dgenerate-ultralytics-headless 8.3.190__py3-none-any.whl → 8.3.191__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.190.dist-info → dgenerate_ultralytics_headless-8.3.191.dist-info}/METADATA +1 -1
- {dgenerate_ultralytics_headless-8.3.190.dist-info → dgenerate_ultralytics_headless-8.3.191.dist-info}/RECORD +102 -101
- tests/test_cuda.py +6 -5
- tests/test_exports.py +1 -6
- tests/test_python.py +1 -4
- tests/test_solutions.py +1 -1
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +16 -14
- ultralytics/cfg/datasets/VisDrone.yaml +4 -4
- ultralytics/data/annotator.py +6 -6
- ultralytics/data/augment.py +53 -51
- ultralytics/data/base.py +15 -13
- ultralytics/data/build.py +7 -4
- ultralytics/data/converter.py +9 -10
- ultralytics/data/dataset.py +24 -22
- ultralytics/data/loaders.py +13 -11
- ultralytics/data/split.py +4 -3
- ultralytics/data/split_dota.py +14 -12
- ultralytics/data/utils.py +29 -23
- ultralytics/engine/exporter.py +2 -2
- ultralytics/engine/model.py +16 -14
- ultralytics/engine/predictor.py +8 -6
- ultralytics/engine/results.py +54 -52
- ultralytics/engine/trainer.py +7 -2
- ultralytics/engine/tuner.py +4 -3
- ultralytics/hub/google/__init__.py +7 -6
- ultralytics/hub/session.py +8 -6
- ultralytics/hub/utils.py +3 -4
- ultralytics/models/fastsam/model.py +8 -6
- ultralytics/models/nas/model.py +5 -3
- ultralytics/models/rtdetr/train.py +4 -3
- ultralytics/models/rtdetr/val.py +6 -4
- ultralytics/models/sam/amg.py +13 -10
- ultralytics/models/sam/model.py +3 -2
- ultralytics/models/sam/modules/blocks.py +21 -21
- ultralytics/models/sam/modules/decoders.py +11 -11
- ultralytics/models/sam/modules/encoders.py +25 -25
- ultralytics/models/sam/modules/memory_attention.py +9 -8
- ultralytics/models/sam/modules/sam.py +8 -10
- ultralytics/models/sam/modules/tiny_encoder.py +21 -20
- ultralytics/models/sam/modules/transformer.py +6 -5
- ultralytics/models/sam/modules/utils.py +7 -5
- ultralytics/models/sam/predict.py +32 -31
- ultralytics/models/utils/loss.py +29 -27
- ultralytics/models/utils/ops.py +10 -8
- ultralytics/models/yolo/classify/train.py +7 -5
- ultralytics/models/yolo/classify/val.py +10 -8
- ultralytics/models/yolo/detect/predict.py +1 -1
- ultralytics/models/yolo/detect/train.py +8 -6
- ultralytics/models/yolo/detect/val.py +21 -19
- ultralytics/models/yolo/model.py +14 -14
- ultralytics/models/yolo/obb/train.py +5 -3
- ultralytics/models/yolo/obb/val.py +11 -9
- ultralytics/models/yolo/pose/train.py +7 -5
- ultralytics/models/yolo/pose/val.py +11 -9
- ultralytics/models/yolo/segment/train.py +4 -5
- ultralytics/models/yolo/segment/val.py +12 -10
- ultralytics/models/yolo/world/train.py +9 -7
- ultralytics/models/yolo/yoloe/train.py +7 -6
- ultralytics/models/yolo/yoloe/val.py +10 -8
- ultralytics/nn/autobackend.py +17 -19
- ultralytics/nn/modules/block.py +12 -12
- ultralytics/nn/modules/conv.py +4 -3
- ultralytics/nn/modules/head.py +41 -37
- ultralytics/nn/modules/transformer.py +22 -21
- ultralytics/nn/tasks.py +2 -2
- ultralytics/nn/text_model.py +6 -5
- ultralytics/solutions/analytics.py +7 -5
- ultralytics/solutions/config.py +12 -10
- ultralytics/solutions/distance_calculation.py +3 -3
- ultralytics/solutions/heatmap.py +4 -2
- ultralytics/solutions/object_counter.py +5 -3
- ultralytics/solutions/parking_management.py +4 -2
- ultralytics/solutions/region_counter.py +7 -5
- ultralytics/solutions/similarity_search.py +5 -3
- ultralytics/solutions/solutions.py +38 -36
- ultralytics/solutions/streamlit_inference.py +8 -7
- ultralytics/trackers/bot_sort.py +11 -9
- ultralytics/trackers/byte_tracker.py +17 -15
- ultralytics/trackers/utils/gmc.py +4 -3
- ultralytics/utils/__init__.py +16 -88
- ultralytics/utils/autobatch.py +3 -2
- ultralytics/utils/autodevice.py +10 -10
- ultralytics/utils/benchmarks.py +11 -10
- ultralytics/utils/callbacks/comet.py +9 -9
- ultralytics/utils/checks.py +17 -26
- ultralytics/utils/export.py +12 -11
- ultralytics/utils/files.py +8 -7
- ultralytics/utils/git.py +139 -0
- ultralytics/utils/instance.py +8 -7
- ultralytics/utils/loss.py +15 -13
- ultralytics/utils/metrics.py +62 -62
- ultralytics/utils/ops.py +3 -2
- ultralytics/utils/patches.py +6 -4
- ultralytics/utils/plotting.py +18 -16
- ultralytics/utils/torch_utils.py +4 -2
- ultralytics/utils/tqdm.py +15 -12
- ultralytics/utils/triton.py +3 -2
- {dgenerate_ultralytics_headless-8.3.190.dist-info → dgenerate_ultralytics_headless-8.3.191.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.190.dist-info → dgenerate_ultralytics_headless-8.3.191.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.190.dist-info → dgenerate_ultralytics_headless-8.3.191.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.190.dist-info → dgenerate_ultralytics_headless-8.3.191.dist-info}/top_level.txt +0 -0
@@ -1,7 +1,9 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
from pathlib import Path
|
4
|
-
from typing import Any
|
6
|
+
from typing import Any
|
5
7
|
|
6
8
|
import numpy as np
|
7
9
|
import torch
|
@@ -70,7 +72,7 @@ class OBBValidator(DetectionValidator):
|
|
70
72
|
self.is_dota = isinstance(val, str) and "DOTA" in val # check if dataset is DOTA format
|
71
73
|
self.confusion_matrix.task = "obb" # set confusion matrix task to 'obb'
|
72
74
|
|
73
|
-
def _process_batch(self, preds:
|
75
|
+
def _process_batch(self, preds: dict[str, torch.Tensor], batch: dict[str, torch.Tensor]) -> dict[str, np.ndarray]:
|
74
76
|
"""
|
75
77
|
Compute the correct prediction matrix for a batch of detections and ground truth bounding boxes.
|
76
78
|
|
@@ -96,7 +98,7 @@ class OBBValidator(DetectionValidator):
|
|
96
98
|
iou = batch_probiou(batch["bboxes"], preds["bboxes"])
|
97
99
|
return {"tp": self.match_predictions(preds["cls"], batch["cls"], iou).cpu().numpy()}
|
98
100
|
|
99
|
-
def postprocess(self, preds: torch.Tensor) ->
|
101
|
+
def postprocess(self, preds: torch.Tensor) -> list[dict[str, torch.Tensor]]:
|
100
102
|
"""
|
101
103
|
Args:
|
102
104
|
preds (torch.Tensor): Raw predictions from the model.
|
@@ -109,7 +111,7 @@ class OBBValidator(DetectionValidator):
|
|
109
111
|
pred["bboxes"] = torch.cat([pred["bboxes"], pred.pop("extra")], dim=-1) # concatenate angle
|
110
112
|
return preds
|
111
113
|
|
112
|
-
def _prepare_batch(self, si: int, batch:
|
114
|
+
def _prepare_batch(self, si: int, batch: dict[str, Any]) -> dict[str, Any]:
|
113
115
|
"""
|
114
116
|
Prepare batch data for OBB validation with proper scaling and formatting.
|
115
117
|
|
@@ -143,7 +145,7 @@ class OBBValidator(DetectionValidator):
|
|
143
145
|
"im_file": batch["im_file"][si],
|
144
146
|
}
|
145
147
|
|
146
|
-
def plot_predictions(self, batch:
|
148
|
+
def plot_predictions(self, batch: dict[str, Any], preds: list[torch.Tensor], ni: int) -> None:
|
147
149
|
"""
|
148
150
|
Plot predicted bounding boxes on input images and save the result.
|
149
151
|
|
@@ -163,7 +165,7 @@ class OBBValidator(DetectionValidator):
|
|
163
165
|
p["bboxes"][:, :4] = ops.xywh2xyxy(p["bboxes"][:, :4]) # convert to xyxy format for plotting
|
164
166
|
super().plot_predictions(batch, preds, ni) # plot bboxes
|
165
167
|
|
166
|
-
def pred_to_json(self, predn:
|
168
|
+
def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None:
|
167
169
|
"""
|
168
170
|
Convert YOLO predictions to COCO JSON format with rotated bounding box information.
|
169
171
|
|
@@ -194,7 +196,7 @@ class OBBValidator(DetectionValidator):
|
|
194
196
|
}
|
195
197
|
)
|
196
198
|
|
197
|
-
def save_one_txt(self, predn:
|
199
|
+
def save_one_txt(self, predn: dict[str, torch.Tensor], save_conf: bool, shape: tuple[int, int], file: Path) -> None:
|
198
200
|
"""
|
199
201
|
Save YOLO OBB detections to a text file in normalized coordinates.
|
200
202
|
|
@@ -221,7 +223,7 @@ class OBBValidator(DetectionValidator):
|
|
221
223
|
obb=torch.cat([predn["bboxes"], predn["conf"].unsqueeze(-1), predn["cls"].unsqueeze(-1)], dim=1),
|
222
224
|
).save_txt(file, save_conf=save_conf)
|
223
225
|
|
224
|
-
def scale_preds(self, predn:
|
226
|
+
def scale_preds(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> dict[str, torch.Tensor]:
|
225
227
|
"""Scales predictions to the original image size."""
|
226
228
|
return {
|
227
229
|
**predn,
|
@@ -230,7 +232,7 @@ class OBBValidator(DetectionValidator):
|
|
230
232
|
),
|
231
233
|
}
|
232
234
|
|
233
|
-
def eval_json(self, stats:
|
235
|
+
def eval_json(self, stats: dict[str, Any]) -> dict[str, Any]:
|
234
236
|
"""
|
235
237
|
Evaluate YOLO output in JSON format and save predictions in DOTA format.
|
236
238
|
|
@@ -1,8 +1,10 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
from copy import copy
|
4
6
|
from pathlib import Path
|
5
|
-
from typing import Any
|
7
|
+
from typing import Any
|
6
8
|
|
7
9
|
from ultralytics.models import yolo
|
8
10
|
from ultralytics.nn.tasks import PoseModel
|
@@ -38,7 +40,7 @@ class PoseTrainer(yolo.detect.DetectionTrainer):
|
|
38
40
|
>>> trainer.train()
|
39
41
|
"""
|
40
42
|
|
41
|
-
def __init__(self, cfg=DEFAULT_CFG, overrides:
|
43
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides: dict[str, Any] | None = None, _callbacks=None):
|
42
44
|
"""
|
43
45
|
Initialize a PoseTrainer object for training YOLO pose estimation models.
|
44
46
|
|
@@ -73,8 +75,8 @@ class PoseTrainer(yolo.detect.DetectionTrainer):
|
|
73
75
|
|
74
76
|
def get_model(
|
75
77
|
self,
|
76
|
-
cfg:
|
77
|
-
weights:
|
78
|
+
cfg: str | Path | dict[str, Any] | None = None,
|
79
|
+
weights: str | Path | None = None,
|
78
80
|
verbose: bool = True,
|
79
81
|
) -> PoseModel:
|
80
82
|
"""
|
@@ -112,7 +114,7 @@ class PoseTrainer(yolo.detect.DetectionTrainer):
|
|
112
114
|
"""Plot training/validation metrics."""
|
113
115
|
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png
|
114
116
|
|
115
|
-
def get_dataset(self) ->
|
117
|
+
def get_dataset(self) -> dict[str, Any]:
|
116
118
|
"""
|
117
119
|
Retrieve the dataset and ensure it contains the required `kpt_shape` key.
|
118
120
|
|
@@ -1,7 +1,9 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
from pathlib import Path
|
4
|
-
from typing import Any
|
6
|
+
from typing import Any
|
5
7
|
|
6
8
|
import numpy as np
|
7
9
|
import torch
|
@@ -81,7 +83,7 @@ class PoseValidator(DetectionValidator):
|
|
81
83
|
"See https://github.com/ultralytics/ultralytics/issues/4031."
|
82
84
|
)
|
83
85
|
|
84
|
-
def preprocess(self, batch:
|
86
|
+
def preprocess(self, batch: dict[str, Any]) -> dict[str, Any]:
|
85
87
|
"""Preprocess batch by converting keypoints data to float and moving it to the device."""
|
86
88
|
batch = super().preprocess(batch)
|
87
89
|
batch["keypoints"] = batch["keypoints"].to(self.device).float()
|
@@ -116,7 +118,7 @@ class PoseValidator(DetectionValidator):
|
|
116
118
|
nkpt = self.kpt_shape[0]
|
117
119
|
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
|
118
120
|
|
119
|
-
def postprocess(self, preds: torch.Tensor) ->
|
121
|
+
def postprocess(self, preds: torch.Tensor) -> dict[str, torch.Tensor]:
|
120
122
|
"""
|
121
123
|
Postprocess YOLO predictions to extract and reshape keypoints for pose estimation.
|
122
124
|
|
@@ -146,7 +148,7 @@ class PoseValidator(DetectionValidator):
|
|
146
148
|
pred["keypoints"] = pred.pop("extra").view(-1, *self.kpt_shape) # remove extra if exists
|
147
149
|
return preds
|
148
150
|
|
149
|
-
def _prepare_batch(self, si: int, batch:
|
151
|
+
def _prepare_batch(self, si: int, batch: dict[str, Any]) -> dict[str, Any]:
|
150
152
|
"""
|
151
153
|
Prepare a batch for processing by converting keypoints to float and scaling to original dimensions.
|
152
154
|
|
@@ -170,7 +172,7 @@ class PoseValidator(DetectionValidator):
|
|
170
172
|
pbatch["keypoints"] = kpts
|
171
173
|
return pbatch
|
172
174
|
|
173
|
-
def _process_batch(self, preds:
|
175
|
+
def _process_batch(self, preds: dict[str, torch.Tensor], batch: dict[str, Any]) -> dict[str, np.ndarray]:
|
174
176
|
"""
|
175
177
|
Return correct prediction matrix by computing Intersection over Union (IoU) between detections and ground truth.
|
176
178
|
|
@@ -200,7 +202,7 @@ class PoseValidator(DetectionValidator):
|
|
200
202
|
tp.update({"tp_p": tp_p}) # update tp with kpts IoU
|
201
203
|
return tp
|
202
204
|
|
203
|
-
def save_one_txt(self, predn:
|
205
|
+
def save_one_txt(self, predn: dict[str, torch.Tensor], save_conf: bool, shape: tuple[int, int], file: Path) -> None:
|
204
206
|
"""
|
205
207
|
Save YOLO pose detections to a text file in normalized coordinates.
|
206
208
|
|
@@ -224,7 +226,7 @@ class PoseValidator(DetectionValidator):
|
|
224
226
|
keypoints=predn["keypoints"],
|
225
227
|
).save_txt(file, save_conf=save_conf)
|
226
228
|
|
227
|
-
def pred_to_json(self, predn:
|
229
|
+
def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None:
|
228
230
|
"""
|
229
231
|
Convert YOLO predictions to COCO JSON format.
|
230
232
|
|
@@ -246,7 +248,7 @@ class PoseValidator(DetectionValidator):
|
|
246
248
|
for i, k in enumerate(kpts.flatten(1, 2).tolist()):
|
247
249
|
self.jdict[-len(kpts) + i]["keypoints"] = k # keypoints
|
248
250
|
|
249
|
-
def scale_preds(self, predn:
|
251
|
+
def scale_preds(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> dict[str, torch.Tensor]:
|
250
252
|
"""Scales predictions to the original image size."""
|
251
253
|
return {
|
252
254
|
**super().scale_preds(predn, pbatch),
|
@@ -258,7 +260,7 @@ class PoseValidator(DetectionValidator):
|
|
258
260
|
),
|
259
261
|
}
|
260
262
|
|
261
|
-
def eval_json(self, stats:
|
263
|
+
def eval_json(self, stats: dict[str, Any]) -> dict[str, Any]:
|
262
264
|
"""Evaluate object detection model using COCO JSON format."""
|
263
265
|
anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" # annotations
|
264
266
|
pred_json = self.save_dir / "predictions.json" # predictions
|
@@ -1,8 +1,9 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
from copy import copy
|
4
6
|
from pathlib import Path
|
5
|
-
from typing import Dict, Optional, Union
|
6
7
|
|
7
8
|
from ultralytics.models import yolo
|
8
9
|
from ultralytics.nn.tasks import SegmentationModel
|
@@ -27,7 +28,7 @@ class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
|
27
28
|
>>> trainer.train()
|
28
29
|
"""
|
29
30
|
|
30
|
-
def __init__(self, cfg=DEFAULT_CFG, overrides:
|
31
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides: dict | None = None, _callbacks=None):
|
31
32
|
"""
|
32
33
|
Initialize a SegmentationTrainer object.
|
33
34
|
|
@@ -50,9 +51,7 @@ class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
|
50
51
|
overrides["task"] = "segment"
|
51
52
|
super().__init__(cfg, overrides, _callbacks)
|
52
53
|
|
53
|
-
def get_model(
|
54
|
-
self, cfg: Optional[Union[Dict, str]] = None, weights: Optional[Union[str, Path]] = None, verbose: bool = True
|
55
|
-
):
|
54
|
+
def get_model(self, cfg: dict | str | None = None, weights: str | Path | None = None, verbose: bool = True):
|
56
55
|
"""
|
57
56
|
Initialize and return a SegmentationModel with specified configuration and weights.
|
58
57
|
|
@@ -1,8 +1,10 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
from multiprocessing.pool import ThreadPool
|
4
6
|
from pathlib import Path
|
5
|
-
from typing import Any
|
7
|
+
from typing import Any
|
6
8
|
|
7
9
|
import numpy as np
|
8
10
|
import torch
|
@@ -50,7 +52,7 @@ class SegmentationValidator(DetectionValidator):
|
|
50
52
|
self.args.task = "segment"
|
51
53
|
self.metrics = SegmentMetrics()
|
52
54
|
|
53
|
-
def preprocess(self, batch:
|
55
|
+
def preprocess(self, batch: dict[str, Any]) -> dict[str, Any]:
|
54
56
|
"""
|
55
57
|
Preprocess batch of images for YOLO segmentation validation.
|
56
58
|
|
@@ -93,7 +95,7 @@ class SegmentationValidator(DetectionValidator):
|
|
93
95
|
"mAP50-95)",
|
94
96
|
)
|
95
97
|
|
96
|
-
def postprocess(self, preds:
|
98
|
+
def postprocess(self, preds: list[torch.Tensor]) -> list[dict[str, torch.Tensor]]:
|
97
99
|
"""
|
98
100
|
Post-process YOLO predictions and return output detections with proto.
|
99
101
|
|
@@ -119,7 +121,7 @@ class SegmentationValidator(DetectionValidator):
|
|
119
121
|
)
|
120
122
|
return preds
|
121
123
|
|
122
|
-
def _prepare_batch(self, si: int, batch:
|
124
|
+
def _prepare_batch(self, si: int, batch: dict[str, Any]) -> dict[str, Any]:
|
123
125
|
"""
|
124
126
|
Prepare a batch for training or inference by processing images and targets.
|
125
127
|
|
@@ -135,7 +137,7 @@ class SegmentationValidator(DetectionValidator):
|
|
135
137
|
prepared_batch["masks"] = batch["masks"][midx]
|
136
138
|
return prepared_batch
|
137
139
|
|
138
|
-
def _process_batch(self, preds:
|
140
|
+
def _process_batch(self, preds: dict[str, torch.Tensor], batch: dict[str, Any]) -> dict[str, np.ndarray]:
|
139
141
|
"""
|
140
142
|
Compute correct prediction matrix for a batch based on bounding boxes and optional masks.
|
141
143
|
|
@@ -174,7 +176,7 @@ class SegmentationValidator(DetectionValidator):
|
|
174
176
|
tp.update({"tp_m": tp_m}) # update tp with mask IoU
|
175
177
|
return tp
|
176
178
|
|
177
|
-
def plot_predictions(self, batch:
|
179
|
+
def plot_predictions(self, batch: dict[str, Any], preds: list[dict[str, torch.Tensor]], ni: int) -> None:
|
178
180
|
"""
|
179
181
|
Plot batch predictions with masks and bounding boxes.
|
180
182
|
|
@@ -190,7 +192,7 @@ class SegmentationValidator(DetectionValidator):
|
|
190
192
|
p["masks"] = torch.as_tensor(masks[:50], dtype=torch.uint8).cpu()
|
191
193
|
super().plot_predictions(batch, preds, ni, max_det=50) # plot bboxes
|
192
194
|
|
193
|
-
def save_one_txt(self, predn: torch.Tensor, save_conf: bool, shape:
|
195
|
+
def save_one_txt(self, predn: torch.Tensor, save_conf: bool, shape: tuple[int, int], file: Path) -> None:
|
194
196
|
"""
|
195
197
|
Save YOLO detections to a txt file in normalized coordinates in a specific format.
|
196
198
|
|
@@ -210,7 +212,7 @@ class SegmentationValidator(DetectionValidator):
|
|
210
212
|
masks=torch.as_tensor(predn["masks"], dtype=torch.uint8),
|
211
213
|
).save_txt(file, save_conf=save_conf)
|
212
214
|
|
213
|
-
def pred_to_json(self, predn:
|
215
|
+
def pred_to_json(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> None:
|
214
216
|
"""
|
215
217
|
Save one JSON result for COCO evaluation.
|
216
218
|
|
@@ -233,7 +235,7 @@ class SegmentationValidator(DetectionValidator):
|
|
233
235
|
for i, r in enumerate(rles):
|
234
236
|
self.jdict[-len(rles) + i]["segmentation"] = r # segmentation
|
235
237
|
|
236
|
-
def scale_preds(self, predn:
|
238
|
+
def scale_preds(self, predn: dict[str, torch.Tensor], pbatch: dict[str, Any]) -> dict[str, torch.Tensor]:
|
237
239
|
"""Scales predictions to the original image size."""
|
238
240
|
return {
|
239
241
|
**super().scale_preds(predn, pbatch),
|
@@ -244,7 +246,7 @@ class SegmentationValidator(DetectionValidator):
|
|
244
246
|
),
|
245
247
|
}
|
246
248
|
|
247
|
-
def eval_json(self, stats:
|
249
|
+
def eval_json(self, stats: dict[str, Any]) -> dict[str, Any]:
|
248
250
|
"""Return COCO-style instance segmentation evaluation metrics."""
|
249
251
|
pred_json = self.save_dir / "predictions.json" # predictions
|
250
252
|
anno_json = (
|
@@ -1,8 +1,10 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
import itertools
|
4
6
|
from pathlib import Path
|
5
|
-
from typing import Any
|
7
|
+
from typing import Any
|
6
8
|
|
7
9
|
import torch
|
8
10
|
|
@@ -51,7 +53,7 @@ class WorldTrainer(DetectionTrainer):
|
|
51
53
|
>>> trainer.train()
|
52
54
|
"""
|
53
55
|
|
54
|
-
def __init__(self, cfg=DEFAULT_CFG, overrides:
|
56
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides: dict[str, Any] | None = None, _callbacks=None):
|
55
57
|
"""
|
56
58
|
Initialize a WorldTrainer object with given arguments.
|
57
59
|
|
@@ -65,7 +67,7 @@ class WorldTrainer(DetectionTrainer):
|
|
65
67
|
super().__init__(cfg, overrides, _callbacks)
|
66
68
|
self.text_embeddings = None
|
67
69
|
|
68
|
-
def get_model(self, cfg=None, weights:
|
70
|
+
def get_model(self, cfg=None, weights: str | None = None, verbose: bool = True) -> WorldModel:
|
69
71
|
"""
|
70
72
|
Return WorldModel initialized with specified config and weights.
|
71
73
|
|
@@ -91,7 +93,7 @@ class WorldTrainer(DetectionTrainer):
|
|
91
93
|
|
92
94
|
return model
|
93
95
|
|
94
|
-
def build_dataset(self, img_path: str, mode: str = "train", batch:
|
96
|
+
def build_dataset(self, img_path: str, mode: str = "train", batch: int | None = None):
|
95
97
|
"""
|
96
98
|
Build YOLO Dataset for training or validation.
|
97
99
|
|
@@ -111,7 +113,7 @@ class WorldTrainer(DetectionTrainer):
|
|
111
113
|
self.set_text_embeddings([dataset], batch) # cache text embeddings to accelerate training
|
112
114
|
return dataset
|
113
115
|
|
114
|
-
def set_text_embeddings(self, datasets:
|
116
|
+
def set_text_embeddings(self, datasets: list[Any], batch: int | None) -> None:
|
115
117
|
"""
|
116
118
|
Set text embeddings for datasets to accelerate training by caching category names.
|
117
119
|
|
@@ -137,7 +139,7 @@ class WorldTrainer(DetectionTrainer):
|
|
137
139
|
)
|
138
140
|
self.text_embeddings = text_embeddings
|
139
141
|
|
140
|
-
def generate_text_embeddings(self, texts:
|
142
|
+
def generate_text_embeddings(self, texts: list[str], batch: int, cache_dir: Path) -> dict[str, torch.Tensor]:
|
141
143
|
"""
|
142
144
|
Generate text embeddings for a list of text samples.
|
143
145
|
|
@@ -163,7 +165,7 @@ class WorldTrainer(DetectionTrainer):
|
|
163
165
|
torch.save(txt_map, cache_path)
|
164
166
|
return txt_map
|
165
167
|
|
166
|
-
def preprocess_batch(self, batch:
|
168
|
+
def preprocess_batch(self, batch: dict[str, Any]) -> dict[str, Any]:
|
167
169
|
"""Preprocess a batch of images and text for YOLOWorld training."""
|
168
170
|
batch = DetectionTrainer.preprocess_batch(self, batch)
|
169
171
|
|
@@ -1,9 +1,10 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
import itertools
|
4
6
|
from copy import copy, deepcopy
|
5
7
|
from pathlib import Path
|
6
|
-
from typing import Dict, List, Optional, Union
|
7
8
|
|
8
9
|
import torch
|
9
10
|
|
@@ -34,7 +35,7 @@ class YOLOETrainer(DetectionTrainer):
|
|
34
35
|
build_dataset: Build YOLO dataset with multi-modal support for training.
|
35
36
|
"""
|
36
37
|
|
37
|
-
def __init__(self, cfg=DEFAULT_CFG, overrides:
|
38
|
+
def __init__(self, cfg=DEFAULT_CFG, overrides: dict | None = None, _callbacks=None):
|
38
39
|
"""
|
39
40
|
Initialize the YOLOE Trainer with specified configurations.
|
40
41
|
|
@@ -89,7 +90,7 @@ class YOLOETrainer(DetectionTrainer):
|
|
89
90
|
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
90
91
|
)
|
91
92
|
|
92
|
-
def build_dataset(self, img_path: str, mode: str = "train", batch:
|
93
|
+
def build_dataset(self, img_path: str, mode: str = "train", batch: int | None = None):
|
93
94
|
"""
|
94
95
|
Build YOLO Dataset.
|
95
96
|
|
@@ -174,7 +175,7 @@ class YOLOETrainerFromScratch(YOLOETrainer, WorldTrainerFromScratch):
|
|
174
175
|
generate_text_embeddings: Generate and cache text embeddings for training.
|
175
176
|
"""
|
176
177
|
|
177
|
-
def build_dataset(self, img_path:
|
178
|
+
def build_dataset(self, img_path: list[str] | str, mode: str = "train", batch: int | None = None):
|
178
179
|
"""
|
179
180
|
Build YOLO Dataset for training or validation.
|
180
181
|
|
@@ -201,7 +202,7 @@ class YOLOETrainerFromScratch(YOLOETrainer, WorldTrainerFromScratch):
|
|
201
202
|
batch["txt_feats"] = txt_feats
|
202
203
|
return batch
|
203
204
|
|
204
|
-
def generate_text_embeddings(self, texts:
|
205
|
+
def generate_text_embeddings(self, texts: list[str], batch: int, cache_dir: Path):
|
205
206
|
"""
|
206
207
|
Generate text embeddings for a list of text samples.
|
207
208
|
|
@@ -285,7 +286,7 @@ class YOLOEVPTrainer(YOLOETrainerFromScratch):
|
|
285
286
|
preprocess_batch: Preprocess batches with visual prompts.
|
286
287
|
"""
|
287
288
|
|
288
|
-
def build_dataset(self, img_path:
|
289
|
+
def build_dataset(self, img_path: list[str] | str, mode: str = "train", batch: int | None = None):
|
289
290
|
"""
|
290
291
|
Build YOLO Dataset for training or validation with visual prompts.
|
291
292
|
|
@@ -1,8 +1,10 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
from copy import deepcopy
|
4
6
|
from pathlib import Path
|
5
|
-
from typing import Any
|
7
|
+
from typing import Any
|
6
8
|
|
7
9
|
import torch
|
8
10
|
from torch.nn import functional as F
|
@@ -96,14 +98,14 @@ class YOLOEDetectValidator(DetectionValidator):
|
|
96
98
|
visual_pe[cls_visual_num == 0] = 0
|
97
99
|
return visual_pe.unsqueeze(0)
|
98
100
|
|
99
|
-
def preprocess(self, batch:
|
101
|
+
def preprocess(self, batch: dict[str, Any]) -> dict[str, Any]:
|
100
102
|
"""Preprocess batch data, ensuring visuals are on the same device as images."""
|
101
103
|
batch = super().preprocess(batch)
|
102
104
|
if "visuals" in batch:
|
103
105
|
batch["visuals"] = batch["visuals"].to(batch["img"].device)
|
104
106
|
return batch
|
105
107
|
|
106
|
-
def get_vpe_dataloader(self, data:
|
108
|
+
def get_vpe_dataloader(self, data: dict[str, Any]) -> torch.utils.data.DataLoader:
|
107
109
|
"""
|
108
110
|
Create a dataloader for LVIS training visual prompt samples.
|
109
111
|
|
@@ -141,11 +143,11 @@ class YOLOEDetectValidator(DetectionValidator):
|
|
141
143
|
@smart_inference_mode()
|
142
144
|
def __call__(
|
143
145
|
self,
|
144
|
-
trainer:
|
145
|
-
model:
|
146
|
-
refer_data:
|
146
|
+
trainer: Any | None = None,
|
147
|
+
model: YOLOEModel | str | None = None,
|
148
|
+
refer_data: str | None = None,
|
147
149
|
load_vp: bool = False,
|
148
|
-
) ->
|
150
|
+
) -> dict[str, Any]:
|
149
151
|
"""
|
150
152
|
Run validation on the model using either text or visual prompt embeddings.
|
151
153
|
|
@@ -186,7 +188,7 @@ class YOLOEDetectValidator(DetectionValidator):
|
|
186
188
|
if isinstance(model, (str, Path)):
|
187
189
|
from ultralytics.nn.tasks import attempt_load_weights
|
188
190
|
|
189
|
-
model = attempt_load_weights(model, device=self.device
|
191
|
+
model = attempt_load_weights(model, device=self.device)
|
190
192
|
model.eval().to(self.device)
|
191
193
|
data = check_det_dataset(refer_data or self.args.data)
|
192
194
|
names = [name.split("/", 1)[0] for name in list(data["names"].values())]
|
ultralytics/nn/autobackend.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
|
+
from __future__ import annotations
|
4
|
+
|
3
5
|
import ast
|
4
6
|
import json
|
5
7
|
import platform
|
6
8
|
import zipfile
|
7
9
|
from collections import OrderedDict, namedtuple
|
8
10
|
from pathlib import Path
|
9
|
-
from typing import Any
|
11
|
+
from typing import Any
|
10
12
|
|
11
13
|
import cv2
|
12
14
|
import numpy as np
|
@@ -19,7 +21,7 @@ from ultralytics.utils.checks import check_requirements, check_suffix, check_ver
|
|
19
21
|
from ultralytics.utils.downloads import attempt_download_asset, is_url
|
20
22
|
|
21
23
|
|
22
|
-
def check_class_names(names:
|
24
|
+
def check_class_names(names: list | dict) -> dict[int, str]:
|
23
25
|
"""
|
24
26
|
Check class names and convert to dict format if needed.
|
25
27
|
|
@@ -49,7 +51,7 @@ def check_class_names(names: Union[List, Dict]) -> Dict[int, str]:
|
|
49
51
|
return names
|
50
52
|
|
51
53
|
|
52
|
-
def default_class_names(data:
|
54
|
+
def default_class_names(data: str | Path | None = None) -> dict[int, str]:
|
53
55
|
"""
|
54
56
|
Apply default class names to an input YAML file or return numerical class names.
|
55
57
|
|
@@ -134,10 +136,10 @@ class AutoBackend(nn.Module):
|
|
134
136
|
@torch.no_grad()
|
135
137
|
def __init__(
|
136
138
|
self,
|
137
|
-
model:
|
139
|
+
model: str | torch.nn.Module = "yolo11n.pt",
|
138
140
|
device: torch.device = torch.device("cpu"),
|
139
141
|
dnn: bool = False,
|
140
|
-
data:
|
142
|
+
data: str | Path | None = None,
|
141
143
|
fp16: bool = False,
|
142
144
|
fuse: bool = True,
|
143
145
|
verbose: bool = True,
|
@@ -146,7 +148,7 @@ class AutoBackend(nn.Module):
|
|
146
148
|
Initialize the AutoBackend for inference.
|
147
149
|
|
148
150
|
Args:
|
149
|
-
model (str |
|
151
|
+
model (str | torch.nn.Module): Path to the model weights file or a module instance.
|
150
152
|
device (torch.device): Device to run the model on.
|
151
153
|
dnn (bool): Use OpenCV DNN module for ONNX inference.
|
152
154
|
data (str | Path, optional): Path to the additional data.yaml file containing class names.
|
@@ -155,7 +157,6 @@ class AutoBackend(nn.Module):
|
|
155
157
|
verbose (bool): Enable verbose logging.
|
156
158
|
"""
|
157
159
|
super().__init__()
|
158
|
-
w = str(model[0] if isinstance(model, list) else model)
|
159
160
|
nn_module = isinstance(model, torch.nn.Module)
|
160
161
|
(
|
161
162
|
pt,
|
@@ -175,7 +176,7 @@ class AutoBackend(nn.Module):
|
|
175
176
|
imx,
|
176
177
|
rknn,
|
177
178
|
triton,
|
178
|
-
) = self._model_type(
|
179
|
+
) = self._model_type("" if nn_module else model)
|
179
180
|
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
|
180
181
|
nhwc = coreml or saved_model or pb or tflite or edgetpu or rknn # BHWC formats (vs torch BCWH)
|
181
182
|
stride, ch = 32, 3 # default stride and channels
|
@@ -189,8 +190,7 @@ class AutoBackend(nn.Module):
|
|
189
190
|
cuda = False
|
190
191
|
|
191
192
|
# Download if not local
|
192
|
-
|
193
|
-
w = attempt_download_asset(w)
|
193
|
+
w = attempt_download_asset(model) if pt else model # weights path
|
194
194
|
|
195
195
|
# PyTorch (in-memory or file)
|
196
196
|
if nn_module or pt:
|
@@ -203,11 +203,9 @@ class AutoBackend(nn.Module):
|
|
203
203
|
model = model.fuse(verbose=verbose)
|
204
204
|
model = model.to(device)
|
205
205
|
else: # pt file
|
206
|
-
from ultralytics.nn.tasks import
|
206
|
+
from ultralytics.nn.tasks import attempt_load_one_weight
|
207
207
|
|
208
|
-
model =
|
209
|
-
model if isinstance(model, list) else w, device=device, inplace=True, fuse=fuse
|
210
|
-
)
|
208
|
+
model, _ = attempt_load_one_weight(model, device=device, fuse=fuse) # load model, ckpt
|
211
209
|
|
212
210
|
# Common PyTorch model processing
|
213
211
|
if hasattr(model, "kpt_shape"):
|
@@ -480,7 +478,7 @@ class AutoBackend(nn.Module):
|
|
480
478
|
|
481
479
|
# TF.js
|
482
480
|
elif tfjs:
|
483
|
-
raise NotImplementedError("
|
481
|
+
raise NotImplementedError("Ultralytics TF.js inference is not currently supported.")
|
484
482
|
|
485
483
|
# PaddlePaddle
|
486
484
|
elif paddle:
|
@@ -612,9 +610,9 @@ class AutoBackend(nn.Module):
|
|
612
610
|
im: torch.Tensor,
|
613
611
|
augment: bool = False,
|
614
612
|
visualize: bool = False,
|
615
|
-
embed:
|
613
|
+
embed: list | None = None,
|
616
614
|
**kwargs: Any,
|
617
|
-
) ->
|
615
|
+
) -> torch.Tensor | list[torch.Tensor]:
|
618
616
|
"""
|
619
617
|
Run inference on an AutoBackend model.
|
620
618
|
|
@@ -843,7 +841,7 @@ class AutoBackend(nn.Module):
|
|
843
841
|
"""
|
844
842
|
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
|
845
843
|
|
846
|
-
def warmup(self, imgsz:
|
844
|
+
def warmup(self, imgsz: tuple[int, int, int, int] = (1, 3, 640, 640)) -> None:
|
847
845
|
"""
|
848
846
|
Warm up the model by running one forward pass with a dummy input.
|
849
847
|
|
@@ -857,7 +855,7 @@ class AutoBackend(nn.Module):
|
|
857
855
|
self.forward(im) # warmup
|
858
856
|
|
859
857
|
@staticmethod
|
860
|
-
def _model_type(p: str = "path/to/model.pt") ->
|
858
|
+
def _model_type(p: str = "path/to/model.pt") -> list[bool]:
|
861
859
|
"""
|
862
860
|
Take a path to a model file and return the model type.
|
863
861
|
|