dgenerate-ultralytics-headless 8.3.160__py3-none-any.whl → 8.3.162__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/METADATA +9 -1
- {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/RECORD +67 -67
- tests/conftest.py +2 -2
- tests/test_python.py +4 -3
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/datasets/Argoverse.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -1
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/Objects365.yaml +1 -1
- ultralytics/cfg/datasets/SKU-110K.yaml +1 -1
- ultralytics/cfg/datasets/VOC.yaml +1 -1
- ultralytics/cfg/datasets/VisDrone.yaml +6 -3
- ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
- ultralytics/cfg/datasets/brain-tumor.yaml +1 -1
- ultralytics/cfg/datasets/carparts-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco-pose.yaml +1 -1
- ultralytics/cfg/datasets/coco.yaml +1 -1
- ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco128.yaml +1 -1
- ultralytics/cfg/datasets/coco8-grayscale.yaml +1 -1
- ultralytics/cfg/datasets/coco8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/coco8-pose.yaml +1 -1
- ultralytics/cfg/datasets/coco8-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco8.yaml +1 -1
- ultralytics/cfg/datasets/crack-seg.yaml +1 -1
- ultralytics/cfg/datasets/dog-pose.yaml +1 -1
- ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/dota8.yaml +1 -1
- ultralytics/cfg/datasets/hand-keypoints.yaml +1 -1
- ultralytics/cfg/datasets/lvis.yaml +1 -1
- ultralytics/cfg/datasets/medical-pills.yaml +1 -1
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/cfg/datasets/package-seg.yaml +1 -1
- ultralytics/cfg/datasets/signature.yaml +1 -1
- ultralytics/cfg/datasets/tiger-pose.yaml +1 -1
- ultralytics/cfg/datasets/xView.yaml +1 -1
- ultralytics/data/augment.py +2 -0
- ultralytics/data/converter.py +5 -7
- ultralytics/data/dataset.py +1 -1
- ultralytics/data/split.py +1 -1
- ultralytics/data/split_dota.py +1 -1
- ultralytics/engine/exporter.py +15 -5
- ultralytics/engine/results.py +1 -1
- ultralytics/engine/tuner.py +2 -2
- ultralytics/models/nas/model.py +2 -1
- ultralytics/models/sam/modules/tiny_encoder.py +1 -1
- ultralytics/models/yolo/detect/val.py +1 -1
- ultralytics/models/yolo/world/train.py +1 -1
- ultralytics/models/yolo/world/train_world.py +17 -9
- ultralytics/models/yolo/yoloe/train.py +1 -1
- ultralytics/nn/autobackend.py +7 -1
- ultralytics/nn/tasks.py +4 -3
- ultralytics/solutions/similarity_search.py +11 -12
- ultralytics/solutions/solutions.py +53 -54
- ultralytics/utils/__init__.py +1 -2
- ultralytics/utils/checks.py +21 -0
- ultralytics/utils/metrics.py +10 -9
- ultralytics/utils/patches.py +1 -2
- ultralytics/utils/plotting.py +2 -2
- ultralytics/utils/torch_utils.py +2 -1
- {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: dgenerate-ultralytics-headless
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.162
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -79,6 +79,14 @@ Requires-Dist: hub-sdk>=0.0.12; extra == "extra"
|
|
79
79
|
Requires-Dist: ipython; extra == "extra"
|
80
80
|
Requires-Dist: albumentations>=1.4.6; extra == "extra"
|
81
81
|
Requires-Dist: faster-coco-eval>=1.6.7; extra == "extra"
|
82
|
+
Provides-Extra: typing
|
83
|
+
Requires-Dist: pandas-stubs; extra == "typing"
|
84
|
+
Requires-Dist: scipy-stubs; extra == "typing"
|
85
|
+
Requires-Dist: types-pillow; extra == "typing"
|
86
|
+
Requires-Dist: types-psutil; extra == "typing"
|
87
|
+
Requires-Dist: types-pyyaml; extra == "typing"
|
88
|
+
Requires-Dist: types-requests; extra == "typing"
|
89
|
+
Requires-Dist: types-shapely; extra == "typing"
|
82
90
|
Dynamic: license-file
|
83
91
|
|
84
92
|
# Ultralytics Headless Builder
|
@@ -1,52 +1,52 @@
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
1
|
+
dgenerate_ultralytics_headless-8.3.162.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
2
2
|
tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
|
3
|
-
tests/conftest.py,sha256=
|
3
|
+
tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
|
4
4
|
tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
|
5
5
|
tests/test_cuda.py,sha256=-nQsfF3lGfqLm6cIeu_BCiXqLj7HzpL7R1GzPEc6z2I,8128
|
6
6
|
tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
|
7
7
|
tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
|
8
8
|
tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
|
9
|
-
tests/test_python.py,sha256=
|
9
|
+
tests/test_python.py,sha256=JJu-69IfuUf1dLK7Ko9elyPONiQ1yu7yhapMVIAt_KI,27907
|
10
10
|
tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
|
11
|
-
ultralytics/__init__.py,sha256=
|
11
|
+
ultralytics/__init__.py,sha256=mghg3KP-MAGasMWYrfuWs4NQuSHe4GXzeqmSc_T9E0k,730
|
12
12
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
13
13
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
14
14
|
ultralytics/cfg/__init__.py,sha256=VIpPHImhjb0XLJquGZrG_LBGZchtOtBSXR7HYTYV2GU,39602
|
15
15
|
ultralytics/cfg/default.yaml,sha256=oFG6llJO-Py5H-cR9qs-7FieJamroDLwpbrkhmfROOM,8307
|
16
|
-
ultralytics/cfg/datasets/Argoverse.yaml,sha256=
|
17
|
-
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=
|
18
|
-
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=
|
19
|
-
ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=
|
20
|
-
ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256
|
21
|
-
ultralytics/cfg/datasets/ImageNet.yaml,sha256=
|
22
|
-
ultralytics/cfg/datasets/Objects365.yaml,sha256=
|
23
|
-
ultralytics/cfg/datasets/SKU-110K.yaml,sha256=
|
24
|
-
ultralytics/cfg/datasets/VOC.yaml,sha256=
|
25
|
-
ultralytics/cfg/datasets/VisDrone.yaml,sha256=
|
26
|
-
ultralytics/cfg/datasets/african-wildlife.yaml,sha256=
|
27
|
-
ultralytics/cfg/datasets/brain-tumor.yaml,sha256=
|
28
|
-
ultralytics/cfg/datasets/carparts-seg.yaml,sha256=
|
29
|
-
ultralytics/cfg/datasets/coco-pose.yaml,sha256=
|
30
|
-
ultralytics/cfg/datasets/coco.yaml,sha256=
|
31
|
-
ultralytics/cfg/datasets/coco128-seg.yaml,sha256=
|
32
|
-
ultralytics/cfg/datasets/coco128.yaml,sha256=
|
33
|
-
ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=
|
34
|
-
ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=
|
35
|
-
ultralytics/cfg/datasets/coco8-pose.yaml,sha256=
|
36
|
-
ultralytics/cfg/datasets/coco8-seg.yaml,sha256=
|
37
|
-
ultralytics/cfg/datasets/coco8.yaml,sha256=
|
38
|
-
ultralytics/cfg/datasets/crack-seg.yaml,sha256=
|
39
|
-
ultralytics/cfg/datasets/dog-pose.yaml,sha256=
|
40
|
-
ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=
|
41
|
-
ultralytics/cfg/datasets/dota8.yaml,sha256=
|
42
|
-
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=
|
43
|
-
ultralytics/cfg/datasets/lvis.yaml,sha256=
|
44
|
-
ultralytics/cfg/datasets/medical-pills.yaml,sha256=
|
45
|
-
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=
|
46
|
-
ultralytics/cfg/datasets/package-seg.yaml,sha256=
|
47
|
-
ultralytics/cfg/datasets/signature.yaml,sha256=
|
48
|
-
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=
|
49
|
-
ultralytics/cfg/datasets/xView.yaml,sha256=
|
16
|
+
ultralytics/cfg/datasets/Argoverse.yaml,sha256=0mm20vJBZxxLQtc_Z3Op6zUjmJkINLi70hO6aw67Lwc,3263
|
17
|
+
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=aT3VKgkVPTaaRRjnpHEhIbgANU-yt7VsFjAf5562wqA,1212
|
18
|
+
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=Ydf8_hRfZkaFMEkDKw3as0msVV4KPD1JuFjVMYDqIMQ,1182
|
19
|
+
ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=JP6zk5GR2fufGGFmOMr57EnRj7kKh9-fIuInkdmXMlU,2145
|
20
|
+
ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=Cgokv3w-g6z1KnQ5ALuS9qTTwBzgN7vWroQuIajJIZo,978
|
21
|
+
ultralytics/cfg/datasets/ImageNet.yaml,sha256=1zci8FWwbkFwNHlAkfDUnWyoOKrFvkEXz1VNpVAizBg,42531
|
22
|
+
ultralytics/cfg/datasets/Objects365.yaml,sha256=EfhNwsYMqDCXc3kZfokvk4LYq1QZDKl-ZpfoecP7aOE,9355
|
23
|
+
ultralytics/cfg/datasets/SKU-110K.yaml,sha256=OBUCCRFr6UXrp6LkXZSXA92dSYCc6MrDP_0rlmmLrvI,2546
|
24
|
+
ultralytics/cfg/datasets/VOC.yaml,sha256=zVkCLoj6EbZm8gf8cOg8QbEIpsN6W6oreKmW2czTWeE,3788
|
25
|
+
ultralytics/cfg/datasets/VisDrone.yaml,sha256=iIAxa9F3CxG18d3SFrwqM8_8HFzObxEM3yyhWaQ8saQ,3282
|
26
|
+
ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SLSyIAOg9Kbx0lN7VApPDLGjAL2RKdYvzG1ErAZtwhc,918
|
27
|
+
ultralytics/cfg/datasets/brain-tumor.yaml,sha256=SWJOiFGvJfxe4oGxG35Pw5NXsBxMdYWEw5UlkRSr0kg,844
|
28
|
+
ultralytics/cfg/datasets/carparts-seg.yaml,sha256=liuHTeQOaztNMGr87Qtp0P8-h3VATSAB9FMfBOQ-rTo,1256
|
29
|
+
ultralytics/cfg/datasets/coco-pose.yaml,sha256=j_ynggAOE1aNpjG42QHMDTrYiPic8S0cnbNHXqmH7vY,1624
|
30
|
+
ultralytics/cfg/datasets/coco.yaml,sha256=E5OlAwkJkzhRI2BFIPnUE0VnzdQNDFhv2czDVS582BQ,2607
|
31
|
+
ultralytics/cfg/datasets/coco128-seg.yaml,sha256=04Pfr7RPgJM2hF_LpYYD2zIPqCyOJ2sWW23HO2qXoEI,1983
|
32
|
+
ultralytics/cfg/datasets/coco128.yaml,sha256=hNHjxEq57lRpcNYuN3dX7ockjhgQu7SdiXepcGApjdU,1966
|
33
|
+
ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=YfAJRbM2wWd37p1Jl7rOOoxiPH3rWRo5mddjUvJcFxg,1962
|
34
|
+
ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=Kaca3kaq8-iwtBOdmvJaETI-JzDNyjKbk7SSUWGUnO4,2064
|
35
|
+
ultralytics/cfg/datasets/coco8-pose.yaml,sha256=4S_0RSNNK_ccz1Qxp7wdO0-RjxwwhldTRpGahQnzIw8,1010
|
36
|
+
ultralytics/cfg/datasets/coco8-seg.yaml,sha256=8V59_ASLtTg3jsXtV03opU4TRwyFy2fsNUUSR791cB0,1914
|
37
|
+
ultralytics/cfg/datasets/coco8.yaml,sha256=aPefOD63vx1EJ4BhdeumSrYVoJIh2uMyIb6BTrEFk68,1889
|
38
|
+
ultralytics/cfg/datasets/crack-seg.yaml,sha256=8zkQD4eAeWjkxFQQGSTNvxla1b02Vuo8AlmLY7PZvjE,840
|
39
|
+
ultralytics/cfg/datasets/dog-pose.yaml,sha256=CjvPu8y_KBZFcXn8JOaeDzi1NkVYgd3M4yVazOSYUT0,895
|
40
|
+
ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=AD9LGIV0FdnHLJCsczU06SIOIHYOygr5owb69bi-Nk0,1217
|
41
|
+
ultralytics/cfg/datasets/dota8.yaml,sha256=cVmqA8SYVIY4Rp5y0oIPfw1Si2AZMPMDrFaV8ZRUnGI,1061
|
42
|
+
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=w_G5BmUKuWFb0yCbTOeWjGhz8ZAqAYeN7ECZpO37h3g,977
|
43
|
+
ultralytics/cfg/datasets/lvis.yaml,sha256=69E7zRFQxqdx6T7GhrLVR8XoZtfx4pwR7I3kobxmz2M,29704
|
44
|
+
ultralytics/cfg/datasets/medical-pills.yaml,sha256=1CtNFVtc2Lmo1Wjssh_hzAevo_mvkMuQGoLDGD7i2S0,836
|
45
|
+
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=GblFutr27lY3W2h9GyK8zUqq5svtF1EeEBoP5kbnd5o,12120
|
46
|
+
ultralytics/cfg/datasets/package-seg.yaml,sha256=gJZmxXNzmvPU4K2cmkPR44Lp6aGW_9J4EFcYqgrS4T4,852
|
47
|
+
ultralytics/cfg/datasets/signature.yaml,sha256=uqPSj6XCILKOmIn01GXKLXZqoouZvKx7tOusfF4hL5c,777
|
48
|
+
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=0f_Q45eOexla9-nKG8SDziK2ACZcND8wRZpXCKO3iO8,913
|
49
|
+
ultralytics/cfg/datasets/xView.yaml,sha256=46Z-TaZAXHXM85PoSWeI9mhpu__RB5TOtPAfo0cbAFM,5341
|
50
50
|
ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
|
51
51
|
ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
|
52
52
|
ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
|
@@ -106,26 +106,26 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
|
|
106
106
|
ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
|
107
107
|
ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
|
108
108
|
ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
|
109
|
-
ultralytics/data/augment.py,sha256=
|
109
|
+
ultralytics/data/augment.py,sha256=elMnIEubT1ywhH0tbppLbWW4dEs3-n5vnm8U8TzsDEw,129493
|
110
110
|
ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
|
111
111
|
ultralytics/data/build.py,sha256=13gPxCJIZRjgcNh7zbzanCgtyK6_oZM0ho9KQhHcM6c,11153
|
112
|
-
ultralytics/data/converter.py,sha256=
|
113
|
-
ultralytics/data/dataset.py,sha256=
|
112
|
+
ultralytics/data/converter.py,sha256=dExElV0vWd4EmDtZaFMC0clEmLdjRDIdFiXf01PUvQA,27134
|
113
|
+
ultralytics/data/dataset.py,sha256=0VjzciGleGGF_XN5fEnS3c5UT0r533HMmQ9DfEQ_lA4,36463
|
114
114
|
ultralytics/data/loaders.py,sha256=kTGO1P-HntpQk078i1ASyXYckDx9Z7Pe7o1YbePcjC4,31657
|
115
|
-
ultralytics/data/split.py,sha256=
|
116
|
-
ultralytics/data/split_dota.py,sha256=
|
115
|
+
ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
|
116
|
+
ultralytics/data/split_dota.py,sha256=rr-lLpTUVaFZMggV_fUYZdFVIJk_zbbSOpgB_Qp50_M,12893
|
117
117
|
ultralytics/data/utils.py,sha256=fJqVJkjaub-xT0cB1o40Hl1WIH1ljKINT0SJaJyZse4,36637
|
118
118
|
ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
|
119
119
|
ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
|
120
120
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
121
121
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
122
122
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
123
|
-
ultralytics/engine/exporter.py,sha256=
|
123
|
+
ultralytics/engine/exporter.py,sha256=oz6jsQbYapyc29Bw1DTQuDbk_RnOKphlVeLrCwQehs4,73261
|
124
124
|
ultralytics/engine/model.py,sha256=FmLwiKuItVNgoyXhAvesUnD3UeHBzCVzGHDrqB8J4ms,53453
|
125
125
|
ultralytics/engine/predictor.py,sha256=88zrgZP91ehwdeGl8BM_cQ_caeuwKIPDy3OzxcRBjTU,22474
|
126
|
-
ultralytics/engine/results.py,sha256=
|
126
|
+
ultralytics/engine/results.py,sha256=rLQlttkgPudiV0u0d6Xy5hKKr1x3SJL1zrXA5W5vw7Y,71999
|
127
127
|
ultralytics/engine/trainer.py,sha256=28FeqASvQRxCaK96SXDM-BfPJjqy5KNiWhf8v6GXTug,39785
|
128
|
-
ultralytics/engine/tuner.py,sha256=
|
128
|
+
ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
|
129
129
|
ultralytics/engine/validator.py,sha256=qftJUomb4A-6rSThtST3TccEbc_zTmzovCBBCSpYm3k,16671
|
130
130
|
ultralytics/hub/__init__.py,sha256=ulPtceI3hqud03mvqoXccBaa1e4nveYwC9cddyuBUlo,6599
|
131
131
|
ultralytics/hub/auth.py,sha256=5uMPzZt8aO-YsnEWADzc1qBUt9c30RTIfrGo5SWTrv4,6271
|
@@ -139,7 +139,7 @@ ultralytics/models/fastsam/predict.py,sha256=G-o8hs8W5XmqSN5G37zi6q9FglFnZSbD6qH
|
|
139
139
|
ultralytics/models/fastsam/utils.py,sha256=yuCXB4CVjRx8lDf61DP8B6qMx7TVf7AynQvdWREeFco,884
|
140
140
|
ultralytics/models/fastsam/val.py,sha256=oLxB8vBKTfiT7eBbTzvpqq_xNSvDOjGdP1J7egHGsCA,2041
|
141
141
|
ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
|
142
|
-
ultralytics/models/nas/model.py,sha256=
|
142
|
+
ultralytics/models/nas/model.py,sha256=CStfE5x08uPIJ-wY_8NYVmVlWiom5oTF9kT6jIKM5Sc,3873
|
143
143
|
ultralytics/models/nas/predict.py,sha256=J4UT7nwi_h63lJ3a_gYac-Ws8wFYingZINxMqSoaX5E,2706
|
144
144
|
ultralytics/models/nas/val.py,sha256=QUTE3zuhJLVqmDGd2n7iSSk7X6jKZCRxufFkBbyxYYo,1548
|
145
145
|
ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
|
@@ -158,7 +158,7 @@ ultralytics/models/sam/modules/decoders.py,sha256=-1fhBO47hA-3CzkU-PzkCK4Nsi_VJ_
|
|
158
158
|
ultralytics/models/sam/modules/encoders.py,sha256=f1cdGdmQ_3Vt7MKxMVNIgvEvYmVR8lM1uVocNnrrYrU,37392
|
159
159
|
ultralytics/models/sam/modules/memory_attention.py,sha256=UNUbVyF8m6NIdhGOvTAwb_lS6x_Had8Ek3OP5JJqcQU,13539
|
160
160
|
ultralytics/models/sam/modules/sam.py,sha256=LUNmH-1iFPLnl7qzLeLpRqgc82_b8xKNCszDo272rrM,55684
|
161
|
-
ultralytics/models/sam/modules/tiny_encoder.py,sha256=
|
161
|
+
ultralytics/models/sam/modules/tiny_encoder.py,sha256=lmUIeZ9-3M-C3YmJBs13W6t__dzeJloOl0qFR9Ll8ew,42241
|
162
162
|
ultralytics/models/sam/modules/transformer.py,sha256=dIcq1UyCRYIhTPeetVpdjRcqR_b_a5AkkYo-L3Cq6hE,14747
|
163
163
|
ultralytics/models/sam/modules/utils.py,sha256=0qxBCh4tTzXNT10-BiKbqH6QDjzhkmLz2OiVG7gQfww,16021
|
164
164
|
ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
@@ -173,7 +173,7 @@ ultralytics/models/yolo/classify/val.py,sha256=YakPxBVZCd85Kp4wFKx8KH6JJFiU7nkFS
|
|
173
173
|
ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
|
174
174
|
ultralytics/models/yolo/detect/predict.py,sha256=ySUsdIf8dw00bzWhcxN1jZwLWKPRT2M7-N7TNL3o4zo,5387
|
175
175
|
ultralytics/models/yolo/detect/train.py,sha256=HlaCoHJ6Y2TpCXXWabMRZApAYqBvjuM_YQJUV5JYCvw,9907
|
176
|
-
ultralytics/models/yolo/detect/val.py,sha256=
|
176
|
+
ultralytics/models/yolo/detect/val.py,sha256=qA3Jq4JDZ-sSAy0JMQcz2ncmhLqLRUughMNYLZ1YifE,20485
|
177
177
|
ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
|
178
178
|
ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
|
179
179
|
ultralytics/models/yolo/obb/train.py,sha256=bnYFAMur7Uvbw5Dc09-S2ge7B05iGX-t37Ksgc0ef6g,3921
|
@@ -187,16 +187,16 @@ ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHr
|
|
187
187
|
ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65rK-QH9mtNIw,3802
|
188
188
|
ultralytics/models/yolo/segment/val.py,sha256=AnvY0O7HhD5xZ2BE2artLTAVW4SNmHbVopBJsYRcmk8,12328
|
189
189
|
ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
|
190
|
-
ultralytics/models/yolo/world/train.py,sha256=
|
191
|
-
ultralytics/models/yolo/world/train_world.py,sha256=
|
190
|
+
ultralytics/models/yolo/world/train.py,sha256=wBKnSC-TvrKWM1Taxqwo13XcwGHwwAXzNYV1tmqcOpc,7845
|
191
|
+
ultralytics/models/yolo/world/train_world.py,sha256=OLS1ofDSfMBsEG07PjEMruvbaXzNEWs07FpPowHVffs,9306
|
192
192
|
ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
|
193
193
|
ultralytics/models/yolo/yoloe/predict.py,sha256=TAcT6fiWbV-jOewu9hx_shGI10VLF_6oSPf7jfatBWo,7041
|
194
|
-
ultralytics/models/yolo/yoloe/train.py,sha256=
|
194
|
+
ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
|
195
195
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
|
196
196
|
ultralytics/models/yolo/yoloe/val.py,sha256=yebPkxwKKt__cY05Zbh1YXg4_BKzzpcDc3Cv3FJ5SAA,9769
|
197
197
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
198
|
-
ultralytics/nn/autobackend.py,sha256=
|
199
|
-
ultralytics/nn/tasks.py,sha256=
|
198
|
+
ultralytics/nn/autobackend.py,sha256=n-2ADzX3Y2MRE8nHFeVvFCJFJP9rCbkkNbcufPZ24dE,41532
|
199
|
+
ultralytics/nn/tasks.py,sha256=vw_TNacAv-RN24rusFzKuYL6qRBD7cve8EpB7gOlU_8,72505
|
200
200
|
ultralytics/nn/text_model.py,sha256=cYwD-0el4VeToDBP4iPFOQGqyEQatJOBHrVyONL3K_s,15282
|
201
201
|
ultralytics/nn/modules/__init__.py,sha256=2nY0X69Z5DD5SWt6v3CUTZa5gXSzC9TQr3VTVqhyGho,3158
|
202
202
|
ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
|
@@ -219,8 +219,8 @@ ultralytics/solutions/parking_management.py,sha256=IfPUn15aelxz6YZNo9WYkVEl5IOVS
|
|
219
219
|
ultralytics/solutions/queue_management.py,sha256=u0VFzRqa0OxIWY7xXItsXEm073CzkQGFhhXG-6VK3SI,4393
|
220
220
|
ultralytics/solutions/region_counter.py,sha256=j6f5VAaE1JWGdWOecZpWMFp6yF1GdCnHjftN6CRybjQ,5967
|
221
221
|
ultralytics/solutions/security_alarm.py,sha256=U6FTbg3cthKLfWeLunsFhOJvB6GGmwYDDxZ3K0GCx-Q,6351
|
222
|
-
ultralytics/solutions/similarity_search.py,sha256=
|
223
|
-
ultralytics/solutions/solutions.py,sha256=
|
222
|
+
ultralytics/solutions/similarity_search.py,sha256=H9MPf8F5AvVfmb9hnng0FrIOTbLU_I-CkVHGpC81CE0,9496
|
223
|
+
ultralytics/solutions/solutions.py,sha256=KtoSUSxM4s-Ti5EAzT21pItuv70qlIOH6ymJP95Gl-E,37318
|
224
224
|
ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
|
225
225
|
ultralytics/solutions/streamlit_inference.py,sha256=SqL-YxU3RCxCKscH2AYUTkmJknilV9jCCco6ufqsFk4,10501
|
226
226
|
ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
|
@@ -235,11 +235,11 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
|
|
235
235
|
ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
|
236
236
|
ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
|
237
237
|
ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
|
238
|
-
ultralytics/utils/__init__.py,sha256=
|
238
|
+
ultralytics/utils/__init__.py,sha256=2xXw_PdASHKkAuOu3eaShJVqisQtFkF8nw5FyMuDUCQ,59401
|
239
239
|
ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
|
240
240
|
ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
|
241
241
|
ultralytics/utils/benchmarks.py,sha256=GlsR6SvD3qlus2hVj7SqSNErsejBlIxO0Y7hMc_cWHw,31041
|
242
|
-
ultralytics/utils/checks.py,sha256=
|
242
|
+
ultralytics/utils/checks.py,sha256=mkDl_BTLZyjfhYbFVSG6xYmxhB2s7wsQ62ugnhspqOc,34707
|
243
243
|
ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
|
244
244
|
ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkgc,22080
|
245
245
|
ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
|
@@ -247,12 +247,12 @@ ultralytics/utils/export.py,sha256=0gG_GZNRqHcORJbjQq_1MXEHc3UEfzPAdpOl2X5VoDc,1
|
|
247
247
|
ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
|
248
248
|
ultralytics/utils/instance.py,sha256=s97d-GXSSCluu-My2DFLAubdk_hf44BuVQ6OCROBrMc,18550
|
249
249
|
ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
|
250
|
-
ultralytics/utils/metrics.py,sha256=
|
250
|
+
ultralytics/utils/metrics.py,sha256=3nQsz3rAm8n65iqikRzU30Pd2x20FY60ZlWrCMv5ZYk,62225
|
251
251
|
ultralytics/utils/ops.py,sha256=Jkh80ujyi0XDQwNqCUYyomH8NQ145AH9doMUS8Vt8GE,34545
|
252
|
-
ultralytics/utils/patches.py,sha256=
|
253
|
-
ultralytics/utils/plotting.py,sha256=
|
252
|
+
ultralytics/utils/patches.py,sha256=tBAsNo_RyoFLL9OAzVuJmuoDLUJIPuTMByBYyblGG1A,6517
|
253
|
+
ultralytics/utils/plotting.py,sha256=LO-iR-k1UewV5vt4xXDUIirdmNEZdpfiQvLyIWqINPg,47171
|
254
254
|
ultralytics/utils/tal.py,sha256=aXawOnhn8ni65tJWIW-PYqWr_TRvltbHBjrTo7o6lDQ,20924
|
255
|
-
ultralytics/utils/torch_utils.py,sha256=
|
255
|
+
ultralytics/utils/torch_utils.py,sha256=D76Pvmw5OKh-vd4aJkOMO0dSLbM5WzGr7Hmds54hPEk,39233
|
256
256
|
ultralytics/utils/triton.py,sha256=M7qe4RztiADBJQEWQKaIQsp94ERFJ_8_DUHDR6TXEOM,5410
|
257
257
|
ultralytics/utils/tuner.py,sha256=bHr09Fz-0-t0ei55gX5wJh-obyiAQoicP7HUVM2I8qA,6826
|
258
258
|
ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
|
@@ -266,8 +266,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
|
|
266
266
|
ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
|
267
267
|
ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
|
268
268
|
ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
|
269
|
-
dgenerate_ultralytics_headless-8.3.
|
270
|
-
dgenerate_ultralytics_headless-8.3.
|
271
|
-
dgenerate_ultralytics_headless-8.3.
|
272
|
-
dgenerate_ultralytics_headless-8.3.
|
273
|
-
dgenerate_ultralytics_headless-8.3.
|
269
|
+
dgenerate_ultralytics_headless-8.3.162.dist-info/METADATA,sha256=UfLHf1X4fkaX0CaRKJlnrFild7jxSyqtYDBgouqcrd0,38672
|
270
|
+
dgenerate_ultralytics_headless-8.3.162.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
271
|
+
dgenerate_ultralytics_headless-8.3.162.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
272
|
+
dgenerate_ultralytics_headless-8.3.162.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
273
|
+
dgenerate_ultralytics_headless-8.3.162.dist-info/RECORD,,
|
tests/conftest.py
CHANGED
@@ -56,11 +56,11 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
|
|
56
56
|
from ultralytics.utils import WEIGHTS_DIR
|
57
57
|
|
58
58
|
# Remove files
|
59
|
-
models = [path for x in
|
59
|
+
models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
|
60
60
|
for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript"] + models:
|
61
61
|
Path(file).unlink(missing_ok=True)
|
62
62
|
|
63
63
|
# Remove directories
|
64
|
-
models = [path for x in
|
64
|
+
models = [path for x in {"*.mlpackage", "*_openvino_model"} for path in WEIGHTS_DIR.rglob(x)]
|
65
65
|
for directory in [WEIGHTS_DIR / "path with spaces", TMP.parents[1] / ".pytest_cache", TMP] + models:
|
66
66
|
shutil.rmtree(directory, ignore_errors=True)
|
tests/test_python.py
CHANGED
@@ -16,6 +16,7 @@ from tests import CFG, MODEL, MODELS, SOURCE, SOURCES_LIST, TASK_MODEL_DATA, TMP
|
|
16
16
|
from ultralytics import RTDETR, YOLO
|
17
17
|
from ultralytics.cfg import TASK2DATA, TASKS
|
18
18
|
from ultralytics.data.build import load_inference_source
|
19
|
+
from ultralytics.data.utils import check_det_dataset
|
19
20
|
from ultralytics.utils import (
|
20
21
|
ARM64,
|
21
22
|
ASSETS,
|
@@ -203,7 +204,7 @@ def test_track_stream(model):
|
|
203
204
|
@pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
|
204
205
|
def test_val(task: str, model: str, data: str) -> None:
|
205
206
|
"""Test the validation mode of the YOLO model."""
|
206
|
-
for plots in
|
207
|
+
for plots in {True, False}: # Test both cases i.e. plots=True and plots=False
|
207
208
|
metrics = YOLO(model).val(data=data, imgsz=32, plots=plots)
|
208
209
|
metrics.to_df()
|
209
210
|
metrics.to_csv()
|
@@ -389,7 +390,7 @@ def test_cfg_init():
|
|
389
390
|
check_dict_alignment({"a": 1}, {"b": 2})
|
390
391
|
copy_default_cfg()
|
391
392
|
(Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False)
|
392
|
-
[smart_value(x) for x in
|
393
|
+
[smart_value(x) for x in {"none", "true", "false"}]
|
393
394
|
|
394
395
|
|
395
396
|
def test_utils_init():
|
@@ -720,7 +721,7 @@ def test_grayscale(task: str, model: str, data: str) -> None:
|
|
720
721
|
if task == "classify": # not support grayscale classification yet
|
721
722
|
return
|
722
723
|
grayscale_data = Path(TMP) / f"{Path(data).stem}-grayscale.yaml"
|
723
|
-
data =
|
724
|
+
data = check_det_dataset(data)
|
724
725
|
data["channels"] = 1 # add additional channels key for grayscale
|
725
726
|
YAML.save(grayscale_data, data)
|
726
727
|
# remove npy files in train/val splits if exists, might be created by previous tests
|
ultralytics/__init__.py
CHANGED
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── Argoverse ← downloads here (31.5 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: Argoverse # dataset root dir
|
13
13
|
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
|
14
14
|
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
|
15
15
|
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota1.5 ← downloads here (2GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: DOTAv1.5 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 1411 images
|
14
14
|
val: images/val # val images (relative to 'path') 458 images
|
15
15
|
test: images/test # test images (optional) 937 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota1 ← downloads here (2GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: DOTAv1 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 1411 images
|
14
14
|
val: images/val # val images (relative to 'path') 458 images
|
15
15
|
test: images/test # test images (optional) 937 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── GlobalWheat2020 ← downloads here (7.0 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: GlobalWheat2020 # dataset root dir
|
13
13
|
train: # train images (relative to 'path') 3422 images
|
14
14
|
- images/arvalis_1
|
15
15
|
- images/arvalis_2
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── homeobjects-3K ← downloads here (390 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: homeobjects-3K # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 2285 images
|
14
14
|
val: valid/images # val images (relative to 'path') 404 images
|
15
15
|
test: # test images (relative to 'path')
|
@@ -10,7 +10,7 @@
|
|
10
10
|
# └── imagenet ← downloads here (144 GB)
|
11
11
|
|
12
12
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
13
|
-
path:
|
13
|
+
path: imagenet # dataset root dir
|
14
14
|
train: train # train images (relative to 'path') 1281167 images
|
15
15
|
val: val # val images (relative to 'path') 50000 images
|
16
16
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: Objects365 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 1742289 images
|
14
14
|
val: images/val # val images (relative to 'path') 80000 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── SKU-110K ← downloads here (13.6 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: SKU-110K # dataset root dir
|
13
13
|
train: train.txt # train images (relative to 'path') 8219 images
|
14
14
|
val: val.txt # val images (relative to 'path') 588 images
|
15
15
|
test: test.txt # test images (optional) 2936 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── VOC ← downloads here (2.8 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: VOC
|
13
13
|
train: # train images (relative to 'path') 16551 images
|
14
14
|
- images/train2012
|
15
15
|
- images/train2007
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── VisDrone ← downloads here (2.3 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: VisDrone # dataset root dir
|
13
13
|
train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
|
14
14
|
val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
|
15
15
|
test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
|
@@ -58,8 +58,11 @@ download: |
|
|
58
58
|
cls = int(row[5]) - 1
|
59
59
|
box = convert_box(img_size, tuple(map(int, row[:4])))
|
60
60
|
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
|
61
|
-
|
62
|
-
|
61
|
+
|
62
|
+
label_file = str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}")
|
63
|
+
with open(label_file, "w", encoding="utf-8") as fl:
|
64
|
+
fl.writelines(lines)
|
65
|
+
|
63
66
|
|
64
67
|
|
65
68
|
# Download
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── african-wildlife ← downloads here (100 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: african-wildlife # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 1052 images
|
14
14
|
val: valid/images # val images (relative to 'path') 225 images
|
15
15
|
test: test/images # test images (relative to 'path') 227 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── brain-tumor ← downloads here (4.05 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: brain-tumor # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 893 images
|
14
14
|
val: valid/images # val images (relative to 'path') 223 images
|
15
15
|
test: # test images (relative to 'path')
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── carparts-seg ← downloads here (132 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: carparts-seg # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 3516 images
|
14
14
|
val: valid/images # val images (relative to 'path') 276 images
|
15
15
|
test: test/images # test images (relative to 'path') 401 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco-pose ← downloads here (20.1 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco-pose # dataset root dir
|
13
13
|
train: train2017.txt # train images (relative to 'path') 56599 images
|
14
14
|
val: val2017.txt # val images (relative to 'path') 2346 images
|
15
15
|
test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco ← downloads here (20.1 GB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco # dataset root dir
|
13
13
|
train: train2017.txt # train images (relative to 'path') 118287 images
|
14
14
|
val: val2017.txt # val images (relative to 'path') 5000 images
|
15
15
|
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco128-seg ← downloads here (7 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco128-seg # dataset root dir
|
13
13
|
train: images/train2017 # train images (relative to 'path') 128 images
|
14
14
|
val: images/train2017 # val images (relative to 'path') 128 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco128 ← downloads here (7 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco128 # dataset root dir
|
13
13
|
train: images/train2017 # train images (relative to 'path') 128 images
|
14
14
|
val: images/train2017 # val images (relative to 'path') 128 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-grayscale ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-grayscale # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-multispectral ← downloads here (20.2 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-multispectral # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-pose ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-pose # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8-seg ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8-seg # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── coco8 ← downloads here (1 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: coco8 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
test: # test images (optional)
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── crack-seg ← downloads here (91.2 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: crack-seg # dataset root dir
|
13
13
|
train: train/images # train images (relative to 'path') 3717 images
|
14
14
|
val: valid/images # val images (relative to 'path') 112 images
|
15
15
|
test: test/images # test images (relative to 'path') 200 images
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dog-pose ← downloads here (337 MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: dog-pose # dataset root dir
|
13
13
|
train: train # train images (relative to 'path') 6773 images
|
14
14
|
val: val # val images (relative to 'path') 1703 images
|
15
15
|
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota8-multispectral ← downloads here (37.3MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: dota8-multispectral # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
|
@@ -9,7 +9,7 @@
|
|
9
9
|
# └── dota8 ← downloads here (1MB)
|
10
10
|
|
11
11
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
12
|
-
path:
|
12
|
+
path: dota8 # dataset root dir
|
13
13
|
train: images/train # train images (relative to 'path') 4 images
|
14
14
|
val: images/val # val images (relative to 'path') 4 images
|
15
15
|
|