dgenerate-ultralytics-headless 8.3.143__py3-none-any.whl → 8.3.144__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (148) hide show
  1. {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/METADATA +1 -1
  2. dgenerate_ultralytics_headless-8.3.144.dist-info/RECORD +272 -0
  3. tests/conftest.py +7 -24
  4. tests/test_cli.py +1 -1
  5. tests/test_cuda.py +7 -2
  6. tests/test_engine.py +7 -8
  7. tests/test_exports.py +16 -16
  8. tests/test_integrations.py +1 -1
  9. tests/test_solutions.py +11 -11
  10. ultralytics/__init__.py +1 -1
  11. ultralytics/cfg/__init__.py +16 -13
  12. ultralytics/data/annotator.py +6 -5
  13. ultralytics/data/augment.py +127 -126
  14. ultralytics/data/base.py +54 -51
  15. ultralytics/data/build.py +47 -23
  16. ultralytics/data/converter.py +47 -43
  17. ultralytics/data/dataset.py +51 -50
  18. ultralytics/data/loaders.py +77 -44
  19. ultralytics/data/split.py +22 -9
  20. ultralytics/data/split_dota.py +63 -39
  21. ultralytics/data/utils.py +59 -39
  22. ultralytics/engine/exporter.py +79 -27
  23. ultralytics/engine/model.py +39 -39
  24. ultralytics/engine/predictor.py +37 -28
  25. ultralytics/engine/results.py +187 -157
  26. ultralytics/engine/trainer.py +36 -19
  27. ultralytics/engine/tuner.py +12 -9
  28. ultralytics/engine/validator.py +7 -9
  29. ultralytics/hub/__init__.py +11 -13
  30. ultralytics/hub/auth.py +22 -2
  31. ultralytics/hub/google/__init__.py +19 -19
  32. ultralytics/hub/session.py +37 -51
  33. ultralytics/hub/utils.py +19 -5
  34. ultralytics/models/fastsam/model.py +30 -12
  35. ultralytics/models/fastsam/predict.py +5 -6
  36. ultralytics/models/fastsam/utils.py +3 -3
  37. ultralytics/models/fastsam/val.py +10 -6
  38. ultralytics/models/nas/model.py +9 -5
  39. ultralytics/models/nas/predict.py +6 -6
  40. ultralytics/models/nas/val.py +3 -3
  41. ultralytics/models/rtdetr/model.py +7 -6
  42. ultralytics/models/rtdetr/predict.py +14 -7
  43. ultralytics/models/rtdetr/train.py +10 -4
  44. ultralytics/models/rtdetr/val.py +36 -9
  45. ultralytics/models/sam/amg.py +30 -12
  46. ultralytics/models/sam/build.py +22 -22
  47. ultralytics/models/sam/model.py +10 -9
  48. ultralytics/models/sam/modules/blocks.py +76 -80
  49. ultralytics/models/sam/modules/decoders.py +6 -8
  50. ultralytics/models/sam/modules/encoders.py +23 -26
  51. ultralytics/models/sam/modules/memory_attention.py +13 -1
  52. ultralytics/models/sam/modules/sam.py +57 -26
  53. ultralytics/models/sam/modules/tiny_encoder.py +232 -237
  54. ultralytics/models/sam/modules/transformer.py +13 -13
  55. ultralytics/models/sam/modules/utils.py +11 -19
  56. ultralytics/models/sam/predict.py +114 -101
  57. ultralytics/models/utils/loss.py +98 -77
  58. ultralytics/models/utils/ops.py +116 -67
  59. ultralytics/models/yolo/classify/predict.py +5 -5
  60. ultralytics/models/yolo/classify/train.py +32 -28
  61. ultralytics/models/yolo/classify/val.py +7 -8
  62. ultralytics/models/yolo/detect/predict.py +1 -0
  63. ultralytics/models/yolo/detect/train.py +15 -14
  64. ultralytics/models/yolo/detect/val.py +37 -36
  65. ultralytics/models/yolo/model.py +106 -23
  66. ultralytics/models/yolo/obb/predict.py +3 -4
  67. ultralytics/models/yolo/obb/train.py +14 -6
  68. ultralytics/models/yolo/obb/val.py +29 -23
  69. ultralytics/models/yolo/pose/predict.py +9 -8
  70. ultralytics/models/yolo/pose/train.py +24 -16
  71. ultralytics/models/yolo/pose/val.py +44 -26
  72. ultralytics/models/yolo/segment/predict.py +5 -5
  73. ultralytics/models/yolo/segment/train.py +11 -7
  74. ultralytics/models/yolo/segment/val.py +2 -2
  75. ultralytics/models/yolo/world/train.py +33 -23
  76. ultralytics/models/yolo/world/train_world.py +11 -3
  77. ultralytics/models/yolo/yoloe/predict.py +11 -11
  78. ultralytics/models/yolo/yoloe/train.py +73 -21
  79. ultralytics/models/yolo/yoloe/train_seg.py +10 -7
  80. ultralytics/models/yolo/yoloe/val.py +42 -18
  81. ultralytics/nn/autobackend.py +59 -15
  82. ultralytics/nn/modules/__init__.py +4 -4
  83. ultralytics/nn/modules/activation.py +4 -1
  84. ultralytics/nn/modules/block.py +178 -111
  85. ultralytics/nn/modules/conv.py +6 -5
  86. ultralytics/nn/modules/head.py +469 -121
  87. ultralytics/nn/modules/transformer.py +147 -58
  88. ultralytics/nn/tasks.py +227 -20
  89. ultralytics/nn/text_model.py +30 -33
  90. ultralytics/solutions/ai_gym.py +1 -1
  91. ultralytics/solutions/analytics.py +7 -4
  92. ultralytics/solutions/config.py +10 -10
  93. ultralytics/solutions/distance_calculation.py +11 -10
  94. ultralytics/solutions/heatmap.py +1 -1
  95. ultralytics/solutions/instance_segmentation.py +6 -3
  96. ultralytics/solutions/object_blurrer.py +3 -3
  97. ultralytics/solutions/object_counter.py +15 -7
  98. ultralytics/solutions/object_cropper.py +3 -2
  99. ultralytics/solutions/parking_management.py +29 -28
  100. ultralytics/solutions/queue_management.py +6 -6
  101. ultralytics/solutions/region_counter.py +10 -3
  102. ultralytics/solutions/security_alarm.py +3 -3
  103. ultralytics/solutions/similarity_search.py +85 -24
  104. ultralytics/solutions/solutions.py +184 -75
  105. ultralytics/solutions/speed_estimation.py +28 -22
  106. ultralytics/solutions/streamlit_inference.py +17 -12
  107. ultralytics/solutions/trackzone.py +4 -4
  108. ultralytics/trackers/basetrack.py +16 -23
  109. ultralytics/trackers/bot_sort.py +30 -20
  110. ultralytics/trackers/byte_tracker.py +70 -64
  111. ultralytics/trackers/track.py +4 -8
  112. ultralytics/trackers/utils/gmc.py +31 -58
  113. ultralytics/trackers/utils/kalman_filter.py +37 -37
  114. ultralytics/trackers/utils/matching.py +1 -1
  115. ultralytics/utils/__init__.py +105 -89
  116. ultralytics/utils/autobatch.py +16 -3
  117. ultralytics/utils/autodevice.py +54 -24
  118. ultralytics/utils/benchmarks.py +42 -28
  119. ultralytics/utils/callbacks/base.py +3 -3
  120. ultralytics/utils/callbacks/clearml.py +9 -9
  121. ultralytics/utils/callbacks/comet.py +67 -25
  122. ultralytics/utils/callbacks/dvc.py +7 -10
  123. ultralytics/utils/callbacks/mlflow.py +2 -5
  124. ultralytics/utils/callbacks/neptune.py +7 -13
  125. ultralytics/utils/callbacks/raytune.py +1 -1
  126. ultralytics/utils/callbacks/tensorboard.py +5 -6
  127. ultralytics/utils/callbacks/wb.py +14 -14
  128. ultralytics/utils/checks.py +14 -13
  129. ultralytics/utils/dist.py +5 -5
  130. ultralytics/utils/downloads.py +94 -67
  131. ultralytics/utils/errors.py +5 -5
  132. ultralytics/utils/export.py +61 -47
  133. ultralytics/utils/files.py +23 -22
  134. ultralytics/utils/instance.py +48 -52
  135. ultralytics/utils/loss.py +78 -40
  136. ultralytics/utils/metrics.py +186 -130
  137. ultralytics/utils/ops.py +186 -190
  138. ultralytics/utils/patches.py +15 -17
  139. ultralytics/utils/plotting.py +71 -27
  140. ultralytics/utils/tal.py +21 -15
  141. ultralytics/utils/torch_utils.py +53 -50
  142. ultralytics/utils/triton.py +5 -4
  143. ultralytics/utils/tuner.py +5 -5
  144. dgenerate_ultralytics_headless-8.3.143.dist-info/RECORD +0 -272
  145. {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/WHEEL +0 -0
  146. {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/entry_points.txt +0 -0
  147. {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/licenses/LICENSE +0 -0
  148. {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/top_level.txt +0 -0
@@ -49,7 +49,7 @@ if WINDOWS and check_version(torch.__version__, "==2.4.0"): # reject version 2.
49
49
 
50
50
  @contextmanager
51
51
  def torch_distributed_zero_first(local_rank: int):
52
- """Ensures all processes in distributed training wait for the local master (rank 0) to complete a task first."""
52
+ """Ensure all processes in distributed training wait for the local master (rank 0) to complete a task first."""
53
53
  initialized = dist.is_available() and dist.is_initialized()
54
54
  use_ids = initialized and dist.get_backend() == "nccl"
55
55
 
@@ -61,10 +61,10 @@ def torch_distributed_zero_first(local_rank: int):
61
61
 
62
62
 
63
63
  def smart_inference_mode():
64
- """Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
64
+ """Apply torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""
65
65
 
66
66
  def decorate(fn):
67
- """Applies appropriate torch decorator for inference mode based on torch version."""
67
+ """Apply appropriate torch decorator for inference mode based on torch version."""
68
68
  if TORCH_1_9 and torch.is_inference_mode_enabled():
69
69
  return fn # already in inference_mode, act as a pass-through
70
70
  else:
@@ -82,7 +82,7 @@ def autocast(enabled: bool, device: str = "cuda"):
82
82
 
83
83
  Args:
84
84
  enabled (bool): Whether to enable automatic mixed precision.
85
- device (str, optional): The device to use for autocast. Defaults to 'cuda'.
85
+ device (str, optional): The device to use for autocast.
86
86
 
87
87
  Returns:
88
88
  (torch.amp.autocast): The appropriate autocast context manager.
@@ -136,9 +136,8 @@ def select_device(device="", batch=0, newline=False, verbose=True):
136
136
  exception if the requested device(s) are not available.
137
137
 
138
138
  Args:
139
- device (str | torch.device, optional): Device string or torch.device object.
140
- Options are 'None', 'cpu', or 'cuda', or '0' or '0,1,2,3'. Defaults to an empty string, which auto-selects
141
- the first available GPU, or CPU if no GPU is available.
139
+ device (str | torch.device, optional): Device string or torch.device object. Options are 'None', 'cpu', or
140
+ 'cuda', or '0' or '0,1,2,3'. Auto-selects the first available GPU, or CPU if no GPU is available.
142
141
  batch (int, optional): Batch size being used in your model.
143
142
  newline (bool, optional): If True, adds a newline at the end of the log string.
144
143
  verbose (bool, optional): If True, logs the device information.
@@ -157,7 +156,7 @@ def select_device(device="", batch=0, newline=False, verbose=True):
157
156
  >>> select_device("cpu")
158
157
  device(type='cpu')
159
158
 
160
- Note:
159
+ Notes:
161
160
  Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use.
162
161
  """
163
162
  if isinstance(device, torch.device) or str(device).startswith(("tpu", "intel")):
@@ -243,7 +242,7 @@ def select_device(device="", batch=0, newline=False, verbose=True):
243
242
 
244
243
 
245
244
  def time_sync():
246
- """PyTorch-accurate time."""
245
+ """Return PyTorch-accurate time."""
247
246
  if torch.cuda.is_available():
248
247
  torch.cuda.synchronize()
249
248
  return time.time()
@@ -320,12 +319,15 @@ def model_info(model, detailed=False, verbose=True, imgsz=640):
320
319
 
321
320
  Args:
322
321
  model (nn.Module): Model to analyze.
323
- detailed (bool, optional): Whether to print detailed layer information. Defaults to False.
324
- verbose (bool, optional): Whether to print model information. Defaults to True.
325
- imgsz (int | List, optional): Input image size. Defaults to 640.
322
+ detailed (bool, optional): Whether to print detailed layer information.
323
+ verbose (bool, optional): Whether to print model information.
324
+ imgsz (int | list, optional): Input image size.
326
325
 
327
326
  Returns:
328
- (Tuple[int, int, int, float]): Number of layers, parameters, gradients, and GFLOPs.
327
+ n_l (int): Number of layers.
328
+ n_p (int): Number of parameters.
329
+ n_g (int): Number of gradients.
330
+ flops (float): GFLOPs.
329
331
  """
330
332
  if not verbose:
331
333
  return
@@ -410,7 +412,7 @@ def get_flops(model, imgsz=640):
410
412
 
411
413
  Args:
412
414
  model (nn.Module): The model to calculate FLOPs for.
413
- imgsz (int | List[int], optional): Input image size. Defaults to 640.
415
+ imgsz (int | list, optional): Input image size.
414
416
 
415
417
  Returns:
416
418
  (float): The model FLOPs in billions.
@@ -448,7 +450,7 @@ def get_flops_with_torch_profiler(model, imgsz=640):
448
450
 
449
451
  Args:
450
452
  model (nn.Module): The model to calculate FLOPs for.
451
- imgsz (int | List[int], optional): Input image size. Defaults to 640.
453
+ imgsz (int | list, optional): Input image size.
452
454
 
453
455
  Returns:
454
456
  (float): The model's FLOPs in billions.
@@ -491,13 +493,13 @@ def initialize_weights(model):
491
493
 
492
494
  def scale_img(img, ratio=1.0, same_shape=False, gs=32):
493
495
  """
494
- Scales and pads an image tensor, optionally maintaining aspect ratio and padding to gs multiple.
496
+ Scale and pad an image tensor, optionally maintaining aspect ratio and padding to gs multiple.
495
497
 
496
498
  Args:
497
499
  img (torch.Tensor): Input image tensor.
498
- ratio (float, optional): Scaling ratio. Defaults to 1.0.
499
- same_shape (bool, optional): Whether to maintain the same shape. Defaults to False.
500
- gs (int, optional): Grid size for padding. Defaults to 32.
500
+ ratio (float, optional): Scaling ratio.
501
+ same_shape (bool, optional): Whether to maintain the same shape.
502
+ gs (int, optional): Grid size for padding.
501
503
 
502
504
  Returns:
503
505
  (torch.Tensor): Scaled and padded image tensor.
@@ -514,13 +516,13 @@ def scale_img(img, ratio=1.0, same_shape=False, gs=32):
514
516
 
515
517
  def copy_attr(a, b, include=(), exclude=()):
516
518
  """
517
- Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes.
519
+ Copy attributes from object 'b' to object 'a', with options to include/exclude certain attributes.
518
520
 
519
521
  Args:
520
- a (object): Destination object to copy attributes to.
521
- b (object): Source object to copy attributes from.
522
- include (tuple, optional): Attributes to include. If empty, all attributes are included. Defaults to ().
523
- exclude (tuple, optional): Attributes to exclude. Defaults to ().
522
+ a (Any): Destination object to copy attributes to.
523
+ b (Any): Source object to copy attributes from.
524
+ include (tuple, optional): Attributes to include. If empty, all attributes are included.
525
+ exclude (tuple, optional): Attributes to exclude.
524
526
  """
525
527
  for k, v in b.__dict__.items():
526
528
  if (len(include) and k not in include) or k.startswith("_") or k in exclude:
@@ -546,12 +548,12 @@ def get_latest_opset():
546
548
 
547
549
  def intersect_dicts(da, db, exclude=()):
548
550
  """
549
- Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.
551
+ Return a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.
550
552
 
551
553
  Args:
552
554
  da (dict): First dictionary.
553
555
  db (dict): Second dictionary.
554
- exclude (tuple, optional): Keys to exclude. Defaults to ().
556
+ exclude (tuple, optional): Keys to exclude.
555
557
 
556
558
  Returns:
557
559
  (dict): Dictionary of intersecting keys with matching shapes.
@@ -561,7 +563,7 @@ def intersect_dicts(da, db, exclude=()):
561
563
 
562
564
  def is_parallel(model):
563
565
  """
564
- Returns True if model is of type DP or DDP.
566
+ Return True if model is of type DP or DDP.
565
567
 
566
568
  Args:
567
569
  model (nn.Module): Model to check.
@@ -574,7 +576,7 @@ def is_parallel(model):
574
576
 
575
577
  def de_parallel(model):
576
578
  """
577
- De-parallelize a model: returns single-GPU model if model is of type DP or DDP.
579
+ De-parallelize a model: return single-GPU model if model is of type DP or DDP.
578
580
 
579
581
  Args:
580
582
  model (nn.Module): Model to de-parallelize.
@@ -587,12 +589,12 @@ def de_parallel(model):
587
589
 
588
590
  def one_cycle(y1=0.0, y2=1.0, steps=100):
589
591
  """
590
- Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.
592
+ Return a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.
591
593
 
592
594
  Args:
593
- y1 (float, optional): Initial value. Defaults to 0.0.
594
- y2 (float, optional): Final value. Defaults to 1.0.
595
- steps (int, optional): Number of steps. Defaults to 100.
595
+ y1 (float, optional): Initial value.
596
+ y2 (float, optional): Final value.
597
+ steps (int, optional): Number of steps.
596
598
 
597
599
  Returns:
598
600
  (function): Lambda function for computing the sinusoidal ramp.
@@ -605,8 +607,8 @@ def init_seeds(seed=0, deterministic=False):
605
607
  Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html.
606
608
 
607
609
  Args:
608
- seed (int, optional): Random seed. Defaults to 0.
609
- deterministic (bool, optional): Whether to set deterministic algorithms. Defaults to False.
610
+ seed (int, optional): Random seed.
611
+ deterministic (bool, optional): Whether to set deterministic algorithms.
610
612
  """
611
613
  random.seed(seed)
612
614
  np.random.seed(seed)
@@ -627,7 +629,7 @@ def init_seeds(seed=0, deterministic=False):
627
629
 
628
630
 
629
631
  def unset_deterministic():
630
- """Unsets all the configurations applied for deterministic training."""
632
+ """Unset all the configurations applied for deterministic training."""
631
633
  torch.use_deterministic_algorithms(False)
632
634
  torch.backends.cudnn.deterministic = False
633
635
  os.environ.pop("CUBLAS_WORKSPACE_CONFIG", None)
@@ -660,9 +662,9 @@ class ModelEMA:
660
662
 
661
663
  Args:
662
664
  model (nn.Module): Model to create EMA for.
663
- decay (float, optional): Maximum EMA decay rate. Defaults to 0.9999.
664
- tau (int, optional): EMA decay time constant. Defaults to 2000.
665
- updates (int, optional): Initial number of updates. Defaults to 0.
665
+ decay (float, optional): Maximum EMA decay rate.
666
+ tau (int, optional): EMA decay time constant.
667
+ updates (int, optional): Initial number of updates.
666
668
  """
667
669
  self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
668
670
  self.updates = updates # number of EMA updates
@@ -691,12 +693,12 @@ class ModelEMA:
691
693
 
692
694
  def update_attr(self, model, include=(), exclude=("process_group", "reducer")):
693
695
  """
694
- Updates attributes and saves stripped model with optimizer removed.
696
+ Update attributes and save stripped model with optimizer removed.
695
697
 
696
698
  Args:
697
699
  model (nn.Module): Model to update attributes from.
698
- include (tuple, optional): Attributes to include. Defaults to ().
699
- exclude (tuple, optional): Attributes to exclude. Defaults to ("process_group", "reducer").
700
+ include (tuple, optional): Attributes to include.
701
+ exclude (tuple, optional): Attributes to exclude.
700
702
  """
701
703
  if self.enabled:
702
704
  copy_attr(self.ema, model, include, exclude)
@@ -707,8 +709,9 @@ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict
707
709
  Strip optimizer from 'f' to finalize training, optionally save as 's'.
708
710
 
709
711
  Args:
710
- f (str | Path): File path to model to strip the optimizer from. Defaults to 'best.pt'.
711
- s (str, optional): File path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten.
712
+ f (str | Path): File path to model to strip the optimizer from.
713
+ s (str, optional): File path to save the model with stripped optimizer to. If not provided, 'f' will be
714
+ overwritten.
712
715
  updates (dict, optional): A dictionary of updates to overlay onto the checkpoint before saving.
713
716
 
714
717
  Returns:
@@ -764,7 +767,7 @@ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict
764
767
 
765
768
  def convert_optimizer_state_dict_to_fp16(state_dict):
766
769
  """
767
- Converts the state_dict of a given optimizer to FP16, focusing on the 'state' key for tensor conversions.
770
+ Convert the state_dict of a given optimizer to FP16, focusing on the 'state' key for tensor conversions.
768
771
 
769
772
  Args:
770
773
  state_dict (dict): Optimizer state dictionary.
@@ -790,7 +793,7 @@ def cuda_memory_usage(device=None):
790
793
  Finally, it updates the dictionary with the amount of memory reserved by CUDA on the specified device.
791
794
 
792
795
  Args:
793
- device (torch.device, optional): The CUDA device to query memory usage for. Defaults to None.
796
+ device (torch.device, optional): The CUDA device to query memory usage for.
794
797
 
795
798
  Yields:
796
799
  (dict): A dictionary with a key 'memory' initialized to 0, which will be updated with the reserved memory.
@@ -811,11 +814,11 @@ def profile_ops(input, ops, n=10, device=None, max_num_obj=0):
811
814
  Ultralytics speed, memory and FLOPs profiler.
812
815
 
813
816
  Args:
814
- input (torch.Tensor | List[torch.Tensor]): Input tensor(s) to profile.
815
- ops (nn.Module | List[nn.Module]): Model or list of operations to profile.
816
- n (int, optional): Number of iterations to average. Defaults to 10.
817
- device (str | torch.device, optional): Device to profile on. Defaults to None.
818
- max_num_obj (int, optional): Maximum number of objects for simulation. Defaults to 0.
817
+ input (torch.Tensor | list): Input tensor(s) to profile.
818
+ ops (nn.Module | list): Model or list of operations to profile.
819
+ n (int, optional): Number of iterations to average.
820
+ device (str | torch.device, optional): Device to profile on.
821
+ max_num_obj (int, optional): Maximum number of objects for simulation.
819
822
 
820
823
  Returns:
821
824
  (list): Profile results for each operation.
@@ -11,7 +11,7 @@ class TritonRemoteModel:
11
11
  Client for interacting with a remote Triton Inference Server model.
12
12
 
13
13
  This class provides a convenient interface for sending inference requests to a Triton Inference Server
14
- and processing the responses.
14
+ and processing the responses. Supports both HTTP and gRPC communication protocols.
15
15
 
16
16
  Attributes:
17
17
  endpoint (str): The name of the model on the Triton server.
@@ -31,6 +31,7 @@ class TritonRemoteModel:
31
31
  Examples:
32
32
  Initialize a Triton client with HTTP
33
33
  >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
34
+
34
35
  Make inference with numpy arrays
35
36
  >>> outputs = model(np.random.rand(1, 3, 640, 640).astype(np.float32))
36
37
  """
@@ -44,8 +45,8 @@ class TritonRemoteModel:
44
45
 
45
46
  Args:
46
47
  url (str): The URL of the Triton server.
47
- endpoint (str): The name of the model on the Triton server.
48
- scheme (str): The communication scheme ('http' or 'grpc').
48
+ endpoint (str, optional): The name of the model on the Triton server.
49
+ scheme (str, optional): The communication scheme ('http' or 'grpc').
49
50
 
50
51
  Examples:
51
52
  >>> model = TritonRemoteModel(url="localhost:8000", endpoint="yolov8", scheme="http")
@@ -87,7 +88,7 @@ class TritonRemoteModel:
87
88
 
88
89
  def __call__(self, *inputs: np.ndarray) -> List[np.ndarray]:
89
90
  """
90
- Call the model with the given inputs.
91
+ Call the model with the given inputs and return inference results.
91
92
 
92
93
  Args:
93
94
  *inputs (np.ndarray): Input data to the model. Each array should match the expected shape and type
@@ -17,14 +17,14 @@ def run_ray_tune(
17
17
 
18
18
  Args:
19
19
  model (YOLO): Model to run the tuner on.
20
- space (dict, optional): The hyperparameter search space.
20
+ space (dict, optional): The hyperparameter search space. If not provided, uses default space.
21
21
  grace_period (int, optional): The grace period in epochs of the ASHA scheduler.
22
22
  gpu_per_trial (int, optional): The number of GPUs to allocate per trial.
23
23
  max_samples (int, optional): The maximum number of trials to run.
24
24
  **train_args (Any): Additional arguments to pass to the `train()` method.
25
25
 
26
26
  Returns:
27
- (dict): A dictionary containing the results of the hyperparameter search.
27
+ (ray.tune.ResultGrid): A ResultGrid containing the results of the hyperparameter search.
28
28
 
29
29
  Examples:
30
30
  >>> from ultralytics import YOLO
@@ -88,7 +88,7 @@ def run_ray_tune(
88
88
  model_in_store = ray.put(model)
89
89
 
90
90
  def _tune(config):
91
- """Train the YOLO model with the specified hyperparameters."""
91
+ """Train the YOLO model with the specified hyperparameters and return results."""
92
92
  model_to_train = ray.get(model_in_store) # get the model from ray store for tuning
93
93
  model_to_train.reset_callbacks()
94
94
  config.update(train_args)
@@ -98,13 +98,13 @@ def run_ray_tune(
98
98
  # Get search space
99
99
  if not space and not train_args.get("resume"):
100
100
  space = default_space
101
- LOGGER.warning("search space not provided, using default search space.")
101
+ LOGGER.warning("Search space not provided, using default search space.")
102
102
 
103
103
  # Get dataset
104
104
  data = train_args.get("data", TASK2DATA[task])
105
105
  space["data"] = data
106
106
  if "data" not in train_args:
107
- LOGGER.warning(f'data not provided, using default "data={data}".')
107
+ LOGGER.warning(f'Data not provided, using default "data={data}".')
108
108
 
109
109
  # Define the trainable function with allocated resources
110
110
  trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0})
@@ -1,272 +0,0 @@
1
- dgenerate_ultralytics_headless-8.3.143.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
- tests/__init__.py,sha256=xnMhv3O_DF1YrW4zk__ZywQzAaoTDjPKPoiI1Ktss1w,670
3
- tests/conftest.py,sha256=rsIAipRKfrVNoTaJ1LdpYue8AbcJ_fr3d3WIlM_6uXY,2982
4
- tests/test_cli.py,sha256=vXUC_EK0fa87JRhHsCOZf7AJQ5_Jm1sL8u-yhmsaQh0,5851
5
- tests/test_cuda.py,sha256=bT_IzqxKQW3u2E06_Gcox2tZfmadMEv0W66OUrPF0P4,7917
6
- tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
7
- tests/test_exports.py,sha256=dhZn86LdbapW15RthQF870LGxDjC1MUZhlGdBgPmgIQ,9716
8
- tests/test_integrations.py,sha256=dQteeRsRVuT_p5-T88-7jqT65Zm9iAXkyKg-KQ1_TQ8,6341
9
- tests/test_python.py,sha256=Zx9OlPN11_D1WSLpi9nPFqORNHNz0lEn6mxVNL2ZHjE,25852
10
- tests/test_solutions.py,sha256=4TryDaWOeY3HF33RZuYe9ofUZhgQrp4_nFI8tPUdiOc,13080
11
- ultralytics/__init__.py,sha256=XEt2XO7rEliN-Fgis0qJ7S8kTmeX8cMWBWgI0jROIRY,730
12
- ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
- ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
- ultralytics/cfg/__init__.py,sha256=nDPCpYipxJ5XLjwwaoB5DNbovbOH-GM26_e2G5jDQ28,39580
15
- ultralytics/cfg/default.yaml,sha256=oFG6llJO-Py5H-cR9qs-7FieJamroDLwpbrkhmfROOM,8307
16
- ultralytics/cfg/datasets/Argoverse.yaml,sha256=_xlEDIJ9XkUo0v_iNL7FW079BoSeZtKSuLteKTtGbA8,3275
17
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=SHND_CFkojxw5iQD5Mcgju2kCZIl0gW2ajuzv1cqoL0,1224
18
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=j_DvXVQzZ4dQmf8I7oPX4v9xO3WZXztxV4Xo9VhUTsM,1194
19
- ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=TgPAhAnQAwviZcWRkuVTEww3u9VJ86rBlJvjj58ENu4,2157
20
- ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=-7HrCmBkKVzfp5c7LCHg-nBZYMZ4j58QVHXz_4V6daQ,990
21
- ultralytics/cfg/datasets/ImageNet.yaml,sha256=6F1GXJg80iS8PJTcbAVbZX7Eb25NdJAAZ4UIS8mmrhk,42543
22
- ultralytics/cfg/datasets/Objects365.yaml,sha256=E0WmOVH22cKpgyWSiuLxmAMd35x2O--kS8VLW-ONoqU,9370
23
- ultralytics/cfg/datasets/SKU-110K.yaml,sha256=EmYFUdlxmF4SnijaifO3dHaP_uf95Vgz4FdckHeEVEM,2558
24
- ultralytics/cfg/datasets/VOC.yaml,sha256=xQOx67XQaYCgUjHxp4HjY94zx7ZOphDGlwgzxYfaed0,3800
25
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=jONp3ws_RL1Iccnp81ho-zVhLUE63QfcvdUJ395h-GY,3263
26
- ultralytics/cfg/datasets/african-wildlife.yaml,sha256=pENEc4cO8A-uAk1dLn1Kul9ofDGcUmeGuQARs13Plhg,930
27
- ultralytics/cfg/datasets/brain-tumor.yaml,sha256=wDRZVNZ9Z_p2KRMaFpqrFY00riQ-GGfGYk7N4bDkGFw,856
28
- ultralytics/cfg/datasets/carparts-seg.yaml,sha256=5fJKD-bLoio9-LUC09bPrt5qEYbCIQ7i5TAZ1VADeL8,1268
29
- ultralytics/cfg/datasets/coco-pose.yaml,sha256=NHdgSsGkHS0-X636p2-hExTJGdoWUSP1TPshH2nVRPk,1636
30
- ultralytics/cfg/datasets/coco.yaml,sha256=chdzyIHLfekjOcng-G2_bpC57VUcHPjVvW8ENJfiQao,2619
31
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=ifDPbVuuN7N2_3e8e_YBdTVcANYIOKORQMgXlsPS6D4,1995
32
- ultralytics/cfg/datasets/coco128.yaml,sha256=udymG6qzF9Bvh_JYC7BOSXOUeA1Ia8ZmR2EzNGsY6YY,1978
33
- ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=h5Kbx9y3wjWUw6p8jeQVUaIs07VoQS7ZY0vMau5WGAg,2076
34
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=yfw2_SkCZO3ttPLiI0mfjxv5gr4-CA3i0elYP5PY71k,1022
35
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=wpfFI-GfL5asbLtFyaHLE6593jdka7waE07Am3_eg8w,1926
36
- ultralytics/cfg/datasets/coco8.yaml,sha256=qJX2TSM7nMV-PpCMXCX4702yp3a-ZF1ubLatlGN5XOE,1901
37
- ultralytics/cfg/datasets/crack-seg.yaml,sha256=QEnxOouOKQ3TM6Cl8pBnX5QLPWdChZEBA28jaLkzxA4,852
38
- ultralytics/cfg/datasets/dog-pose.yaml,sha256=Cr-J7dPhHmNfW9TKH48L22WPYmJFtWH-lbOAxLHnjKU,907
39
- ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=F_GBGsFyuJwaWItCOn27CBDgCdsVyI9e0IcXKbZc7t0,1229
40
- ultralytics/cfg/datasets/dota8.yaml,sha256=W43bp_6yUUVjs6vpogNrGI9vU7rLbEsSx6vyfIkDyj8,1073
41
- ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=5vue4kvPrAdd6ZyB90rZgtGUUHvSi3s_ht7jBBqX7a4,989
42
- ultralytics/cfg/datasets/lvis.yaml,sha256=jD-z6cny0l_Cl7xN6RqiFAc7a7odcVwr3E8_jmH-wzA,29716
43
- ultralytics/cfg/datasets/medical-pills.yaml,sha256=3ho9VW8p5Hm1TuicguiL-akfC9dCZO5nwthO4sUR3k0,848
44
- ultralytics/cfg/datasets/open-images-v7.yaml,sha256=uhsujByejzeysTB10QnSLfDNb9U_HqoES45QJrqMC7g,12132
45
- ultralytics/cfg/datasets/package-seg.yaml,sha256=uechtCYfX8OrJrO5zV1-uGwbr69lUSuon1oXguEkLGg,864
46
- ultralytics/cfg/datasets/signature.yaml,sha256=eABYny9n4w3RleR3RQmb505DiBll8R5cvcjWj8wkuf0,789
47
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=gCQc1AX04Xfhnms4czm7R_XnT2XFL2u-t3M8Yya20ds,925
48
- ultralytics/cfg/datasets/xView.yaml,sha256=3PRpBl6q53SUZ09u5efuhaKyeob45EUcxF4nQQqKnUQ,5353
49
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
50
- ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
51
- ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
52
- ultralytics/cfg/models/11/yolo11-pose.yaml,sha256=_N6tIwP1e3ci_q873B7cqgzlAtjzf-X5nFZqel5xjeQ,2128
53
- ultralytics/cfg/models/11/yolo11-seg.yaml,sha256=dGKO-8TZTYHudPqQIdp11MBztQEvjCh_T1WCFUxEz_s,2045
54
- ultralytics/cfg/models/11/yolo11.yaml,sha256=Q9inyGrMdygt30lm1lJuCR5bBkwUDtSm5MC2jsvDeEw,2012
55
- ultralytics/cfg/models/11/yoloe-11-seg.yaml,sha256=_JtMoNyGutwE95r9wp6kBqGmveHaCKio4N4IiT8sWLg,1977
56
- ultralytics/cfg/models/11/yoloe-11.yaml,sha256=fuZlC69RbsAPwBxMnhTBLCCQOtyh_UlvV0KsCDb1vZ8,1963
57
- ultralytics/cfg/models/12/yolo12-cls.yaml,sha256=BLv578ZuU-QKx6GTNWX6lXdutzf_0rGhRrC3HrpxaNM,1405
58
- ultralytics/cfg/models/12/yolo12-obb.yaml,sha256=JMviFAOmDbW0aMNzZNqispP0wxWw3mtKn2iUwedf4WM,1975
59
- ultralytics/cfg/models/12/yolo12-pose.yaml,sha256=Mr9xjYclLQzxYhMqjIKQTdiTvtqZvEXBtclADFggaMA,2074
60
- ultralytics/cfg/models/12/yolo12-seg.yaml,sha256=RBFFz4b95Dupfg0fmqCkZ4i1Zzai_QyJrI6Y2oLsocM,1984
61
- ultralytics/cfg/models/12/yolo12.yaml,sha256=ZeA8LuymJXPNjZ5xkxkZHkcktDaKDzUBb2Kc3gCLC1w,1953
62
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=_jGu4rotBnmjS29MkSvPx_4dNTWku68ie8-BIvf_p6Q,2041
63
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=BGWp61olKkgD_CzikeVSglWfat3L9hDIK6KDkjwzlxc,1678
64
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=hrRmoL2w-Rchd7obEcSYPeyDNG32QxXftbRH_4vVeZQ,1676
65
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=sfO4kVzpGabUX3Z4bHo65zHz55CS_mQD-qATy_a5m1I,2248
66
- ultralytics/cfg/models/v10/yolov10b.yaml,sha256=_vTwz4iHW2DeX7yJGq0pD5MI2m8wbhW2VWpRLhBnmRc,1507
67
- ultralytics/cfg/models/v10/yolov10l.yaml,sha256=WzVFTALNtfCevuMujsjDzHiTUis5HY3rSnEmQ4i0-dA,1507
68
- ultralytics/cfg/models/v10/yolov10m.yaml,sha256=v9-KMN8BeuL_lQS-C3gBuAz-7c9DezqJcxUaEHLKu2M,1498
69
- ultralytics/cfg/models/v10/yolov10n.yaml,sha256=D_odGqRblS2I8E23Hchxkjq19RNet_QBAGi1VvD0Dl4,1493
70
- ultralytics/cfg/models/v10/yolov10s.yaml,sha256=mFGTHjlSU2nq6jGwEGPDYKm_4nblvCEfQD8DjSjcSTI,1502
71
- ultralytics/cfg/models/v10/yolov10x.yaml,sha256=ZwBikqNYs66YiJBLHQ-4VUe-SBrhzksTD2snM9IzL30,1510
72
- ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=hsM-yhdWv-8XlWuaSOVqFJcHUVZ-FmjH4QjkA9CHJZU,1625
73
- ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=_DtEMJBOTriSaTUA3Aw5LvwgXyc3v_8-uuCpg45cUyQ,1331
74
- ultralytics/cfg/models/v3/yolov3.yaml,sha256=Fvt4_PTwLBpRw3R4v4VQ-1PIiojpoFZD1uuTZySUYSw,1612
75
- ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=VKEWykksykSlzvuy7if4yFo9WlblC3hdqcNxJ9bwHek,1994
76
- ultralytics/cfg/models/v5/yolov5.yaml,sha256=QD8dRe5e5ys52wXPKvNJn622H_3iX0jPzE_2--2dZx0,1626
77
- ultralytics/cfg/models/v6/yolov6.yaml,sha256=NrRxq_E6yXnMZqJcLXrIPZtj8eqAxFxSAz4MDFGcwEg,1813
78
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml,sha256=-Fea6WJBWteUnu6VmyOmZUBwIUgGAq4zhTCr396kpzw,1853
79
- ultralytics/cfg/models/v8/yoloe-v8.yaml,sha256=vQY7uAlz8OcyXmoZzLJtuXZyohFaCE4pYua1tB_1ud0,1852
80
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml,sha256=0JaJos3dYrDryy_KdizfLZcGUawaNtFHjcL2GZJNzmA,994
81
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml,sha256=DvFH4vwpyqPZkLc_zY4KcCQbfAHj9LUv3nAjKx4ffow,992
82
- ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=G50mnw-C0SWrZpZl5wzov1dugdjZMM6zT30t5cQrcJQ,1019
83
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=0FBVNgXWgEoYmWDroQyj5JcHUi0igpF4B4Z9coqRE1c,2481
84
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=A0_iAowxMans-VFIyGt1XyFAVPZJkMa7E3ubVFBS1Mg,2557
85
- ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=SXMINIdKaVPM8T3fkG_QjebnVz-V-DbFfzHmX9qwLKg,2180
86
- ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=ksNlmazKXxWgBtwQ5FGy5hKyjlxcb4A1kreL_9mtEZA,2008
87
- ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=8Ql7BeagsE3gyos5D0Q6u-EjIZ_XJ1rSJXKpGG37MF8,1825
88
- ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=TqIsa8gNEW04KmdLxxC9rqhd7PCHlUqkzoiDxnMTio0,2363
89
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=wGaxBbf92Hr6E3Wk8vefdZSA3wOocZd4FckSAEZKWNQ,2037
90
- ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=LdzbiIVknZQMLYB2wzCHqul3NilfKp4nx5SdaGQsF6s,1676
91
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=EURod-QSBLijM79av4I43OboRFWbLKmFaGVRyIaw2Wo,2034
92
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=anEWPI8Ld8zcCDvbHQCx8FMg2PR6sJCjoIK7pctl8Rg,1955
93
- ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=hFeiOFVwTV4zv08IrmTIuzJcUZmYkY7SIi2oV322e6U,1587
94
- ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=jWpYoh-F1TiANj46ijQdUPvf0fWcYbnoFH-0Uv4Nzus,2157
95
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=MCqN2QO4foAcrFrDITGcpJ3fsbSgPrE-c5WOh4FS91w,2103
96
- ultralytics/cfg/models/v8/yolov8.yaml,sha256=QFo8MC62CWEDqZr02CwdLYsrv_RpoijFWqyUSywZZyo,1977
97
- ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=UBHoQ_cJV2yp6rMzHXRp46uBAUmKIrbgd3jiEBPRvqI,1447
98
- ultralytics/cfg/models/v9/yolov9c.yaml,sha256=x1kus_2mQdU9V3ZGg0XdE5WTUU3j8fwGe1Ou3x2aX5I,1426
99
- ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=WVpU5jHgoUuCMVirvmn_ScOmH9d1MyVVIX8XAY8787c,2377
100
- ultralytics/cfg/models/v9/yolov9e.yaml,sha256=Olr2PlADpkD6N1TiVyAJEMzkrA7SbNul1nOaUF8CS38,2355
101
- ultralytics/cfg/models/v9/yolov9m.yaml,sha256=WcKQ3xRsC1JMgA42Hx4xzr4FZmtE6B3wKvqhlQxkqw8,1411
102
- ultralytics/cfg/models/v9/yolov9s.yaml,sha256=j_v3JWaPtiuM8aKJt15Z_4HPRCoHWn_G6Z07t8CZyjk,1391
103
- ultralytics/cfg/models/v9/yolov9t.yaml,sha256=Q8GpSXE7fumhuJiQg4a2SkuS_UmnXqp-eoZxW_C0vEo,1375
104
- ultralytics/cfg/trackers/botsort.yaml,sha256=TpRaK5kH_-QbjCQ7ekM4s_7j8I8ti3q8Hs7WDz4rEwA,1215
105
- ultralytics/cfg/trackers/bytetrack.yaml,sha256=6u-tiZlk16EqEwkNXaMrza6PAQmWj_ypgv26LGCtPDg,886
106
- ultralytics/data/__init__.py,sha256=nAXaL1puCc7z_NjzQNlJnhbVhT9Fla2u7Dsqo7q1dAc,644
107
- ultralytics/data/annotator.py,sha256=VEwb11FsEZm75qlEp8XDHFGKW0_rGsEaFDaBVd771Kw,2902
108
- ultralytics/data/augment.py,sha256=5O02Um483j7VAutLUz13IGpuuEdvyD9mhTMxFCFwCas,129342
109
- ultralytics/data/base.py,sha256=Yn0pRz1E_yIx2IJtQClA0FuWkYrlpJfuOGPlg3QUGiI,19020
110
- ultralytics/data/build.py,sha256=J1aP7qYioSiP2xq3QefiRWk3-c7lKzhNCR0hqXLQFos,9850
111
- ultralytics/data/converter.py,sha256=znXH2XTdo0Q4NDHMny1ydVBvrxKn2kbbwI-X5bn1MlQ,26890
112
- ultralytics/data/dataset.py,sha256=uc5OMkaQtWQHBd_KST_WXO6FEoeF4xUhKDDJBKkQ354,34916
113
- ultralytics/data/loaders.py,sha256=ybkN2q9nFtjl-YQYCy_fvlTBuA19ARDSeoag2Gg7aTU,29961
114
- ultralytics/data/split.py,sha256=6UFXcbVrzYVAPmFbl4FeZFJOkdbN3jQFepJxi_pD-I0,4748
115
- ultralytics/data/split_dota.py,sha256=ihG56YfNFZJDq1r7Zcgk8fKzde3gn21W0f67ub6nT68,11879
116
- ultralytics/data/utils.py,sha256=5vD6Nea2SE14Ap9nFTHkJgzOgVKJy-P8-bcqqxa_UB0,35551
117
- ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
118
- ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
119
- ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
120
- ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
121
- ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
122
- ultralytics/engine/exporter.py,sha256=BZWa7Mnl1BPvbPiD-RJs6M5Bca4sm3_MQgjoHesvXEs,70949
123
- ultralytics/engine/model.py,sha256=6AhrrcuLOQk_JuOAPQt3uNktAhEBWcBBh_AP2DGEbAs,53147
124
- ultralytics/engine/predictor.py,sha256=rZ5mIPeejkxUerpTfUf_1rSAklOR3THqoejlil4C04w,21651
125
- ultralytics/engine/results.py,sha256=BOpn7RihPt8OUpdklWs1iL3LCxVXOiynPGpaR_MPToQ,70036
126
- ultralytics/engine/trainer.py,sha256=xdgNAgq6umJ6915tiCK3U22NeY7w1HnvmAhXlwS_hYI,38955
127
- ultralytics/engine/tuner.py,sha256=zEW1UpLlZ6N4xbvS7MxICkshRlaFgLNfuADA0VfRpao,12629
128
- ultralytics/engine/validator.py,sha256=f9UUv3QqQStLrO1nojrHkdS58qYQxKXaoIQQria6WyA,17054
129
- ultralytics/hub/__init__.py,sha256=wDtAUKdfqob95tfFHgDJFXcsNSDSdoIQkJTm-CfIUTI,6616
130
- ultralytics/hub/auth.py,sha256=cykVsFR5xjqZdf8_TagHceGc1BzrfkiSHrzQdoa0nOQ,5555
131
- ultralytics/hub/session.py,sha256=Hohzn2L2QJTYszIHqwxnsK4V-0MOU-8ldMIfpxMtLSE,18708
132
- ultralytics/hub/utils.py,sha256=Hh_ND38R7ssflXh9ndG739-8283oej_EZzlOftIDFEU,9936
133
- ultralytics/hub/google/__init__.py,sha256=rV9_KoRBwYlwyx3QLaBp1opw5Sjrbgl0YoDHtXoHIMw,8429
134
- ultralytics/models/__init__.py,sha256=DqQFFYJ4IQlqIDb61H1HzcnZU7SuHN-43bw94-l-YAQ,309
135
- ultralytics/models/fastsam/__init__.py,sha256=HGJ8EKlBAsdF-e2aIwQLjSDAFI_r0yHR0A1gzrp4vqE,231
136
- ultralytics/models/fastsam/model.py,sha256=aETVw0wCZMMAuiwMv0EKB0jH1hAqVUJ_As8AUWXyJ5Y,2741
137
- ultralytics/models/fastsam/predict.py,sha256=_k8PlTv72J2qRcWW_jyb8LoqZi77ZlyUTN_5_LSVGkw,9097
138
- ultralytics/models/fastsam/utils.py,sha256=gqoktYI_DYpqmPCOEweMd_x0aJDDwERHn0DFpxJiH1k,899
139
- ultralytics/models/fastsam/val.py,sha256=NK6rE4f_-KOQGYJdeObCopkCxhLFsxbTWiRsDT_hzMU,2114
140
- ultralytics/models/nas/__init__.py,sha256=wybeHZuAXMNeXMjKTbK55FZmXJkA4K9IozDeFM9OB-s,207
141
- ultralytics/models/nas/model.py,sha256=uWhLNixkVWHbJ_xa3vjIFFOopq6J8vpbP2TaOk3rtiM,3810
142
- ultralytics/models/nas/predict.py,sha256=6mJaKmTfR0UAbOoKtw8PrWZaDEF5n-gALLeiozdx4ws,2653
143
- ultralytics/models/nas/val.py,sha256=jIDgS656XGaBEEJ_jhyMub-qIieneH5nTXerEoLib9A,1546
144
- ultralytics/models/rtdetr/__init__.py,sha256=_jEHmOjI_QP_nT3XJXLgYHQ6bXG4EL8Gnvn1y_eev1g,225
145
- ultralytics/models/rtdetr/model.py,sha256=zx9UKpReYCRL7Is2DXIX9ZcJE25KE_fPZ-NYx5vF6E4,2119
146
- ultralytics/models/rtdetr/predict.py,sha256=5VNvyULxegg_NfGo7ugfIKHrtKhpaspJZdagU1haQmo,3942
147
- ultralytics/models/rtdetr/train.py,sha256=-c0DZNRscWXRNHddwHHY_OH5nLUb4LLoLyn2yIohGTg,3395
148
- ultralytics/models/rtdetr/val.py,sha256=4KsGuWOsik7JXpU8mUY6ts7_wWuPvcNSxiAGIiGSuxA,7380
149
- ultralytics/models/sam/__init__.py,sha256=iR7B06rAEni21eptg8n4rLOP0Z_qV9y9PL-L93n4_7s,266
150
- ultralytics/models/sam/amg.py,sha256=r_duG0DCeCyTYfhcVh-ti10FPMl4VGL4SKc8yvbQpNU,11050
151
- ultralytics/models/sam/build.py,sha256=Vhml3zBGDcRO-efauNdM0ZlKTV10ADAj_aT823lPJv8,12515
152
- ultralytics/models/sam/model.py,sha256=XWeFKNuSTuc7mgGnCQpSMgRVeLD7TedUiUtrTjiS8SY,7135
153
- ultralytics/models/sam/predict.py,sha256=tT_-v2dJInrZaOse1V7q8PoHtUDsrNjhopn0FRlImtg,82453
154
- ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
155
- ultralytics/models/sam/modules/blocks.py,sha256=Kj9bWyP1E96JPllJS8cJ2FSxPdkQChZdvogm3OPPF2E,45935
156
- ultralytics/models/sam/modules/decoders.py,sha256=4Ijtkl7g_UmLMNEGokt1C05T05MkUczFIRJIUX0gDDc,25654
157
- ultralytics/models/sam/modules/encoders.py,sha256=uXP-CMjtTRCGD2hkbDfXjKSrW0l6Lj_pyx3ZwztYZcw,37614
158
- ultralytics/models/sam/modules/memory_attention.py,sha256=2HWCr7GrXMRX_V3RTfz44i2W44owpStPZU8Jq2hM0gE,12964
159
- ultralytics/models/sam/modules/sam.py,sha256=PJxBIfJdJTe-NLWZZgmSWbnvHhyQjzr7gXNarjqBNJE,52628
160
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=1TDefN-f6QEOEDRZGIrRZYI2T9iYf7f1l-Y6kOdr1O4,40865
161
- ultralytics/models/sam/modules/transformer.py,sha256=YRhoriZ-j37kxq19kArfv2DSOz2Jj9DAbs2mcOBVORw,14674
162
- ultralytics/models/sam/modules/utils.py,sha256=3PatFjbgO1uasMZXXLJw23CrjuYTW7BS9NM4aXom-zY,16294
163
- ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
164
- ultralytics/models/utils/loss.py,sha256=FShJFvzFBk0HRepRhiSVNz9J-Cq08FxkSNXhLppycI0,19993
165
- ultralytics/models/utils/ops.py,sha256=SuBnwwgUTqByNHpufobGLW72yO2cyfZFi14KAFWSjjw,13613
166
- ultralytics/models/yolo/__init__.py,sha256=or0j5xvcM0usMlsFTYhNAOcQUri7reD0cD9JR5b7zDk,307
167
- ultralytics/models/yolo/model.py,sha256=Akq0TuthKAWDIa2l2gNs3QLWVV5Zpk520fdnNa7zxm0,14648
168
- ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
169
- ultralytics/models/yolo/classify/predict.py,sha256=aSNANtN4pbuaiprGR9d3krIfqnAMcAGhnOM8KRh8wR0,4639
170
- ultralytics/models/yolo/classify/train.py,sha256=rv2CJv9fzvtHf2q4l5g0RsjplWKeLpz637kKqjtrLNY,9737
171
- ultralytics/models/yolo/classify/val.py,sha256=xk-YwSQdl_oqyCBV0OOAOcXFL6CchebFOc36AkRSyjE,9992
172
- ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
173
- ultralytics/models/yolo/detect/predict.py,sha256=b0u4qthWKb-jxkObZM_FWUPHYKKb73yL7FYAqIrb4PE,5317
174
- ultralytics/models/yolo/detect/train.py,sha256=FHA2rQPbWFjceng4uVMU-k0kyOnvC5hbpv2VRnYuPSM,9543
175
- ultralytics/models/yolo/detect/val.py,sha256=7AB_wZi7aQ9_V1pZQSWk5qiJYS34fuO3P5aX7_3eeFE,18471
176
- ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
177
- ultralytics/models/yolo/obb/predict.py,sha256=L40iamQgTY7VDn0WggG2jeJK8cVUo1qsNuFSbK67ry0,2974
178
- ultralytics/models/yolo/obb/train.py,sha256=NBSpXCyIn2qxtaG7gvolUzXOB0mf3oEFIpQZHTES1_s,3458
179
- ultralytics/models/yolo/obb/val.py,sha256=Qzer8to_DhPmJ56BNDZh6d9f4o5TY-OgebZpzY8lUxY,13984
180
- ultralytics/models/yolo/pose/__init__.py,sha256=63xmuHZLNzV8I76HhVXAq4f2W0KTk8Oi9eL-Y204LyQ,227
181
- ultralytics/models/yolo/pose/predict.py,sha256=sY-yMVl-hW8tGVSKt-5Pl1Bhdhj9exnmGIeb4n9wUDc,3836
182
- ultralytics/models/yolo/pose/train.py,sha256=dKa1Vzt4GoZ9yqdK6olqLEg-qhYaPUh29Qg62bHAVi8,6502
183
- ultralytics/models/yolo/pose/val.py,sha256=FWDOPjf1Ajumh8DU5VRqUKYEDB8PeAzWtdZvhaIYTRc,18303
184
- ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
185
- ultralytics/models/yolo/segment/predict.py,sha256=mIC3aHI7Jg4dU1k2UZnjVj4unE-5TWi_rh7P0AEyJmA,5410
186
- ultralytics/models/yolo/segment/train.py,sha256=EIyIAjYp127Mb-DomyjPORaONu57OY_gOTK9p2MwW6E,5359
187
- ultralytics/models/yolo/segment/val.py,sha256=cXJM1JNuzDraU0SJQRIdzNxabd0bfcxiRE8wozHZChY,18415
188
- ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
189
- ultralytics/models/yolo/world/train.py,sha256=2R0h36kggT8ZBpwaACqgg9vd34rNU-tbPsfPuxuBV4g,6901
190
- ultralytics/models/yolo/world/train_world.py,sha256=fFhhI-toaEy1_-XcPM1_mF395WRQ26gZ4UxqyUAZmWw,8461
191
- ultralytics/models/yolo/yoloe/__init__.py,sha256=6SLytdJtwu37qewf7CobG7C7Wl1m-xtNdvCXEasfPDE,760
192
- ultralytics/models/yolo/yoloe/predict.py,sha256=N0oYcr_mdw8wyUAWprAwJhrA0r23BaTeYXEjw2e8_mI,6993
193
- ultralytics/models/yolo/yoloe/train.py,sha256=xRPDJ3nUWxtqjESfmUtsZslVhpgzrZRw8z_QU5hV6nc,11710
194
- ultralytics/models/yolo/yoloe/train_seg.py,sha256=BYFBd04k5WQaJPcFbCvVIbEf2IOQyW8_sGeoVT_74j0,4632
195
- ultralytics/models/yolo/yoloe/val.py,sha256=g6GK5NgVEV9bhXzo1zes0NGa4JEZS3UB-5sPN8fGyZw,8440
196
- ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
197
- ultralytics/nn/autobackend.py,sha256=X2cxCytBu9fmniy8uJ5aZb28IukQ-uxV1INXeS1lclA,39368
198
- ultralytics/nn/tasks.py,sha256=iJWpwRr4yZg1dTT-9jXuzIqkdFmbZm1b7hejnO-CiZk,64337
199
- ultralytics/nn/text_model.py,sha256=wr5yPRbMqtSr2N5Rzdd0vuv9PcQe8qw4uO596ZHZVGU,13236
200
- ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
201
- ultralytics/nn/modules/activation.py,sha256=PvXZkA9AzEntR575JkFORdmtcRwATyy0lje-uHA5_8w,2210
202
- ultralytics/nn/modules/block.py,sha256=yd6Ao9T2UJNAWc8oB1-CSxyF6-exqbFcN3hTWUZNU3M,66701
203
- ultralytics/nn/modules/conv.py,sha256=nxbfAxmvo6A9atuxY3LXTtzMXhihZapCSg1F5mI4sIA,21361
204
- ultralytics/nn/modules/head.py,sha256=FbFB-e44Zvxgzdfy0FqeGWUn0DDahmEZvD1W_N2olcM,38442
205
- ultralytics/nn/modules/transformer.py,sha256=tC80QKFaLtWZo0zVNTuORX4pOu6HVs2wS0vSM-3h5W4,28227
206
- ultralytics/nn/modules/utils.py,sha256=rn8yTObZGkQoqVzjbZWLaHiytppG4ffjMME4Lw60glM,6092
207
- ultralytics/solutions/__init__.py,sha256=ZoeAQavTLp8aClnhZ9tbl6lxy86GxofyGvZWTx2aWkI,1209
208
- ultralytics/solutions/ai_gym.py,sha256=QRTFwuD0g9KJgAjqdww4OeitXm-hsyXL1pJlrAhTyqA,5347
209
- ultralytics/solutions/analytics.py,sha256=u-khRAViGupjq9mkuAFCl9G3yE8hXfXASfKZd_SQZ-8,12111
210
- ultralytics/solutions/config.py,sha256=TLxQuZjqW-vhbS2OFmTT188-31ukHg1XP7l-BeOmqbU,5427
211
- ultralytics/solutions/distance_calculation.py,sha256=JyB1KC1WihwGLFX2R2kk4QEvo8Qm0f3CD8fYqchzmfU,5807
212
- ultralytics/solutions/heatmap.py,sha256=0Hw2Vhg4heglpnbNkM-RiGrQOkvgYbPRf4x8x4-zTjg,5418
213
- ultralytics/solutions/instance_segmentation.py,sha256=IuAxxEkKrbTPHmD0jV3VEjNWpBc78o8exg00nE0ldeQ,3558
214
- ultralytics/solutions/object_blurrer.py,sha256=-wXOdqqZisVhxLutZz7JvZmdgVGmsN7Ymary0JHc2qo,3946
215
- ultralytics/solutions/object_counter.py,sha256=49ixmy1OPv5D3CZmsZWQCigJstQvYIdK5aHypNBsZg8,9519
216
- ultralytics/solutions/object_cropper.py,sha256=s56XQMpgCgeQg9KEZs2_7_cP_V-eH6315cY1bxt2oGs,3456
217
- ultralytics/solutions/parking_management.py,sha256=BV-2lpSfgmK7fib3DnPSZ5rtLdy11c8pBQm-72iTetc,13289
218
- ultralytics/solutions/queue_management.py,sha256=p1-cuI_rs4ygtlBryXjE65NYG2bnZXhp3ylggFnWcRs,4344
219
- ultralytics/solutions/region_counter.py,sha256=Zn35YRXNzhBk27D9MLOHBYe2L1o6H2ey3mEwCXofB_E,5418
220
- ultralytics/solutions/security_alarm.py,sha256=JdkQUjqJl3iCd2MLVYkh1L7askvhi3_gp0RLXG6s390,6247
221
- ultralytics/solutions/similarity_search.py,sha256=NVjrlxWStXPhSaE_tGW0g1_j8vD0evaT9IjGOHYERFg,7323
222
- ultralytics/solutions/solutions.py,sha256=zJ7CZh2U2VEUWe5LfC3XhVuc_HGOAQeHPM8ls3cmiZU,33681
223
- ultralytics/solutions/speed_estimation.py,sha256=r7S5nGIx8PTV-zC4zCI36lQD2DVy5cen5cTXItfQIHo,5318
224
- ultralytics/solutions/streamlit_inference.py,sha256=p1bBKTtmvB6zStXdOzS0CGYurm4zu82WKii5rJriizA,9849
225
- ultralytics/solutions/trackzone.py,sha256=mfklnZcVRqI3bbhPiHF2iSoV6INcd10wwwGP4tlK7L0,3854
226
- ultralytics/solutions/vision_eye.py,sha256=LCb-2YPVvEks9e7xqZtNGftpAXNaZhEUb5yb3N0ni_U,2952
227
- ultralytics/solutions/templates/similarity-search.html,sha256=DPoAO-1H-KXNt_T8mGtSCsYUEi_5Nrx01p0cZfX-E8Q,3790
228
- ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0pFGI,255
229
- ultralytics/trackers/basetrack.py,sha256=LYvWB5d7Woyrz_RlxaopjV07RQKH3sff_lZJfMcMxcA,4450
230
- ultralytics/trackers/bot_sort.py,sha256=fAMV6PJE19jXe-6u524bpcz7x3Ssauk3b3wKXUYpvoY,11462
231
- ultralytics/trackers/byte_tracker.py,sha256=9v0DY0l4TVD22M_KNhQdQdETu0P5J5pbWaZmaYYFIs4,21075
232
- ultralytics/trackers/track.py,sha256=A9Fy24PJQJNnb-hx4BuTZe27eycZpqqWAbRXaocl0KI,4929
233
- ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
234
- ultralytics/trackers/utils/gmc.py,sha256=843LlmqWuXdUULBNpxVCZlil-_2QG-UwvscUCFbpGjA,14541
235
- ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
236
- ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
237
- ultralytics/utils/__init__.py,sha256=7VT2VSCIgDPInuNKO0sy2_3-qUwuCafLG0wF4wAyjBg,59059
238
- ultralytics/utils/autobatch.py,sha256=kg05q2qKg74y_Uq2vvr01i3KhLfpVR7sT0IXBt3_kyI,4921
239
- ultralytics/utils/autodevice.py,sha256=gSai9YvsDTYj5Kj18n4XGtf0oXXVPbjanKrO1C1w0C4,7454
240
- ultralytics/utils/benchmarks.py,sha256=iqjxD29srcCpimtAhbSidpsjnUlMhNR5S6QGPZyz16I,30287
241
- ultralytics/utils/checks.py,sha256=SinI5gY-znVbQ-JXk1JaHIlSp2kuBv92Rv99NWFzOFg,33763
242
- ultralytics/utils/dist.py,sha256=aytW0JEkcA5ZTZucV92ot7Bn-apiej8aLk3QNWicjAc,4103
243
- ultralytics/utils/downloads.py,sha256=G1nd7c7Gwjf58nZzDVpXDtoFtzhZYbjKBnwbZVMWRG0,22333
244
- ultralytics/utils/errors.py,sha256=vY9h2evFSrHnZdHJVVrmm8Zzw4qVDLyo9DeYW5g0dFk,1573
245
- ultralytics/utils/export.py,sha256=Rr5R3GdJBapJJt1XHkH6VQwYN52-L_7wGiRDCgnb7BY,8817
246
- ultralytics/utils/files.py,sha256=0K4O1cgqRiXaDw7EQK13TqA5SME_RrvfDVQSPetNr5w,8042
247
- ultralytics/utils/instance.py,sha256=UOEsXR9V-bXNRk6BTonASBEgeMqvzzAk4S7VdXZJUAM,18090
248
- ultralytics/utils/loss.py,sha256=KMug5vHESghC3B3V5Vi-fhGVDdTjG9nGkGJmgO_WnPI,37575
249
- ultralytics/utils/metrics.py,sha256=8x4S7y-rBKRkM47f_o7jfMHA1Bz8SDq3t-R1FXlQNEM,59267
250
- ultralytics/utils/ops.py,sha256=YFwPrKlPcgEmgAWqnJVR0Ccx5NQgp5e3P-YYHwVSP0k,34779
251
- ultralytics/utils/patches.py,sha256=_dhIU_eDklQE-aWIjpyjPHl_wOwZoGuIUQnXgdSwk_A,5020
252
- ultralytics/utils/plotting.py,sha256=WAWTGQAsM-cWy08QmcYOXrzFMHd24i8deYTed_u4kbg,47027
253
- ultralytics/utils/tal.py,sha256=fkOdogPqPBUN07ThixpI8X7hea-oEfTIaaBLc26_O2s,20610
254
- ultralytics/utils/torch_utils.py,sha256=WGNxGocstHD6ljhvujSCWjsYd4xWjNIXk_pq53zcKCc,39675
255
- ultralytics/utils/triton.py,sha256=9P2rlQcGCTMFVKLA5S5mTYzU9cKbR5HF9ruVkPpVBE8,5307
256
- ultralytics/utils/tuner.py,sha256=0Bp7l5dWZe1RzdvAIa11wQoX6eoAaoNRcA-EAnpofbk,6755
257
- ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
258
- ultralytics/utils/callbacks/base.py,sha256=p8YCeYDp4GLcyHWFZxC2Wxr2IXLw_MfIE5ef1fOQcWk,6848
259
- ultralytics/utils/callbacks/clearml.py,sha256=z-MmCALz1FcNSec8CmDiFHkRd_zTzzuPDCidq_xkUXY,5990
260
- ultralytics/utils/callbacks/comet.py,sha256=_j8tKKxGlxDcw_Rx4Ow2PjZ3UpBHm9gLJlYSVU0WJ_E,22221
261
- ultralytics/utils/callbacks/dvc.py,sha256=NywyiMqJfnK_UfJ_f1IK31puyIXZy0iVJQ4bB9uyu08,7532
262
- ultralytics/utils/callbacks/hub.py,sha256=1RmGiCaog1GoTya9OAyGELbQ2Lk5X3EWh7RYMxns0so,4177
263
- ultralytics/utils/callbacks/mlflow.py,sha256=rcjjN_QVg6XoL4Kbw8YqC28RDCQMs0LxfsXRpAc8BgY,5430
264
- ultralytics/utils/callbacks/neptune.py,sha256=yYUgEgSv6L39sSev6vjwhAWU3DlPDsbSDVFoR24NYio,4664
265
- ultralytics/utils/callbacks/raytune.py,sha256=A8amUGpux7dYES-L1iSeMoMXBySGWCD1aUqT7vcG-pU,1284
266
- ultralytics/utils/callbacks/tensorboard.py,sha256=jgYnym3cUQFAgN1GzTyO7l3jINtfAh8zhrllDvnLuVQ,5339
267
- ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
268
- dgenerate_ultralytics_headless-8.3.143.dist-info/METADATA,sha256=wqUmvH5KB1dRscjqNnjTtPutbgrLN7uYxR4GhovGWfw,38296
269
- dgenerate_ultralytics_headless-8.3.143.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
270
- dgenerate_ultralytics_headless-8.3.143.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
271
- dgenerate_ultralytics_headless-8.3.143.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
272
- dgenerate_ultralytics_headless-8.3.143.dist-info/RECORD,,