dgenerate-ultralytics-headless 8.3.237__py3-none-any.whl → 8.3.240__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (106) hide show
  1. {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/METADATA +2 -1
  2. {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/RECORD +105 -106
  3. tests/test_exports.py +3 -1
  4. tests/test_python.py +2 -2
  5. tests/test_solutions.py +6 -6
  6. ultralytics/__init__.py +1 -1
  7. ultralytics/cfg/__init__.py +4 -4
  8. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  9. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  10. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  11. ultralytics/cfg/datasets/VOC.yaml +15 -16
  12. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  13. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  14. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  15. ultralytics/cfg/datasets/dota8.yaml +2 -2
  16. ultralytics/cfg/datasets/kitti.yaml +1 -1
  17. ultralytics/cfg/datasets/xView.yaml +16 -16
  18. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  19. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  20. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  21. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  22. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  23. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  24. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  25. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  26. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  27. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  28. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  29. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  30. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  31. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  32. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  33. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  34. ultralytics/data/augment.py +1 -1
  35. ultralytics/data/base.py +4 -2
  36. ultralytics/data/build.py +4 -4
  37. ultralytics/data/loaders.py +17 -12
  38. ultralytics/data/utils.py +4 -4
  39. ultralytics/engine/exporter.py +24 -16
  40. ultralytics/engine/predictor.py +5 -4
  41. ultralytics/engine/results.py +12 -13
  42. ultralytics/engine/trainer.py +2 -2
  43. ultralytics/engine/tuner.py +2 -3
  44. ultralytics/engine/validator.py +2 -2
  45. ultralytics/models/fastsam/model.py +2 -2
  46. ultralytics/models/fastsam/predict.py +2 -3
  47. ultralytics/models/fastsam/val.py +4 -4
  48. ultralytics/models/rtdetr/predict.py +2 -3
  49. ultralytics/models/rtdetr/val.py +5 -4
  50. ultralytics/models/sam/build.py +5 -5
  51. ultralytics/models/sam/build_sam3.py +9 -6
  52. ultralytics/models/sam/model.py +1 -1
  53. ultralytics/models/sam/modules/sam.py +10 -5
  54. ultralytics/models/sam/modules/utils.py +8 -3
  55. ultralytics/models/sam/predict.py +53 -62
  56. ultralytics/models/sam/sam3/encoder.py +4 -4
  57. ultralytics/models/sam/sam3/geometry_encoders.py +3 -3
  58. ultralytics/models/sam/sam3/necks.py +17 -17
  59. ultralytics/models/sam/sam3/sam3_image.py +3 -21
  60. ultralytics/models/sam/sam3/vl_combiner.py +1 -6
  61. ultralytics/models/yolo/classify/val.py +1 -1
  62. ultralytics/models/yolo/detect/train.py +1 -1
  63. ultralytics/models/yolo/detect/val.py +7 -7
  64. ultralytics/models/yolo/obb/val.py +1 -1
  65. ultralytics/models/yolo/pose/val.py +1 -1
  66. ultralytics/models/yolo/segment/val.py +1 -1
  67. ultralytics/nn/autobackend.py +9 -9
  68. ultralytics/nn/modules/block.py +1 -1
  69. ultralytics/nn/tasks.py +3 -3
  70. ultralytics/nn/text_model.py +2 -7
  71. ultralytics/solutions/ai_gym.py +1 -1
  72. ultralytics/solutions/analytics.py +6 -6
  73. ultralytics/solutions/config.py +1 -1
  74. ultralytics/solutions/distance_calculation.py +1 -1
  75. ultralytics/solutions/object_counter.py +1 -1
  76. ultralytics/solutions/object_cropper.py +3 -6
  77. ultralytics/solutions/parking_management.py +21 -17
  78. ultralytics/solutions/queue_management.py +5 -5
  79. ultralytics/solutions/region_counter.py +2 -2
  80. ultralytics/solutions/security_alarm.py +1 -1
  81. ultralytics/solutions/solutions.py +45 -22
  82. ultralytics/solutions/speed_estimation.py +1 -1
  83. ultralytics/trackers/basetrack.py +1 -1
  84. ultralytics/trackers/bot_sort.py +4 -3
  85. ultralytics/trackers/byte_tracker.py +4 -4
  86. ultralytics/trackers/utils/gmc.py +6 -7
  87. ultralytics/trackers/utils/kalman_filter.py +2 -1
  88. ultralytics/trackers/utils/matching.py +4 -3
  89. ultralytics/utils/__init__.py +12 -3
  90. ultralytics/utils/benchmarks.py +2 -2
  91. ultralytics/utils/callbacks/tensorboard.py +19 -25
  92. ultralytics/utils/checks.py +2 -1
  93. ultralytics/utils/downloads.py +1 -1
  94. ultralytics/utils/export/tensorflow.py +16 -2
  95. ultralytics/utils/files.py +13 -12
  96. ultralytics/utils/logger.py +62 -27
  97. ultralytics/utils/metrics.py +1 -1
  98. ultralytics/utils/ops.py +6 -6
  99. ultralytics/utils/patches.py +3 -3
  100. ultralytics/utils/plotting.py +18 -23
  101. ultralytics/utils/tuner.py +1 -1
  102. ultralytics/models/sam/sam3/tokenizer_ve.py +0 -242
  103. {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/WHEEL +0 -0
  104. {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/entry_points.txt +0 -0
  105. {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/licenses/LICENSE +0 -0
  106. {dgenerate_ultralytics_headless-8.3.237.dist-info → dgenerate_ultralytics_headless-8.3.240.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.237
3
+ Version: 8.3.240
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -57,6 +57,7 @@ Provides-Extra: export
57
57
  Requires-Dist: numpy<2.0.0; extra == "export"
58
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
59
59
  Requires-Dist: onnx<1.18.0,>=1.12.0; platform_system == "Darwin" and extra == "export"
60
+ Requires-Dist: onnxslim>=0.1.80; extra == "export"
60
61
  Requires-Dist: coremltools>=9.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
61
62
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
62
63
  Requires-Dist: openvino>=2024.0.0; extra == "export"
@@ -1,35 +1,35 @@
1
- dgenerate_ultralytics_headless-8.3.237.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.3.240.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=bCox_hLdGRFYGLb2kd722VdNP2zEXNYNuLLYtqZSrbw,804
3
3
  tests/conftest.py,sha256=mOy9lGpNp7lk1hHl6_pVE0f9cU-72gnkoSm4TO-CNZU,2318
4
4
  tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
5
5
  tests/test_cuda.py,sha256=eQew1rNwU3VViQCG6HZj5SWcYmWYop9gJ0jv9U1bGDE,8203
6
6
  tests/test_engine.py,sha256=ER2DsHM0GfUG99AH1Q-Lpm4x36qxkfOzxmH6uYM75ds,5722
7
- tests/test_exports.py,sha256=9ssZCpseCUrvU0XRpjnJtBalQ-redG0KMVsx8E0_CVE,13987
7
+ tests/test_exports.py,sha256=8dxll33sqhlHeWplly5xxSdT-Nqw2cRRZWN3jZeRWWc,14155
8
8
  tests/test_integrations.py,sha256=6QgSh9n0J04RdUYz08VeVOnKmf4S5MDEQ0chzS7jo_c,6220
9
- tests/test_python.py,sha256=jhnN-Oie3euE3kfHzUqvnadkWOsQyvFmdmEcse9Rsto,29253
10
- tests/test_solutions.py,sha256=j_PZZ5tMR1Y5ararY-OTXZr1hYJ7vEVr8H3w4O1tbQs,14153
11
- ultralytics/__init__.py,sha256=eMeplbSK5m4qRSF3AJSnUOfc18nlhFr3S1KlJinTcMk,1302
9
+ tests/test_python.py,sha256=viMvRajIbDZdm64hRRg9i8qZ1sU9frwB69e56mxwEXk,29266
10
+ tests/test_solutions.py,sha256=CIaphpmOXgz9AE9xcm1RWODKrwGfZLCc84IggGXArNM,14122
11
+ ultralytics/__init__.py,sha256=O1bEyzXhjMQlfHguL1N3w9J7Xh5FIOC83E2vphoVoJw,1302
12
12
  ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
13
13
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
14
14
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
15
- ultralytics/cfg/__init__.py,sha256=1sSIzMkJuPvRa3QXOj1NP1LuoTqHVWl85JPc4WTmpmU,40200
15
+ ultralytics/cfg/__init__.py,sha256=VJs_LWprCuW-EmcTHAR8VbWAnLCWrNwdJg9mGCdaZ2g,40207
16
16
  ultralytics/cfg/default.yaml,sha256=KKENSHolDSto1HJVGjBvTXvz9ae-XMcYRzKrjU3QfZc,8912
17
- ultralytics/cfg/datasets/Argoverse.yaml,sha256=J4ItoUlE_EiYTmp1DFKYHfbqHkj8j4wUtRJQhaMIlBM,3275
18
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=VZ_KKFX0H2YvlFVJ8JHcLWYBZ2xiQ6Z-ROSTiKWpS7c,1211
19
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=JrDuYcQ0JU9lJlCA-dCkMNko_jaj6MAVGHjsfjeZ_u0,1181
17
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
18
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
19
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=DUmBEfvdlCRH2t9aqhc3uk55sOXWWsY9v6RVYaELeTA,1182
20
20
  ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=dnr_loeYSE6Eo_f7V1yubILsMRBMRm1ozyC5r7uT-iY,2144
21
21
  ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=xEtSqEad-rtfGuIrERjjhdISggmPlvaX-315ZzKz50I,934
22
22
  ultralytics/cfg/datasets/ImageNet.yaml,sha256=N9NHhIgnlNIBqZZbzQZAW3aCnz6RSXQABnopaDs5BmE,42529
23
23
  ultralytics/cfg/datasets/Objects365.yaml,sha256=8Bl-NAm0mlMW8EfMsz39JZo-HCvmp0ejJXaMeoHTpqw,9649
24
24
  ultralytics/cfg/datasets/SKU-110K.yaml,sha256=xvRkq3SdDOwBA91U85bln7HTXkod5MvFX6pt1PxTjJE,2609
25
- ultralytics/cfg/datasets/VOC.yaml,sha256=84BaL-iwG03M_W9hNzjgEQi918dZgSHbCgf9DShjwLA,3747
25
+ ultralytics/cfg/datasets/VOC.yaml,sha256=XpaegRHjp7xZnenOuA9zgg2lQURSL-o7mLQwzIKKuqM,3803
26
26
  ultralytics/cfg/datasets/VisDrone.yaml,sha256=PfudojW5av_5q-dC9VsG_xhvuv9cTGEpRp4loXCJ4Ng,3397
27
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SuloMp9WAZBigGC8az-VLACsFhTM76_O29yhTvUqdnU,915
27
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=6UfO_gnwJEDVq05p72IMJfkTIKZlXKNLSeKru-JyTrQ,915
28
28
  ultralytics/cfg/datasets/brain-tumor.yaml,sha256=qrxPO_t9wxbn2kHFwP3vGTzSWj2ELTLelUwYL3_b6nc,800
29
29
  ultralytics/cfg/datasets/carparts-seg.yaml,sha256=A4e9hM1unTY2jjZIXGiKSarF6R-Ad9R99t57OgRJ37w,1253
30
30
  ultralytics/cfg/datasets/coco-pose.yaml,sha256=rl1Pcnn8Hmst-Ian0-HvP6WQ2PKZxr1AjBEA406vwWw,1928
31
31
  ultralytics/cfg/datasets/coco.yaml,sha256=woUMk6L3G3DMQDcThIKouZMcjTI5vP9XUdEVrzYGL50,2584
32
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=knBS2enqHzQj5R5frU4nJdxKsFFBhq8TQ1G1JNiaz9s,1982
32
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=JsXu197vJX1YRuFvbEjsXyv4LUWIET-ruWZ9KqX6hYk,1986
33
33
  ultralytics/cfg/datasets/coco128.yaml,sha256=ok_dzaBUzSd0DWfe531GT_uYTEoF5mIQcgoMHZyIVIA,1965
34
34
  ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=8v6G6mOzZHQNdQM1YwdTBW_lsWWkLRnAimwZBHKtJg8,1961
35
35
  ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=nlU4W0d8rl1cVChthOk0NImhVDCm0voY3FrZs2D0lY0,2063
@@ -39,25 +39,25 @@ ultralytics/cfg/datasets/coco8.yaml,sha256=tzrDY1KW82AHsgpCxte_yPkgMIIpNY6Pb4F46
39
39
  ultralytics/cfg/datasets/construction-ppe.yaml,sha256=pSU9yaAXV369EYQJymNtFQbS_XH4V369gPKKjDrb4ho,1008
40
40
  ultralytics/cfg/datasets/crack-seg.yaml,sha256=fqvSIq1fRXO55V_g2T92hcYAVoKBHZsSZQR7CokoPUI,837
41
41
  ultralytics/cfg/datasets/dog-pose.yaml,sha256=BI-2S3_cSVyV2Gfzbs_3GzvivRlikT0ANjlEJQ6QUp4,1408
42
- ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=2lMBi1Q3_pc0auK00yX80oF7oUMo0bUlwjkOrp33hvs,1216
43
- ultralytics/cfg/datasets/dota8.yaml,sha256=5n4h_4zdrtUSkmH5DHJ-JLPvfiATcieIkgP3NeOP5nI,1060
42
+ ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=jSj22-S3qxWcW4RVvZIdnFrUt4uM50D0PglpzIC45Rg,1217
43
+ ultralytics/cfg/datasets/dota8.yaml,sha256=emS-orevDZd5L4KvbMejNPCUqFdD_iM-TewqQ9H-wp0,1059
44
44
  ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=5mPwZcWeEwlxMrZG68SvLFnuMo6kS7yp4IAeyA854fk,1363
45
- ultralytics/cfg/datasets/kitti.yaml,sha256=Dw0xdxNYc5DBuQsBX17bW1HC70uA6Qvsk5B1XdPBzAc,895
45
+ ultralytics/cfg/datasets/kitti.yaml,sha256=pp4odyfarT8ZSjvBZ8qjv5RfjH4V3bL4gaBiejAqZ-k,895
46
46
  ultralytics/cfg/datasets/lvis.yaml,sha256=RescdwAJ8EU1o7Sm0YlxYsGbQFNU1p-LFbFKYEt5MhE,29596
47
47
  ultralytics/cfg/datasets/medical-pills.yaml,sha256=RK7iQFpDDkUS6EsEGqlbFjoohi3cgSsUIbsk7UItyds,792
48
48
  ultralytics/cfg/datasets/open-images-v7.yaml,sha256=2fVFmb8UEYH-LkX0z5GlYp__U0_GDqVgVqzmnfFerm8,12116
49
49
  ultralytics/cfg/datasets/package-seg.yaml,sha256=V4uyTDWWzgft24y9HJWuELKuZ5AndAHXbanxMI6T8GU,849
50
50
  ultralytics/cfg/datasets/signature.yaml,sha256=gBvU3715gVxVAafI_yaYczGX3kfEfA4BttbiMkgOXNk,774
51
51
  ultralytics/cfg/datasets/tiger-pose.yaml,sha256=bJ7nBTDQwXRHtlg3xmo4C2bOpPn_r4l8-DezSWMYNcU,1196
52
- ultralytics/cfg/datasets/xView.yaml,sha256=eaQ7bYDRrOMRdaxN_wzlH_fN0wdIlT_GQDtPzrHS2-s,5353
52
+ ultralytics/cfg/datasets/xView.yaml,sha256=RNf5p5HJRu80ofUuM6gHByyCZJ1-KQrFP685fa59o9A,5406
53
53
  ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
54
54
  ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
55
55
  ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
56
- ultralytics/cfg/models/11/yolo11-pose.yaml,sha256=_N6tIwP1e3ci_q873B7cqgzlAtjzf-X5nFZqel5xjeQ,2128
56
+ ultralytics/cfg/models/11/yolo11-pose.yaml,sha256=uLQjzoNPP1oiWOSUdDdrZWhke3Sq-VblhgW8wQMcCPI,2133
57
57
  ultralytics/cfg/models/11/yolo11-seg.yaml,sha256=dGKO-8TZTYHudPqQIdp11MBztQEvjCh_T1WCFUxEz_s,2045
58
58
  ultralytics/cfg/models/11/yolo11.yaml,sha256=Q9inyGrMdygt30lm1lJuCR5bBkwUDtSm5MC2jsvDeEw,2012
59
- ultralytics/cfg/models/11/yoloe-11-seg.yaml,sha256=_JtMoNyGutwE95r9wp6kBqGmveHaCKio4N4IiT8sWLg,1977
60
- ultralytics/cfg/models/11/yoloe-11.yaml,sha256=fuZlC69RbsAPwBxMnhTBLCCQOtyh_UlvV0KsCDb1vZ8,1963
59
+ ultralytics/cfg/models/11/yoloe-11-seg.yaml,sha256=2qnNOOVmECI-d-PMts5LUFLlIVZUfSVvmFZI3V3Xbhg,1996
60
+ ultralytics/cfg/models/11/yoloe-11.yaml,sha256=EgU4TJZOesKi7F_rCE0XeP8dF_nHbZtHIbPR1TfXvq8,1989
61
61
  ultralytics/cfg/models/12/yolo12-cls.yaml,sha256=BLv578ZuU-QKx6GTNWX6lXdutzf_0rGhRrC3HrpxaNM,1405
62
62
  ultralytics/cfg/models/12/yolo12-obb.yaml,sha256=JMviFAOmDbW0aMNzZNqispP0wxWw3mtKn2iUwedf4WM,1975
63
63
  ultralytics/cfg/models/12/yolo12-pose.yaml,sha256=Mr9xjYclLQzxYhMqjIKQTdiTvtqZvEXBtclADFggaMA,2074
@@ -79,24 +79,24 @@ ultralytics/cfg/models/v3/yolov3.yaml,sha256=Fvt4_PTwLBpRw3R4v4VQ-1PIiojpoFZD1uu
79
79
  ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=VKEWykksykSlzvuy7if4yFo9WlblC3hdqcNxJ9bwHek,1994
80
80
  ultralytics/cfg/models/v5/yolov5.yaml,sha256=QD8dRe5e5ys52wXPKvNJn622H_3iX0jPzE_2--2dZx0,1626
81
81
  ultralytics/cfg/models/v6/yolov6.yaml,sha256=NrRxq_E6yXnMZqJcLXrIPZtj8eqAxFxSAz4MDFGcwEg,1813
82
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml,sha256=-Fea6WJBWteUnu6VmyOmZUBwIUgGAq4zhTCr396kpzw,1853
83
- ultralytics/cfg/models/v8/yoloe-v8.yaml,sha256=vQY7uAlz8OcyXmoZzLJtuXZyohFaCE4pYua1tB_1ud0,1852
84
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml,sha256=0JaJos3dYrDryy_KdizfLZcGUawaNtFHjcL2GZJNzmA,994
85
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml,sha256=DvFH4vwpyqPZkLc_zY4KcCQbfAHj9LUv3nAjKx4ffow,992
82
+ ultralytics/cfg/models/v8/yoloe-v8-seg.yaml,sha256=cgl2mHps6g9RImm8KbegjEL6lO1elK5OnpDRNjqU2m4,2003
83
+ ultralytics/cfg/models/v8/yoloe-v8.yaml,sha256=0K_3-xecoPp6YWwAf2pmInWtkeH6R3Vp_hfgEPjzw-A,1954
84
+ ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml,sha256=TAiAkZwUckzjWdY6yn_ulGzM-lnHaY7Yx9v8rI-2WoA,1014
85
+ ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml,sha256=gbIttNMvj02Rk3eKjq45qgjdmdCo5n_mV9R5xt65OdU,1010
86
86
  ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=G50mnw-C0SWrZpZl5wzov1dugdjZMM6zT30t5cQrcJQ,1019
87
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=0FBVNgXWgEoYmWDroQyj5JcHUi0igpF4B4Z9coqRE1c,2481
88
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=A0_iAowxMans-VFIyGt1XyFAVPZJkMa7E3ubVFBS1Mg,2557
89
- ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=SXMINIdKaVPM8T3fkG_QjebnVz-V-DbFfzHmX9qwLKg,2180
90
- ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=ksNlmazKXxWgBtwQ5FGy5hKyjlxcb4A1kreL_9mtEZA,2008
91
- ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=8Ql7BeagsE3gyos5D0Q6u-EjIZ_XJ1rSJXKpGG37MF8,1825
87
+ ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=5MX8D3_8lkj9aKVwpAIC1PZAaMoTFs_Wq-XZUTVn9PU,2505
88
+ ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=c7YYnEPx2vrwHjbgr4o_Q9f_NI2X1dx2MrLo9xeOvXc,2575
89
+ ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=nxzIlvntFajHbu4DN8ujEx65PREgn7o0Dd6cHp8pHSM,2198
90
+ ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=Owlncx5peKBTNo3xhkbVxz_1qlzVJR4Z2zNeoR_NDxg,2016
91
+ ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=ulQ2Pp8oPo9gsPoIQ-s3EVCTM41vknPM1PdPYGOXVPQ,1831
92
92
  ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=TqIsa8gNEW04KmdLxxC9rqhd7PCHlUqkzoiDxnMTio0,2363
93
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=wGaxBbf92Hr6E3Wk8vefdZSA3wOocZd4FckSAEZKWNQ,2037
93
+ ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=tfgfYrbVu5biWCWmdTZRr7ZRC-zlAzycsRyaJbDtI1g,2047
94
94
  ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=LdzbiIVknZQMLYB2wzCHqul3NilfKp4nx5SdaGQsF6s,1676
95
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=EURod-QSBLijM79av4I43OboRFWbLKmFaGVRyIaw2Wo,2034
95
+ ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=nQzysAwOq6t9vDTJGhDhnKPecJ4a5g1jPe110wWjzqk,2048
96
96
  ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=anEWPI8Ld8zcCDvbHQCx8FMg2PR6sJCjoIK7pctl8Rg,1955
97
97
  ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=hFeiOFVwTV4zv08IrmTIuzJcUZmYkY7SIi2oV322e6U,1587
98
- ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=jWpYoh-F1TiANj46ijQdUPvf0fWcYbnoFH-0Uv4Nzus,2157
99
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=MCqN2QO4foAcrFrDITGcpJ3fsbSgPrE-c5WOh4FS91w,2103
98
+ ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=rjWAxH5occ9-28StkgYD2dGMJ_niQRZqoZWgyZgErUw,2169
99
+ ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=t-Q0bV8qQ7L4b_InviUxhTW6RqrPWg6LPezYLj_JkHM,2119
100
100
  ultralytics/cfg/models/v8/yolov8.yaml,sha256=QFo8MC62CWEDqZr02CwdLYsrv_RpoijFWqyUSywZZyo,1977
101
101
  ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=UBHoQ_cJV2yp6rMzHXRp46uBAUmKIrbgd3jiEBPRvqI,1447
102
102
  ultralytics/cfg/models/v9/yolov9c.yaml,sha256=x1kus_2mQdU9V3ZGg0XdE5WTUU3j8fwGe1Ou3x2aX5I,1426
@@ -109,27 +109,27 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMg
109
109
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
110
110
  ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
111
111
  ultralytics/data/annotator.py,sha256=kbfSPBesKEVK6ys3dilTdMh7rCKyp0xV7tGQeEDbpWI,2985
112
- ultralytics/data/augment.py,sha256=t5kWY6IjnnHz0ly5RTSiJRYWnoNh1rFiT8A8zVEFUkA,127496
113
- ultralytics/data/base.py,sha256=2sJmh1VUCvxjfdvEAQldK9PLVsw-pDVjcyo8gCLlbuo,19575
114
- ultralytics/data/build.py,sha256=86pnRpiFDHrm_ZvwN9DTSjTwLT9is2sO_tyXiqya7Wk,17205
112
+ ultralytics/data/augment.py,sha256=hDhLrTX7sbL-YjJfmuzdTeke3jd3pJVcC-PTZDqOBVQ,127500
113
+ ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
114
+ ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
115
115
  ultralytics/data/converter.py,sha256=_54Xw78TLRswJ9nUVCd2lfEP5riQ82rM0_g_Gad4PAI,31893
116
116
  ultralytics/data/dataset.py,sha256=L5QYgic_B1e1zffgRA5lqKDd5PQuMDg6PZVd-RTUA7E,36523
117
- ultralytics/data/loaders.py,sha256=d2FDVDFrD_wX58TLRhFav63B0v0jfbGbcgfJ2qprpZM,31651
117
+ ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
118
118
  ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
119
119
  ultralytics/data/split_dota.py,sha256=Qp9vGB2lzb5fQOrpNupKc8KN9ulqZoco9d4gRcx7JZk,12873
120
- ultralytics/data/utils.py,sha256=HGwqyLVw-_3Mx48UqVMEF4QBCMYEz7oLxGsrCMEqTqw,36836
120
+ ultralytics/data/utils.py,sha256=WkMWje6JTEA-ndOO1PBuDlklD9GEPgH9K1_cLBMqbIQ,36824
121
121
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
122
122
  ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
123
123
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
124
124
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
125
125
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
126
- ultralytics/engine/exporter.py,sha256=XRhLbVPNzwgJpNwJjkNBB71dfe2XDn_rHUNssCtXnvo,73007
126
+ ultralytics/engine/exporter.py,sha256=IRUN6CNxBV9Gw8Qy-MZb_5p5bT2-njF91LVywa6FOss,72932
127
127
  ultralytics/engine/model.py,sha256=RkjMWXkyGmYjmMYIG8mPX8Cf1cJvn0ccOsXt03g7tIk,52999
128
- ultralytics/engine/predictor.py,sha256=Hu8FN8zn9i3yNvZ4hG3PzViyA7oGS7N4uazkEg159RY,22809
129
- ultralytics/engine/results.py,sha256=zHPX3j36SnbHHRzAtF5wv_IhugEHf-zEPUqpQwdgZxA,68029
130
- ultralytics/engine/trainer.py,sha256=9hk1P4vhUmxLi9Y9_rmNzo7aExHn4fMT6jGT900lmzg,45455
131
- ultralytics/engine/tuner.py,sha256=xooBE-urCbqK-FQIUtUTG5SC26GevKshDWn-HgIR3Ng,21548
132
- ultralytics/engine/validator.py,sha256=mG9u7atDw7mkCmoB_JjA4pM9m41vF5U7hPLRpBg8QFA,17528
128
+ ultralytics/engine/predictor.py,sha256=neYmNDX27Vv3ggk9xqaKlH6XzB2vlFIghU5o7ZC0zFo,22838
129
+ ultralytics/engine/results.py,sha256=LHX0AaVOv3CEjYjw8i4LThXqihxmahWCxpH20b4s9dM,68030
130
+ ultralytics/engine/trainer.py,sha256=mqVrhL8xnJwwKJVjxDEiiwu0WH48Ne5dB4SXxlxyHh4,45479
131
+ ultralytics/engine/tuner.py,sha256=QmryRxp_QNbNBQBfWOEYEQcZS65dup1hnhwoR8ItNyY,21448
132
+ ultralytics/engine/validator.py,sha256=DRoqyPYhH5rBEMLo-Y94CdiLtxQTYaJHP04fP9e-NJM,17528
133
133
  ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
134
134
  ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
135
135
  ultralytics/hub/session.py,sha256=OzBXAL9R135gRDdfNYUqyiSrxOyaiMFCVYSZua99sF0,18364
@@ -137,46 +137,45 @@ ultralytics/hub/utils.py,sha256=jknll06yNaAxKyOqKliILJv1XOU39WJWOGG_DyFUh20,6353
137
137
  ultralytics/hub/google/__init__.py,sha256=r06Ld4TuZEBOqg4iagpeN-eMAkg43T2OTxOH4_7IfkM,8445
138
138
  ultralytics/models/__init__.py,sha256=ljus_u1CIuP99k9fu6sCtzIeFZ-TCE28NZ8kefZHFNY,309
139
139
  ultralytics/models/fastsam/__init__.py,sha256=Ku89Fy_X8ok3YPEUajjUZ5i4O08jdJMjJHt-3Z99Frk,231
140
- ultralytics/models/fastsam/model.py,sha256=eRGZ5q4DZ0MK-G9pcoBlJqde-L45nDqTYcFGFC5EbTs,3431
141
- ultralytics/models/fastsam/predict.py,sha256=ZIVgdBk_T-CtlAYpm08TSUtyOd2m-tapav7YYKALmT0,8623
140
+ ultralytics/models/fastsam/model.py,sha256=HN6CAHCTwMmyBCQlXx4wMBU7XqkvVHyUawRaxn2Gur8,3426
141
+ ultralytics/models/fastsam/predict.py,sha256=b4wisfRMvv8mGyfqxDk_LD4fyiFush-yQX4i2-R9n_o,8534
142
142
  ultralytics/models/fastsam/utils.py,sha256=de9ieh4pBUuTNh5HTiNdRpWZhXAaSfNo3R1FNMt2GOE,879
143
- ultralytics/models/fastsam/val.py,sha256=SHWCc9tH07IRCYHMQu6cr44EiwOk4-Oz6c_kDaRNbps,2027
143
+ ultralytics/models/fastsam/val.py,sha256=T76Yl4PtPezjGOcpXUxEobr0xnkR42Z-wnIz89cZ-IE,2028
144
144
  ultralytics/models/nas/__init__.py,sha256=Q4ZQak8xNWtV5YSw_pFu0anbCyDxxEAuMMDfMzu6-0s,207
145
145
  ultralytics/models/nas/model.py,sha256=tfr8g3hF-DOIJz4F56aetmFrRJsnKLJ7fgjkgeVzySM,3880
146
146
  ultralytics/models/nas/predict.py,sha256=4nbuo9nbvnvI3qVH1ylhLCjo-7oW39MumIesm-1eU3Y,2692
147
147
  ultralytics/models/nas/val.py,sha256=MIRym3LQNDIRxnYs5xcOiLkKOgv3enZFXh5_g9Pq2hA,1543
148
148
  ultralytics/models/rtdetr/__init__.py,sha256=F4NEQqtcVKFxj97Dh7rkn2Vu3JG4Ea_nxqrBB-9P1vc,225
149
149
  ultralytics/models/rtdetr/model.py,sha256=jJzSh_5E__rVQO7_IkmncpC4jIdu9xNiIxlTTIaFJVw,2269
150
- ultralytics/models/rtdetr/predict.py,sha256=yXtyO6XenBpz0PPewxyGTH8padY-tddyS2NwIk8WTm4,4267
150
+ ultralytics/models/rtdetr/predict.py,sha256=4X1evUcFSNqIGDIwII1to3kZFYTVOd3ohp_YtnjN0iI,4210
151
151
  ultralytics/models/rtdetr/train.py,sha256=b7FCFU_m0BWftVGvuYp6uPBJUG9RviKdWcMkQTLQDlE,3742
152
- ultralytics/models/rtdetr/val.py,sha256=c-yQlgJUh4Ley7m9c70Q10QbCGHEGP5Rnr2oH_IJ8SU,9063
152
+ ultralytics/models/rtdetr/val.py,sha256=Wfd9GHbE7FHJ_71zjcMzsEHYYiP53DMSFhvOjZ6BnBA,9187
153
153
  ultralytics/models/sam/__init__.py,sha256=hofz9cGGhxEWpZXX8yLp5k_LQUmWL_Shd9kfzK4U6z0,592
154
154
  ultralytics/models/sam/amg.py,sha256=aYvJ7jQMkTR3X9KV7SHi3qP3yNchQggWNUurTRZwxQg,11786
155
- ultralytics/models/sam/build.py,sha256=XNKyRnmKNp1bqboI6mZI9GKNZQRYnadvBtyUact1gSo,12867
156
- ultralytics/models/sam/build_sam3.py,sha256=kOqBtJkDEx8eg5CHXIUPbjRfW-B9_rqjjJKTm0kKCvE,11882
157
- ultralytics/models/sam/model.py,sha256=N32loc7oOgEFSJHgGIZ5We8_SooMPDTKx-6oVWbXn8U,7372
158
- ultralytics/models/sam/predict.py,sha256=hBs93y9X61lcVg9_oPlPB7bycI7W9LN0PsrZhbOCl8w,204538
155
+ ultralytics/models/sam/build.py,sha256=rEaFXA4R1nyutSonIenRKcuNtO1FgEojnkcayo0FTP4,12867
156
+ ultralytics/models/sam/build_sam3.py,sha256=Gg_LiqNrCDTYaDWrob05vj-ln2AhkfMa5KkKhyk5wdE,11976
157
+ ultralytics/models/sam/model.py,sha256=cOawDSkFqJPbt3455aTZ8tjaoWshFWFHQGGqxzsL_QQ,7372
158
+ ultralytics/models/sam/predict.py,sha256=rvUXBzNMvKlfjWP6UoKNm9GGpLcxJGsZGTkFq-7UOhI,203675
159
159
  ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
160
160
  ultralytics/models/sam/modules/blocks.py,sha256=ZU2aY4h6fmosj5pZ5EOEuO1O8Cl8UYeH11eOxkqCt8M,44570
161
161
  ultralytics/models/sam/modules/decoders.py,sha256=G4li37ahUe5rTTNTKibWMsAoz6G3R18rI8OPvfunVX8,25045
162
162
  ultralytics/models/sam/modules/encoders.py,sha256=C2KlyvWWbYk48uNnymyvPLg_Q2ioRycjK2nMPGKkMhA,35456
163
163
  ultralytics/models/sam/modules/memory_attention.py,sha256=jFVWVbgDS7VXPqOL1e3gAzk0vPwWhy-8vj3Vl5WhT4I,13299
164
- ultralytics/models/sam/modules/sam.py,sha256=j2AhC2yQbPJW5gAlHyV_LfMWmwG9q_PICKynfhAkzQ8,61292
164
+ ultralytics/models/sam/modules/sam.py,sha256=-KV-1PZK39DTdSpR5DI3E8I6gGVLja3tMv1MH7Au_eA,61654
165
165
  ultralytics/models/sam/modules/tiny_encoder.py,sha256=RJQTHjfUe2N3cm1EZHXObJlKqVn10EnYJFla1mnWU_8,42065
166
166
  ultralytics/models/sam/modules/transformer.py,sha256=NmTuyxS9PNsg66tKY9_Q2af4I09VW5s8IbfswyTT3ao,14892
167
- ultralytics/models/sam/modules/utils.py,sha256=ztihxg0ssx0W-CKiqV-8KzB4og39TKnbmV3YO96ENPw,20770
167
+ ultralytics/models/sam/modules/utils.py,sha256=Re09hcKe9LJpFzKHxpbwEmoMpPImnJaoNw7pe62_ui0,21129
168
168
  ultralytics/models/sam/sam3/__init__.py,sha256=aM4-KimnYgIFe-e5ctLT8e6k9PagvuvKFaHaagDZM7E,144
169
169
  ultralytics/models/sam/sam3/decoder.py,sha256=kXgPOjOh63ttJPFwMF90arK9AKZwPmhxOiexnPijiTE,22872
170
- ultralytics/models/sam/sam3/encoder.py,sha256=Q5dMxRbYMclS-jBpD-shiparXfqckRYU6HYzavQ6feU,21809
171
- ultralytics/models/sam/sam3/geometry_encoders.py,sha256=UTcbnuJYewAptQ_6FPYYu-IbacjtzyzvJXvTZ-XAQms,17344
170
+ ultralytics/models/sam/sam3/encoder.py,sha256=zP934Q_7B2I9UJvQY4Ghimu7Y8dQjBCGqUmSv5zbsq0,21794
171
+ ultralytics/models/sam/sam3/geometry_encoders.py,sha256=EAxeVvZgz4Y0q2VYX-4OP_1YuWWG21WilUt_IMBzE_0,17375
172
172
  ultralytics/models/sam/sam3/maskformer_segmentation.py,sha256=jf9qJj7xyTVGp7OZ5uJQF0EUD468EOnBm1PsjiTO2ug,10735
173
173
  ultralytics/models/sam/sam3/model_misc.py,sha256=OZ6kJCRpViASKFmteYAOtEXB4nIsB8ibtJeDk_nZn1g,7909
174
- ultralytics/models/sam/sam3/necks.py,sha256=qr1PHInhpe16cNFrLVANg6OBKci1qmK8HIuLF1BaniI,4532
175
- ultralytics/models/sam/sam3/sam3_image.py,sha256=9AwY7OQxGboT_HVpShLL5rIRM4Ga-ar7HFLYg_bZHvw,14571
174
+ ultralytics/models/sam/sam3/necks.py,sha256=geWVSSheOwXSy_LiNKkOqQhK13DEe_fDOTgse_W68qU,4553
175
+ ultralytics/models/sam/sam3/sam3_image.py,sha256=MZZXObriPP5VPMKTxJ7rPTWFATAgYng7jeMzchYP8YE,13336
176
176
  ultralytics/models/sam/sam3/text_encoder_ve.py,sha256=iv8-6VA3t4yJ1M42RPjHDlFuH9P_nNRSNyaoFn2sjMw,12283
177
- ultralytics/models/sam/sam3/tokenizer_ve.py,sha256=e9egpc9mWW9tDzXMPyNIapoemjdn8mz1e7VjqtH6aWo,9079
178
177
  ultralytics/models/sam/sam3/vitdet.py,sha256=QDM4-J_N1PczKQsJcFVKtNZ13vnxIjg-9GA2zQd9WiM,21822
179
- ultralytics/models/sam/sam3/vl_combiner.py,sha256=4ReVNkLIVCzFos7i_HsmxpP2wZ2HUhgMSeIc0MIAS5Q,6710
178
+ ultralytics/models/sam/sam3/vl_combiner.py,sha256=HpFpNj3pXsWIc_aTov-EpW5j1fOj_m0j4yuXmCfWNg4,6476
180
179
  ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
181
180
  ultralytics/models/utils/loss.py,sha256=9CcqRXDj5-I-7eZuenInvyoLcPf22Ynf3rUFA5V22bI,21131
182
181
  ultralytics/models/utils/ops.py,sha256=z-Ebjv_k14bWOoP6nszDzDBiy3yELcVtbj6M8PsRpvE,15207
@@ -185,23 +184,23 @@ ultralytics/models/yolo/model.py,sha256=-U7TQ2HlW5JdePBBzNpxK172uCXpM2RKMlhuZsMb
185
184
  ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
186
185
  ultralytics/models/yolo/classify/predict.py,sha256=wKICjwofH7-7QLJhX2vYSNJXWu2-5kWzjoXXmUPI0pU,4137
187
186
  ultralytics/models/yolo/classify/train.py,sha256=oODDfPwjgKzsbpO7NCYnOp_uwkWD7HNLhvsHxAJTA4g,8958
188
- ultralytics/models/yolo/classify/val.py,sha256=VbDP8-ZTNHU5CuJ1bFLPjUKTaPBwSHOQhnKHozN9G20,10503
187
+ ultralytics/models/yolo/classify/val.py,sha256=gtoUJN5_-56EbiYp5Ur-shfdBNMJOqToWmup_-1wW7I,10503
189
188
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
190
189
  ultralytics/models/yolo/detect/predict.py,sha256=DhxIpvTcLAxSKuGxm7QWuTo-EKwmRhfL6yzUSaZHNRM,5373
191
- ultralytics/models/yolo/detect/train.py,sha256=5xDl8M_DrK7S8txW4IoRcdtiVaz-LvoMMr6VTWYFtyU,10477
192
- ultralytics/models/yolo/detect/val.py,sha256=b4swS4fEGEFkNzXAUD8OKwS9o0tBg9kU0UGPlTlYndU,22384
190
+ ultralytics/models/yolo/detect/train.py,sha256=-PHH6i767_XKCPsBeAOi7AxfHpoq451GfjY4TRMuo7c,10469
191
+ ultralytics/models/yolo/detect/val.py,sha256=O8TkCHnEvuxV2Hyqw_CuVZMWzHWBjCM48fqtdf8T8dQ,22379
193
192
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
194
193
  ultralytics/models/yolo/obb/predict.py,sha256=vA_BueSJJJuyaAZPWE0xKk7KI_YPQCUOCqeZZLMTeXM,2600
195
194
  ultralytics/models/yolo/obb/train.py,sha256=qtBjwOHOq0oQ9mK0mOtnUrXAQ5UCUrntKq_Z0-oCBHo,3438
196
- ultralytics/models/yolo/obb/val.py,sha256=iBP5wi8HXP-mFSP8v-jpeKDcuV0TV98KnP1bxXHxOHs,14513
195
+ ultralytics/models/yolo/obb/val.py,sha256=XkZhjPqF7bdYotyUTnRCj6Zre6QsB1M3ulZ0DMf-xiE,14513
197
196
  ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
198
197
  ultralytics/models/yolo/pose/predict.py,sha256=rsorTRpyL-x40R2QVDDG2isc1e2F2lGfD13oKaD5ANs,3118
199
198
  ultralytics/models/yolo/pose/train.py,sha256=lKxZ1dnkN3WlEPGlIlLF7ZuR_W2eoPrxhVrKGbJIQto,4628
200
- ultralytics/models/yolo/pose/val.py,sha256=kUMOckjkPYkD9aDywprlrgSXm1gJ3ofs5-2couAvHqI,12004
199
+ ultralytics/models/yolo/pose/val.py,sha256=s5WmXcZI5cAi3LPdIVHnkFUbEoFZsw5PBnnLnZ3Ep_c,12004
201
200
  ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
202
201
  ultralytics/models/yolo/segment/predict.py,sha256=fSGJVli-N84-jmqCCV4FDuQHyo7j1i0gPO7RsxTS9BM,5429
203
202
  ultralytics/models/yolo/segment/train.py,sha256=i1nDO0B7ScFo3G64ZSTmRZ2WLUVaMsvAoedSYa_MoIU,3009
204
- ultralytics/models/yolo/segment/val.py,sha256=eSiWCPt98fowkiZnZyxWedF5Kj7xh-jUCwsevs7MhNM,13252
203
+ ultralytics/models/yolo/segment/val.py,sha256=LkyV5_I5YPdJNyI6OGy2i7J_r0Ll-jYdru_HXS1mN6s,13252
205
204
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
206
205
  ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
207
206
  ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
@@ -211,71 +210,71 @@ ultralytics/models/yolo/yoloe/train.py,sha256=giX6zDu5Z3z48PCaBHzu7v9NH3BrpUaGAY
211
210
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=0hRByMXsEJA-J2B1wXDMVhiW9f9MOTj3LlrGTibN6Ww,4919
212
211
  ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
213
212
  ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
214
- ultralytics/nn/autobackend.py,sha256=v7jKSb84xbBCF9R6A3RBPC23aGqkAGcKmt-HX8JUIYc,44359
215
- ultralytics/nn/tasks.py,sha256=LBBrSENKAQ1kpRLavjQ4kbBgpCQPqiSkfOmxCt2xQIw,70467
216
- ultralytics/nn/text_model.py,sha256=doU80pYuhc7GYtALVN8ZjetMmdTJTheuIP65riKnT48,15358
213
+ ultralytics/nn/autobackend.py,sha256=nenk1TkSzn-toSM223ukEdgV45d4IaSdolmvTlHs8r0,44410
214
+ ultralytics/nn/tasks.py,sha256=636MN27VvlupIaHPpV4r0J705RUdV-giNKjIeJbRkxI,70448
215
+ ultralytics/nn/text_model.py,sha256=novnuosqXnW1NmlOzWOk7dEKuN6Vq40CTksr6hI3Knc,15109
217
216
  ultralytics/nn/modules/__init__.py,sha256=5Sg_28MDfKwdu14Ty_WCaiIXZyjBSQ-xCNCwnoz_w-w,3198
218
217
  ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
219
- ultralytics/nn/modules/block.py,sha256=-Suv96Oo0LM1sqHHKudt5lL5YIcWLkxwrYVBgIAkmTs,69876
218
+ ultralytics/nn/modules/block.py,sha256=xRSoPPpjp1LZKeeqRGCLERysTyub6xvDzMTlIrmDhU0,69881
220
219
  ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
221
220
  ultralytics/nn/modules/head.py,sha256=HALEhb1I5VNqCQJFB84OgT9dpRArIKWbiglyohzrSfc,51859
222
221
  ultralytics/nn/modules/transformer.py,sha256=oasUhhIm03kY0QtWrpvSSLnQa9q3eW2ksx82MgpPmsE,31972
223
222
  ultralytics/nn/modules/utils.py,sha256=tkUDhTXjmW-YMvTGvM4RFUVtzh5k2c33i3TWmzaWWtI,6067
224
223
  ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
225
- ultralytics/solutions/ai_gym.py,sha256=7ggUIkClVtvZG_nzoZCoZ_wlDfr-Da2U7ZhECaHe80I,5166
226
- ultralytics/solutions/analytics.py,sha256=QFv_y-iCY7M0g4hlGghoqF9fffVXdxUrmPib1B-WXso,12863
227
- ultralytics/solutions/config.py,sha256=AwnmZbMwg44Nz-wTy99Xef509mG6xbIO_JAzodjbhSU,5391
228
- ultralytics/solutions/distance_calculation.py,sha256=_sdG2J7tomc4AmryX0jRie2mqEIWKUBBBXQKu5HqhuY,5901
224
+ ultralytics/solutions/ai_gym.py,sha256=ItLE6HYMx6AEgiHEDG1HKDkippnrnycb-79S2g72AYA,5181
225
+ ultralytics/solutions/analytics.py,sha256=UaH-B6h8Ir9l00deRUeAIW6QQTIO_595HTp93sdwteM,12820
226
+ ultralytics/solutions/config.py,sha256=RZMCsnJpoInpADGnuVHTKgH5mKHyDMF4uD4DNZqanpY,5396
227
+ ultralytics/solutions/distance_calculation.py,sha256=RcpRDodEHAJUug9tobtQKt5_bySNA8NMSRiaL347Q1U,5891
229
228
  ultralytics/solutions/heatmap.py,sha256=DUyV5UFsOwZ8ArN4BtW8Vm3ps8_VZXc6VP0uiKyGDWY,5481
230
229
  ultralytics/solutions/instance_segmentation.py,sha256=eggk1uWCZ-6cp0YfxCGVUwnKS6xqJua946oxafjAXGk,3778
231
230
  ultralytics/solutions/object_blurrer.py,sha256=EZrv3oU68kEaahAxlhk9cF5ZKFtoVaW8bDB4Css9xe0,3981
232
- ultralytics/solutions/object_counter.py,sha256=3DCdx1LRCDJJg-HCZcl8kduumhbtQa5i6lwEEfEk9S8,9355
233
- ultralytics/solutions/object_cropper.py,sha256=ssYtPm5Pu2ThVdLTRPp3dfgxe61akJPX9dRVPE8LhM0,3592
234
- ultralytics/solutions/parking_management.py,sha256=gNZ4pdskE3ftr6ihFGPIXqaenefP1r18oEKh5QqQDa4,13633
235
- ultralytics/solutions/queue_management.py,sha256=Cw7_tidMULYQmr8wRGgjmSTCs6H2ikgIU-xEuH1ef94,4371
236
- ultralytics/solutions/region_counter.py,sha256=L_No4C1DC4xkob9YCMlzRwvIaOW5400D5Qn3z5z4yYQ,6025
237
- ultralytics/solutions/security_alarm.py,sha256=kAPSBX4QJTCcz2FcJXe1GD9kJFQbVWojX4R8uz9196A,6304
231
+ ultralytics/solutions/object_counter.py,sha256=nguTJebkCi_sCsP1cz2jABfi0kPOg2DdNZeS2xG-CeE,9354
232
+ ultralytics/solutions/object_cropper.py,sha256=WRbrfXAR5aD6PQBqJ-BvcVaiaqta_9YeTlXN2dY274s,3510
233
+ ultralytics/solutions/parking_management.py,sha256=FQKeLEiwnTmRcXqsNOlOt9GTFPjkyvnE5pwwKnneJa4,13770
234
+ ultralytics/solutions/queue_management.py,sha256=NlVX6PMEaffjoZjfQrVyayaDUdtc0JF8GzTQrZFjpCg,4371
235
+ ultralytics/solutions/region_counter.py,sha256=IAvlFwEYoNftDzfBbdo5MzLwcuidOHW9oTGyRCDzMRc,6025
236
+ ultralytics/solutions/security_alarm.py,sha256=QjUIVBWcy094VTcOkk_zOq3BmKKOeIaHpVi_QMWo_3Q,6293
238
237
  ultralytics/solutions/similarity_search.py,sha256=Q2FOBUtEokegiJHlfDbPP0bKxr5F-sHN3-IvskDoe00,9644
239
- ultralytics/solutions/solutions.py,sha256=Ag4XsL6vK5x_mnpPLPIVaKm5fEPCojg6qS_lFybmlCs,35855
240
- ultralytics/solutions/speed_estimation.py,sha256=ph_5MFObDGz05uFZm1zmpLYw-YyLlKQC_Y16KpZilj4,5855
238
+ ultralytics/solutions/solutions.py,sha256=pT3uBxs27BdBud0a4URqVxld3DgcOHgRKxmcTQlXyk4,36984
239
+ ultralytics/solutions/speed_estimation.py,sha256=WrZECxKAq6P4QpeTbhkp3-Rqjnox7tdR25fUxzozlpU,5861
241
240
  ultralytics/solutions/streamlit_inference.py,sha256=utJOe0Weu44_ABF9rDnAjwLjKyn3gwfaYaxFfFbx-9c,13060
242
241
  ultralytics/solutions/trackzone.py,sha256=oqv-zZL99RVUMcN5ViAPmadzX6QNdAEozYrrg2pqO6k,3903
243
242
  ultralytics/solutions/vision_eye.py,sha256=bSXmJ93DyLu4_CWgbF3GkHzh_VpiEmkK5vVJDPPGzI4,2982
244
243
  ultralytics/solutions/templates/similarity-search.html,sha256=mYuJI8H84cmu4kwPq2aEsmzazimFEEiLhOXZ08lXQgA,4165
245
244
  ultralytics/trackers/__init__.py,sha256=n3BOO0TR-Sz5ANDYOkKDipM9nSHOePMEwqafbk-YEPs,255
246
- ultralytics/trackers/basetrack.py,sha256=57kL3R9s50GrXTAR0QfBLk0ea2VAXTBWJ6TSk3iCMrY,4374
247
- ultralytics/trackers/bot_sort.py,sha256=nViAG2jjl4T9X4WZjHBW-xzfR9TpJJXvgsjjzE8HeW0,11701
248
- ultralytics/trackers/byte_tracker.py,sha256=HJ37uB0zrZCmFKLjheGxy2JrVdv39iGXZq-r6MG7Yhg,21063
245
+ ultralytics/trackers/basetrack.py,sha256=F-EW29F9E8GwXr5vzwLqW2rNwItu4KIx2MKce5pQXxI,4374
246
+ ultralytics/trackers/bot_sort.py,sha256=WImn-BOzGrK9dgMFfMPzKFE5awhXEB2VOi7AbOf_Cdc,11831
247
+ ultralytics/trackers/byte_tracker.py,sha256=Twmbe3EyqnIds211M84vtuuM1WgHXDykjTMeiAJZzC0,21117
249
248
  ultralytics/trackers/track.py,sha256=RHgPvx9FNVBL5pUalX2l-jcWrei1UiAXszjeL3V5d-M,4742
250
249
  ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
251
- ultralytics/trackers/utils/gmc.py,sha256=B07unzpprc_vSpAcBGPR1i2fcgFlBMC5pzTAoP9osTc,13800
252
- ultralytics/trackers/utils/kalman_filter.py,sha256=iO3WEGu9AWWpVwe0AfgMqXZCzO0sgQC8lGt8KpLnPN4,21485
253
- ultralytics/trackers/utils/matching.py,sha256=7lyDXEw6w5iEKeb9CARlAoPbvT35VnCc9hkjD6ZcIqs,7144
254
- ultralytics/utils/__init__.py,sha256=mumSvouTfDk9SnlGPiZCiuO52rpIUh6dpUbV8MfJXKE,54400
250
+ ultralytics/trackers/utils/gmc.py,sha256=cvvhNXOhylVQti4pJQSNPx4yPqhhhw1k2yzY0JFl7Zo,13760
251
+ ultralytics/trackers/utils/kalman_filter.py,sha256=crgysL2bo0v1eTljOlP2YqIJDLBcHjl75MRpbxfaR_M,21514
252
+ ultralytics/trackers/utils/matching.py,sha256=jRZQrYSECQEwILn3mr7OodB8o7GawV-1v869plHstwk,7147
253
+ ultralytics/utils/__init__.py,sha256=Fxq65P02ZEKQF1I4SEtU9MTVv-__fBCYg7JSl9FgNbk,55126
255
254
  ultralytics/utils/autobatch.py,sha256=jiE4m_--H9UkXFDm_FqzcZk_hSTCGpS72XdVEKgZwAo,5114
256
255
  ultralytics/utils/autodevice.py,sha256=rXlPuo-iX-vZ4BabmMGEGh9Uxpau4R7Zlt1KCo9Xfyc,8892
257
- ultralytics/utils/benchmarks.py,sha256=B6Q55qtZri2EWOKldXnEhGrFe2BjHsAQEt7juPN4m1s,32279
258
- ultralytics/utils/checks.py,sha256=4HGI_M71gxBk4AE7-qGD1kw_-EXEOy6NHGwum_q4iGI,38150
256
+ ultralytics/utils/benchmarks.py,sha256=S_W4S4pe2ktSRdSuWb6m09UEFQmZhmjl943bbo67hOI,32277
257
+ ultralytics/utils/checks.py,sha256=hbM2pS7ffIbbTmeTe2AbQ-tCMM2H5WvkDMCpaeU8kbU,38203
259
258
  ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
260
259
  ultralytics/utils/dist.py,sha256=hOuY1-unhQAY-uWiZw3LWw36d1mqJuYK75NdlwB4oKE,4131
261
- ultralytics/utils/downloads.py,sha256=pUzi3N6-L--aLUbyIv2lU3zYtL84eSD-Z-PycwPLwuA,22883
260
+ ultralytics/utils/downloads.py,sha256=IyiGjjXqOyf1B0qLMk7vE6sSQ8s232OhKS8aj9XbTgs,22883
262
261
  ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
263
262
  ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
264
- ultralytics/utils/files.py,sha256=Zw3pQEe1vz7oGBIb1c_umaVGJDvWn0z5zcPTFYcAF94,8125
263
+ ultralytics/utils/files.py,sha256=BdaRwEKqzle4glSj8n_jq6bDjTCAs_H1SN06ZOQ9qFU,8190
265
264
  ultralytics/utils/git.py,sha256=O12SgwSh1JHizR0H_pOAyMY_qRpSe5I4cc5nAoEQ-zE,5489
266
265
  ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
267
- ultralytics/utils/logger.py,sha256=gq38VIMcdOZHI-rKDO0F7Z-RiFebpkcVhoNr-5W2U4o,15633
266
+ ultralytics/utils/logger.py,sha256=2G7_wAteN26SWaqm3VJgDc2XYcotz5uWolQllvMcLoI,16821
268
267
  ultralytics/utils/loss.py,sha256=R1uC00IlXVHFWc8I8ngjtfRfuUj_sT_Zw59OlYKwmFY,39781
269
- ultralytics/utils/metrics.py,sha256=CYAAfe-wUF37MAMD1Y8rsVkxZ1DOL1lzv_Ynwd-VZSk,68588
268
+ ultralytics/utils/metrics.py,sha256=pP1LoKweL3Iga5dvCBVoqMSi5TwaaHERKKugDUloUs8,68587
270
269
  ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
271
- ultralytics/utils/ops.py,sha256=AN-BtT5Uu_cujQEIcGkLS4vSj0axh0yZqKWicNcyAW8,25636
272
- ultralytics/utils/patches.py,sha256=Vf-s7WIGgCF00OG_kHPcEHCoLNnDvBKUSbI3XjzilIQ,7111
273
- ultralytics/utils/plotting.py,sha256=GGaUYgF8OoxcmyMwNTr82ER7cJZ3CUOjYeq-7vpHDGQ,48432
270
+ ultralytics/utils/ops.py,sha256=Se_Vb_smotVZ4g9gW4x56LpflAmbNDCEaeQz5BmUiD0,25637
271
+ ultralytics/utils/patches.py,sha256=mD3slAMAhcezzP42_fOWmacNMU6zXB68Br4_EBCyIjs,7117
272
+ ultralytics/utils/plotting.py,sha256=bDOi3hmFaiJBuQyI3Ew-arliDNStuRIP7oM_Gq8C7Ac,48219
274
273
  ultralytics/utils/tal.py,sha256=w7oi6fp0NmL6hHh-yvCCX1cBuuB4JuX7w1wiR4_SMZs,20678
275
274
  ultralytics/utils/torch_utils.py,sha256=zOPUQlorTiEPSkqlSEPyaQhpmzmgOIKF7f3xJb0UjdQ,40268
276
275
  ultralytics/utils/tqdm.py,sha256=5PtGvRE9Xq8qugWqBSvZefAoFOnv3S0snETo5Z_ohNE,16185
277
276
  ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
278
- ultralytics/utils/tuner.py,sha256=rN8gFWnQOJFtrGlFcvOo0Eah9dEVFx0nFkpTGrlewZA,6861
277
+ ultralytics/utils/tuner.py,sha256=RY0SLmGsFDj7RgqAj-XXRDKZ3asWbdwakAAKWmDTQv4,6867
279
278
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
280
279
  ultralytics/utils/callbacks/base.py,sha256=floD31JHqHpiVabQiE76_hzC_j7KjtL4w_czkD1bLKc,6883
281
280
  ultralytics/utils/callbacks/clearml.py,sha256=LjfNe4mswceCOpEGVLxqGXjkl_XGbef4awdcp4502RU,5831
@@ -286,14 +285,14 @@ ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNe
286
285
  ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
287
286
  ultralytics/utils/callbacks/platform.py,sha256=a7T_8htoBB0uX1WIc392UJnhDjxkRyQMvhPYKR6wUTU,2008
288
287
  ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
289
- ultralytics/utils/callbacks/tensorboard.py,sha256=QEwBApQKbRjEjgJXoax8ulLFC3oCRe2ly-otbe4HkFU,5273
288
+ ultralytics/utils/callbacks/tensorboard.py,sha256=PTJYvD2gqRUN8xw5VoTjvKnu2adukLfvhMlDgTnTiFU,4952
290
289
  ultralytics/utils/callbacks/wb.py,sha256=ghmL3gigOa-z_F54-TzMraKw9MAaYX-Wk4H8dLoRvX8,7705
291
290
  ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
292
291
  ultralytics/utils/export/engine.py,sha256=23-lC6dNsmz5vprSJzaN7UGNXrFlVedNcqhlOH_IXes,9956
293
292
  ultralytics/utils/export/imx.py,sha256=UHIq_PObOphIxctgSi0-5WaHvolHsHd3r5TTSjQSdgo,12860
294
- ultralytics/utils/export/tensorflow.py,sha256=PyAp0_rXSUcXiqV2RY0H9b_-oFaZ7hZBiSM42X53t0Q,9374
295
- dgenerate_ultralytics_headless-8.3.237.dist-info/METADATA,sha256=339N7k4fPszkh2fu46L3imnl6kF05aClobjpQEFFl9Q,38747
296
- dgenerate_ultralytics_headless-8.3.237.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
297
- dgenerate_ultralytics_headless-8.3.237.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
298
- dgenerate_ultralytics_headless-8.3.237.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
299
- dgenerate_ultralytics_headless-8.3.237.dist-info/RECORD,,
293
+ ultralytics/utils/export/tensorflow.py,sha256=igYzwbdblb9YgfV4Jgl5lMvynuVRcF51dAzI7j-BBI0,9966
294
+ dgenerate_ultralytics_headless-8.3.240.dist-info/METADATA,sha256=PT70UGSI51ivueJSk6BunjPAeZNEjMe9pr2HIf3JKKU,38798
295
+ dgenerate_ultralytics_headless-8.3.240.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
296
+ dgenerate_ultralytics_headless-8.3.240.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
297
+ dgenerate_ultralytics_headless-8.3.240.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
298
+ dgenerate_ultralytics_headless-8.3.240.dist-info/RECORD,,
tests/test_exports.py CHANGED
@@ -13,7 +13,7 @@ from tests import MODEL, SOURCE
13
13
  from ultralytics import YOLO
14
14
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
15
15
  from ultralytics.utils import ARM64, IS_RASPBERRYPI, LINUX, MACOS, WINDOWS, checks
16
- from ultralytics.utils.torch_utils import TORCH_1_11, TORCH_1_13, TORCH_2_1, TORCH_2_8, TORCH_2_9
16
+ from ultralytics.utils.torch_utils import TORCH_1_10, TORCH_1_11, TORCH_1_13, TORCH_2_1, TORCH_2_8, TORCH_2_9
17
17
 
18
18
 
19
19
  def test_export_torchscript():
@@ -210,6 +210,7 @@ def test_export_paddle():
210
210
 
211
211
 
212
212
  @pytest.mark.slow
213
+ @pytest.mark.skipif(not TORCH_1_10, reason="MNN export requires torch>=1.10")
213
214
  def test_export_mnn():
214
215
  """Test YOLO export to MNN format (WARNING: MNN test must precede NCNN test or CI error on Windows)."""
215
216
  file = YOLO(MODEL).export(format="mnn", imgsz=32)
@@ -217,6 +218,7 @@ def test_export_mnn():
217
218
 
218
219
 
219
220
  @pytest.mark.slow
221
+ @pytest.mark.skipif(not TORCH_1_10, reason="MNN export requires torch>=1.10")
220
222
  @pytest.mark.parametrize(
221
223
  "task, int8, half, batch",
222
224
  [ # generate all combinations except for exclusion cases
tests/test_python.py CHANGED
@@ -112,7 +112,7 @@ def test_predict_img(model_name):
112
112
  """Test YOLO model predictions on various image input types and sources, including online images."""
113
113
  channels = 1 if model_name == "yolo11n-grayscale.pt" else 3
114
114
  model = YOLO(WEIGHTS_DIR / model_name)
115
- im = cv2.imread(str(SOURCE), flags=cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR) # uint8 numpy array
115
+ im = cv2.imread(str(SOURCE), flags=cv2.IMREAD_GRAYSCALE if channels == 1 else cv2.IMREAD_COLOR) # uint8 NumPy array
116
116
  assert len(model(source=Image.open(SOURCE), save=True, verbose=True, imgsz=32)) == 1 # PIL
117
117
  assert len(model(source=im, save=True, save_txt=True, imgsz=32)) == 1 # ndarray
118
118
  assert len(model(torch.rand((2, channels, 32, 32)), imgsz=32)) == 2 # batch-size 2 Tensor, FP32 0.0-1.0 RGB order
@@ -572,7 +572,7 @@ def test_hub():
572
572
 
573
573
  @pytest.fixture
574
574
  def image():
575
- """Load and return an image from a predefined source."""
575
+ """Load and return an image from a predefined source (OpenCV BGR)."""
576
576
  return cv2.imread(str(SOURCE))
577
577
 
578
578
 
tests/test_solutions.py CHANGED
@@ -1,7 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  # Tests Ultralytics Solutions: https://docs.ultralytics.com/solutions/,
4
- # including every solution excluding DistanceCalculation and Security Alarm System.
4
+ # Includes all solutions except DistanceCalculation and the Security Alarm System.
5
5
 
6
6
  import os
7
7
  from unittest.mock import patch
@@ -16,7 +16,7 @@ from ultralytics.utils import ASSETS_URL, IS_RASPBERRYPI, TORCH_VERSION, checks
16
16
  from ultralytics.utils.downloads import safe_download
17
17
  from ultralytics.utils.torch_utils import TORCH_2_4
18
18
 
19
- # Pre-defined arguments values
19
+ # Predefined argument values
20
20
  SHOW = False
21
21
  DEMO_VIDEO = "solutions_ci_demo.mp4" # for all the solutions, except workout, object cropping and parking management
22
22
  CROP_VIDEO = "decelera_landscape_min.mov" # for object cropping solution
@@ -243,13 +243,13 @@ def test_parking_json_none():
243
243
 
244
244
 
245
245
  def test_analytics_graph_not_supported():
246
- """Test that unsupported analytics type raises ModuleNotFoundError."""
246
+ """Test that unsupported analytics type raises ValueError."""
247
247
  try:
248
248
  analytics = solutions.Analytics(analytics_type="test") # 'test' is unsupported
249
249
  analytics.process(im0=np.zeros((640, 480, 3), dtype=np.uint8), frame_number=0)
250
- assert False, "Expected ModuleNotFoundError for unsupported chart type"
251
- except ModuleNotFoundError as e:
252
- assert "test chart is not supported" in str(e)
250
+ assert False, "Expected ValueError for unsupported chart type"
251
+ except ValueError as e:
252
+ assert "Unsupported analytics_type" in str(e)
253
253
 
254
254
 
255
255
  def test_area_chart_padding():
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.237"
3
+ __version__ = "8.3.240"
4
4
 
5
5
  import importlib
6
6
  import os
@@ -89,13 +89,13 @@ SOLUTIONS_HELP_MSG = f"""
89
89
  1. Call object counting solution
90
90
  yolo solutions count source="path/to/video.mp4" region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]"
91
91
 
92
- 2. Call heatmaps solution
92
+ 2. Call heatmap solution
93
93
  yolo solutions heatmap colormap=cv2.COLORMAP_PARULA model=yolo11n.pt
94
94
 
95
95
  3. Call queue management solution
96
96
  yolo solutions queue region="[(20, 400), (1080, 400), (1080, 360), (20, 360)]" model=yolo11n.pt
97
97
 
98
- 4. Call workouts monitoring solution for push-ups
98
+ 4. Call workout monitoring solution for push-ups
99
99
  yolo solutions workout model=yolo11n-pose.pt kpts=[6, 8, 10]
100
100
 
101
101
  5. Generate analytical graphs
@@ -123,14 +123,14 @@ CLI_HELP_MSG = f"""
123
123
  2. Predict a YouTube video using a pretrained segmentation model at image size 320:
124
124
  yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
125
125
 
126
- 3. Val a pretrained detection model at batch-size 1 and image size 640:
126
+ 3. Validate a pretrained detection model at batch-size 1 and image size 640:
127
127
  yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
128
128
 
129
129
  4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
130
130
  yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
131
131
 
132
132
  5. Ultralytics solutions usage
133
- yolo solutions count or in {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
133
+ yolo solutions count or any of {list(SOLUTION_MAP.keys())[1:-1]} source="path/to/video.mp4"
134
134
 
135
135
  6. Run special commands:
136
136
  yolo help
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
+ # Argoverse-HD dataset (ring-front-center camera) by Argo AI: https://www.cs.cmu.edu/~mengtial/proj/streaming/
4
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
5
5
  # Example usage: yolo train data=Argoverse.yaml
6
6
  # parent
@@ -33,14 +33,15 @@ download: |
33
33
  from ultralytics.utils import TQDM
34
34
  from ultralytics.utils.downloads import download
35
35
 
36
- def argoverse2yolo(set):
36
+ def argoverse2yolo(annotation_file):
37
37
  """Convert Argoverse dataset annotations to YOLO format for object detection tasks."""
38
38
  labels = {}
39
- a = json.load(open(set, "rb"))
40
- for annot in TQDM(a["annotations"], desc=f"Converting {set} to YOLOv5 format..."):
39
+ with open(annotation_file, encoding="utf-8") as f:
40
+ a = json.load(f)
41
+ for annot in TQDM(a["annotations"], desc=f"Converting {annotation_file} to YOLO format..."):
41
42
  img_id = annot["image_id"]
42
43
  img_name = a["images"][img_id]["name"]
43
- img_label_name = f"{img_name[:-3]}txt"
44
+ img_label_name = f"{Path(img_name).stem}.txt"
44
45
 
45
46
  cls = annot["category_id"] # instance class id
46
47
  x_center, y_center, width, height = annot["bbox"]
@@ -49,7 +50,7 @@ download: |
49
50
  width /= 1920.0 # scale
50
51
  height /= 1200.0 # scale
51
52
 
52
- img_dir = set.parents[2] / "Argoverse-1.1" / "labels" / a["seq_dirs"][a["images"][annot["image_id"]]["sid"]]
53
+ img_dir = annotation_file.parents[2] / "Argoverse-1.1" / "labels" / a["seq_dirs"][a["images"][annot["image_id"]]["sid"]]
53
54
  if not img_dir.exists():
54
55
  img_dir.mkdir(parents=True, exist_ok=True)
55
56
 
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota1.5 ← downloads here (2GB)
9
+ # └── dota1.5 ← downloads here (2 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: DOTAv1.5 # dataset root dir
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota1 ← downloads here (2GB)
9
+ # └── dota1 ← downloads here (2 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: DOTAv1 # dataset root dir