diffusers 0.15.1__py3-none-any.whl → 0.16.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (57) hide show
  1. diffusers/__init__.py +7 -2
  2. diffusers/configuration_utils.py +4 -0
  3. diffusers/loaders.py +262 -12
  4. diffusers/models/attention.py +31 -12
  5. diffusers/models/attention_processor.py +189 -0
  6. diffusers/models/controlnet.py +9 -2
  7. diffusers/models/embeddings.py +66 -0
  8. diffusers/models/modeling_pytorch_flax_utils.py +6 -0
  9. diffusers/models/modeling_utils.py +5 -2
  10. diffusers/models/transformer_2d.py +1 -1
  11. diffusers/models/unet_2d_condition.py +45 -6
  12. diffusers/models/vae.py +3 -0
  13. diffusers/pipelines/__init__.py +8 -0
  14. diffusers/pipelines/alt_diffusion/modeling_roberta_series.py +25 -10
  15. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +8 -0
  16. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +8 -0
  17. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -1
  18. diffusers/pipelines/deepfloyd_if/__init__.py +54 -0
  19. diffusers/pipelines/deepfloyd_if/pipeline_if.py +854 -0
  20. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +979 -0
  21. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +1097 -0
  22. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +1098 -0
  23. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +1208 -0
  24. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +947 -0
  25. diffusers/pipelines/deepfloyd_if/safety_checker.py +59 -0
  26. diffusers/pipelines/deepfloyd_if/timesteps.py +579 -0
  27. diffusers/pipelines/deepfloyd_if/watermark.py +46 -0
  28. diffusers/pipelines/pipeline_utils.py +54 -25
  29. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +37 -20
  30. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_controlnet.py +1 -1
  31. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +12 -1
  32. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +10 -2
  33. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +10 -8
  34. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py +59 -4
  35. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +9 -2
  36. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +10 -2
  37. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +9 -2
  38. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +22 -12
  39. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +9 -2
  40. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +34 -30
  41. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +93 -10
  42. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +45 -6
  43. diffusers/schedulers/scheduling_ddpm.py +63 -16
  44. diffusers/schedulers/scheduling_heun_discrete.py +51 -1
  45. diffusers/utils/__init__.py +4 -1
  46. diffusers/utils/dummy_torch_and_transformers_objects.py +80 -5
  47. diffusers/utils/dynamic_modules_utils.py +1 -1
  48. diffusers/utils/hub_utils.py +4 -1
  49. diffusers/utils/import_utils.py +41 -0
  50. diffusers/utils/pil_utils.py +24 -0
  51. diffusers/utils/testing_utils.py +10 -0
  52. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/METADATA +1 -1
  53. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/RECORD +57 -47
  54. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/LICENSE +0 -0
  55. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/WHEEL +0 -0
  56. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/entry_points.txt +0 -0
  57. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1098 @@
1
+ import html
2
+ import inspect
3
+ import re
4
+ import urllib.parse as ul
5
+ from typing import Any, Callable, Dict, List, Optional, Union
6
+
7
+ import numpy as np
8
+ import PIL
9
+ import torch
10
+ from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
11
+
12
+ from ...models import UNet2DConditionModel
13
+ from ...schedulers import DDPMScheduler
14
+ from ...utils import (
15
+ BACKENDS_MAPPING,
16
+ PIL_INTERPOLATION,
17
+ is_accelerate_available,
18
+ is_accelerate_version,
19
+ is_bs4_available,
20
+ is_ftfy_available,
21
+ logging,
22
+ randn_tensor,
23
+ replace_example_docstring,
24
+ )
25
+ from ..pipeline_utils import DiffusionPipeline
26
+ from . import IFPipelineOutput
27
+ from .safety_checker import IFSafetyChecker
28
+ from .watermark import IFWatermarker
29
+
30
+
31
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
+
33
+ if is_bs4_available():
34
+ from bs4 import BeautifulSoup
35
+
36
+ if is_ftfy_available():
37
+ import ftfy
38
+
39
+
40
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.resize
41
+ def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
42
+ w, h = images.size
43
+
44
+ coef = w / h
45
+
46
+ w, h = img_size, img_size
47
+
48
+ if coef >= 1:
49
+ w = int(round(img_size / 8 * coef) * 8)
50
+ else:
51
+ h = int(round(img_size / 8 / coef) * 8)
52
+
53
+ images = images.resize((w, h), resample=PIL_INTERPOLATION["bicubic"], reducing_gap=None)
54
+
55
+ return images
56
+
57
+
58
+ EXAMPLE_DOC_STRING = """
59
+ Examples:
60
+ ```py
61
+ >>> from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
62
+ >>> from diffusers.utils import pt_to_pil
63
+ >>> import torch
64
+ >>> from PIL import Image
65
+ >>> import requests
66
+ >>> from io import BytesIO
67
+
68
+ >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png"
69
+ >>> response = requests.get(url)
70
+ >>> original_image = Image.open(BytesIO(response.content)).convert("RGB")
71
+ >>> original_image = original_image
72
+
73
+ >>> url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
74
+ >>> response = requests.get(url)
75
+ >>> mask_image = Image.open(BytesIO(response.content))
76
+ >>> mask_image = mask_image
77
+
78
+ >>> pipe = IFInpaintingPipeline.from_pretrained(
79
+ ... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16
80
+ ... )
81
+ >>> pipe.enable_model_cpu_offload()
82
+
83
+ >>> prompt = "blue sunglasses"
84
+ >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
85
+
86
+ >>> image = pipe(
87
+ ... image=original_image,
88
+ ... mask_image=mask_image,
89
+ ... prompt_embeds=prompt_embeds,
90
+ ... negative_prompt_embeds=negative_embeds,
91
+ ... output_type="pt",
92
+ ... ).images
93
+
94
+ >>> # save intermediate image
95
+ >>> pil_image = pt_to_pil(image)
96
+ >>> pil_image[0].save("./if_stage_I.png")
97
+
98
+ >>> super_res_1_pipe = IFInpaintingSuperResolutionPipeline.from_pretrained(
99
+ ... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
100
+ ... )
101
+ >>> super_res_1_pipe.enable_model_cpu_offload()
102
+
103
+ >>> image = super_res_1_pipe(
104
+ ... image=image,
105
+ ... mask_image=mask_image,
106
+ ... original_image=original_image,
107
+ ... prompt_embeds=prompt_embeds,
108
+ ... negative_prompt_embeds=negative_embeds,
109
+ ... ).images
110
+ >>> image[0].save("./if_stage_II.png")
111
+ ```
112
+ """
113
+
114
+
115
+ class IFInpaintingPipeline(DiffusionPipeline):
116
+ tokenizer: T5Tokenizer
117
+ text_encoder: T5EncoderModel
118
+
119
+ unet: UNet2DConditionModel
120
+ scheduler: DDPMScheduler
121
+
122
+ feature_extractor: Optional[CLIPImageProcessor]
123
+ safety_checker: Optional[IFSafetyChecker]
124
+
125
+ watermarker: Optional[IFWatermarker]
126
+
127
+ bad_punct_regex = re.compile(
128
+ r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
129
+ ) # noqa
130
+
131
+ _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
132
+
133
+ def __init__(
134
+ self,
135
+ tokenizer: T5Tokenizer,
136
+ text_encoder: T5EncoderModel,
137
+ unet: UNet2DConditionModel,
138
+ scheduler: DDPMScheduler,
139
+ safety_checker: Optional[IFSafetyChecker],
140
+ feature_extractor: Optional[CLIPImageProcessor],
141
+ watermarker: Optional[IFWatermarker],
142
+ requires_safety_checker: bool = True,
143
+ ):
144
+ super().__init__()
145
+
146
+ if safety_checker is None and requires_safety_checker:
147
+ logger.warning(
148
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
149
+ " that you abide to the conditions of the IF license and do not expose unfiltered"
150
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
151
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
152
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
153
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
154
+ )
155
+
156
+ if safety_checker is not None and feature_extractor is None:
157
+ raise ValueError(
158
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
159
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
160
+ )
161
+
162
+ self.register_modules(
163
+ tokenizer=tokenizer,
164
+ text_encoder=text_encoder,
165
+ unet=unet,
166
+ scheduler=scheduler,
167
+ safety_checker=safety_checker,
168
+ feature_extractor=feature_extractor,
169
+ watermarker=watermarker,
170
+ )
171
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
172
+
173
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.enable_sequential_cpu_offload
174
+ def enable_sequential_cpu_offload(self, gpu_id=0):
175
+ r"""
176
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
177
+ models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
178
+ when their specific submodule has its `forward` method called.
179
+ """
180
+ if is_accelerate_available():
181
+ from accelerate import cpu_offload
182
+ else:
183
+ raise ImportError("Please install accelerate via `pip install accelerate`")
184
+
185
+ device = torch.device(f"cuda:{gpu_id}")
186
+
187
+ models = [
188
+ self.text_encoder,
189
+ self.unet,
190
+ ]
191
+ for cpu_offloaded_model in models:
192
+ if cpu_offloaded_model is not None:
193
+ cpu_offload(cpu_offloaded_model, device)
194
+
195
+ if self.safety_checker is not None:
196
+ cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
197
+
198
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.enable_model_cpu_offload
199
+ def enable_model_cpu_offload(self, gpu_id=0):
200
+ r"""
201
+ Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
202
+ to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
203
+ method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
204
+ `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
205
+ """
206
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
207
+ from accelerate import cpu_offload_with_hook
208
+ else:
209
+ raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
210
+
211
+ device = torch.device(f"cuda:{gpu_id}")
212
+
213
+ if self.device.type != "cpu":
214
+ self.to("cpu", silence_dtype_warnings=True)
215
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
216
+
217
+ hook = None
218
+
219
+ if self.text_encoder is not None:
220
+ _, hook = cpu_offload_with_hook(self.text_encoder, device, prev_module_hook=hook)
221
+
222
+ # Accelerate will move the next model to the device _before_ calling the offload hook of the
223
+ # previous model. This will cause both models to be present on the device at the same time.
224
+ # IF uses T5 for its text encoder which is really large. We can manually call the offload
225
+ # hook for the text encoder to ensure it's moved to the cpu before the unet is moved to
226
+ # the GPU.
227
+ self.text_encoder_offload_hook = hook
228
+
229
+ _, hook = cpu_offload_with_hook(self.unet, device, prev_module_hook=hook)
230
+
231
+ # if the safety checker isn't called, `unet_offload_hook` will have to be called to manually offload the unet
232
+ self.unet_offload_hook = hook
233
+
234
+ if self.safety_checker is not None:
235
+ _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
236
+
237
+ # We'll offload the last model manually.
238
+ self.final_offload_hook = hook
239
+
240
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.remove_all_hooks
241
+ def remove_all_hooks(self):
242
+ if is_accelerate_available():
243
+ from accelerate.hooks import remove_hook_from_module
244
+ else:
245
+ raise ImportError("Please install accelerate via `pip install accelerate`")
246
+
247
+ for model in [self.text_encoder, self.unet, self.safety_checker]:
248
+ if model is not None:
249
+ remove_hook_from_module(model, recurse=True)
250
+
251
+ self.unet_offload_hook = None
252
+ self.text_encoder_offload_hook = None
253
+ self.final_offload_hook = None
254
+
255
+ @property
256
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
257
+ def _execution_device(self):
258
+ r"""
259
+ Returns the device on which the pipeline's models will be executed. After calling
260
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
261
+ hooks.
262
+ """
263
+ if not hasattr(self.unet, "_hf_hook"):
264
+ return self.device
265
+ for module in self.unet.modules():
266
+ if (
267
+ hasattr(module, "_hf_hook")
268
+ and hasattr(module._hf_hook, "execution_device")
269
+ and module._hf_hook.execution_device is not None
270
+ ):
271
+ return torch.device(module._hf_hook.execution_device)
272
+ return self.device
273
+
274
+ @torch.no_grad()
275
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.encode_prompt
276
+ def encode_prompt(
277
+ self,
278
+ prompt,
279
+ do_classifier_free_guidance=True,
280
+ num_images_per_prompt=1,
281
+ device=None,
282
+ negative_prompt=None,
283
+ prompt_embeds: Optional[torch.FloatTensor] = None,
284
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
285
+ clean_caption: bool = False,
286
+ ):
287
+ r"""
288
+ Encodes the prompt into text encoder hidden states.
289
+
290
+ Args:
291
+ prompt (`str` or `List[str]`, *optional*):
292
+ prompt to be encoded
293
+ device: (`torch.device`, *optional*):
294
+ torch device to place the resulting embeddings on
295
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
296
+ number of images that should be generated per prompt
297
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
298
+ whether to use classifier free guidance or not
299
+ negative_prompt (`str` or `List[str]`, *optional*):
300
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
301
+ `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
302
+ Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
303
+ prompt_embeds (`torch.FloatTensor`, *optional*):
304
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
305
+ provided, text embeddings will be generated from `prompt` input argument.
306
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
307
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
308
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
309
+ argument.
310
+ """
311
+ if prompt is not None and negative_prompt is not None:
312
+ if type(prompt) is not type(negative_prompt):
313
+ raise TypeError(
314
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
315
+ f" {type(prompt)}."
316
+ )
317
+
318
+ if device is None:
319
+ device = self._execution_device
320
+
321
+ if prompt is not None and isinstance(prompt, str):
322
+ batch_size = 1
323
+ elif prompt is not None and isinstance(prompt, list):
324
+ batch_size = len(prompt)
325
+ else:
326
+ batch_size = prompt_embeds.shape[0]
327
+
328
+ # while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF
329
+ max_length = 77
330
+
331
+ if prompt_embeds is None:
332
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
333
+ text_inputs = self.tokenizer(
334
+ prompt,
335
+ padding="max_length",
336
+ max_length=max_length,
337
+ truncation=True,
338
+ add_special_tokens=True,
339
+ return_tensors="pt",
340
+ )
341
+ text_input_ids = text_inputs.input_ids
342
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
343
+
344
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
345
+ text_input_ids, untruncated_ids
346
+ ):
347
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
348
+ logger.warning(
349
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
350
+ f" {max_length} tokens: {removed_text}"
351
+ )
352
+
353
+ attention_mask = text_inputs.attention_mask.to(device)
354
+
355
+ prompt_embeds = self.text_encoder(
356
+ text_input_ids.to(device),
357
+ attention_mask=attention_mask,
358
+ )
359
+ prompt_embeds = prompt_embeds[0]
360
+
361
+ if self.text_encoder is not None:
362
+ dtype = self.text_encoder.dtype
363
+ elif self.unet is not None:
364
+ dtype = self.unet.dtype
365
+ else:
366
+ dtype = None
367
+
368
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
369
+
370
+ bs_embed, seq_len, _ = prompt_embeds.shape
371
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
372
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
373
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
374
+
375
+ # get unconditional embeddings for classifier free guidance
376
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
377
+ uncond_tokens: List[str]
378
+ if negative_prompt is None:
379
+ uncond_tokens = [""] * batch_size
380
+ elif isinstance(negative_prompt, str):
381
+ uncond_tokens = [negative_prompt]
382
+ elif batch_size != len(negative_prompt):
383
+ raise ValueError(
384
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
385
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
386
+ " the batch size of `prompt`."
387
+ )
388
+ else:
389
+ uncond_tokens = negative_prompt
390
+
391
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
392
+ max_length = prompt_embeds.shape[1]
393
+ uncond_input = self.tokenizer(
394
+ uncond_tokens,
395
+ padding="max_length",
396
+ max_length=max_length,
397
+ truncation=True,
398
+ return_attention_mask=True,
399
+ add_special_tokens=True,
400
+ return_tensors="pt",
401
+ )
402
+ attention_mask = uncond_input.attention_mask.to(device)
403
+
404
+ negative_prompt_embeds = self.text_encoder(
405
+ uncond_input.input_ids.to(device),
406
+ attention_mask=attention_mask,
407
+ )
408
+ negative_prompt_embeds = negative_prompt_embeds[0]
409
+
410
+ if do_classifier_free_guidance:
411
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
412
+ seq_len = negative_prompt_embeds.shape[1]
413
+
414
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
415
+
416
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
417
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
418
+
419
+ # For classifier free guidance, we need to do two forward passes.
420
+ # Here we concatenate the unconditional and text embeddings into a single batch
421
+ # to avoid doing two forward passes
422
+ else:
423
+ negative_prompt_embeds = None
424
+
425
+ return prompt_embeds, negative_prompt_embeds
426
+
427
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.run_safety_checker
428
+ def run_safety_checker(self, image, device, dtype):
429
+ if self.safety_checker is not None:
430
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
431
+ image, nsfw_detected, watermark_detected = self.safety_checker(
432
+ images=image,
433
+ clip_input=safety_checker_input.pixel_values.to(dtype=dtype),
434
+ )
435
+ else:
436
+ nsfw_detected = None
437
+ watermark_detected = None
438
+
439
+ if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
440
+ self.unet_offload_hook.offload()
441
+
442
+ return image, nsfw_detected, watermark_detected
443
+
444
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
445
+ def prepare_extra_step_kwargs(self, generator, eta):
446
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
447
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
448
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
449
+ # and should be between [0, 1]
450
+
451
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
452
+ extra_step_kwargs = {}
453
+ if accepts_eta:
454
+ extra_step_kwargs["eta"] = eta
455
+
456
+ # check if the scheduler accepts generator
457
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
458
+ if accepts_generator:
459
+ extra_step_kwargs["generator"] = generator
460
+ return extra_step_kwargs
461
+
462
+ def check_inputs(
463
+ self,
464
+ prompt,
465
+ image,
466
+ mask_image,
467
+ batch_size,
468
+ callback_steps,
469
+ negative_prompt=None,
470
+ prompt_embeds=None,
471
+ negative_prompt_embeds=None,
472
+ ):
473
+ if (callback_steps is None) or (
474
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
475
+ ):
476
+ raise ValueError(
477
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
478
+ f" {type(callback_steps)}."
479
+ )
480
+
481
+ if prompt is not None and prompt_embeds is not None:
482
+ raise ValueError(
483
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
484
+ " only forward one of the two."
485
+ )
486
+ elif prompt is None and prompt_embeds is None:
487
+ raise ValueError(
488
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
489
+ )
490
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
491
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
492
+
493
+ if negative_prompt is not None and negative_prompt_embeds is not None:
494
+ raise ValueError(
495
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
496
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
497
+ )
498
+
499
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
500
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
501
+ raise ValueError(
502
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
503
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
504
+ f" {negative_prompt_embeds.shape}."
505
+ )
506
+
507
+ # image
508
+
509
+ if isinstance(image, list):
510
+ check_image_type = image[0]
511
+ else:
512
+ check_image_type = image
513
+
514
+ if (
515
+ not isinstance(check_image_type, torch.Tensor)
516
+ and not isinstance(check_image_type, PIL.Image.Image)
517
+ and not isinstance(check_image_type, np.ndarray)
518
+ ):
519
+ raise ValueError(
520
+ "`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
521
+ f" {type(check_image_type)}"
522
+ )
523
+
524
+ if isinstance(image, list):
525
+ image_batch_size = len(image)
526
+ elif isinstance(image, torch.Tensor):
527
+ image_batch_size = image.shape[0]
528
+ elif isinstance(image, PIL.Image.Image):
529
+ image_batch_size = 1
530
+ elif isinstance(image, np.ndarray):
531
+ image_batch_size = image.shape[0]
532
+ else:
533
+ assert False
534
+
535
+ if batch_size != image_batch_size:
536
+ raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}")
537
+
538
+ # mask_image
539
+
540
+ if isinstance(mask_image, list):
541
+ check_image_type = mask_image[0]
542
+ else:
543
+ check_image_type = mask_image
544
+
545
+ if (
546
+ not isinstance(check_image_type, torch.Tensor)
547
+ and not isinstance(check_image_type, PIL.Image.Image)
548
+ and not isinstance(check_image_type, np.ndarray)
549
+ ):
550
+ raise ValueError(
551
+ "`mask_image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
552
+ f" {type(check_image_type)}"
553
+ )
554
+
555
+ if isinstance(mask_image, list):
556
+ image_batch_size = len(mask_image)
557
+ elif isinstance(mask_image, torch.Tensor):
558
+ image_batch_size = mask_image.shape[0]
559
+ elif isinstance(mask_image, PIL.Image.Image):
560
+ image_batch_size = 1
561
+ elif isinstance(mask_image, np.ndarray):
562
+ image_batch_size = mask_image.shape[0]
563
+ else:
564
+ assert False
565
+
566
+ if image_batch_size != 1 and batch_size != image_batch_size:
567
+ raise ValueError(
568
+ f"mask_image batch size: {image_batch_size} must be `1` or the same as prompt batch size {batch_size}"
569
+ )
570
+
571
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
572
+ def _text_preprocessing(self, text, clean_caption=False):
573
+ if clean_caption and not is_bs4_available():
574
+ logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
575
+ logger.warn("Setting `clean_caption` to False...")
576
+ clean_caption = False
577
+
578
+ if clean_caption and not is_ftfy_available():
579
+ logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
580
+ logger.warn("Setting `clean_caption` to False...")
581
+ clean_caption = False
582
+
583
+ if not isinstance(text, (tuple, list)):
584
+ text = [text]
585
+
586
+ def process(text: str):
587
+ if clean_caption:
588
+ text = self._clean_caption(text)
589
+ text = self._clean_caption(text)
590
+ else:
591
+ text = text.lower().strip()
592
+ return text
593
+
594
+ return [process(t) for t in text]
595
+
596
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
597
+ def _clean_caption(self, caption):
598
+ caption = str(caption)
599
+ caption = ul.unquote_plus(caption)
600
+ caption = caption.strip().lower()
601
+ caption = re.sub("<person>", "person", caption)
602
+ # urls:
603
+ caption = re.sub(
604
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
605
+ "",
606
+ caption,
607
+ ) # regex for urls
608
+ caption = re.sub(
609
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
610
+ "",
611
+ caption,
612
+ ) # regex for urls
613
+ # html:
614
+ caption = BeautifulSoup(caption, features="html.parser").text
615
+
616
+ # @<nickname>
617
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
618
+
619
+ # 31C0—31EF CJK Strokes
620
+ # 31F0—31FF Katakana Phonetic Extensions
621
+ # 3200—32FF Enclosed CJK Letters and Months
622
+ # 3300—33FF CJK Compatibility
623
+ # 3400—4DBF CJK Unified Ideographs Extension A
624
+ # 4DC0—4DFF Yijing Hexagram Symbols
625
+ # 4E00—9FFF CJK Unified Ideographs
626
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
627
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
628
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
629
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
630
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
631
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
632
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
633
+ #######################################################
634
+
635
+ # все виды тире / all types of dash --> "-"
636
+ caption = re.sub(
637
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
638
+ "-",
639
+ caption,
640
+ )
641
+
642
+ # кавычки к одному стандарту
643
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
644
+ caption = re.sub(r"[‘’]", "'", caption)
645
+
646
+ # &quot;
647
+ caption = re.sub(r"&quot;?", "", caption)
648
+ # &amp
649
+ caption = re.sub(r"&amp", "", caption)
650
+
651
+ # ip adresses:
652
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
653
+
654
+ # article ids:
655
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
656
+
657
+ # \n
658
+ caption = re.sub(r"\\n", " ", caption)
659
+
660
+ # "#123"
661
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
662
+ # "#12345.."
663
+ caption = re.sub(r"#\d{5,}\b", "", caption)
664
+ # "123456.."
665
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
666
+ # filenames:
667
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
668
+
669
+ #
670
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
671
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
672
+
673
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
674
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
675
+
676
+ # this-is-my-cute-cat / this_is_my_cute_cat
677
+ regex2 = re.compile(r"(?:\-|\_)")
678
+ if len(re.findall(regex2, caption)) > 3:
679
+ caption = re.sub(regex2, " ", caption)
680
+
681
+ caption = ftfy.fix_text(caption)
682
+ caption = html.unescape(html.unescape(caption))
683
+
684
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
685
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
686
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
687
+
688
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
689
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
690
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
691
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
692
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
693
+
694
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
695
+
696
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
697
+
698
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
699
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
700
+ caption = re.sub(r"\s+", " ", caption)
701
+
702
+ caption.strip()
703
+
704
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
705
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
706
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
707
+ caption = re.sub(r"^\.\S+$", "", caption)
708
+
709
+ return caption.strip()
710
+
711
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.preprocess_image
712
+ def preprocess_image(self, image: PIL.Image.Image) -> torch.Tensor:
713
+ if not isinstance(image, list):
714
+ image = [image]
715
+
716
+ def numpy_to_pt(images):
717
+ if images.ndim == 3:
718
+ images = images[..., None]
719
+
720
+ images = torch.from_numpy(images.transpose(0, 3, 1, 2))
721
+ return images
722
+
723
+ if isinstance(image[0], PIL.Image.Image):
724
+ new_image = []
725
+
726
+ for image_ in image:
727
+ image_ = image_.convert("RGB")
728
+ image_ = resize(image_, self.unet.sample_size)
729
+ image_ = np.array(image_)
730
+ image_ = image_.astype(np.float32)
731
+ image_ = image_ / 127.5 - 1
732
+ new_image.append(image_)
733
+
734
+ image = new_image
735
+
736
+ image = np.stack(image, axis=0) # to np
737
+ image = numpy_to_pt(image) # to pt
738
+
739
+ elif isinstance(image[0], np.ndarray):
740
+ image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
741
+ image = numpy_to_pt(image)
742
+
743
+ elif isinstance(image[0], torch.Tensor):
744
+ image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
745
+
746
+ return image
747
+
748
+ def preprocess_mask_image(self, mask_image) -> torch.Tensor:
749
+ if not isinstance(mask_image, list):
750
+ mask_image = [mask_image]
751
+
752
+ if isinstance(mask_image[0], torch.Tensor):
753
+ mask_image = torch.cat(mask_image, axis=0) if mask_image[0].ndim == 4 else torch.stack(mask_image, axis=0)
754
+
755
+ if mask_image.ndim == 2:
756
+ # Batch and add channel dim for single mask
757
+ mask_image = mask_image.unsqueeze(0).unsqueeze(0)
758
+ elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
759
+ # Single mask, the 0'th dimension is considered to be
760
+ # the existing batch size of 1
761
+ mask_image = mask_image.unsqueeze(0)
762
+ elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
763
+ # Batch of mask, the 0'th dimension is considered to be
764
+ # the batching dimension
765
+ mask_image = mask_image.unsqueeze(1)
766
+
767
+ mask_image[mask_image < 0.5] = 0
768
+ mask_image[mask_image >= 0.5] = 1
769
+
770
+ elif isinstance(mask_image[0], PIL.Image.Image):
771
+ new_mask_image = []
772
+
773
+ for mask_image_ in mask_image:
774
+ mask_image_ = mask_image_.convert("L")
775
+ mask_image_ = resize(mask_image_, self.unet.sample_size)
776
+ mask_image_ = np.array(mask_image_)
777
+ mask_image_ = mask_image_[None, None, :]
778
+ new_mask_image.append(mask_image_)
779
+
780
+ mask_image = new_mask_image
781
+
782
+ mask_image = np.concatenate(mask_image, axis=0)
783
+ mask_image = mask_image.astype(np.float32) / 255.0
784
+ mask_image[mask_image < 0.5] = 0
785
+ mask_image[mask_image >= 0.5] = 1
786
+ mask_image = torch.from_numpy(mask_image)
787
+
788
+ elif isinstance(mask_image[0], np.ndarray):
789
+ mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)
790
+
791
+ mask_image[mask_image < 0.5] = 0
792
+ mask_image[mask_image >= 0.5] = 1
793
+ mask_image = torch.from_numpy(mask_image)
794
+
795
+ return mask_image
796
+
797
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if_img2img.IFImg2ImgPipeline.get_timesteps
798
+ def get_timesteps(self, num_inference_steps, strength):
799
+ # get the original timestep using init_timestep
800
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
801
+
802
+ t_start = max(num_inference_steps - init_timestep, 0)
803
+ timesteps = self.scheduler.timesteps[t_start:]
804
+
805
+ return timesteps, num_inference_steps - t_start
806
+
807
+ def prepare_intermediate_images(
808
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator=None
809
+ ):
810
+ image_batch_size, channels, height, width = image.shape
811
+
812
+ batch_size = batch_size * num_images_per_prompt
813
+
814
+ shape = (batch_size, channels, height, width)
815
+
816
+ if isinstance(generator, list) and len(generator) != batch_size:
817
+ raise ValueError(
818
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
819
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
820
+ )
821
+
822
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
823
+
824
+ image = image.repeat_interleave(num_images_per_prompt, dim=0)
825
+ noised_image = self.scheduler.add_noise(image, noise, timestep)
826
+
827
+ image = (1 - mask_image) * image + mask_image * noised_image
828
+
829
+ return image
830
+
831
+ @torch.no_grad()
832
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
833
+ def __call__(
834
+ self,
835
+ prompt: Union[str, List[str]] = None,
836
+ image: Union[
837
+ PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]
838
+ ] = None,
839
+ mask_image: Union[
840
+ PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]
841
+ ] = None,
842
+ strength: float = 1.0,
843
+ num_inference_steps: int = 50,
844
+ timesteps: List[int] = None,
845
+ guidance_scale: float = 7.0,
846
+ negative_prompt: Optional[Union[str, List[str]]] = None,
847
+ num_images_per_prompt: Optional[int] = 1,
848
+ eta: float = 0.0,
849
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
850
+ prompt_embeds: Optional[torch.FloatTensor] = None,
851
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
852
+ output_type: Optional[str] = "pil",
853
+ return_dict: bool = True,
854
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
855
+ callback_steps: int = 1,
856
+ clean_caption: bool = True,
857
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
858
+ ):
859
+ """
860
+ Function invoked when calling the pipeline for generation.
861
+
862
+ Args:
863
+ prompt (`str` or `List[str]`, *optional*):
864
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
865
+ instead.
866
+ image (`torch.FloatTensor` or `PIL.Image.Image`):
867
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
868
+ process.
869
+ mask_image (`PIL.Image.Image`):
870
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
871
+ repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
872
+ to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
873
+ instead of 3, so the expected shape would be `(B, H, W, 1)`.
874
+ strength (`float`, *optional*, defaults to 0.8):
875
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
876
+ will be used as a starting point, adding more noise to it the larger the `strength`. The number of
877
+ denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
878
+ be maximum and the denoising process will run for the full number of iterations specified in
879
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
880
+ num_inference_steps (`int`, *optional*, defaults to 50):
881
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
882
+ expense of slower inference.
883
+ timesteps (`List[int]`, *optional*):
884
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
885
+ timesteps are used. Must be in descending order.
886
+ guidance_scale (`float`, *optional*, defaults to 7.5):
887
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
888
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
889
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
890
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
891
+ usually at the expense of lower image quality.
892
+ negative_prompt (`str` or `List[str]`, *optional*):
893
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
894
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
895
+ less than `1`).
896
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
897
+ The number of images to generate per prompt.
898
+ eta (`float`, *optional*, defaults to 0.0):
899
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
900
+ [`schedulers.DDIMScheduler`], will be ignored for others.
901
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
902
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
903
+ to make generation deterministic.
904
+ prompt_embeds (`torch.FloatTensor`, *optional*):
905
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
906
+ provided, text embeddings will be generated from `prompt` input argument.
907
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
908
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
909
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
910
+ argument.
911
+ output_type (`str`, *optional*, defaults to `"pil"`):
912
+ The output format of the generate image. Choose between
913
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
914
+ return_dict (`bool`, *optional*, defaults to `True`):
915
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
916
+ callback (`Callable`, *optional*):
917
+ A function that will be called every `callback_steps` steps during inference. The function will be
918
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
919
+ callback_steps (`int`, *optional*, defaults to 1):
920
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
921
+ called at every step.
922
+ clean_caption (`bool`, *optional*, defaults to `True`):
923
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
924
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
925
+ prompt.
926
+ cross_attention_kwargs (`dict`, *optional*):
927
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
928
+ `self.processor` in
929
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
930
+
931
+ Examples:
932
+
933
+ Returns:
934
+ [`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`:
935
+ [`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
936
+ returning a tuple, the first element is a list with the generated images, and the second element is a list
937
+ of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
938
+ or watermarked content, according to the `safety_checker`.
939
+ """
940
+ # 1. Check inputs. Raise error if not correct
941
+ if prompt is not None and isinstance(prompt, str):
942
+ batch_size = 1
943
+ elif prompt is not None and isinstance(prompt, list):
944
+ batch_size = len(prompt)
945
+ else:
946
+ batch_size = prompt_embeds.shape[0]
947
+
948
+ self.check_inputs(
949
+ prompt,
950
+ image,
951
+ mask_image,
952
+ batch_size,
953
+ callback_steps,
954
+ negative_prompt,
955
+ prompt_embeds,
956
+ negative_prompt_embeds,
957
+ )
958
+
959
+ # 2. Define call parameters
960
+ device = self._execution_device
961
+
962
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
963
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
964
+ # corresponds to doing no classifier free guidance.
965
+ do_classifier_free_guidance = guidance_scale > 1.0
966
+
967
+ # 3. Encode input prompt
968
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
969
+ prompt,
970
+ do_classifier_free_guidance,
971
+ num_images_per_prompt=num_images_per_prompt,
972
+ device=device,
973
+ negative_prompt=negative_prompt,
974
+ prompt_embeds=prompt_embeds,
975
+ negative_prompt_embeds=negative_prompt_embeds,
976
+ clean_caption=clean_caption,
977
+ )
978
+
979
+ if do_classifier_free_guidance:
980
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
981
+
982
+ dtype = prompt_embeds.dtype
983
+
984
+ # 4. Prepare timesteps
985
+ if timesteps is not None:
986
+ self.scheduler.set_timesteps(timesteps=timesteps, device=device)
987
+ timesteps = self.scheduler.timesteps
988
+ num_inference_steps = len(timesteps)
989
+ else:
990
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
991
+ timesteps = self.scheduler.timesteps
992
+
993
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
994
+
995
+ # 5. Prepare intermediate images
996
+ image = self.preprocess_image(image)
997
+ image = image.to(device=device, dtype=dtype)
998
+
999
+ mask_image = self.preprocess_mask_image(mask_image)
1000
+ mask_image = mask_image.to(device=device, dtype=dtype)
1001
+
1002
+ if mask_image.shape[0] == 1:
1003
+ mask_image = mask_image.repeat_interleave(batch_size * num_images_per_prompt, dim=0)
1004
+ else:
1005
+ mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0)
1006
+
1007
+ noise_timestep = timesteps[0:1]
1008
+ noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt)
1009
+
1010
+ intermediate_images = self.prepare_intermediate_images(
1011
+ image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, mask_image, generator
1012
+ )
1013
+
1014
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1015
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1016
+
1017
+ # HACK: see comment in `enable_model_cpu_offload`
1018
+ if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
1019
+ self.text_encoder_offload_hook.offload()
1020
+
1021
+ # 7. Denoising loop
1022
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1023
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1024
+ for i, t in enumerate(timesteps):
1025
+ model_input = (
1026
+ torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images
1027
+ )
1028
+ model_input = self.scheduler.scale_model_input(model_input, t)
1029
+
1030
+ # predict the noise residual
1031
+ noise_pred = self.unet(
1032
+ model_input,
1033
+ t,
1034
+ encoder_hidden_states=prompt_embeds,
1035
+ cross_attention_kwargs=cross_attention_kwargs,
1036
+ ).sample
1037
+
1038
+ # perform guidance
1039
+ if do_classifier_free_guidance:
1040
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1041
+ noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1], dim=1)
1042
+ noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1], dim=1)
1043
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1044
+ noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
1045
+
1046
+ # compute the previous noisy sample x_t -> x_t-1
1047
+ prev_intermediate_images = intermediate_images
1048
+
1049
+ intermediate_images = self.scheduler.step(
1050
+ noise_pred, t, intermediate_images, **extra_step_kwargs
1051
+ ).prev_sample
1052
+
1053
+ intermediate_images = (1 - mask_image) * prev_intermediate_images + mask_image * intermediate_images
1054
+
1055
+ # call the callback, if provided
1056
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1057
+ progress_bar.update()
1058
+ if callback is not None and i % callback_steps == 0:
1059
+ callback(i, t, intermediate_images)
1060
+
1061
+ image = intermediate_images
1062
+
1063
+ if output_type == "pil":
1064
+ # 8. Post-processing
1065
+ image = (image / 2 + 0.5).clamp(0, 1)
1066
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
1067
+
1068
+ # 9. Run safety checker
1069
+ image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
1070
+
1071
+ # 10. Convert to PIL
1072
+ image = self.numpy_to_pil(image)
1073
+
1074
+ # 11. Apply watermark
1075
+ if self.watermarker is not None:
1076
+ self.watermarker.apply_watermark(image, self.unet.config.sample_size)
1077
+ elif output_type == "pt":
1078
+ nsfw_detected = None
1079
+ watermark_detected = None
1080
+
1081
+ if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
1082
+ self.unet_offload_hook.offload()
1083
+ else:
1084
+ # 8. Post-processing
1085
+ image = (image / 2 + 0.5).clamp(0, 1)
1086
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
1087
+
1088
+ # 9. Run safety checker
1089
+ image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
1090
+
1091
+ # Offload last model to CPU
1092
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1093
+ self.final_offload_hook.offload()
1094
+
1095
+ if not return_dict:
1096
+ return (image, nsfw_detected, watermark_detected)
1097
+
1098
+ return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected)