dgenerate-ultralytics-headless 8.3.160__py3-none-any.whl → 8.3.162__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/METADATA +9 -1
  2. {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/RECORD +67 -67
  3. tests/conftest.py +2 -2
  4. tests/test_python.py +4 -3
  5. ultralytics/__init__.py +1 -1
  6. ultralytics/cfg/datasets/Argoverse.yaml +1 -1
  7. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  8. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  9. ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -1
  10. ultralytics/cfg/datasets/HomeObjects-3K.yaml +1 -1
  11. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  12. ultralytics/cfg/datasets/Objects365.yaml +1 -1
  13. ultralytics/cfg/datasets/SKU-110K.yaml +1 -1
  14. ultralytics/cfg/datasets/VOC.yaml +1 -1
  15. ultralytics/cfg/datasets/VisDrone.yaml +6 -3
  16. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  17. ultralytics/cfg/datasets/brain-tumor.yaml +1 -1
  18. ultralytics/cfg/datasets/carparts-seg.yaml +1 -1
  19. ultralytics/cfg/datasets/coco-pose.yaml +1 -1
  20. ultralytics/cfg/datasets/coco.yaml +1 -1
  21. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  22. ultralytics/cfg/datasets/coco128.yaml +1 -1
  23. ultralytics/cfg/datasets/coco8-grayscale.yaml +1 -1
  24. ultralytics/cfg/datasets/coco8-multispectral.yaml +1 -1
  25. ultralytics/cfg/datasets/coco8-pose.yaml +1 -1
  26. ultralytics/cfg/datasets/coco8-seg.yaml +1 -1
  27. ultralytics/cfg/datasets/coco8.yaml +1 -1
  28. ultralytics/cfg/datasets/crack-seg.yaml +1 -1
  29. ultralytics/cfg/datasets/dog-pose.yaml +1 -1
  30. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  31. ultralytics/cfg/datasets/dota8.yaml +1 -1
  32. ultralytics/cfg/datasets/hand-keypoints.yaml +1 -1
  33. ultralytics/cfg/datasets/lvis.yaml +1 -1
  34. ultralytics/cfg/datasets/medical-pills.yaml +1 -1
  35. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  36. ultralytics/cfg/datasets/package-seg.yaml +1 -1
  37. ultralytics/cfg/datasets/signature.yaml +1 -1
  38. ultralytics/cfg/datasets/tiger-pose.yaml +1 -1
  39. ultralytics/cfg/datasets/xView.yaml +1 -1
  40. ultralytics/data/augment.py +2 -0
  41. ultralytics/data/converter.py +5 -7
  42. ultralytics/data/dataset.py +1 -1
  43. ultralytics/data/split.py +1 -1
  44. ultralytics/data/split_dota.py +1 -1
  45. ultralytics/engine/exporter.py +15 -5
  46. ultralytics/engine/results.py +1 -1
  47. ultralytics/engine/tuner.py +2 -2
  48. ultralytics/models/nas/model.py +2 -1
  49. ultralytics/models/sam/modules/tiny_encoder.py +1 -1
  50. ultralytics/models/yolo/detect/val.py +1 -1
  51. ultralytics/models/yolo/world/train.py +1 -1
  52. ultralytics/models/yolo/world/train_world.py +17 -9
  53. ultralytics/models/yolo/yoloe/train.py +1 -1
  54. ultralytics/nn/autobackend.py +7 -1
  55. ultralytics/nn/tasks.py +4 -3
  56. ultralytics/solutions/similarity_search.py +11 -12
  57. ultralytics/solutions/solutions.py +53 -54
  58. ultralytics/utils/__init__.py +1 -2
  59. ultralytics/utils/checks.py +21 -0
  60. ultralytics/utils/metrics.py +10 -9
  61. ultralytics/utils/patches.py +1 -2
  62. ultralytics/utils/plotting.py +2 -2
  63. ultralytics/utils/torch_utils.py +2 -1
  64. {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/WHEEL +0 -0
  65. {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/entry_points.txt +0 -0
  66. {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/licenses/LICENSE +0 -0
  67. {dgenerate_ultralytics_headless-8.3.160.dist-info → dgenerate_ultralytics_headless-8.3.162.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.160
3
+ Version: 8.3.162
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -79,6 +79,14 @@ Requires-Dist: hub-sdk>=0.0.12; extra == "extra"
79
79
  Requires-Dist: ipython; extra == "extra"
80
80
  Requires-Dist: albumentations>=1.4.6; extra == "extra"
81
81
  Requires-Dist: faster-coco-eval>=1.6.7; extra == "extra"
82
+ Provides-Extra: typing
83
+ Requires-Dist: pandas-stubs; extra == "typing"
84
+ Requires-Dist: scipy-stubs; extra == "typing"
85
+ Requires-Dist: types-pillow; extra == "typing"
86
+ Requires-Dist: types-psutil; extra == "typing"
87
+ Requires-Dist: types-pyyaml; extra == "typing"
88
+ Requires-Dist: types-requests; extra == "typing"
89
+ Requires-Dist: types-shapely; extra == "typing"
82
90
  Dynamic: license-file
83
91
 
84
92
  # Ultralytics Headless Builder
@@ -1,52 +1,52 @@
1
- dgenerate_ultralytics_headless-8.3.160.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
1
+ dgenerate_ultralytics_headless-8.3.162.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
2
  tests/__init__.py,sha256=b4KP5_q-2IO8Br8YHOSLYnn7IwZS81l_vfEF2YPa2lM,894
3
- tests/conftest.py,sha256=JjgKSs36ZaGmmtqGmAapmFSoFF1YwyV3IZsOgqt2IVM,2593
3
+ tests/conftest.py,sha256=LXtQJcFNWPGuzauTGkiXgsvVC3llJKfg22WcmhRzuQc,2593
4
4
  tests/test_cli.py,sha256=Kpfxq_RlbKK1Z8xNScDUbre6GB7neZhXZAYGI1tiDS8,5660
5
5
  tests/test_cuda.py,sha256=-nQsfF3lGfqLm6cIeu_BCiXqLj7HzpL7R1GzPEc6z2I,8128
6
6
  tests/test_engine.py,sha256=Jpt2KVrltrEgh2-3Ykouz-2Z_2fza0eymL5ectRXadM,4922
7
7
  tests/test_exports.py,sha256=HmMKOTCia9ZDC0VYc_EPmvBTM5LM5eeI1NF_pKjLpd8,9677
8
8
  tests/test_integrations.py,sha256=kl_AKmE_Qs1GB0_91iVwbzNxofm_hFTt0zzU6JF-pg4,6323
9
- tests/test_python.py,sha256=nOoaPDg-0j7ZPRz9-uGFny3uocxjUM1ze5wA3BpGxKQ,27865
9
+ tests/test_python.py,sha256=JJu-69IfuUf1dLK7Ko9elyPONiQ1yu7yhapMVIAt_KI,27907
10
10
  tests/test_solutions.py,sha256=tuf6n_fsI8KvSdJrnc-cqP2qYdiYqCWuVrx0z9dOz3Q,13213
11
- ultralytics/__init__.py,sha256=dkOuwhLnRXwuh6b1GNUdg_IfIptuMf47ZGNgy9FdV-Y,730
11
+ ultralytics/__init__.py,sha256=mghg3KP-MAGasMWYrfuWs4NQuSHe4GXzeqmSc_T9E0k,730
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
14
  ultralytics/cfg/__init__.py,sha256=VIpPHImhjb0XLJquGZrG_LBGZchtOtBSXR7HYTYV2GU,39602
15
15
  ultralytics/cfg/default.yaml,sha256=oFG6llJO-Py5H-cR9qs-7FieJamroDLwpbrkhmfROOM,8307
16
- ultralytics/cfg/datasets/Argoverse.yaml,sha256=_xlEDIJ9XkUo0v_iNL7FW079BoSeZtKSuLteKTtGbA8,3275
17
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=SHND_CFkojxw5iQD5Mcgju2kCZIl0gW2ajuzv1cqoL0,1224
18
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=j_DvXVQzZ4dQmf8I7oPX4v9xO3WZXztxV4Xo9VhUTsM,1194
19
- ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=TgPAhAnQAwviZcWRkuVTEww3u9VJ86rBlJvjj58ENu4,2157
20
- ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=-7HrCmBkKVzfp5c7LCHg-nBZYMZ4j58QVHXz_4V6daQ,990
21
- ultralytics/cfg/datasets/ImageNet.yaml,sha256=6F1GXJg80iS8PJTcbAVbZX7Eb25NdJAAZ4UIS8mmrhk,42543
22
- ultralytics/cfg/datasets/Objects365.yaml,sha256=tAIb6zXQrGo48I9V5reoWeWIJT6ywJmvhg0ZCt0JX9s,9367
23
- ultralytics/cfg/datasets/SKU-110K.yaml,sha256=EmYFUdlxmF4SnijaifO3dHaP_uf95Vgz4FdckHeEVEM,2558
24
- ultralytics/cfg/datasets/VOC.yaml,sha256=xQOx67XQaYCgUjHxp4HjY94zx7ZOphDGlwgzxYfaed0,3800
25
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=jONp3ws_RL1Iccnp81ho-zVhLUE63QfcvdUJ395h-GY,3263
26
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=pENEc4cO8A-uAk1dLn1Kul9ofDGcUmeGuQARs13Plhg,930
27
- ultralytics/cfg/datasets/brain-tumor.yaml,sha256=wDRZVNZ9Z_p2KRMaFpqrFY00riQ-GGfGYk7N4bDkGFw,856
28
- ultralytics/cfg/datasets/carparts-seg.yaml,sha256=5fJKD-bLoio9-LUC09bPrt5qEYbCIQ7i5TAZ1VADeL8,1268
29
- ultralytics/cfg/datasets/coco-pose.yaml,sha256=NHdgSsGkHS0-X636p2-hExTJGdoWUSP1TPshH2nVRPk,1636
30
- ultralytics/cfg/datasets/coco.yaml,sha256=chdzyIHLfekjOcng-G2_bpC57VUcHPjVvW8ENJfiQao,2619
31
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=ifDPbVuuN7N2_3e8e_YBdTVcANYIOKORQMgXlsPS6D4,1995
32
- ultralytics/cfg/datasets/coco128.yaml,sha256=udymG6qzF9Bvh_JYC7BOSXOUeA1Ia8ZmR2EzNGsY6YY,1978
33
- ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=U3jjPUoFahLch4N11qjG1myhE5wsy2tFeC23I9w_nr0,1974
34
- ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=h5Kbx9y3wjWUw6p8jeQVUaIs07VoQS7ZY0vMau5WGAg,2076
35
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=yfw2_SkCZO3ttPLiI0mfjxv5gr4-CA3i0elYP5PY71k,1022
36
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=wpfFI-GfL5asbLtFyaHLE6593jdka7waE07Am3_eg8w,1926
37
- ultralytics/cfg/datasets/coco8.yaml,sha256=qJX2TSM7nMV-PpCMXCX4702yp3a-ZF1ubLatlGN5XOE,1901
38
- ultralytics/cfg/datasets/crack-seg.yaml,sha256=QEnxOouOKQ3TM6Cl8pBnX5QLPWdChZEBA28jaLkzxA4,852
39
- ultralytics/cfg/datasets/dog-pose.yaml,sha256=Cr-J7dPhHmNfW9TKH48L22WPYmJFtWH-lbOAxLHnjKU,907
40
- ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=F_GBGsFyuJwaWItCOn27CBDgCdsVyI9e0IcXKbZc7t0,1229
41
- ultralytics/cfg/datasets/dota8.yaml,sha256=W43bp_6yUUVjs6vpogNrGI9vU7rLbEsSx6vyfIkDyj8,1073
42
- ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=5vue4kvPrAdd6ZyB90rZgtGUUHvSi3s_ht7jBBqX7a4,989
43
- ultralytics/cfg/datasets/lvis.yaml,sha256=jD-z6cny0l_Cl7xN6RqiFAc7a7odcVwr3E8_jmH-wzA,29716
44
- ultralytics/cfg/datasets/medical-pills.yaml,sha256=3ho9VW8p5Hm1TuicguiL-akfC9dCZO5nwthO4sUR3k0,848
45
- ultralytics/cfg/datasets/open-images-v7.yaml,sha256=uhsujByejzeysTB10QnSLfDNb9U_HqoES45QJrqMC7g,12132
46
- ultralytics/cfg/datasets/package-seg.yaml,sha256=uechtCYfX8OrJrO5zV1-uGwbr69lUSuon1oXguEkLGg,864
47
- ultralytics/cfg/datasets/signature.yaml,sha256=eABYny9n4w3RleR3RQmb505DiBll8R5cvcjWj8wkuf0,789
48
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=gCQc1AX04Xfhnms4czm7R_XnT2XFL2u-t3M8Yya20ds,925
49
- ultralytics/cfg/datasets/xView.yaml,sha256=3PRpBl6q53SUZ09u5efuhaKyeob45EUcxF4nQQqKnUQ,5353
16
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=0mm20vJBZxxLQtc_Z3Op6zUjmJkINLi70hO6aw67Lwc,3263
17
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=aT3VKgkVPTaaRRjnpHEhIbgANU-yt7VsFjAf5562wqA,1212
18
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=Ydf8_hRfZkaFMEkDKw3as0msVV4KPD1JuFjVMYDqIMQ,1182
19
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=JP6zk5GR2fufGGFmOMr57EnRj7kKh9-fIuInkdmXMlU,2145
20
+ ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=Cgokv3w-g6z1KnQ5ALuS9qTTwBzgN7vWroQuIajJIZo,978
21
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=1zci8FWwbkFwNHlAkfDUnWyoOKrFvkEXz1VNpVAizBg,42531
22
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=EfhNwsYMqDCXc3kZfokvk4LYq1QZDKl-ZpfoecP7aOE,9355
23
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=OBUCCRFr6UXrp6LkXZSXA92dSYCc6MrDP_0rlmmLrvI,2546
24
+ ultralytics/cfg/datasets/VOC.yaml,sha256=zVkCLoj6EbZm8gf8cOg8QbEIpsN6W6oreKmW2czTWeE,3788
25
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=iIAxa9F3CxG18d3SFrwqM8_8HFzObxEM3yyhWaQ8saQ,3282
26
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=SLSyIAOg9Kbx0lN7VApPDLGjAL2RKdYvzG1ErAZtwhc,918
27
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=SWJOiFGvJfxe4oGxG35Pw5NXsBxMdYWEw5UlkRSr0kg,844
28
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=liuHTeQOaztNMGr87Qtp0P8-h3VATSAB9FMfBOQ-rTo,1256
29
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=j_ynggAOE1aNpjG42QHMDTrYiPic8S0cnbNHXqmH7vY,1624
30
+ ultralytics/cfg/datasets/coco.yaml,sha256=E5OlAwkJkzhRI2BFIPnUE0VnzdQNDFhv2czDVS582BQ,2607
31
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=04Pfr7RPgJM2hF_LpYYD2zIPqCyOJ2sWW23HO2qXoEI,1983
32
+ ultralytics/cfg/datasets/coco128.yaml,sha256=hNHjxEq57lRpcNYuN3dX7ockjhgQu7SdiXepcGApjdU,1966
33
+ ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=YfAJRbM2wWd37p1Jl7rOOoxiPH3rWRo5mddjUvJcFxg,1962
34
+ ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=Kaca3kaq8-iwtBOdmvJaETI-JzDNyjKbk7SSUWGUnO4,2064
35
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=4S_0RSNNK_ccz1Qxp7wdO0-RjxwwhldTRpGahQnzIw8,1010
36
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=8V59_ASLtTg3jsXtV03opU4TRwyFy2fsNUUSR791cB0,1914
37
+ ultralytics/cfg/datasets/coco8.yaml,sha256=aPefOD63vx1EJ4BhdeumSrYVoJIh2uMyIb6BTrEFk68,1889
38
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=8zkQD4eAeWjkxFQQGSTNvxla1b02Vuo8AlmLY7PZvjE,840
39
+ ultralytics/cfg/datasets/dog-pose.yaml,sha256=CjvPu8y_KBZFcXn8JOaeDzi1NkVYgd3M4yVazOSYUT0,895
40
+ ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=AD9LGIV0FdnHLJCsczU06SIOIHYOygr5owb69bi-Nk0,1217
41
+ ultralytics/cfg/datasets/dota8.yaml,sha256=cVmqA8SYVIY4Rp5y0oIPfw1Si2AZMPMDrFaV8ZRUnGI,1061
42
+ ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=w_G5BmUKuWFb0yCbTOeWjGhz8ZAqAYeN7ECZpO37h3g,977
43
+ ultralytics/cfg/datasets/lvis.yaml,sha256=69E7zRFQxqdx6T7GhrLVR8XoZtfx4pwR7I3kobxmz2M,29704
44
+ ultralytics/cfg/datasets/medical-pills.yaml,sha256=1CtNFVtc2Lmo1Wjssh_hzAevo_mvkMuQGoLDGD7i2S0,836
45
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=GblFutr27lY3W2h9GyK8zUqq5svtF1EeEBoP5kbnd5o,12120
46
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=gJZmxXNzmvPU4K2cmkPR44Lp6aGW_9J4EFcYqgrS4T4,852
47
+ ultralytics/cfg/datasets/signature.yaml,sha256=uqPSj6XCILKOmIn01GXKLXZqoouZvKx7tOusfF4hL5c,777
48
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=0f_Q45eOexla9-nKG8SDziK2ACZcND8wRZpXCKO3iO8,913
49
+ ultralytics/cfg/datasets/xView.yaml,sha256=46Z-TaZAXHXM85PoSWeI9mhpu__RB5TOtPAfo0cbAFM,5341
50
50
  ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
51
51
  ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
52
52
  ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
@@ -106,26 +106,26 @@ ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7
106
106
  ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
107
107
  ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
108
108
  ultralytics/data/annotator.py,sha256=uAgd7K-yudxiwdNqHz0ubfFg5JsfNlae4cgxdvCMyuY,3030
109
- ultralytics/data/augment.py,sha256=jyEXZ1TqJFIdz_oqecsDa4gKDCMC71RGiMJh3kQV9G0,129378
109
+ ultralytics/data/augment.py,sha256=elMnIEubT1ywhH0tbppLbWW4dEs3-n5vnm8U8TzsDEw,129493
110
110
  ultralytics/data/base.py,sha256=mRcuehK1thNuuzQGL6D1AaZkod71oHRdYTod_zdQZQg,19688
111
111
  ultralytics/data/build.py,sha256=13gPxCJIZRjgcNh7zbzanCgtyK6_oZM0ho9KQhHcM6c,11153
112
- ultralytics/data/converter.py,sha256=oKW8ODtvFOKBx9Un8n87xUUm3b5GStU4ViIBH5UDylM,27200
113
- ultralytics/data/dataset.py,sha256=eXADBdtj9gj0s2JEa9MJz7E3XmkHk_PmvHHXNQ1UJQM,36463
112
+ ultralytics/data/converter.py,sha256=dExElV0vWd4EmDtZaFMC0clEmLdjRDIdFiXf01PUvQA,27134
113
+ ultralytics/data/dataset.py,sha256=0VjzciGleGGF_XN5fEnS3c5UT0r533HMmQ9DfEQ_lA4,36463
114
114
  ultralytics/data/loaders.py,sha256=kTGO1P-HntpQk078i1ASyXYckDx9Z7Pe7o1YbePcjC4,31657
115
- ultralytics/data/split.py,sha256=qOHZwsHi3I1IKLgLfcz7jH3CTibeJUDyjo7HwNtB_kk,5121
116
- ultralytics/data/split_dota.py,sha256=RJHxwOX2Z9CfSX_h7L7mO-aLQ4Ap_ZpZanQdno10oSA,12893
115
+ ultralytics/data/split.py,sha256=F6O73bAbESj70FQZzqkydXQeXgPXGHGiC06b5MkLHjQ,5109
116
+ ultralytics/data/split_dota.py,sha256=rr-lLpTUVaFZMggV_fUYZdFVIJk_zbbSOpgB_Qp50_M,12893
117
117
  ultralytics/data/utils.py,sha256=fJqVJkjaub-xT0cB1o40Hl1WIH1ljKINT0SJaJyZse4,36637
118
118
  ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
119
119
  ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
120
120
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
121
121
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
122
122
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
123
- ultralytics/engine/exporter.py,sha256=MUgH9gEzeVjnhoZzHuZn958I6c9axE4PTIjJG9uBXuQ,73081
123
+ ultralytics/engine/exporter.py,sha256=oz6jsQbYapyc29Bw1DTQuDbk_RnOKphlVeLrCwQehs4,73261
124
124
  ultralytics/engine/model.py,sha256=FmLwiKuItVNgoyXhAvesUnD3UeHBzCVzGHDrqB8J4ms,53453
125
125
  ultralytics/engine/predictor.py,sha256=88zrgZP91ehwdeGl8BM_cQ_caeuwKIPDy3OzxcRBjTU,22474
126
- ultralytics/engine/results.py,sha256=CHTLuyzGdRyAZJDNajEjF_uOtrWrUUu3zqKdZVA-76M,71989
126
+ ultralytics/engine/results.py,sha256=rLQlttkgPudiV0u0d6Xy5hKKr1x3SJL1zrXA5W5vw7Y,71999
127
127
  ultralytics/engine/trainer.py,sha256=28FeqASvQRxCaK96SXDM-BfPJjqy5KNiWhf8v6GXTug,39785
128
- ultralytics/engine/tuner.py,sha256=4ue7JbMFQp7JcWhhwCAY-b-xZsjm5VKVlPFDUTyxt_8,12789
128
+ ultralytics/engine/tuner.py,sha256=sfQ8_yzgLNcGlKyz9b2vAzyggGZXiQzdZ5tKstyqjHM,12825
129
129
  ultralytics/engine/validator.py,sha256=qftJUomb4A-6rSThtST3TccEbc_zTmzovCBBCSpYm3k,16671
130
130
  ultralytics/hub/__init__.py,sha256=ulPtceI3hqud03mvqoXccBaa1e4nveYwC9cddyuBUlo,6599
131
131
  ultralytics/hub/auth.py,sha256=5uMPzZt8aO-YsnEWADzc1qBUt9c30RTIfrGo5SWTrv4,6271
@@ -139,7 +139,7 @@ ultralytics/models/fastsam/predict.py,sha256=G-o8hs8W5XmqSN5G37zi6q9FglFnZSbD6qH
139
139
  ultralytics/models/fastsam/utils.py,sha256=yuCXB4CVjRx8lDf61DP8B6qMx7TVf7AynQvdWREeFco,884
140
140
  ultralytics/models/fastsam/val.py,sha256=oLxB8vBKTfiT7eBbTzvpqq_xNSvDOjGdP1J7egHGsCA,2041
141
141
  ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
142
- ultralytics/models/nas/model.py,sha256=kQeF3mkVHLLsoTL9F32CrYITNsdbTrYF6lEgHclhKN0,3824
142
+ ultralytics/models/nas/model.py,sha256=CStfE5x08uPIJ-wY_8NYVmVlWiom5oTF9kT6jIKM5Sc,3873
143
143
  ultralytics/models/nas/predict.py,sha256=J4UT7nwi_h63lJ3a_gYac-Ws8wFYingZINxMqSoaX5E,2706
144
144
  ultralytics/models/nas/val.py,sha256=QUTE3zuhJLVqmDGd2n7iSSk7X6jKZCRxufFkBbyxYYo,1548
145
145
  ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
@@ -158,7 +158,7 @@ ultralytics/models/sam/modules/decoders.py,sha256=-1fhBO47hA-3CzkU-PzkCK4Nsi_VJ_
158
158
  ultralytics/models/sam/modules/encoders.py,sha256=f1cdGdmQ_3Vt7MKxMVNIgvEvYmVR8lM1uVocNnrrYrU,37392
159
159
  ultralytics/models/sam/modules/memory_attention.py,sha256=UNUbVyF8m6NIdhGOvTAwb_lS6x_Had8Ek3OP5JJqcQU,13539
160
160
  ultralytics/models/sam/modules/sam.py,sha256=LUNmH-1iFPLnl7qzLeLpRqgc82_b8xKNCszDo272rrM,55684
161
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=Iwr72WdeM-n1Pd9olluFRxhM3f9IORewPbxyzTEPelc,42241
161
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=lmUIeZ9-3M-C3YmJBs13W6t__dzeJloOl0qFR9Ll8ew,42241
162
162
  ultralytics/models/sam/modules/transformer.py,sha256=dIcq1UyCRYIhTPeetVpdjRcqR_b_a5AkkYo-L3Cq6hE,14747
163
163
  ultralytics/models/sam/modules/utils.py,sha256=0qxBCh4tTzXNT10-BiKbqH6QDjzhkmLz2OiVG7gQfww,16021
164
164
  ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
@@ -173,7 +173,7 @@ ultralytics/models/yolo/classify/val.py,sha256=YakPxBVZCd85Kp4wFKx8KH6JJFiU7nkFS
173
173
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
174
174
  ultralytics/models/yolo/detect/predict.py,sha256=ySUsdIf8dw00bzWhcxN1jZwLWKPRT2M7-N7TNL3o4zo,5387
175
175
  ultralytics/models/yolo/detect/train.py,sha256=HlaCoHJ6Y2TpCXXWabMRZApAYqBvjuM_YQJUV5JYCvw,9907
176
- ultralytics/models/yolo/detect/val.py,sha256=Yhs7SdS8O_4_61N_ZxzGaEfm4tnpEzIRV5XcMsrI-e4,20485
176
+ ultralytics/models/yolo/detect/val.py,sha256=qA3Jq4JDZ-sSAy0JMQcz2ncmhLqLRUughMNYLZ1YifE,20485
177
177
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
178
178
  ultralytics/models/yolo/obb/predict.py,sha256=4r1eSld6TNJlk9JG56e-DX6oPL8uBBqiuztyBpxWlHE,2888
179
179
  ultralytics/models/yolo/obb/train.py,sha256=bnYFAMur7Uvbw5Dc09-S2ge7B05iGX-t37Ksgc0ef6g,3921
@@ -187,16 +187,16 @@ ultralytics/models/yolo/segment/predict.py,sha256=qlprQCZn4_bpjpI08U0MU9Q9_1gpHr
187
187
  ultralytics/models/yolo/segment/train.py,sha256=XrPkXUiNu1Jvhn8iDew_RaLLjZA3un65rK-QH9mtNIw,3802
188
188
  ultralytics/models/yolo/segment/val.py,sha256=AnvY0O7HhD5xZ2BE2artLTAVW4SNmHbVopBJsYRcmk8,12328
189
189
  ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
190
- ultralytics/models/yolo/world/train.py,sha256=karlbEdkfAh08ZzYj9nXOiqLsRq5grsbV-XDv3yl6GQ,7819
191
- ultralytics/models/yolo/world/train_world.py,sha256=YJm37ZTgr0CoE_sYrjxN45w9mICr2RMWfWZrriiHqbM,9022
190
+ ultralytics/models/yolo/world/train.py,sha256=wBKnSC-TvrKWM1Taxqwo13XcwGHwwAXzNYV1tmqcOpc,7845
191
+ ultralytics/models/yolo/world/train_world.py,sha256=OLS1ofDSfMBsEG07PjEMruvbaXzNEWs07FpPowHVffs,9306
192
192
  ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
193
193
  ultralytics/models/yolo/yoloe/predict.py,sha256=TAcT6fiWbV-jOewu9hx_shGI10VLF_6oSPf7jfatBWo,7041
194
- ultralytics/models/yolo/yoloe/train.py,sha256=H1Z5yzcYklyfIkT0xR35qq3f7CxmeG2jUhWhbVyE6RA,14060
194
+ ultralytics/models/yolo/yoloe/train.py,sha256=XYpQYSnSD8vi_9VSj_S5oIsNUEqm3e66vPT8rNFI_HY,14086
195
195
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
196
196
  ultralytics/models/yolo/yoloe/val.py,sha256=yebPkxwKKt__cY05Zbh1YXg4_BKzzpcDc3Cv3FJ5SAA,9769
197
197
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
198
- ultralytics/nn/autobackend.py,sha256=yk1IXPChI1D7rupJdH2TMvUqFv6PVmBU3tgfZOquQ_8,41358
199
- ultralytics/nn/tasks.py,sha256=aCXYmWan2LTznH3i_-2OwMagG3ZwnVL1gjKtY-3oShM,72456
198
+ ultralytics/nn/autobackend.py,sha256=n-2ADzX3Y2MRE8nHFeVvFCJFJP9rCbkkNbcufPZ24dE,41532
199
+ ultralytics/nn/tasks.py,sha256=vw_TNacAv-RN24rusFzKuYL6qRBD7cve8EpB7gOlU_8,72505
200
200
  ultralytics/nn/text_model.py,sha256=cYwD-0el4VeToDBP4iPFOQGqyEQatJOBHrVyONL3K_s,15282
201
201
  ultralytics/nn/modules/__init__.py,sha256=2nY0X69Z5DD5SWt6v3CUTZa5gXSzC9TQr3VTVqhyGho,3158
202
202
  ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
@@ -219,8 +219,8 @@ ultralytics/solutions/parking_management.py,sha256=IfPUn15aelxz6YZNo9WYkVEl5IOVS
219
219
  ultralytics/solutions/queue_management.py,sha256=u0VFzRqa0OxIWY7xXItsXEm073CzkQGFhhXG-6VK3SI,4393
220
220
  ultralytics/solutions/region_counter.py,sha256=j6f5VAaE1JWGdWOecZpWMFp6yF1GdCnHjftN6CRybjQ,5967
221
221
  ultralytics/solutions/security_alarm.py,sha256=U6FTbg3cthKLfWeLunsFhOJvB6GGmwYDDxZ3K0GCx-Q,6351
222
- ultralytics/solutions/similarity_search.py,sha256=ri8bf65tt6xyS6Xa-ikj2AgvfCsFOtaQk6IM_k7FhKg,9579
223
- ultralytics/solutions/solutions.py,sha256=w9enbzZ02H9M00cGb7SqYsar6hKZfBU52ez-5G8cXJI,37554
222
+ ultralytics/solutions/similarity_search.py,sha256=H9MPf8F5AvVfmb9hnng0FrIOTbLU_I-CkVHGpC81CE0,9496
223
+ ultralytics/solutions/solutions.py,sha256=KtoSUSxM4s-Ti5EAzT21pItuv70qlIOH6ymJP95Gl-E,37318
224
224
  ultralytics/solutions/speed_estimation.py,sha256=chg_tBuKFw3EnFiv_obNDaUXLAo-FypxC7gsDeB_VUI,5878
225
225
  ultralytics/solutions/streamlit_inference.py,sha256=SqL-YxU3RCxCKscH2AYUTkmJknilV9jCCco6ufqsFk4,10501
226
226
  ultralytics/solutions/trackzone.py,sha256=kIS94rNfL3yVPAtSbnW8F-aLMxXowQtsfKNB-jLezz8,3941
@@ -235,11 +235,11 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
235
235
  ultralytics/trackers/utils/gmc.py,sha256=9IvCf5MhBYY9ppVHykN02_oBWHmE98R8EaYFKaykdV0,14032
236
236
  ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
237
237
  ultralytics/trackers/utils/matching.py,sha256=uSYtywqi1lE_uNN1FwuBFPyISfDQXHMu8K5KH69nrRI,7160
238
- ultralytics/utils/__init__.py,sha256=oJZ1o2L2R-EHepFbe_9bAzyiLi3Rd3Cv6gJmgO5jNfc,59437
238
+ ultralytics/utils/__init__.py,sha256=2xXw_PdASHKkAuOu3eaShJVqisQtFkF8nw5FyMuDUCQ,59401
239
239
  ultralytics/utils/autobatch.py,sha256=33m8YgggLIhltDqMXZ5OE-FGs2QiHrl2-LfgY1mI4cw,5119
240
240
  ultralytics/utils/autodevice.py,sha256=AvgXFt8c1Cg4icKh0Hbhhz8UmVQ2Wjyfdfkeb2C8zck,8855
241
241
  ultralytics/utils/benchmarks.py,sha256=GlsR6SvD3qlus2hVj7SqSNErsejBlIxO0Y7hMc_cWHw,31041
242
- ultralytics/utils/checks.py,sha256=PPVmxfxoHuC4YR7i56uklCKXFAPnltzbHHCxUwERjUQ,34100
242
+ ultralytics/utils/checks.py,sha256=mkDl_BTLZyjfhYbFVSG6xYmxhB2s7wsQ62ugnhspqOc,34707
243
243
  ultralytics/utils/dist.py,sha256=A9lDGtGefTjSVvVS38w86GOdbtLzNBDZuDGK0MT4PRI,4170
244
244
  ultralytics/utils/downloads.py,sha256=YB6rJkcRGQfklUjZqi9dOkTiZaDSqbkGyZEFcZLQkgc,22080
245
245
  ultralytics/utils/errors.py,sha256=XT9Ru7ivoBgofK6PlnyigGoa7Fmf5nEhyHtnD-8TRXI,1584
@@ -247,12 +247,12 @@ ultralytics/utils/export.py,sha256=0gG_GZNRqHcORJbjQq_1MXEHc3UEfzPAdpOl2X5VoDc,1
247
247
  ultralytics/utils/files.py,sha256=ZCbLGleiF0f-PqYfaxMFAWop88w7U1hpreHXl8b2ko0,8238
248
248
  ultralytics/utils/instance.py,sha256=s97d-GXSSCluu-My2DFLAubdk_hf44BuVQ6OCROBrMc,18550
249
249
  ultralytics/utils/loss.py,sha256=fbOWc3Iu0QOJiWbi-mXWA9-1otTYlehtmUsI7os7ydM,39799
250
- ultralytics/utils/metrics.py,sha256=fSDA0YV3Bb3ALhmWv0Uy1s8acDwFUymd8Tj1MFNPYyU,62251
250
+ ultralytics/utils/metrics.py,sha256=3nQsz3rAm8n65iqikRzU30Pd2x20FY60ZlWrCMv5ZYk,62225
251
251
  ultralytics/utils/ops.py,sha256=Jkh80ujyi0XDQwNqCUYyomH8NQ145AH9doMUS8Vt8GE,34545
252
- ultralytics/utils/patches.py,sha256=P2uQy7S4RzSHBfwJEXJsjyuRUluaaUusiVU84lV3moQ,6577
253
- ultralytics/utils/plotting.py,sha256=SCpG5DHZUPlFUsu72kNH3DYGpsjgkd3eIZ9-QTllY88,47171
252
+ ultralytics/utils/patches.py,sha256=tBAsNo_RyoFLL9OAzVuJmuoDLUJIPuTMByBYyblGG1A,6517
253
+ ultralytics/utils/plotting.py,sha256=LO-iR-k1UewV5vt4xXDUIirdmNEZdpfiQvLyIWqINPg,47171
254
254
  ultralytics/utils/tal.py,sha256=aXawOnhn8ni65tJWIW-PYqWr_TRvltbHBjrTo7o6lDQ,20924
255
- ultralytics/utils/torch_utils.py,sha256=iIAjf2g4hikzBeHvKN-EQK8QFlC_QtWWRuYQuBF2zIk,39184
255
+ ultralytics/utils/torch_utils.py,sha256=D76Pvmw5OKh-vd4aJkOMO0dSLbM5WzGr7Hmds54hPEk,39233
256
256
  ultralytics/utils/triton.py,sha256=M7qe4RztiADBJQEWQKaIQsp94ERFJ_8_DUHDR6TXEOM,5410
257
257
  ultralytics/utils/tuner.py,sha256=bHr09Fz-0-t0ei55gX5wJh-obyiAQoicP7HUVM2I8qA,6826
258
258
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
@@ -266,8 +266,8 @@ ultralytics/utils/callbacks/neptune.py,sha256=j8pecmlcsM8FGzLKWoBw5xUsi5t8E5HuxY
266
266
  ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
267
267
  ultralytics/utils/callbacks/tensorboard.py,sha256=MDPBW7aDes-66OE6YqKXXvqA_EocjzEMHWGM-8z9vUQ,5281
268
268
  ultralytics/utils/callbacks/wb.py,sha256=Tm_-aRr2CN32MJkY9tylpMBJkb007-MSRNSQ7rDJ5QU,7521
269
- dgenerate_ultralytics_headless-8.3.160.dist-info/METADATA,sha256=UW5E8ePDgtefP25esNBr8NKHlkgTExMW8TWO4D6oFBY,38318
270
- dgenerate_ultralytics_headless-8.3.160.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
- dgenerate_ultralytics_headless-8.3.160.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
- dgenerate_ultralytics_headless-8.3.160.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
- dgenerate_ultralytics_headless-8.3.160.dist-info/RECORD,,
269
+ dgenerate_ultralytics_headless-8.3.162.dist-info/METADATA,sha256=UfLHf1X4fkaX0CaRKJlnrFild7jxSyqtYDBgouqcrd0,38672
270
+ dgenerate_ultralytics_headless-8.3.162.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
271
+ dgenerate_ultralytics_headless-8.3.162.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
272
+ dgenerate_ultralytics_headless-8.3.162.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
273
+ dgenerate_ultralytics_headless-8.3.162.dist-info/RECORD,,
tests/conftest.py CHANGED
@@ -56,11 +56,11 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
56
56
  from ultralytics.utils import WEIGHTS_DIR
57
57
 
58
58
  # Remove files
59
- models = [path for x in ["*.onnx", "*.torchscript"] for path in WEIGHTS_DIR.rglob(x)]
59
+ models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
60
60
  for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript"] + models:
61
61
  Path(file).unlink(missing_ok=True)
62
62
 
63
63
  # Remove directories
64
- models = [path for x in ["*.mlpackage", "*_openvino_model"] for path in WEIGHTS_DIR.rglob(x)]
64
+ models = [path for x in {"*.mlpackage", "*_openvino_model"} for path in WEIGHTS_DIR.rglob(x)]
65
65
  for directory in [WEIGHTS_DIR / "path with spaces", TMP.parents[1] / ".pytest_cache", TMP] + models:
66
66
  shutil.rmtree(directory, ignore_errors=True)
tests/test_python.py CHANGED
@@ -16,6 +16,7 @@ from tests import CFG, MODEL, MODELS, SOURCE, SOURCES_LIST, TASK_MODEL_DATA, TMP
16
16
  from ultralytics import RTDETR, YOLO
17
17
  from ultralytics.cfg import TASK2DATA, TASKS
18
18
  from ultralytics.data.build import load_inference_source
19
+ from ultralytics.data.utils import check_det_dataset
19
20
  from ultralytics.utils import (
20
21
  ARM64,
21
22
  ASSETS,
@@ -203,7 +204,7 @@ def test_track_stream(model):
203
204
  @pytest.mark.parametrize("task,model,data", TASK_MODEL_DATA)
204
205
  def test_val(task: str, model: str, data: str) -> None:
205
206
  """Test the validation mode of the YOLO model."""
206
- for plots in [True, False]: # Test both cases i.e. plots=True and plots=False
207
+ for plots in {True, False}: # Test both cases i.e. plots=True and plots=False
207
208
  metrics = YOLO(model).val(data=data, imgsz=32, plots=plots)
208
209
  metrics.to_df()
209
210
  metrics.to_csv()
@@ -389,7 +390,7 @@ def test_cfg_init():
389
390
  check_dict_alignment({"a": 1}, {"b": 2})
390
391
  copy_default_cfg()
391
392
  (Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")).unlink(missing_ok=False)
392
- [smart_value(x) for x in ["none", "true", "false"]]
393
+ [smart_value(x) for x in {"none", "true", "false"}]
393
394
 
394
395
 
395
396
  def test_utils_init():
@@ -720,7 +721,7 @@ def test_grayscale(task: str, model: str, data: str) -> None:
720
721
  if task == "classify": # not support grayscale classification yet
721
722
  return
722
723
  grayscale_data = Path(TMP) / f"{Path(data).stem}-grayscale.yaml"
723
- data = YAML.load(checks.check_file(data))
724
+ data = check_det_dataset(data)
724
725
  data["channels"] = 1 # add additional channels key for grayscale
725
726
  YAML.save(grayscale_data, data)
726
727
  # remove npy files in train/val splits if exists, might be created by previous tests
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.160"
3
+ __version__ = "8.3.162"
4
4
 
5
5
  import os
6
6
 
@@ -9,7 +9,7 @@
9
9
  # └── Argoverse ← downloads here (31.5 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Argoverse # dataset root dir
12
+ path: Argoverse # dataset root dir
13
13
  train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
14
14
  val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
15
15
  test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
@@ -9,7 +9,7 @@
9
9
  # └── dota1.5 ← downloads here (2GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/DOTAv1.5 # dataset root dir
12
+ path: DOTAv1.5 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 1411 images
14
14
  val: images/val # val images (relative to 'path') 458 images
15
15
  test: images/test # test images (optional) 937 images
@@ -9,7 +9,7 @@
9
9
  # └── dota1 ← downloads here (2GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/DOTAv1 # dataset root dir
12
+ path: DOTAv1 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 1411 images
14
14
  val: images/val # val images (relative to 'path') 458 images
15
15
  test: images/test # test images (optional) 937 images
@@ -9,7 +9,7 @@
9
9
  # └── GlobalWheat2020 ← downloads here (7.0 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/GlobalWheat2020 # dataset root dir
12
+ path: GlobalWheat2020 # dataset root dir
13
13
  train: # train images (relative to 'path') 3422 images
14
14
  - images/arvalis_1
15
15
  - images/arvalis_2
@@ -9,7 +9,7 @@
9
9
  # └── homeobjects-3K ← downloads here (390 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/homeobjects-3K # dataset root dir
12
+ path: homeobjects-3K # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 2285 images
14
14
  val: valid/images # val images (relative to 'path') 404 images
15
15
  test: # test images (relative to 'path')
@@ -10,7 +10,7 @@
10
10
  # └── imagenet ← downloads here (144 GB)
11
11
 
12
12
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
- path: ../datasets/imagenet # dataset root dir
13
+ path: imagenet # dataset root dir
14
14
  train: train # train images (relative to 'path') 1281167 images
15
15
  val: val # val images (relative to 'path') 50000 images
16
16
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Objects365 # dataset root dir
12
+ path: Objects365 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 1742289 images
14
14
  val: images/val # val images (relative to 'path') 80000 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── SKU-110K ← downloads here (13.6 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/SKU-110K # dataset root dir
12
+ path: SKU-110K # dataset root dir
13
13
  train: train.txt # train images (relative to 'path') 8219 images
14
14
  val: val.txt # val images (relative to 'path') 588 images
15
15
  test: test.txt # test images (optional) 2936 images
@@ -9,7 +9,7 @@
9
9
  # └── VOC ← downloads here (2.8 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/VOC
12
+ path: VOC
13
13
  train: # train images (relative to 'path') 16551 images
14
14
  - images/train2012
15
15
  - images/train2007
@@ -9,7 +9,7 @@
9
9
  # └── VisDrone ← downloads here (2.3 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/VisDrone # dataset root dir
12
+ path: VisDrone # dataset root dir
13
13
  train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
14
14
  val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
15
15
  test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
@@ -58,8 +58,11 @@ download: |
58
58
  cls = int(row[5]) - 1
59
59
  box = convert_box(img_size, tuple(map(int, row[:4])))
60
60
  lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
61
- with open(str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}"), "w", encoding="utf-8") as fl:
62
- fl.writelines(lines) # write label.txt
61
+
62
+ label_file = str(f).replace(f"{os.sep}annotations{os.sep}", f"{os.sep}labels{os.sep}")
63
+ with open(label_file, "w", encoding="utf-8") as fl:
64
+ fl.writelines(lines)
65
+
63
66
 
64
67
 
65
68
  # Download
@@ -9,7 +9,7 @@
9
9
  # └── african-wildlife ← downloads here (100 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/african-wildlife # dataset root dir
12
+ path: african-wildlife # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 1052 images
14
14
  val: valid/images # val images (relative to 'path') 225 images
15
15
  test: test/images # test images (relative to 'path') 227 images
@@ -9,7 +9,7 @@
9
9
  # └── brain-tumor ← downloads here (4.05 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/brain-tumor # dataset root dir
12
+ path: brain-tumor # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 893 images
14
14
  val: valid/images # val images (relative to 'path') 223 images
15
15
  test: # test images (relative to 'path')
@@ -9,7 +9,7 @@
9
9
  # └── carparts-seg ← downloads here (132 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/carparts-seg # dataset root dir
12
+ path: carparts-seg # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 3516 images
14
14
  val: valid/images # val images (relative to 'path') 276 images
15
15
  test: test/images # test images (relative to 'path') 401 images
@@ -9,7 +9,7 @@
9
9
  # └── coco-pose ← downloads here (20.1 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco-pose # dataset root dir
12
+ path: coco-pose # dataset root dir
13
13
  train: train2017.txt # train images (relative to 'path') 56599 images
14
14
  val: val2017.txt # val images (relative to 'path') 2346 images
15
15
  test: test-dev2017.txt # 20288 of 40670 images, submit to https://codalab.lisn.upsaclay.fr/competitions/7403
@@ -9,7 +9,7 @@
9
9
  # └── coco ← downloads here (20.1 GB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco # dataset root dir
12
+ path: coco # dataset root dir
13
13
  train: train2017.txt # train images (relative to 'path') 118287 images
14
14
  val: val2017.txt # val images (relative to 'path') 5000 images
15
15
  test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
@@ -9,7 +9,7 @@
9
9
  # └── coco128-seg ← downloads here (7 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128-seg # dataset root dir
12
+ path: coco128-seg # dataset root dir
13
13
  train: images/train2017 # train images (relative to 'path') 128 images
14
14
  val: images/train2017 # val images (relative to 'path') 128 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco128 ← downloads here (7 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128 # dataset root dir
12
+ path: coco128 # dataset root dir
13
13
  train: images/train2017 # train images (relative to 'path') 128 images
14
14
  val: images/train2017 # val images (relative to 'path') 128 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-grayscale ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-grayscale # dataset root dir
12
+ path: coco8-grayscale # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-multispectral ← downloads here (20.2 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-multispectral # dataset root dir
12
+ path: coco8-multispectral # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-pose ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-pose # dataset root dir
12
+ path: coco8-pose # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8-seg ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-seg # dataset root dir
12
+ path: coco8-seg # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── coco8 ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8 # dataset root dir
12
+ path: coco8 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
  test: # test images (optional)
@@ -9,7 +9,7 @@
9
9
  # └── crack-seg ← downloads here (91.2 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/crack-seg # dataset root dir
12
+ path: crack-seg # dataset root dir
13
13
  train: train/images # train images (relative to 'path') 3717 images
14
14
  val: valid/images # val images (relative to 'path') 112 images
15
15
  test: test/images # test images (relative to 'path') 200 images
@@ -9,7 +9,7 @@
9
9
  # └── dog-pose ← downloads here (337 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/dog-pose # dataset root dir
12
+ path: dog-pose # dataset root dir
13
13
  train: train # train images (relative to 'path') 6773 images
14
14
  val: val # val images (relative to 'path') 1703 images
15
15
 
@@ -9,7 +9,7 @@
9
9
  # └── dota8-multispectral ← downloads here (37.3MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/dota8-multispectral # dataset root dir
12
+ path: dota8-multispectral # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15
 
@@ -9,7 +9,7 @@
9
9
  # └── dota8 ← downloads here (1MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/dota8 # dataset root dir
12
+ path: dota8 # dataset root dir
13
13
  train: images/train # train images (relative to 'path') 4 images
14
14
  val: images/val # val images (relative to 'path') 4 images
15
15