dgenerate-ultralytics-headless 8.3.237__py3-none-any.whl → 8.3.240__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/METADATA +2 -1
- {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/RECORD +105 -106
- tests/test_exports.py +3 -1
- tests/test_python.py +2 -2
- tests/test_solutions.py +6 -6
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +4 -4
- ultralytics/cfg/datasets/Argoverse.yaml +7 -6
- ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
- ultralytics/cfg/datasets/VOC.yaml +15 -16
- ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
- ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
- ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/dota8.yaml +2 -2
- ultralytics/cfg/datasets/kitti.yaml +1 -1
- ultralytics/cfg/datasets/xView.yaml +16 -16
- ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
- ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
- ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
- ultralytics/data/augment.py +1 -1
- ultralytics/data/base.py +4 -2
- ultralytics/data/build.py +4 -4
- ultralytics/data/loaders.py +17 -12
- ultralytics/data/utils.py +4 -4
- ultralytics/engine/exporter.py +24 -16
- ultralytics/engine/predictor.py +5 -4
- ultralytics/engine/results.py +12 -13
- ultralytics/engine/trainer.py +2 -2
- ultralytics/engine/tuner.py +2 -3
- ultralytics/engine/validator.py +2 -2
- ultralytics/models/fastsam/model.py +2 -2
- ultralytics/models/fastsam/predict.py +2 -3
- ultralytics/models/fastsam/val.py +4 -4
- ultralytics/models/rtdetr/predict.py +2 -3
- ultralytics/models/rtdetr/val.py +5 -4
- ultralytics/models/sam/build.py +5 -5
- ultralytics/models/sam/build_sam3.py +9 -6
- ultralytics/models/sam/model.py +1 -1
- ultralytics/models/sam/modules/sam.py +10 -5
- ultralytics/models/sam/modules/utils.py +8 -3
- ultralytics/models/sam/predict.py +53 -62
- ultralytics/models/sam/sam3/encoder.py +4 -4
- ultralytics/models/sam/sam3/geometry_encoders.py +3 -3
- ultralytics/models/sam/sam3/necks.py +17 -17
- ultralytics/models/sam/sam3/sam3_image.py +3 -21
- ultralytics/models/sam/sam3/vl_combiner.py +1 -6
- ultralytics/models/yolo/classify/val.py +1 -1
- ultralytics/models/yolo/detect/train.py +1 -1
- ultralytics/models/yolo/detect/val.py +7 -7
- ultralytics/models/yolo/obb/val.py +1 -1
- ultralytics/models/yolo/pose/val.py +1 -1
- ultralytics/models/yolo/segment/val.py +1 -1
- ultralytics/nn/autobackend.py +9 -9
- ultralytics/nn/modules/block.py +1 -1
- ultralytics/nn/tasks.py +3 -3
- ultralytics/nn/text_model.py +2 -7
- ultralytics/solutions/ai_gym.py +1 -1
- ultralytics/solutions/analytics.py +6 -6
- ultralytics/solutions/config.py +1 -1
- ultralytics/solutions/distance_calculation.py +1 -1
- ultralytics/solutions/object_counter.py +1 -1
- ultralytics/solutions/object_cropper.py +3 -6
- ultralytics/solutions/parking_management.py +21 -17
- ultralytics/solutions/queue_management.py +5 -5
- ultralytics/solutions/region_counter.py +2 -2
- ultralytics/solutions/security_alarm.py +1 -1
- ultralytics/solutions/solutions.py +45 -22
- ultralytics/solutions/speed_estimation.py +1 -1
- ultralytics/trackers/basetrack.py +1 -1
- ultralytics/trackers/bot_sort.py +4 -3
- ultralytics/trackers/byte_tracker.py +4 -4
- ultralytics/trackers/utils/gmc.py +6 -7
- ultralytics/trackers/utils/kalman_filter.py +2 -1
- ultralytics/trackers/utils/matching.py +4 -3
- ultralytics/utils/__init__.py +12 -3
- ultralytics/utils/benchmarks.py +2 -2
- ultralytics/utils/callbacks/tensorboard.py +19 -25
- ultralytics/utils/checks.py +2 -1
- ultralytics/utils/downloads.py +1 -1
- ultralytics/utils/export/tensorflow.py +16 -2
- ultralytics/utils/files.py +13 -12
- ultralytics/utils/logger.py +62 -27
- ultralytics/utils/metrics.py +1 -1
- ultralytics/utils/ops.py +6 -6
- ultralytics/utils/patches.py +3 -3
- ultralytics/utils/plotting.py +18 -23
- ultralytics/utils/tuner.py +1 -1
- ultralytics/models/sam/sam3/tokenizer_ve.py +0 -242
- {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/top_level.txt +0 -0
|
@@ -1,242 +0,0 @@
|
|
|
1
|
-
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
-
|
|
3
|
-
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
|
|
4
|
-
|
|
5
|
-
"""
|
|
6
|
-
Text Tokenizer.
|
|
7
|
-
|
|
8
|
-
Copied and lightly adapted from VE repo, which in turn copied
|
|
9
|
-
from open_clip and openAI CLIP.
|
|
10
|
-
"""
|
|
11
|
-
|
|
12
|
-
from __future__ import annotations
|
|
13
|
-
|
|
14
|
-
import gzip
|
|
15
|
-
import html
|
|
16
|
-
import io
|
|
17
|
-
import os
|
|
18
|
-
import string
|
|
19
|
-
from functools import lru_cache
|
|
20
|
-
|
|
21
|
-
import ftfy
|
|
22
|
-
import regex as re
|
|
23
|
-
import torch
|
|
24
|
-
from iopath.common.file_io import g_pathmgr
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
@lru_cache
|
|
28
|
-
def bytes_to_unicode():
|
|
29
|
-
"""Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode
|
|
30
|
-
strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When
|
|
31
|
-
you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a
|
|
32
|
-
significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8
|
|
33
|
-
bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
34
|
-
"""
|
|
35
|
-
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
|
36
|
-
cs = bs[:]
|
|
37
|
-
n = 0
|
|
38
|
-
for b in range(2**8):
|
|
39
|
-
if b not in bs:
|
|
40
|
-
bs.append(b)
|
|
41
|
-
cs.append(2**8 + n)
|
|
42
|
-
n += 1
|
|
43
|
-
cs = [chr(n) for n in cs]
|
|
44
|
-
return dict(zip(bs, cs))
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
def get_pairs(word):
|
|
48
|
-
"""Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length
|
|
49
|
-
strings).
|
|
50
|
-
"""
|
|
51
|
-
pairs = set()
|
|
52
|
-
prev_char = word[0]
|
|
53
|
-
for char in word[1:]:
|
|
54
|
-
pairs.add((prev_char, char))
|
|
55
|
-
prev_char = char
|
|
56
|
-
return pairs
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
def basic_clean(text):
|
|
60
|
-
"""Basic text cleaning: fix unicode and unescape HTML entities."""
|
|
61
|
-
text = ftfy.fix_text(text)
|
|
62
|
-
text = html.unescape(html.unescape(text))
|
|
63
|
-
return text.strip()
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
def whitespace_clean(text):
|
|
67
|
-
"""Remove redundant whitespace."""
|
|
68
|
-
text = re.sub(r"\s+", " ", text)
|
|
69
|
-
text = text.strip()
|
|
70
|
-
return text
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
def _clean_canonicalize(x):
|
|
74
|
-
"""Clean text and canonicalize it."""
|
|
75
|
-
# basic, remove whitespace, remove punctuation, lower case
|
|
76
|
-
return canonicalize_text(basic_clean(x))
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
def _clean_lower(x):
|
|
80
|
-
"""Clean text and return lowercase."""
|
|
81
|
-
# basic, remove whitespace, lower case
|
|
82
|
-
return whitespace_clean(basic_clean(x)).lower()
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
def _clean_whitespace(x):
|
|
86
|
-
"""Clean text and remove redundant whitespace."""
|
|
87
|
-
# basic, remove whitespace
|
|
88
|
-
return whitespace_clean(basic_clean(x))
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
def get_clean_fn(type: str):
|
|
92
|
-
"""Get text cleaning function by name."""
|
|
93
|
-
if type == "canonicalize":
|
|
94
|
-
return _clean_canonicalize
|
|
95
|
-
elif type == "lower":
|
|
96
|
-
return _clean_lower
|
|
97
|
-
elif type == "whitespace":
|
|
98
|
-
return _clean_whitespace
|
|
99
|
-
else:
|
|
100
|
-
assert False, f"Invalid clean function ({type})."
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
def canonicalize_text(text, *, keep_punctuation_exact_string=None):
|
|
104
|
-
"""Returns canonicalized `text` (lowercase and punctuation removed). From:
|
|
105
|
-
https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94.
|
|
106
|
-
|
|
107
|
-
Args:
|
|
108
|
-
text: string to be canonicalized.
|
|
109
|
-
keep_punctuation_exact_string: If provided, then this exact string kept. For example providing '{}' will keep
|
|
110
|
-
any occurrences of '{}' (but will still remove '{' and '}' that appear separately).
|
|
111
|
-
"""
|
|
112
|
-
text = text.replace("_", " ")
|
|
113
|
-
if keep_punctuation_exact_string:
|
|
114
|
-
text = keep_punctuation_exact_string.join(
|
|
115
|
-
part.translate(str.maketrans("", "", string.punctuation))
|
|
116
|
-
for part in text.split(keep_punctuation_exact_string)
|
|
117
|
-
)
|
|
118
|
-
else:
|
|
119
|
-
text = text.translate(str.maketrans("", "", string.punctuation))
|
|
120
|
-
text = text.lower()
|
|
121
|
-
text = re.sub(r"\s+", " ", text)
|
|
122
|
-
return text.strip()
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
class SimpleTokenizer:
|
|
126
|
-
"""A simple tokenizer for text inputs."""
|
|
127
|
-
|
|
128
|
-
def __init__(
|
|
129
|
-
self,
|
|
130
|
-
bpe_path: str | os.PathLike,
|
|
131
|
-
additional_special_tokens: list[str] | None = None,
|
|
132
|
-
context_length: int = 77,
|
|
133
|
-
clean: str = "lower",
|
|
134
|
-
):
|
|
135
|
-
"""The tokenizer for text inputs."""
|
|
136
|
-
self.byte_encoder = bytes_to_unicode()
|
|
137
|
-
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
|
138
|
-
with g_pathmgr.open(bpe_path, "rb") as fh:
|
|
139
|
-
bpe_bytes = io.BytesIO(fh.read())
|
|
140
|
-
merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n")
|
|
141
|
-
# merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
|
|
142
|
-
merges = merges[1 : 49152 - 256 - 2 + 1]
|
|
143
|
-
merges = [tuple(merge.split()) for merge in merges]
|
|
144
|
-
vocab = list(bytes_to_unicode().values())
|
|
145
|
-
vocab = vocab + [v + "</w>" for v in vocab]
|
|
146
|
-
for merge in merges:
|
|
147
|
-
vocab.append("".join(merge))
|
|
148
|
-
special_tokens = ["<start_of_text>", "<end_of_text>"]
|
|
149
|
-
if additional_special_tokens:
|
|
150
|
-
special_tokens += additional_special_tokens
|
|
151
|
-
vocab.extend(special_tokens)
|
|
152
|
-
self.encoder = dict(zip(vocab, range(len(vocab))))
|
|
153
|
-
self.decoder = {v: k for k, v in self.encoder.items()}
|
|
154
|
-
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|
155
|
-
self.cache = {t: t for t in special_tokens}
|
|
156
|
-
special = "|".join(special_tokens)
|
|
157
|
-
self.pat = re.compile(
|
|
158
|
-
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
|
159
|
-
re.IGNORECASE,
|
|
160
|
-
)
|
|
161
|
-
self.vocab_size = len(self.encoder)
|
|
162
|
-
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
|
163
|
-
self.sot_token_id = self.all_special_ids[0]
|
|
164
|
-
self.eot_token_id = self.all_special_ids[1]
|
|
165
|
-
self.context_length = context_length
|
|
166
|
-
self.clean_fn = get_clean_fn(clean)
|
|
167
|
-
|
|
168
|
-
def bpe(self, token):
|
|
169
|
-
"""Byte Pair Encoding."""
|
|
170
|
-
if token in self.cache:
|
|
171
|
-
return self.cache[token]
|
|
172
|
-
word = (*tuple(token[:-1]), token[-1] + "</w>")
|
|
173
|
-
pairs = get_pairs(word)
|
|
174
|
-
if not pairs:
|
|
175
|
-
return token + "</w>"
|
|
176
|
-
while True:
|
|
177
|
-
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
|
178
|
-
if bigram not in self.bpe_ranks:
|
|
179
|
-
break
|
|
180
|
-
first, second = bigram
|
|
181
|
-
new_word = []
|
|
182
|
-
i = 0
|
|
183
|
-
while i < len(word):
|
|
184
|
-
try:
|
|
185
|
-
j = word.index(first, i)
|
|
186
|
-
new_word.extend(word[i:j])
|
|
187
|
-
i = j
|
|
188
|
-
except Exception:
|
|
189
|
-
new_word.extend(word[i:])
|
|
190
|
-
break
|
|
191
|
-
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|
192
|
-
new_word.append(first + second)
|
|
193
|
-
i += 2
|
|
194
|
-
else:
|
|
195
|
-
new_word.append(word[i])
|
|
196
|
-
i += 1
|
|
197
|
-
new_word = tuple(new_word)
|
|
198
|
-
word = new_word
|
|
199
|
-
if len(word) == 1:
|
|
200
|
-
break
|
|
201
|
-
else:
|
|
202
|
-
pairs = get_pairs(word)
|
|
203
|
-
word = " ".join(word)
|
|
204
|
-
self.cache[token] = word
|
|
205
|
-
return word
|
|
206
|
-
|
|
207
|
-
def encode(self, text):
|
|
208
|
-
"""Encode text to a sequence of BPE tokens."""
|
|
209
|
-
bpe_tokens = []
|
|
210
|
-
text = self.clean_fn(text)
|
|
211
|
-
for token in re.findall(self.pat, text):
|
|
212
|
-
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
|
213
|
-
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" "))
|
|
214
|
-
return bpe_tokens
|
|
215
|
-
|
|
216
|
-
def decode(self, tokens):
|
|
217
|
-
"""Decodes a sequence of tokens back into a text string."""
|
|
218
|
-
text = "".join([self.decoder[token] for token in tokens])
|
|
219
|
-
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors="replace").replace("</w>", " ")
|
|
220
|
-
return text
|
|
221
|
-
|
|
222
|
-
def __call__(self, texts: str | list[str], context_length: int | None = None) -> torch.LongTensor:
|
|
223
|
-
"""Returns the tokenized representation of given input string(s) Parameters. ---------- texts : Union[str,
|
|
224
|
-
list[str]] An input string or a list of input strings to tokenize context_length : int The context
|
|
225
|
-
length to use; all CLIP models use 77 as the context length.
|
|
226
|
-
|
|
227
|
-
Returns:
|
|
228
|
-
-------: A two-dimensional tensor containing the resulting tokens, shape = [number of input strings,
|
|
229
|
-
context_length]
|
|
230
|
-
"""
|
|
231
|
-
if isinstance(texts, str):
|
|
232
|
-
texts = [texts]
|
|
233
|
-
context_length = context_length or self.context_length
|
|
234
|
-
assert context_length, "Please set a valid context length"
|
|
235
|
-
all_tokens = [[self.sot_token_id, *self.encode(text), self.eot_token_id] for text in texts]
|
|
236
|
-
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
|
237
|
-
for i, tokens in enumerate(all_tokens):
|
|
238
|
-
if len(tokens) > context_length:
|
|
239
|
-
tokens = tokens[:context_length] # Truncate
|
|
240
|
-
tokens[-1] = self.eot_token_id
|
|
241
|
-
result[i, : len(tokens)] = torch.tensor(tokens)
|
|
242
|
-
return result
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|