+ height: Optional[int] = None,
586
+ width: Optional[int] = None,
587
+ strength: float = 0.6,
588
+ num_inference_steps: int = 28,
589
+ timesteps: List[int] = None,
590
+ guidance_scale: float = 7.0,
591
+ num_images_per_prompt: Optional[int] = 1,
592
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
593
+ latents: Optional[torch.FloatTensor] = None,
594
+ prompt_embeds: Optional[torch.FloatTensor] = None,
595
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
596
+ output_type: Optional[str] = "pil",
597
+ return_dict: bool = True,
598
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
599
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
600
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
601
+ max_sequence_length: int = 512,
602
+ ):
603
+ r"""
604
+ Function invoked when calling the pipeline for generation.
605
+
606
+ Args:
607
+ prompt (`str` or `List[str]`, *optional*):
608
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
609
+ instead.
610
+ prompt_2 (`str` or `List[str]`, *optional*):
611
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
612
+ will be used instead
613
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
614
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
615
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
616
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
617
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
618
+ latents as `image`, but if passing latents directly it is not encoded again.
619
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
620
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
621
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
622
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
623
+ strength (`float`, *optional*, defaults to 1.0):
624
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
625
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
626
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
627
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
628
+ essentially ignores `image`.
629
+ num_inference_steps (`int`, *optional*, defaults to 50):
630
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
631
+ expense of slower inference.
632
+ timesteps (`List[int]`, *optional*):
633
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
634
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
635
+ passed will be used. Must be in descending order.
636
+ guidance_scale (`float`, *optional*, defaults to 7.0):
637
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
638
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
639
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
640
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
641
+ usually at the expense of lower image quality.
642
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
643
+ The number of images to generate per prompt.
644
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
645
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
646
+ to make generation deterministic.
647
+ latents (`torch.FloatTensor`, *optional*):
648
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
649
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
650
+ tensor will ge generated by sampling using the supplied random `generator`.
651
+ prompt_embeds (`torch.FloatTensor`, *optional*):
652
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
653
+ provided, text embeddings will be generated from `prompt` input argument.
654
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
655
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
656
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
657
+ output_type (`str`, *optional*, defaults to `"pil"`):
658
+ The output format of the generate image. Choose between
659
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
660
+ return_dict (`bool`, *optional*, defaults to `True`):
661
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
662
+ joint_attention_kwargs (`dict`, *optional*):
663
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
664
+ `self.processor` in
665
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
666
+ callback_on_step_end (`Callable`, *optional*):
667
+ A function that calls at the end of each denoising steps during the inference. The function is called
668
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
669
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
670
+ `callback_on_step_end_tensor_inputs`.
671
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
672
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
673
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
674
+ `._callback_tensor_inputs` attribute of your pipeline class.
675
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
676
+
677
+ Examples:
678
+
679
+ Returns:
680
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
681
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
682
+ images.
683
+ """
684
+
685
+ height = height or self.default_sample_size * self.vae_scale_factor
686
+ width = width or self.default_sample_size * self.vae_scale_factor
687
+
688
+ # 1. Check inputs. Raise error if not correct
689
+ self.check_inputs(
690
+ prompt,
691
+ prompt_2,
692
+ strength,
693
+ height,
694
+ width,
695
+ prompt_embeds=prompt_embeds,
696
+ pooled_prompt_embeds=pooled_prompt_embeds,
697
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
698
+ max_sequence_length=max_sequence_length,
699
+ )
700
+
701
+ self._guidance_scale = guidance_scale
702
+ self._joint_attention_kwargs = joint_attention_kwargs
703
+ self._interrupt = False
704
+
705
+ # 2. Preprocess image
706
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
707
+ init_image = init_image.to(dtype=torch.float32)
708
+
709
+ # 3. Define call parameters
710
+ if prompt is not None and isinstance(prompt, str):
711
+ batch_size = 1
712
+ elif prompt is not None and isinstance(prompt, list):
713
+ batch_size = len(prompt)
714
+ else:
715
+ batch_size = prompt_embeds.shape[0]
716
+
717
+ device = self._execution_device
718
+
719
+ lora_scale = (
720
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
721
+ )
722
+ (
723
+ prompt_embeds,
724
+ pooled_prompt_embeds,
725
+ text_ids,
726
+ ) = self.encode_prompt(
727
+ prompt=prompt,
728
+ prompt_2=prompt_2,
729
+ prompt_embeds=prompt_embeds,
730
+ pooled_prompt_embeds=pooled_prompt_embeds,
731
+ device=device,
732
+ num_images_per_prompt=num_images_per_prompt,
733
+ max_sequence_length=max_sequence_length,
734
+ lora_scale=lora_scale,
735
+ )
736
+
737
+ # 4.Prepare timesteps
738
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
739
+ image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor)
740
+ mu = calculate_shift(
741
+ image_seq_len,
742
+ self.scheduler.config.base_image_seq_len,
743
+ self.scheduler.config.max_image_seq_len,
744
+ self.scheduler.config.base_shift,
745
+ self.scheduler.config.max_shift,
746
+ )
747
+ timesteps, num_inference_steps = retrieve_timesteps(
748
+ self.scheduler,
749
+ num_inference_steps,
750
+ device,
751
+ timesteps,
752
+ sigmas,
753
+ mu=mu,
754
+ )
755
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
756
+
757
+ if num_inference_steps < 1:
758
+ raise ValueError(
759
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
760
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
761
+ )
762
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
763
+
764
+ # 5. Prepare latent variables
765
+ num_channels_latents = self.transformer.config.in_channels // 4
766
+
767
+ latents, latent_image_ids = self.prepare_latents(
768
+ init_image,
769
+ latent_timestep,
770
+ batch_size * num_images_per_prompt,
771
+ num_channels_latents,
772
+ height,
773
+ width,
774
+ prompt_embeds.dtype,
775
+ device,
776
+ generator,
777
+ latents,
778
+ )
779
+
780
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
781
+ self._num_timesteps = len(timesteps)
782
+
783
+ # handle guidance
784
+ if self.transformer.config.guidance_embeds:
785
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
786
+ guidance = guidance.expand(latents.shape[0])
787
+ else:
788
+ guidance = None
789
+
790
+ # 6. Denoising loop
791
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
792
+ for i, t in enumerate(timesteps):
793
+ if self.interrupt:
794
+ continue
795
+
796
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
797
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
798
+ noise_pred = self.transformer(
799
+ hidden_states=latents,
800
+ timestep=timestep / 1000,
801
+ guidance=guidance,
802
+ pooled_projections=pooled_prompt_embeds,
803
+ encoder_hidden_states=prompt_embeds,
804
+ txt_ids=text_ids,
805
+ img_ids=latent_image_ids,
806
+ joint_attention_kwargs=self.joint_attention_kwargs,
807
+ return_dict=False,
808
+ )[0]
809
+
810
+ # compute the previous noisy sample x_t -> x_t-1
811
+ latents_dtype = latents.dtype
812
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
813
+
814
+ if latents.dtype != latents_dtype:
815
+ if torch.backends.mps.is_available():
816
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
817
+ latents = latents.to(latents_dtype)
818
+
819
+ if callback_on_step_end is not None:
820
+ callback_kwargs = {}
821
+ for k in callback_on_step_end_tensor_inputs:
822
+ callback_kwargs[k] = locals()[k]
823
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
824
+
825
+ latents = callback_outputs.pop("latents", latents)
826
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
827
+
828
+ # call the callback, if provided
829
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
830
+ progress_bar.update()
831
+
832
+ if XLA_AVAILABLE:
833
+ xm.mark_step()
834
+
835
+ if output_type == "latent":
836
+ image = latents
837
+
838
+ else:
839
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
840
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
841
+ image = self.vae.decode(latents, return_dict=False)[0]
842
+ image = self.image_processor.postprocess(image, output_type=output_type)
843
+
844
+ # Offload all models
845
+ self.maybe_free_model_hooks()
846
+
847
+ if not return_dict:
848
+ return (image,)
849
+
850
+ return FluxPipelineOutput(images=image)