diffusers 0.15.1__py3-none-any.whl → 0.16.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (57) hide show
  1. diffusers/__init__.py +7 -2
  2. diffusers/configuration_utils.py +4 -0
  3. diffusers/loaders.py +262 -12
  4. diffusers/models/attention.py +31 -12
  5. diffusers/models/attention_processor.py +189 -0
  6. diffusers/models/controlnet.py +9 -2
  7. diffusers/models/embeddings.py +66 -0
  8. diffusers/models/modeling_pytorch_flax_utils.py +6 -0
  9. diffusers/models/modeling_utils.py +5 -2
  10. diffusers/models/transformer_2d.py +1 -1
  11. diffusers/models/unet_2d_condition.py +45 -6
  12. diffusers/models/vae.py +3 -0
  13. diffusers/pipelines/__init__.py +8 -0
  14. diffusers/pipelines/alt_diffusion/modeling_roberta_series.py +25 -10
  15. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +8 -0
  16. diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +8 -0
  17. diffusers/pipelines/audioldm/pipeline_audioldm.py +1 -1
  18. diffusers/pipelines/deepfloyd_if/__init__.py +54 -0
  19. diffusers/pipelines/deepfloyd_if/pipeline_if.py +854 -0
  20. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +979 -0
  21. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +1097 -0
  22. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +1098 -0
  23. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +1208 -0
  24. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +947 -0
  25. diffusers/pipelines/deepfloyd_if/safety_checker.py +59 -0
  26. diffusers/pipelines/deepfloyd_if/timesteps.py +579 -0
  27. diffusers/pipelines/deepfloyd_if/watermark.py +46 -0
  28. diffusers/pipelines/pipeline_utils.py +54 -25
  29. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +37 -20
  30. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_controlnet.py +1 -1
  31. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +12 -1
  32. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +10 -2
  33. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +10 -8
  34. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py +59 -4
  35. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +9 -2
  36. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +10 -2
  37. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +9 -2
  38. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +22 -12
  39. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +9 -2
  40. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +34 -30
  41. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +93 -10
  42. diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +45 -6
  43. diffusers/schedulers/scheduling_ddpm.py +63 -16
  44. diffusers/schedulers/scheduling_heun_discrete.py +51 -1
  45. diffusers/utils/__init__.py +4 -1
  46. diffusers/utils/dummy_torch_and_transformers_objects.py +80 -5
  47. diffusers/utils/dynamic_modules_utils.py +1 -1
  48. diffusers/utils/hub_utils.py +4 -1
  49. diffusers/utils/import_utils.py +41 -0
  50. diffusers/utils/pil_utils.py +24 -0
  51. diffusers/utils/testing_utils.py +10 -0
  52. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/METADATA +1 -1
  53. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/RECORD +57 -47
  54. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/LICENSE +0 -0
  55. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/WHEEL +0 -0
  56. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/entry_points.txt +0 -0
  57. {diffusers-0.15.1.dist-info → diffusers-0.16.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,979 @@
1
+ import html
2
+ import inspect
3
+ import re
4
+ import urllib.parse as ul
5
+ from typing import Any, Callable, Dict, List, Optional, Union
6
+
7
+ import numpy as np
8
+ import PIL
9
+ import torch
10
+ from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
11
+
12
+ from ...models import UNet2DConditionModel
13
+ from ...schedulers import DDPMScheduler
14
+ from ...utils import (
15
+ BACKENDS_MAPPING,
16
+ PIL_INTERPOLATION,
17
+ is_accelerate_available,
18
+ is_accelerate_version,
19
+ is_bs4_available,
20
+ is_ftfy_available,
21
+ logging,
22
+ randn_tensor,
23
+ replace_example_docstring,
24
+ )
25
+ from ..pipeline_utils import DiffusionPipeline
26
+ from . import IFPipelineOutput
27
+ from .safety_checker import IFSafetyChecker
28
+ from .watermark import IFWatermarker
29
+
30
+
31
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
+
33
+ if is_bs4_available():
34
+ from bs4 import BeautifulSoup
35
+
36
+ if is_ftfy_available():
37
+ import ftfy
38
+
39
+
40
+ def resize(images: PIL.Image.Image, img_size: int) -> PIL.Image.Image:
41
+ w, h = images.size
42
+
43
+ coef = w / h
44
+
45
+ w, h = img_size, img_size
46
+
47
+ if coef >= 1:
48
+ w = int(round(img_size / 8 * coef) * 8)
49
+ else:
50
+ h = int(round(img_size / 8 / coef) * 8)
51
+
52
+ images = images.resize((w, h), resample=PIL_INTERPOLATION["bicubic"], reducing_gap=None)
53
+
54
+ return images
55
+
56
+
57
+ EXAMPLE_DOC_STRING = """
58
+ Examples:
59
+ ```py
60
+ >>> from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
61
+ >>> from diffusers.utils import pt_to_pil
62
+ >>> import torch
63
+ >>> from PIL import Image
64
+ >>> import requests
65
+ >>> from io import BytesIO
66
+
67
+ >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
68
+ >>> response = requests.get(url)
69
+ >>> original_image = Image.open(BytesIO(response.content)).convert("RGB")
70
+ >>> original_image = original_image.resize((768, 512))
71
+
72
+ >>> pipe = IFImg2ImgPipeline.from_pretrained(
73
+ ... "DeepFloyd/IF-I-XL-v1.0",
74
+ ... variant="fp16",
75
+ ... torch_dtype=torch.float16,
76
+ ... )
77
+ >>> pipe.enable_model_cpu_offload()
78
+
79
+ >>> prompt = "A fantasy landscape in style minecraft"
80
+ >>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
81
+
82
+ >>> image = pipe(
83
+ ... image=original_image,
84
+ ... prompt_embeds=prompt_embeds,
85
+ ... negative_prompt_embeds=negative_embeds,
86
+ ... output_type="pt",
87
+ ... ).images
88
+
89
+ >>> # save intermediate image
90
+ >>> pil_image = pt_to_pil(image)
91
+ >>> pil_image[0].save("./if_stage_I.png")
92
+
93
+ >>> super_res_1_pipe = IFImg2ImgSuperResolutionPipeline.from_pretrained(
94
+ ... "DeepFloyd/IF-II-L-v1.0",
95
+ ... text_encoder=None,
96
+ ... variant="fp16",
97
+ ... torch_dtype=torch.float16,
98
+ ... )
99
+ >>> super_res_1_pipe.enable_model_cpu_offload()
100
+
101
+ >>> image = super_res_1_pipe(
102
+ ... image=image,
103
+ ... original_image=original_image,
104
+ ... prompt_embeds=prompt_embeds,
105
+ ... negative_prompt_embeds=negative_embeds,
106
+ ... ).images
107
+ >>> image[0].save("./if_stage_II.png")
108
+ ```
109
+ """
110
+
111
+
112
+ class IFImg2ImgPipeline(DiffusionPipeline):
113
+ tokenizer: T5Tokenizer
114
+ text_encoder: T5EncoderModel
115
+
116
+ unet: UNet2DConditionModel
117
+ scheduler: DDPMScheduler
118
+
119
+ feature_extractor: Optional[CLIPImageProcessor]
120
+ safety_checker: Optional[IFSafetyChecker]
121
+
122
+ watermarker: Optional[IFWatermarker]
123
+
124
+ bad_punct_regex = re.compile(
125
+ r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
126
+ ) # noqa
127
+
128
+ _optional_components = ["tokenizer", "text_encoder", "safety_checker", "feature_extractor", "watermarker"]
129
+
130
+ def __init__(
131
+ self,
132
+ tokenizer: T5Tokenizer,
133
+ text_encoder: T5EncoderModel,
134
+ unet: UNet2DConditionModel,
135
+ scheduler: DDPMScheduler,
136
+ safety_checker: Optional[IFSafetyChecker],
137
+ feature_extractor: Optional[CLIPImageProcessor],
138
+ watermarker: Optional[IFWatermarker],
139
+ requires_safety_checker: bool = True,
140
+ ):
141
+ super().__init__()
142
+
143
+ if safety_checker is None and requires_safety_checker:
144
+ logger.warning(
145
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
146
+ " that you abide to the conditions of the IF license and do not expose unfiltered"
147
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
148
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
149
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
150
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
151
+ )
152
+
153
+ if safety_checker is not None and feature_extractor is None:
154
+ raise ValueError(
155
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
156
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
157
+ )
158
+
159
+ self.register_modules(
160
+ tokenizer=tokenizer,
161
+ text_encoder=text_encoder,
162
+ unet=unet,
163
+ scheduler=scheduler,
164
+ safety_checker=safety_checker,
165
+ feature_extractor=feature_extractor,
166
+ watermarker=watermarker,
167
+ )
168
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
169
+
170
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.enable_sequential_cpu_offload
171
+ def enable_sequential_cpu_offload(self, gpu_id=0):
172
+ r"""
173
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
174
+ models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
175
+ when their specific submodule has its `forward` method called.
176
+ """
177
+ if is_accelerate_available():
178
+ from accelerate import cpu_offload
179
+ else:
180
+ raise ImportError("Please install accelerate via `pip install accelerate`")
181
+
182
+ device = torch.device(f"cuda:{gpu_id}")
183
+
184
+ models = [
185
+ self.text_encoder,
186
+ self.unet,
187
+ ]
188
+ for cpu_offloaded_model in models:
189
+ if cpu_offloaded_model is not None:
190
+ cpu_offload(cpu_offloaded_model, device)
191
+
192
+ if self.safety_checker is not None:
193
+ cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
194
+
195
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.enable_model_cpu_offload
196
+ def enable_model_cpu_offload(self, gpu_id=0):
197
+ r"""
198
+ Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
199
+ to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
200
+ method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
201
+ `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
202
+ """
203
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
204
+ from accelerate import cpu_offload_with_hook
205
+ else:
206
+ raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
207
+
208
+ device = torch.device(f"cuda:{gpu_id}")
209
+
210
+ if self.device.type != "cpu":
211
+ self.to("cpu", silence_dtype_warnings=True)
212
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
213
+
214
+ hook = None
215
+
216
+ if self.text_encoder is not None:
217
+ _, hook = cpu_offload_with_hook(self.text_encoder, device, prev_module_hook=hook)
218
+
219
+ # Accelerate will move the next model to the device _before_ calling the offload hook of the
220
+ # previous model. This will cause both models to be present on the device at the same time.
221
+ # IF uses T5 for its text encoder which is really large. We can manually call the offload
222
+ # hook for the text encoder to ensure it's moved to the cpu before the unet is moved to
223
+ # the GPU.
224
+ self.text_encoder_offload_hook = hook
225
+
226
+ _, hook = cpu_offload_with_hook(self.unet, device, prev_module_hook=hook)
227
+
228
+ # if the safety checker isn't called, `unet_offload_hook` will have to be called to manually offload the unet
229
+ self.unet_offload_hook = hook
230
+
231
+ if self.safety_checker is not None:
232
+ _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
233
+
234
+ # We'll offload the last model manually.
235
+ self.final_offload_hook = hook
236
+
237
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.remove_all_hooks
238
+ def remove_all_hooks(self):
239
+ if is_accelerate_available():
240
+ from accelerate.hooks import remove_hook_from_module
241
+ else:
242
+ raise ImportError("Please install accelerate via `pip install accelerate`")
243
+
244
+ for model in [self.text_encoder, self.unet, self.safety_checker]:
245
+ if model is not None:
246
+ remove_hook_from_module(model, recurse=True)
247
+
248
+ self.unet_offload_hook = None
249
+ self.text_encoder_offload_hook = None
250
+ self.final_offload_hook = None
251
+
252
+ @property
253
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
254
+ def _execution_device(self):
255
+ r"""
256
+ Returns the device on which the pipeline's models will be executed. After calling
257
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
258
+ hooks.
259
+ """
260
+ if not hasattr(self.unet, "_hf_hook"):
261
+ return self.device
262
+ for module in self.unet.modules():
263
+ if (
264
+ hasattr(module, "_hf_hook")
265
+ and hasattr(module._hf_hook, "execution_device")
266
+ and module._hf_hook.execution_device is not None
267
+ ):
268
+ return torch.device(module._hf_hook.execution_device)
269
+ return self.device
270
+
271
+ @torch.no_grad()
272
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.encode_prompt
273
+ def encode_prompt(
274
+ self,
275
+ prompt,
276
+ do_classifier_free_guidance=True,
277
+ num_images_per_prompt=1,
278
+ device=None,
279
+ negative_prompt=None,
280
+ prompt_embeds: Optional[torch.FloatTensor] = None,
281
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
282
+ clean_caption: bool = False,
283
+ ):
284
+ r"""
285
+ Encodes the prompt into text encoder hidden states.
286
+
287
+ Args:
288
+ prompt (`str` or `List[str]`, *optional*):
289
+ prompt to be encoded
290
+ device: (`torch.device`, *optional*):
291
+ torch device to place the resulting embeddings on
292
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
293
+ number of images that should be generated per prompt
294
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
295
+ whether to use classifier free guidance or not
296
+ negative_prompt (`str` or `List[str]`, *optional*):
297
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
298
+ `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
299
+ Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
300
+ prompt_embeds (`torch.FloatTensor`, *optional*):
301
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
302
+ provided, text embeddings will be generated from `prompt` input argument.
303
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
304
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
305
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
306
+ argument.
307
+ """
308
+ if prompt is not None and negative_prompt is not None:
309
+ if type(prompt) is not type(negative_prompt):
310
+ raise TypeError(
311
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
312
+ f" {type(prompt)}."
313
+ )
314
+
315
+ if device is None:
316
+ device = self._execution_device
317
+
318
+ if prompt is not None and isinstance(prompt, str):
319
+ batch_size = 1
320
+ elif prompt is not None and isinstance(prompt, list):
321
+ batch_size = len(prompt)
322
+ else:
323
+ batch_size = prompt_embeds.shape[0]
324
+
325
+ # while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF
326
+ max_length = 77
327
+
328
+ if prompt_embeds is None:
329
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
330
+ text_inputs = self.tokenizer(
331
+ prompt,
332
+ padding="max_length",
333
+ max_length=max_length,
334
+ truncation=True,
335
+ add_special_tokens=True,
336
+ return_tensors="pt",
337
+ )
338
+ text_input_ids = text_inputs.input_ids
339
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
340
+
341
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
342
+ text_input_ids, untruncated_ids
343
+ ):
344
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
345
+ logger.warning(
346
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
347
+ f" {max_length} tokens: {removed_text}"
348
+ )
349
+
350
+ attention_mask = text_inputs.attention_mask.to(device)
351
+
352
+ prompt_embeds = self.text_encoder(
353
+ text_input_ids.to(device),
354
+ attention_mask=attention_mask,
355
+ )
356
+ prompt_embeds = prompt_embeds[0]
357
+
358
+ if self.text_encoder is not None:
359
+ dtype = self.text_encoder.dtype
360
+ elif self.unet is not None:
361
+ dtype = self.unet.dtype
362
+ else:
363
+ dtype = None
364
+
365
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
366
+
367
+ bs_embed, seq_len, _ = prompt_embeds.shape
368
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
369
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
370
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
371
+
372
+ # get unconditional embeddings for classifier free guidance
373
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
374
+ uncond_tokens: List[str]
375
+ if negative_prompt is None:
376
+ uncond_tokens = [""] * batch_size
377
+ elif isinstance(negative_prompt, str):
378
+ uncond_tokens = [negative_prompt]
379
+ elif batch_size != len(negative_prompt):
380
+ raise ValueError(
381
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
382
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
383
+ " the batch size of `prompt`."
384
+ )
385
+ else:
386
+ uncond_tokens = negative_prompt
387
+
388
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
389
+ max_length = prompt_embeds.shape[1]
390
+ uncond_input = self.tokenizer(
391
+ uncond_tokens,
392
+ padding="max_length",
393
+ max_length=max_length,
394
+ truncation=True,
395
+ return_attention_mask=True,
396
+ add_special_tokens=True,
397
+ return_tensors="pt",
398
+ )
399
+ attention_mask = uncond_input.attention_mask.to(device)
400
+
401
+ negative_prompt_embeds = self.text_encoder(
402
+ uncond_input.input_ids.to(device),
403
+ attention_mask=attention_mask,
404
+ )
405
+ negative_prompt_embeds = negative_prompt_embeds[0]
406
+
407
+ if do_classifier_free_guidance:
408
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
409
+ seq_len = negative_prompt_embeds.shape[1]
410
+
411
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
412
+
413
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
414
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
415
+
416
+ # For classifier free guidance, we need to do two forward passes.
417
+ # Here we concatenate the unconditional and text embeddings into a single batch
418
+ # to avoid doing two forward passes
419
+ else:
420
+ negative_prompt_embeds = None
421
+
422
+ return prompt_embeds, negative_prompt_embeds
423
+
424
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.run_safety_checker
425
+ def run_safety_checker(self, image, device, dtype):
426
+ if self.safety_checker is not None:
427
+ safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
428
+ image, nsfw_detected, watermark_detected = self.safety_checker(
429
+ images=image,
430
+ clip_input=safety_checker_input.pixel_values.to(dtype=dtype),
431
+ )
432
+ else:
433
+ nsfw_detected = None
434
+ watermark_detected = None
435
+
436
+ if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
437
+ self.unet_offload_hook.offload()
438
+
439
+ return image, nsfw_detected, watermark_detected
440
+
441
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline.prepare_extra_step_kwargs
442
+ def prepare_extra_step_kwargs(self, generator, eta):
443
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
444
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
445
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
446
+ # and should be between [0, 1]
447
+
448
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
449
+ extra_step_kwargs = {}
450
+ if accepts_eta:
451
+ extra_step_kwargs["eta"] = eta
452
+
453
+ # check if the scheduler accepts generator
454
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
455
+ if accepts_generator:
456
+ extra_step_kwargs["generator"] = generator
457
+ return extra_step_kwargs
458
+
459
+ def check_inputs(
460
+ self,
461
+ prompt,
462
+ image,
463
+ batch_size,
464
+ callback_steps,
465
+ negative_prompt=None,
466
+ prompt_embeds=None,
467
+ negative_prompt_embeds=None,
468
+ ):
469
+ if (callback_steps is None) or (
470
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
471
+ ):
472
+ raise ValueError(
473
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
474
+ f" {type(callback_steps)}."
475
+ )
476
+
477
+ if prompt is not None and prompt_embeds is not None:
478
+ raise ValueError(
479
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
480
+ " only forward one of the two."
481
+ )
482
+ elif prompt is None and prompt_embeds is None:
483
+ raise ValueError(
484
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
485
+ )
486
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
487
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
488
+
489
+ if negative_prompt is not None and negative_prompt_embeds is not None:
490
+ raise ValueError(
491
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
492
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
493
+ )
494
+
495
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
496
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
497
+ raise ValueError(
498
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
499
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
500
+ f" {negative_prompt_embeds.shape}."
501
+ )
502
+
503
+ if isinstance(image, list):
504
+ check_image_type = image[0]
505
+ else:
506
+ check_image_type = image
507
+
508
+ if (
509
+ not isinstance(check_image_type, torch.Tensor)
510
+ and not isinstance(check_image_type, PIL.Image.Image)
511
+ and not isinstance(check_image_type, np.ndarray)
512
+ ):
513
+ raise ValueError(
514
+ "`image` has to be of type `torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, or List[...] but is"
515
+ f" {type(check_image_type)}"
516
+ )
517
+
518
+ if isinstance(image, list):
519
+ image_batch_size = len(image)
520
+ elif isinstance(image, torch.Tensor):
521
+ image_batch_size = image.shape[0]
522
+ elif isinstance(image, PIL.Image.Image):
523
+ image_batch_size = 1
524
+ elif isinstance(image, np.ndarray):
525
+ image_batch_size = image.shape[0]
526
+ else:
527
+ assert False
528
+
529
+ if batch_size != image_batch_size:
530
+ raise ValueError(f"image batch size: {image_batch_size} must be same as prompt batch size {batch_size}")
531
+
532
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
533
+ def _text_preprocessing(self, text, clean_caption=False):
534
+ if clean_caption and not is_bs4_available():
535
+ logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
536
+ logger.warn("Setting `clean_caption` to False...")
537
+ clean_caption = False
538
+
539
+ if clean_caption and not is_ftfy_available():
540
+ logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
541
+ logger.warn("Setting `clean_caption` to False...")
542
+ clean_caption = False
543
+
544
+ if not isinstance(text, (tuple, list)):
545
+ text = [text]
546
+
547
+ def process(text: str):
548
+ if clean_caption:
549
+ text = self._clean_caption(text)
550
+ text = self._clean_caption(text)
551
+ else:
552
+ text = text.lower().strip()
553
+ return text
554
+
555
+ return [process(t) for t in text]
556
+
557
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
558
+ def _clean_caption(self, caption):
559
+ caption = str(caption)
560
+ caption = ul.unquote_plus(caption)
561
+ caption = caption.strip().lower()
562
+ caption = re.sub("<person>", "person", caption)
563
+ # urls:
564
+ caption = re.sub(
565
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
566
+ "",
567
+ caption,
568
+ ) # regex for urls
569
+ caption = re.sub(
570
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
571
+ "",
572
+ caption,
573
+ ) # regex for urls
574
+ # html:
575
+ caption = BeautifulSoup(caption, features="html.parser").text
576
+
577
+ # @<nickname>
578
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
579
+
580
+ # 31C0—31EF CJK Strokes
581
+ # 31F0—31FF Katakana Phonetic Extensions
582
+ # 3200—32FF Enclosed CJK Letters and Months
583
+ # 3300—33FF CJK Compatibility
584
+ # 3400—4DBF CJK Unified Ideographs Extension A
585
+ # 4DC0—4DFF Yijing Hexagram Symbols
586
+ # 4E00—9FFF CJK Unified Ideographs
587
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
588
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
589
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
590
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
591
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
592
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
593
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
594
+ #######################################################
595
+
596
+ # все виды тире / all types of dash --> "-"
597
+ caption = re.sub(
598
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
599
+ "-",
600
+ caption,
601
+ )
602
+
603
+ # кавычки к одному стандарту
604
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
605
+ caption = re.sub(r"[‘’]", "'", caption)
606
+
607
+ # &quot;
608
+ caption = re.sub(r"&quot;?", "", caption)
609
+ # &amp
610
+ caption = re.sub(r"&amp", "", caption)
611
+
612
+ # ip adresses:
613
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
614
+
615
+ # article ids:
616
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
617
+
618
+ # \n
619
+ caption = re.sub(r"\\n", " ", caption)
620
+
621
+ # "#123"
622
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
623
+ # "#12345.."
624
+ caption = re.sub(r"#\d{5,}\b", "", caption)
625
+ # "123456.."
626
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
627
+ # filenames:
628
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
629
+
630
+ #
631
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
632
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
633
+
634
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
635
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
636
+
637
+ # this-is-my-cute-cat / this_is_my_cute_cat
638
+ regex2 = re.compile(r"(?:\-|\_)")
639
+ if len(re.findall(regex2, caption)) > 3:
640
+ caption = re.sub(regex2, " ", caption)
641
+
642
+ caption = ftfy.fix_text(caption)
643
+ caption = html.unescape(html.unescape(caption))
644
+
645
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
646
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
647
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
648
+
649
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
650
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
651
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
652
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
653
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
654
+
655
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
656
+
657
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
658
+
659
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
660
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
661
+ caption = re.sub(r"\s+", " ", caption)
662
+
663
+ caption.strip()
664
+
665
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
666
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
667
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
668
+ caption = re.sub(r"^\.\S+$", "", caption)
669
+
670
+ return caption.strip()
671
+
672
+ def preprocess_image(self, image: PIL.Image.Image) -> torch.Tensor:
673
+ if not isinstance(image, list):
674
+ image = [image]
675
+
676
+ def numpy_to_pt(images):
677
+ if images.ndim == 3:
678
+ images = images[..., None]
679
+
680
+ images = torch.from_numpy(images.transpose(0, 3, 1, 2))
681
+ return images
682
+
683
+ if isinstance(image[0], PIL.Image.Image):
684
+ new_image = []
685
+
686
+ for image_ in image:
687
+ image_ = image_.convert("RGB")
688
+ image_ = resize(image_, self.unet.sample_size)
689
+ image_ = np.array(image_)
690
+ image_ = image_.astype(np.float32)
691
+ image_ = image_ / 127.5 - 1
692
+ new_image.append(image_)
693
+
694
+ image = new_image
695
+
696
+ image = np.stack(image, axis=0) # to np
697
+ image = numpy_to_pt(image) # to pt
698
+
699
+ elif isinstance(image[0], np.ndarray):
700
+ image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
701
+ image = numpy_to_pt(image)
702
+
703
+ elif isinstance(image[0], torch.Tensor):
704
+ image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
705
+
706
+ return image
707
+
708
+ def get_timesteps(self, num_inference_steps, strength):
709
+ # get the original timestep using init_timestep
710
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
711
+
712
+ t_start = max(num_inference_steps - init_timestep, 0)
713
+ timesteps = self.scheduler.timesteps[t_start:]
714
+
715
+ return timesteps, num_inference_steps - t_start
716
+
717
+ def prepare_intermediate_images(
718
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None
719
+ ):
720
+ _, channels, height, width = image.shape
721
+
722
+ batch_size = batch_size * num_images_per_prompt
723
+
724
+ shape = (batch_size, channels, height, width)
725
+
726
+ if isinstance(generator, list) and len(generator) != batch_size:
727
+ raise ValueError(
728
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
729
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
730
+ )
731
+
732
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
733
+
734
+ image = image.repeat_interleave(num_images_per_prompt, dim=0)
735
+ image = self.scheduler.add_noise(image, noise, timestep)
736
+
737
+ return image
738
+
739
+ @torch.no_grad()
740
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
741
+ def __call__(
742
+ self,
743
+ prompt: Union[str, List[str]] = None,
744
+ image: Union[
745
+ PIL.Image.Image, torch.Tensor, np.ndarray, List[PIL.Image.Image], List[torch.Tensor], List[np.ndarray]
746
+ ] = None,
747
+ strength: float = 0.7,
748
+ num_inference_steps: int = 80,
749
+ timesteps: List[int] = None,
750
+ guidance_scale: float = 10.0,
751
+ negative_prompt: Optional[Union[str, List[str]]] = None,
752
+ num_images_per_prompt: Optional[int] = 1,
753
+ eta: float = 0.0,
754
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
755
+ prompt_embeds: Optional[torch.FloatTensor] = None,
756
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
757
+ output_type: Optional[str] = "pil",
758
+ return_dict: bool = True,
759
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
760
+ callback_steps: int = 1,
761
+ clean_caption: bool = True,
762
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
763
+ ):
764
+ """
765
+ Function invoked when calling the pipeline for generation.
766
+
767
+ Args:
768
+ prompt (`str` or `List[str]`, *optional*):
769
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
770
+ instead.
771
+ image (`torch.FloatTensor` or `PIL.Image.Image`):
772
+ `Image`, or tensor representing an image batch, that will be used as the starting point for the
773
+ process.
774
+ strength (`float`, *optional*, defaults to 0.8):
775
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
776
+ will be used as a starting point, adding more noise to it the larger the `strength`. The number of
777
+ denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
778
+ be maximum and the denoising process will run for the full number of iterations specified in
779
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
780
+ num_inference_steps (`int`, *optional*, defaults to 50):
781
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
782
+ expense of slower inference.
783
+ timesteps (`List[int]`, *optional*):
784
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
785
+ timesteps are used. Must be in descending order.
786
+ guidance_scale (`float`, *optional*, defaults to 7.5):
787
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
788
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
789
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
790
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
791
+ usually at the expense of lower image quality.
792
+ negative_prompt (`str` or `List[str]`, *optional*):
793
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
794
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
795
+ less than `1`).
796
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
797
+ The number of images to generate per prompt.
798
+ eta (`float`, *optional*, defaults to 0.0):
799
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
800
+ [`schedulers.DDIMScheduler`], will be ignored for others.
801
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
802
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
803
+ to make generation deterministic.
804
+ prompt_embeds (`torch.FloatTensor`, *optional*):
805
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
806
+ provided, text embeddings will be generated from `prompt` input argument.
807
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
808
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
809
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
810
+ argument.
811
+ output_type (`str`, *optional*, defaults to `"pil"`):
812
+ The output format of the generate image. Choose between
813
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
814
+ return_dict (`bool`, *optional*, defaults to `True`):
815
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
816
+ callback (`Callable`, *optional*):
817
+ A function that will be called every `callback_steps` steps during inference. The function will be
818
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
819
+ callback_steps (`int`, *optional*, defaults to 1):
820
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
821
+ called at every step.
822
+ clean_caption (`bool`, *optional*, defaults to `True`):
823
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
824
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
825
+ prompt.
826
+ cross_attention_kwargs (`dict`, *optional*):
827
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
828
+ `self.processor` in
829
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
830
+
831
+ Examples:
832
+
833
+ Returns:
834
+ [`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`:
835
+ [`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
836
+ returning a tuple, the first element is a list with the generated images, and the second element is a list
837
+ of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
838
+ or watermarked content, according to the `safety_checker`.
839
+ """
840
+ # 1. Check inputs. Raise error if not correct
841
+ if prompt is not None and isinstance(prompt, str):
842
+ batch_size = 1
843
+ elif prompt is not None and isinstance(prompt, list):
844
+ batch_size = len(prompt)
845
+ else:
846
+ batch_size = prompt_embeds.shape[0]
847
+
848
+ self.check_inputs(
849
+ prompt, image, batch_size, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
850
+ )
851
+
852
+ # 2. Define call parameters
853
+ device = self._execution_device
854
+
855
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
856
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
857
+ # corresponds to doing no classifier free guidance.
858
+ do_classifier_free_guidance = guidance_scale > 1.0
859
+
860
+ # 3. Encode input prompt
861
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
862
+ prompt,
863
+ do_classifier_free_guidance,
864
+ num_images_per_prompt=num_images_per_prompt,
865
+ device=device,
866
+ negative_prompt=negative_prompt,
867
+ prompt_embeds=prompt_embeds,
868
+ negative_prompt_embeds=negative_prompt_embeds,
869
+ clean_caption=clean_caption,
870
+ )
871
+
872
+ if do_classifier_free_guidance:
873
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
874
+
875
+ dtype = prompt_embeds.dtype
876
+
877
+ # 4. Prepare timesteps
878
+ if timesteps is not None:
879
+ self.scheduler.set_timesteps(timesteps=timesteps, device=device)
880
+ timesteps = self.scheduler.timesteps
881
+ num_inference_steps = len(timesteps)
882
+ else:
883
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
884
+ timesteps = self.scheduler.timesteps
885
+
886
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
887
+
888
+ # 5. Prepare intermediate images
889
+ image = self.preprocess_image(image)
890
+ image = image.to(device=device, dtype=dtype)
891
+
892
+ noise_timestep = timesteps[0:1]
893
+ noise_timestep = noise_timestep.repeat(batch_size * num_images_per_prompt)
894
+
895
+ intermediate_images = self.prepare_intermediate_images(
896
+ image, noise_timestep, batch_size, num_images_per_prompt, dtype, device, generator
897
+ )
898
+
899
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
900
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
901
+
902
+ # HACK: see comment in `enable_model_cpu_offload`
903
+ if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
904
+ self.text_encoder_offload_hook.offload()
905
+
906
+ # 7. Denoising loop
907
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
908
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
909
+ for i, t in enumerate(timesteps):
910
+ model_input = (
911
+ torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images
912
+ )
913
+ model_input = self.scheduler.scale_model_input(model_input, t)
914
+
915
+ # predict the noise residual
916
+ noise_pred = self.unet(
917
+ model_input,
918
+ t,
919
+ encoder_hidden_states=prompt_embeds,
920
+ cross_attention_kwargs=cross_attention_kwargs,
921
+ ).sample
922
+
923
+ # perform guidance
924
+ if do_classifier_free_guidance:
925
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
926
+ noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1], dim=1)
927
+ noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1], dim=1)
928
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
929
+ noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
930
+
931
+ # compute the previous noisy sample x_t -> x_t-1
932
+ intermediate_images = self.scheduler.step(
933
+ noise_pred, t, intermediate_images, **extra_step_kwargs
934
+ ).prev_sample
935
+
936
+ # call the callback, if provided
937
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
938
+ progress_bar.update()
939
+ if callback is not None and i % callback_steps == 0:
940
+ callback(i, t, intermediate_images)
941
+
942
+ image = intermediate_images
943
+
944
+ if output_type == "pil":
945
+ # 8. Post-processing
946
+ image = (image / 2 + 0.5).clamp(0, 1)
947
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
948
+
949
+ # 9. Run safety checker
950
+ image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
951
+
952
+ # 10. Convert to PIL
953
+ image = self.numpy_to_pil(image)
954
+
955
+ # 11. Apply watermark
956
+ if self.watermarker is not None:
957
+ self.watermarker.apply_watermark(image, self.unet.config.sample_size)
958
+ elif output_type == "pt":
959
+ nsfw_detected = None
960
+ watermark_detected = None
961
+
962
+ if hasattr(self, "unet_offload_hook") and self.unet_offload_hook is not None:
963
+ self.unet_offload_hook.offload()
964
+ else:
965
+ # 8. Post-processing
966
+ image = (image / 2 + 0.5).clamp(0, 1)
967
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
968
+
969
+ # 9. Run safety checker
970
+ image, nsfw_detected, watermark_detected = self.run_safety_checker(image, device, prompt_embeds.dtype)
971
+
972
+ # Offload last model to CPU
973
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
974
+ self.final_offload_hook.offload()
975
+
976
+ if not return_dict:
977
+ return (image, nsfw_detected, watermark_detected)
978
+
979
+ return IFPipelineOutput(images=image, nsfw_detected=nsfw_detected, watermark_detected=watermark_detected)