dgenerate-ultralytics-headless 8.3.143__py3-none-any.whl → 8.3.144__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/METADATA +1 -1
- dgenerate_ultralytics_headless-8.3.144.dist-info/RECORD +272 -0
- tests/conftest.py +7 -24
- tests/test_cli.py +1 -1
- tests/test_cuda.py +7 -2
- tests/test_engine.py +7 -8
- tests/test_exports.py +16 -16
- tests/test_integrations.py +1 -1
- tests/test_solutions.py +11 -11
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +16 -13
- ultralytics/data/annotator.py +6 -5
- ultralytics/data/augment.py +127 -126
- ultralytics/data/base.py +54 -51
- ultralytics/data/build.py +47 -23
- ultralytics/data/converter.py +47 -43
- ultralytics/data/dataset.py +51 -50
- ultralytics/data/loaders.py +77 -44
- ultralytics/data/split.py +22 -9
- ultralytics/data/split_dota.py +63 -39
- ultralytics/data/utils.py +59 -39
- ultralytics/engine/exporter.py +79 -27
- ultralytics/engine/model.py +39 -39
- ultralytics/engine/predictor.py +37 -28
- ultralytics/engine/results.py +187 -157
- ultralytics/engine/trainer.py +36 -19
- ultralytics/engine/tuner.py +12 -9
- ultralytics/engine/validator.py +7 -9
- ultralytics/hub/__init__.py +11 -13
- ultralytics/hub/auth.py +22 -2
- ultralytics/hub/google/__init__.py +19 -19
- ultralytics/hub/session.py +37 -51
- ultralytics/hub/utils.py +19 -5
- ultralytics/models/fastsam/model.py +30 -12
- ultralytics/models/fastsam/predict.py +5 -6
- ultralytics/models/fastsam/utils.py +3 -3
- ultralytics/models/fastsam/val.py +10 -6
- ultralytics/models/nas/model.py +9 -5
- ultralytics/models/nas/predict.py +6 -6
- ultralytics/models/nas/val.py +3 -3
- ultralytics/models/rtdetr/model.py +7 -6
- ultralytics/models/rtdetr/predict.py +14 -7
- ultralytics/models/rtdetr/train.py +10 -4
- ultralytics/models/rtdetr/val.py +36 -9
- ultralytics/models/sam/amg.py +30 -12
- ultralytics/models/sam/build.py +22 -22
- ultralytics/models/sam/model.py +10 -9
- ultralytics/models/sam/modules/blocks.py +76 -80
- ultralytics/models/sam/modules/decoders.py +6 -8
- ultralytics/models/sam/modules/encoders.py +23 -26
- ultralytics/models/sam/modules/memory_attention.py +13 -1
- ultralytics/models/sam/modules/sam.py +57 -26
- ultralytics/models/sam/modules/tiny_encoder.py +232 -237
- ultralytics/models/sam/modules/transformer.py +13 -13
- ultralytics/models/sam/modules/utils.py +11 -19
- ultralytics/models/sam/predict.py +114 -101
- ultralytics/models/utils/loss.py +98 -77
- ultralytics/models/utils/ops.py +116 -67
- ultralytics/models/yolo/classify/predict.py +5 -5
- ultralytics/models/yolo/classify/train.py +32 -28
- ultralytics/models/yolo/classify/val.py +7 -8
- ultralytics/models/yolo/detect/predict.py +1 -0
- ultralytics/models/yolo/detect/train.py +15 -14
- ultralytics/models/yolo/detect/val.py +37 -36
- ultralytics/models/yolo/model.py +106 -23
- ultralytics/models/yolo/obb/predict.py +3 -4
- ultralytics/models/yolo/obb/train.py +14 -6
- ultralytics/models/yolo/obb/val.py +29 -23
- ultralytics/models/yolo/pose/predict.py +9 -8
- ultralytics/models/yolo/pose/train.py +24 -16
- ultralytics/models/yolo/pose/val.py +44 -26
- ultralytics/models/yolo/segment/predict.py +5 -5
- ultralytics/models/yolo/segment/train.py +11 -7
- ultralytics/models/yolo/segment/val.py +2 -2
- ultralytics/models/yolo/world/train.py +33 -23
- ultralytics/models/yolo/world/train_world.py +11 -3
- ultralytics/models/yolo/yoloe/predict.py +11 -11
- ultralytics/models/yolo/yoloe/train.py +73 -21
- ultralytics/models/yolo/yoloe/train_seg.py +10 -7
- ultralytics/models/yolo/yoloe/val.py +42 -18
- ultralytics/nn/autobackend.py +59 -15
- ultralytics/nn/modules/__init__.py +4 -4
- ultralytics/nn/modules/activation.py +4 -1
- ultralytics/nn/modules/block.py +178 -111
- ultralytics/nn/modules/conv.py +6 -5
- ultralytics/nn/modules/head.py +469 -121
- ultralytics/nn/modules/transformer.py +147 -58
- ultralytics/nn/tasks.py +227 -20
- ultralytics/nn/text_model.py +30 -33
- ultralytics/solutions/ai_gym.py +1 -1
- ultralytics/solutions/analytics.py +7 -4
- ultralytics/solutions/config.py +10 -10
- ultralytics/solutions/distance_calculation.py +11 -10
- ultralytics/solutions/heatmap.py +1 -1
- ultralytics/solutions/instance_segmentation.py +6 -3
- ultralytics/solutions/object_blurrer.py +3 -3
- ultralytics/solutions/object_counter.py +15 -7
- ultralytics/solutions/object_cropper.py +3 -2
- ultralytics/solutions/parking_management.py +29 -28
- ultralytics/solutions/queue_management.py +6 -6
- ultralytics/solutions/region_counter.py +10 -3
- ultralytics/solutions/security_alarm.py +3 -3
- ultralytics/solutions/similarity_search.py +85 -24
- ultralytics/solutions/solutions.py +184 -75
- ultralytics/solutions/speed_estimation.py +28 -22
- ultralytics/solutions/streamlit_inference.py +17 -12
- ultralytics/solutions/trackzone.py +4 -4
- ultralytics/trackers/basetrack.py +16 -23
- ultralytics/trackers/bot_sort.py +30 -20
- ultralytics/trackers/byte_tracker.py +70 -64
- ultralytics/trackers/track.py +4 -8
- ultralytics/trackers/utils/gmc.py +31 -58
- ultralytics/trackers/utils/kalman_filter.py +37 -37
- ultralytics/trackers/utils/matching.py +1 -1
- ultralytics/utils/__init__.py +105 -89
- ultralytics/utils/autobatch.py +16 -3
- ultralytics/utils/autodevice.py +54 -24
- ultralytics/utils/benchmarks.py +42 -28
- ultralytics/utils/callbacks/base.py +3 -3
- ultralytics/utils/callbacks/clearml.py +9 -9
- ultralytics/utils/callbacks/comet.py +67 -25
- ultralytics/utils/callbacks/dvc.py +7 -10
- ultralytics/utils/callbacks/mlflow.py +2 -5
- ultralytics/utils/callbacks/neptune.py +7 -13
- ultralytics/utils/callbacks/raytune.py +1 -1
- ultralytics/utils/callbacks/tensorboard.py +5 -6
- ultralytics/utils/callbacks/wb.py +14 -14
- ultralytics/utils/checks.py +14 -13
- ultralytics/utils/dist.py +5 -5
- ultralytics/utils/downloads.py +94 -67
- ultralytics/utils/errors.py +5 -5
- ultralytics/utils/export.py +61 -47
- ultralytics/utils/files.py +23 -22
- ultralytics/utils/instance.py +48 -52
- ultralytics/utils/loss.py +78 -40
- ultralytics/utils/metrics.py +186 -130
- ultralytics/utils/ops.py +186 -190
- ultralytics/utils/patches.py +15 -17
- ultralytics/utils/plotting.py +71 -27
- ultralytics/utils/tal.py +21 -15
- ultralytics/utils/torch_utils.py +53 -50
- ultralytics/utils/triton.py +5 -4
- ultralytics/utils/tuner.py +5 -5
- dgenerate_ultralytics_headless-8.3.143.dist-info/RECORD +0 -272
- {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.143.dist-info → dgenerate_ultralytics_headless-8.3.144.dist-info}/top_level.txt +0 -0
ultralytics/nn/modules/head.py
CHANGED
@@ -3,6 +3,7 @@
|
|
3
3
|
|
4
4
|
import copy
|
5
5
|
import math
|
6
|
+
from typing import List, Optional, Tuple, Union
|
6
7
|
|
7
8
|
import torch
|
8
9
|
import torch.nn as nn
|
@@ -21,7 +22,47 @@ __all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder", "v10D
|
|
21
22
|
|
22
23
|
|
23
24
|
class Detect(nn.Module):
|
24
|
-
"""
|
25
|
+
"""
|
26
|
+
YOLO Detect head for object detection models.
|
27
|
+
|
28
|
+
This class implements the detection head used in YOLO models for predicting bounding boxes and class probabilities.
|
29
|
+
It supports both training and inference modes, with optional end-to-end detection capabilities.
|
30
|
+
|
31
|
+
Attributes:
|
32
|
+
dynamic (bool): Force grid reconstruction.
|
33
|
+
export (bool): Export mode flag.
|
34
|
+
format (str): Export format.
|
35
|
+
end2end (bool): End-to-end detection mode.
|
36
|
+
max_det (int): Maximum detections per image.
|
37
|
+
shape (tuple): Input shape.
|
38
|
+
anchors (torch.Tensor): Anchor points.
|
39
|
+
strides (torch.Tensor): Feature map strides.
|
40
|
+
legacy (bool): Backward compatibility for v3/v5/v8/v9 models.
|
41
|
+
xyxy (bool): Output format, xyxy or xywh.
|
42
|
+
nc (int): Number of classes.
|
43
|
+
nl (int): Number of detection layers.
|
44
|
+
reg_max (int): DFL channels.
|
45
|
+
no (int): Number of outputs per anchor.
|
46
|
+
stride (torch.Tensor): Strides computed during build.
|
47
|
+
cv2 (nn.ModuleList): Convolution layers for box regression.
|
48
|
+
cv3 (nn.ModuleList): Convolution layers for classification.
|
49
|
+
dfl (nn.Module): Distribution Focal Loss layer.
|
50
|
+
one2one_cv2 (nn.ModuleList): One-to-one convolution layers for box regression.
|
51
|
+
one2one_cv3 (nn.ModuleList): One-to-one convolution layers for classification.
|
52
|
+
|
53
|
+
Methods:
|
54
|
+
forward: Perform forward pass and return predictions.
|
55
|
+
forward_end2end: Perform forward pass for end-to-end detection.
|
56
|
+
bias_init: Initialize detection head biases.
|
57
|
+
decode_bboxes: Decode bounding boxes from predictions.
|
58
|
+
postprocess: Post-process model predictions.
|
59
|
+
|
60
|
+
Examples:
|
61
|
+
Create a detection head for 80 classes
|
62
|
+
>>> detect = Detect(nc=80, ch=(256, 512, 1024))
|
63
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
64
|
+
>>> outputs = detect(x)
|
65
|
+
"""
|
25
66
|
|
26
67
|
dynamic = False # force grid reconstruction
|
27
68
|
export = False # export mode
|
@@ -34,8 +75,14 @@ class Detect(nn.Module):
|
|
34
75
|
legacy = False # backward compatibility for v3/v5/v8/v9 models
|
35
76
|
xyxy = False # xyxy or xywh output
|
36
77
|
|
37
|
-
def __init__(self, nc=80, ch=()):
|
38
|
-
"""
|
78
|
+
def __init__(self, nc: int = 80, ch: Tuple = ()):
|
79
|
+
"""
|
80
|
+
Initialize the YOLO detection layer with specified number of classes and channels.
|
81
|
+
|
82
|
+
Args:
|
83
|
+
nc (int): Number of classes.
|
84
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
85
|
+
"""
|
39
86
|
super().__init__()
|
40
87
|
self.nc = nc # number of classes
|
41
88
|
self.nl = len(ch) # number of detection layers
|
@@ -64,8 +111,8 @@ class Detect(nn.Module):
|
|
64
111
|
self.one2one_cv2 = copy.deepcopy(self.cv2)
|
65
112
|
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
66
113
|
|
67
|
-
def forward(self, x):
|
68
|
-
"""
|
114
|
+
def forward(self, x: List[torch.Tensor]) -> Union[List[torch.Tensor], Tuple]:
|
115
|
+
"""Concatenate and return predicted bounding boxes and class probabilities."""
|
69
116
|
if self.end2end:
|
70
117
|
return self.forward_end2end(x)
|
71
118
|
|
@@ -76,18 +123,16 @@ class Detect(nn.Module):
|
|
76
123
|
y = self._inference(x)
|
77
124
|
return y if self.export else (y, x)
|
78
125
|
|
79
|
-
def forward_end2end(self, x):
|
126
|
+
def forward_end2end(self, x: List[torch.Tensor]) -> Union[dict, Tuple]:
|
80
127
|
"""
|
81
|
-
|
128
|
+
Perform forward pass of the v10Detect module.
|
82
129
|
|
83
130
|
Args:
|
84
131
|
x (List[torch.Tensor]): Input feature maps from different levels.
|
85
132
|
|
86
133
|
Returns:
|
87
|
-
(dict | tuple):
|
88
|
-
|
89
|
-
- If in training mode, returns a dictionary containing outputs of both one2many and one2one detections.
|
90
|
-
- If not in training mode, returns processed detections or a tuple with processed detections and raw outputs.
|
134
|
+
outputs (dict | tuple): Training mode returns dict with one2many and one2one outputs.
|
135
|
+
Inference mode returns processed detections or tuple with detections and raw outputs.
|
91
136
|
"""
|
92
137
|
x_detach = [xi.detach() for xi in x]
|
93
138
|
one2one = [
|
@@ -102,7 +147,7 @@ class Detect(nn.Module):
|
|
102
147
|
y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc)
|
103
148
|
return y if self.export else (y, {"one2many": x, "one2one": one2one})
|
104
149
|
|
105
|
-
def _inference(self, x):
|
150
|
+
def _inference(self, x: List[torch.Tensor]) -> torch.Tensor:
|
106
151
|
"""
|
107
152
|
Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.
|
108
153
|
|
@@ -156,20 +201,20 @@ class Detect(nn.Module):
|
|
156
201
|
a[-1].bias.data[:] = 1.0 # box
|
157
202
|
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
158
203
|
|
159
|
-
def decode_bboxes(self, bboxes, anchors, xywh=True):
|
160
|
-
"""Decode bounding boxes."""
|
204
|
+
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor, xywh: bool = True) -> torch.Tensor:
|
205
|
+
"""Decode bounding boxes from predictions."""
|
161
206
|
return dist2bbox(bboxes, anchors, xywh=xywh and not (self.end2end or self.xyxy), dim=1)
|
162
207
|
|
163
208
|
@staticmethod
|
164
|
-
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80):
|
209
|
+
def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80) -> torch.Tensor:
|
165
210
|
"""
|
166
|
-
Post-
|
211
|
+
Post-process YOLO model predictions.
|
167
212
|
|
168
213
|
Args:
|
169
214
|
preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension
|
170
215
|
format [x, y, w, h, class_probs].
|
171
216
|
max_det (int): Maximum detections per image.
|
172
|
-
nc (int, optional): Number of classes.
|
217
|
+
nc (int, optional): Number of classes.
|
173
218
|
|
174
219
|
Returns:
|
175
220
|
(torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last
|
@@ -186,10 +231,37 @@ class Detect(nn.Module):
|
|
186
231
|
|
187
232
|
|
188
233
|
class Segment(Detect):
|
189
|
-
"""
|
234
|
+
"""
|
235
|
+
YOLO Segment head for segmentation models.
|
236
|
+
|
237
|
+
This class extends the Detect head to include mask prediction capabilities for instance segmentation tasks.
|
190
238
|
|
191
|
-
|
192
|
-
|
239
|
+
Attributes:
|
240
|
+
nm (int): Number of masks.
|
241
|
+
npr (int): Number of protos.
|
242
|
+
proto (Proto): Prototype generation module.
|
243
|
+
cv4 (nn.ModuleList): Convolution layers for mask coefficients.
|
244
|
+
|
245
|
+
Methods:
|
246
|
+
forward: Return model outputs and mask coefficients.
|
247
|
+
|
248
|
+
Examples:
|
249
|
+
Create a segmentation head
|
250
|
+
>>> segment = Segment(nc=80, nm=32, npr=256, ch=(256, 512, 1024))
|
251
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
252
|
+
>>> outputs = segment(x)
|
253
|
+
"""
|
254
|
+
|
255
|
+
def __init__(self, nc: int = 80, nm: int = 32, npr: int = 256, ch: Tuple = ()):
|
256
|
+
"""
|
257
|
+
Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.
|
258
|
+
|
259
|
+
Args:
|
260
|
+
nc (int): Number of classes.
|
261
|
+
nm (int): Number of masks.
|
262
|
+
npr (int): Number of protos.
|
263
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
264
|
+
"""
|
193
265
|
super().__init__(nc, ch)
|
194
266
|
self.nm = nm # number of masks
|
195
267
|
self.npr = npr # number of protos
|
@@ -198,7 +270,7 @@ class Segment(Detect):
|
|
198
270
|
c4 = max(ch[0] // 4, self.nm)
|
199
271
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
200
272
|
|
201
|
-
def forward(self, x):
|
273
|
+
def forward(self, x: List[torch.Tensor]) -> Union[Tuple, List[torch.Tensor]]:
|
202
274
|
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
203
275
|
p = self.proto(x[0]) # mask protos
|
204
276
|
bs = p.shape[0] # batch size
|
@@ -211,18 +283,44 @@ class Segment(Detect):
|
|
211
283
|
|
212
284
|
|
213
285
|
class OBB(Detect):
|
214
|
-
"""
|
286
|
+
"""
|
287
|
+
YOLO OBB detection head for detection with rotation models.
|
288
|
+
|
289
|
+
This class extends the Detect head to include oriented bounding box prediction with rotation angles.
|
290
|
+
|
291
|
+
Attributes:
|
292
|
+
ne (int): Number of extra parameters.
|
293
|
+
cv4 (nn.ModuleList): Convolution layers for angle prediction.
|
294
|
+
angle (torch.Tensor): Predicted rotation angles.
|
295
|
+
|
296
|
+
Methods:
|
297
|
+
forward: Concatenate and return predicted bounding boxes and class probabilities.
|
298
|
+
decode_bboxes: Decode rotated bounding boxes.
|
299
|
+
|
300
|
+
Examples:
|
301
|
+
Create an OBB detection head
|
302
|
+
>>> obb = OBB(nc=80, ne=1, ch=(256, 512, 1024))
|
303
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
304
|
+
>>> outputs = obb(x)
|
305
|
+
"""
|
306
|
+
|
307
|
+
def __init__(self, nc: int = 80, ne: int = 1, ch: Tuple = ()):
|
308
|
+
"""
|
309
|
+
Initialize OBB with number of classes `nc` and layer channels `ch`.
|
215
310
|
|
216
|
-
|
217
|
-
|
311
|
+
Args:
|
312
|
+
nc (int): Number of classes.
|
313
|
+
ne (int): Number of extra parameters.
|
314
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
315
|
+
"""
|
218
316
|
super().__init__(nc, ch)
|
219
317
|
self.ne = ne # number of extra parameters
|
220
318
|
|
221
319
|
c4 = max(ch[0] // 4, self.ne)
|
222
320
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)
|
223
321
|
|
224
|
-
def forward(self, x):
|
225
|
-
"""
|
322
|
+
def forward(self, x: List[torch.Tensor]) -> Union[torch.Tensor, Tuple]:
|
323
|
+
"""Concatenate and return predicted bounding boxes and class probabilities."""
|
226
324
|
bs = x[0].shape[0] # batch size
|
227
325
|
angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits
|
228
326
|
# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
|
@@ -235,16 +333,42 @@ class OBB(Detect):
|
|
235
333
|
return x, angle
|
236
334
|
return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
|
237
335
|
|
238
|
-
def decode_bboxes(self, bboxes, anchors):
|
336
|
+
def decode_bboxes(self, bboxes: torch.Tensor, anchors: torch.Tensor) -> torch.Tensor:
|
239
337
|
"""Decode rotated bounding boxes."""
|
240
338
|
return dist2rbox(bboxes, self.angle, anchors, dim=1)
|
241
339
|
|
242
340
|
|
243
341
|
class Pose(Detect):
|
244
|
-
"""
|
342
|
+
"""
|
343
|
+
YOLO Pose head for keypoints models.
|
344
|
+
|
345
|
+
This class extends the Detect head to include keypoint prediction capabilities for pose estimation tasks.
|
346
|
+
|
347
|
+
Attributes:
|
348
|
+
kpt_shape (tuple): Number of keypoints and dimensions (2 for x,y or 3 for x,y,visible).
|
349
|
+
nk (int): Total number of keypoint values.
|
350
|
+
cv4 (nn.ModuleList): Convolution layers for keypoint prediction.
|
351
|
+
|
352
|
+
Methods:
|
353
|
+
forward: Perform forward pass through YOLO model and return predictions.
|
354
|
+
kpts_decode: Decode keypoints from predictions.
|
355
|
+
|
356
|
+
Examples:
|
357
|
+
Create a pose detection head
|
358
|
+
>>> pose = Pose(nc=80, kpt_shape=(17, 3), ch=(256, 512, 1024))
|
359
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
360
|
+
>>> outputs = pose(x)
|
361
|
+
"""
|
362
|
+
|
363
|
+
def __init__(self, nc: int = 80, kpt_shape: Tuple = (17, 3), ch: Tuple = ()):
|
364
|
+
"""
|
365
|
+
Initialize YOLO network with default parameters and Convolutional Layers.
|
245
366
|
|
246
|
-
|
247
|
-
|
367
|
+
Args:
|
368
|
+
nc (int): Number of classes.
|
369
|
+
kpt_shape (tuple): Number of keypoints, number of dims (2 for x,y or 3 for x,y,visible).
|
370
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
371
|
+
"""
|
248
372
|
super().__init__(nc, ch)
|
249
373
|
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
250
374
|
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
|
@@ -252,7 +376,7 @@ class Pose(Detect):
|
|
252
376
|
c4 = max(ch[0] // 4, self.nk)
|
253
377
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
|
254
378
|
|
255
|
-
def forward(self, x):
|
379
|
+
def forward(self, x: List[torch.Tensor]) -> Union[torch.Tensor, Tuple]:
|
256
380
|
"""Perform forward pass through YOLO model and return predictions."""
|
257
381
|
bs = x[0].shape[0] # batch size
|
258
382
|
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
|
@@ -262,8 +386,8 @@ class Pose(Detect):
|
|
262
386
|
pred_kpt = self.kpts_decode(bs, kpt)
|
263
387
|
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
|
264
388
|
|
265
|
-
def kpts_decode(self, bs, kpts):
|
266
|
-
"""
|
389
|
+
def kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor:
|
390
|
+
"""Decode keypoints from predictions."""
|
267
391
|
ndim = self.kpt_shape[1]
|
268
392
|
if self.export:
|
269
393
|
if self.format in {
|
@@ -293,12 +417,42 @@ class Pose(Detect):
|
|
293
417
|
|
294
418
|
|
295
419
|
class Classify(nn.Module):
|
296
|
-
"""
|
420
|
+
"""
|
421
|
+
YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2).
|
422
|
+
|
423
|
+
This class implements a classification head that transforms feature maps into class predictions.
|
424
|
+
|
425
|
+
Attributes:
|
426
|
+
export (bool): Export mode flag.
|
427
|
+
conv (Conv): Convolutional layer for feature transformation.
|
428
|
+
pool (nn.AdaptiveAvgPool2d): Global average pooling layer.
|
429
|
+
drop (nn.Dropout): Dropout layer for regularization.
|
430
|
+
linear (nn.Linear): Linear layer for final classification.
|
431
|
+
|
432
|
+
Methods:
|
433
|
+
forward: Perform forward pass of the YOLO model on input image data.
|
434
|
+
|
435
|
+
Examples:
|
436
|
+
Create a classification head
|
437
|
+
>>> classify = Classify(c1=1024, c2=1000)
|
438
|
+
>>> x = torch.randn(1, 1024, 20, 20)
|
439
|
+
>>> output = classify(x)
|
440
|
+
"""
|
297
441
|
|
298
442
|
export = False # export mode
|
299
443
|
|
300
|
-
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
|
301
|
-
"""
|
444
|
+
def __init__(self, c1: int, c2: int, k: int = 1, s: int = 1, p: Optional[int] = None, g: int = 1):
|
445
|
+
"""
|
446
|
+
Initialize YOLO classification head to transform input tensor from (b,c1,20,20) to (b,c2) shape.
|
447
|
+
|
448
|
+
Args:
|
449
|
+
c1 (int): Number of input channels.
|
450
|
+
c2 (int): Number of output classes.
|
451
|
+
k (int, optional): Kernel size.
|
452
|
+
s (int, optional): Stride.
|
453
|
+
p (int, optional): Padding.
|
454
|
+
g (int, optional): Groups.
|
455
|
+
"""
|
302
456
|
super().__init__()
|
303
457
|
c_ = 1280 # efficientnet_b0 size
|
304
458
|
self.conv = Conv(c1, c_, k, s, p, g)
|
@@ -306,8 +460,8 @@ class Classify(nn.Module):
|
|
306
460
|
self.drop = nn.Dropout(p=0.0, inplace=True)
|
307
461
|
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
308
462
|
|
309
|
-
def forward(self, x):
|
310
|
-
"""
|
463
|
+
def forward(self, x: Union[List[torch.Tensor], torch.Tensor]) -> Union[torch.Tensor, Tuple]:
|
464
|
+
"""Perform forward pass of the YOLO model on input image data."""
|
311
465
|
if isinstance(x, list):
|
312
466
|
x = torch.cat(x, 1)
|
313
467
|
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
@@ -318,17 +472,45 @@ class Classify(nn.Module):
|
|
318
472
|
|
319
473
|
|
320
474
|
class WorldDetect(Detect):
|
321
|
-
"""
|
475
|
+
"""
|
476
|
+
Head for integrating YOLO detection models with semantic understanding from text embeddings.
|
322
477
|
|
323
|
-
|
324
|
-
|
478
|
+
This class extends the standard Detect head to incorporate text embeddings for enhanced semantic understanding
|
479
|
+
in object detection tasks.
|
480
|
+
|
481
|
+
Attributes:
|
482
|
+
cv3 (nn.ModuleList): Convolution layers for embedding features.
|
483
|
+
cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.
|
484
|
+
|
485
|
+
Methods:
|
486
|
+
forward: Concatenate and return predicted bounding boxes and class probabilities.
|
487
|
+
bias_init: Initialize detection head biases.
|
488
|
+
|
489
|
+
Examples:
|
490
|
+
Create a WorldDetect head
|
491
|
+
>>> world_detect = WorldDetect(nc=80, embed=512, with_bn=False, ch=(256, 512, 1024))
|
492
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
493
|
+
>>> text = torch.randn(1, 80, 512)
|
494
|
+
>>> outputs = world_detect(x, text)
|
495
|
+
"""
|
496
|
+
|
497
|
+
def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: Tuple = ()):
|
498
|
+
"""
|
499
|
+
Initialize YOLO detection layer with nc classes and layer channels ch.
|
500
|
+
|
501
|
+
Args:
|
502
|
+
nc (int): Number of classes.
|
503
|
+
embed (int): Embedding dimension.
|
504
|
+
with_bn (bool): Whether to use batch normalization in contrastive head.
|
505
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
506
|
+
"""
|
325
507
|
super().__init__(nc, ch)
|
326
508
|
c3 = max(ch[0], min(self.nc, 100))
|
327
509
|
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
|
328
510
|
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
|
329
511
|
|
330
|
-
def forward(self, x, text):
|
331
|
-
"""
|
512
|
+
def forward(self, x: List[torch.Tensor], text: torch.Tensor) -> Union[List[torch.Tensor], Tuple]:
|
513
|
+
"""Concatenate and return predicted bounding boxes and class probabilities."""
|
332
514
|
for i in range(self.nl):
|
333
515
|
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
|
334
516
|
if self.training:
|
@@ -348,17 +530,47 @@ class WorldDetect(Detect):
|
|
348
530
|
|
349
531
|
|
350
532
|
class LRPCHead(nn.Module):
|
351
|
-
"""
|
533
|
+
"""
|
534
|
+
Lightweight Region Proposal and Classification Head for efficient object detection.
|
535
|
+
|
536
|
+
This head combines region proposal filtering with classification to enable efficient detection with
|
537
|
+
dynamic vocabulary support.
|
538
|
+
|
539
|
+
Attributes:
|
540
|
+
vocab (nn.Module): Vocabulary/classification layer.
|
541
|
+
pf (nn.Module): Proposal filter module.
|
542
|
+
loc (nn.Module): Localization module.
|
543
|
+
enabled (bool): Whether the head is enabled.
|
544
|
+
|
545
|
+
Methods:
|
546
|
+
conv2linear: Convert a 1x1 convolutional layer to a linear layer.
|
547
|
+
forward: Process classification and localization features to generate detection proposals.
|
548
|
+
|
549
|
+
Examples:
|
550
|
+
Create an LRPC head
|
551
|
+
>>> vocab = nn.Conv2d(256, 80, 1)
|
552
|
+
>>> pf = nn.Conv2d(256, 1, 1)
|
553
|
+
>>> loc = nn.Conv2d(256, 4, 1)
|
554
|
+
>>> head = LRPCHead(vocab, pf, loc, enabled=True)
|
555
|
+
"""
|
556
|
+
|
557
|
+
def __init__(self, vocab: nn.Module, pf: nn.Module, loc: nn.Module, enabled: bool = True):
|
558
|
+
"""
|
559
|
+
Initialize LRPCHead with vocabulary, proposal filter, and localization components.
|
352
560
|
|
353
|
-
|
354
|
-
|
561
|
+
Args:
|
562
|
+
vocab (nn.Module): Vocabulary/classification module.
|
563
|
+
pf (nn.Module): Proposal filter module.
|
564
|
+
loc (nn.Module): Localization module.
|
565
|
+
enabled (bool): Whether to enable the head functionality.
|
566
|
+
"""
|
355
567
|
super().__init__()
|
356
568
|
self.vocab = self.conv2linear(vocab) if enabled else vocab
|
357
569
|
self.pf = pf
|
358
570
|
self.loc = loc
|
359
571
|
self.enabled = enabled
|
360
572
|
|
361
|
-
def conv2linear(self, conv):
|
573
|
+
def conv2linear(self, conv: nn.Conv2d) -> nn.Linear:
|
362
574
|
"""Convert a 1x1 convolutional layer to a linear layer."""
|
363
575
|
assert isinstance(conv, nn.Conv2d) and conv.kernel_size == (1, 1)
|
364
576
|
linear = nn.Linear(conv.in_channels, conv.out_channels)
|
@@ -366,7 +578,7 @@ class LRPCHead(nn.Module):
|
|
366
578
|
linear.bias.data = conv.bias.data
|
367
579
|
return linear
|
368
580
|
|
369
|
-
def forward(self, cls_feat, loc_feat, conf):
|
581
|
+
def forward(self, cls_feat: torch.Tensor, loc_feat: torch.Tensor, conf: float) -> Tuple[Tuple, torch.Tensor]:
|
370
582
|
"""Process classification and localization features to generate detection proposals."""
|
371
583
|
if self.enabled:
|
372
584
|
pf_score = self.pf(cls_feat)[0, 0].flatten(0)
|
@@ -383,12 +595,48 @@ class LRPCHead(nn.Module):
|
|
383
595
|
|
384
596
|
|
385
597
|
class YOLOEDetect(Detect):
|
386
|
-
"""
|
598
|
+
"""
|
599
|
+
Head for integrating YOLO detection models with semantic understanding from text embeddings.
|
600
|
+
|
601
|
+
This class extends the standard Detect head to support text-guided detection with enhanced semantic understanding
|
602
|
+
through text embeddings and visual prompt embeddings.
|
603
|
+
|
604
|
+
Attributes:
|
605
|
+
is_fused (bool): Whether the model is fused for inference.
|
606
|
+
cv3 (nn.ModuleList): Convolution layers for embedding features.
|
607
|
+
cv4 (nn.ModuleList): Contrastive head layers for text-vision alignment.
|
608
|
+
reprta (Residual): Residual block for text prompt embeddings.
|
609
|
+
savpe (SAVPE): Spatial-aware visual prompt embeddings module.
|
610
|
+
embed (int): Embedding dimension.
|
611
|
+
|
612
|
+
Methods:
|
613
|
+
fuse: Fuse text features with model weights for efficient inference.
|
614
|
+
get_tpe: Get text prompt embeddings with normalization.
|
615
|
+
get_vpe: Get visual prompt embeddings with spatial awareness.
|
616
|
+
forward_lrpc: Process features with fused text embeddings for prompt-free model.
|
617
|
+
forward: Process features with class prompt embeddings to generate detections.
|
618
|
+
bias_init: Initialize biases for detection heads.
|
619
|
+
|
620
|
+
Examples:
|
621
|
+
Create a YOLOEDetect head
|
622
|
+
>>> yoloe_detect = YOLOEDetect(nc=80, embed=512, with_bn=True, ch=(256, 512, 1024))
|
623
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
624
|
+
>>> cls_pe = torch.randn(1, 80, 512)
|
625
|
+
>>> outputs = yoloe_detect(x, cls_pe)
|
626
|
+
"""
|
387
627
|
|
388
628
|
is_fused = False
|
389
629
|
|
390
|
-
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
|
391
|
-
"""
|
630
|
+
def __init__(self, nc: int = 80, embed: int = 512, with_bn: bool = False, ch: Tuple = ()):
|
631
|
+
"""
|
632
|
+
Initialize YOLO detection layer with nc classes and layer channels ch.
|
633
|
+
|
634
|
+
Args:
|
635
|
+
nc (int): Number of classes.
|
636
|
+
embed (int): Embedding dimension.
|
637
|
+
with_bn (bool): Whether to use batch normalization in contrastive head.
|
638
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
639
|
+
"""
|
392
640
|
super().__init__(nc, ch)
|
393
641
|
c3 = max(ch[0], min(self.nc, 100))
|
394
642
|
assert c3 <= embed
|
@@ -413,7 +661,7 @@ class YOLOEDetect(Detect):
|
|
413
661
|
self.embed = embed
|
414
662
|
|
415
663
|
@smart_inference_mode()
|
416
|
-
def fuse(self, txt_feats):
|
664
|
+
def fuse(self, txt_feats: torch.Tensor):
|
417
665
|
"""Fuse text features with model weights for efficient inference."""
|
418
666
|
if self.is_fused:
|
419
667
|
return
|
@@ -459,11 +707,11 @@ class YOLOEDetect(Detect):
|
|
459
707
|
self.reprta = nn.Identity()
|
460
708
|
self.is_fused = True
|
461
709
|
|
462
|
-
def get_tpe(self, tpe):
|
710
|
+
def get_tpe(self, tpe: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
463
711
|
"""Get text prompt embeddings with normalization."""
|
464
712
|
return None if tpe is None else F.normalize(self.reprta(tpe), dim=-1, p=2)
|
465
713
|
|
466
|
-
def get_vpe(self, x, vpe):
|
714
|
+
def get_vpe(self, x: List[torch.Tensor], vpe: torch.Tensor) -> torch.Tensor:
|
467
715
|
"""Get visual prompt embeddings with spatial awareness."""
|
468
716
|
if vpe.shape[1] == 0: # no visual prompt embeddings
|
469
717
|
return torch.zeros(x[0].shape[0], 0, self.embed, device=x[0].device)
|
@@ -472,7 +720,7 @@ class YOLOEDetect(Detect):
|
|
472
720
|
assert vpe.ndim == 3 # (B, N, D)
|
473
721
|
return vpe
|
474
722
|
|
475
|
-
def forward_lrpc(self, x, return_mask=False):
|
723
|
+
def forward_lrpc(self, x: List[torch.Tensor], return_mask: bool = False) -> Union[torch.Tensor, Tuple]:
|
476
724
|
"""Process features with fused text embeddings to generate detections for prompt-free model."""
|
477
725
|
masks = []
|
478
726
|
assert self.is_fused, "Prompt-free inference requires model to be fused!"
|
@@ -510,7 +758,9 @@ class YOLOEDetect(Detect):
|
|
510
758
|
else:
|
511
759
|
return y if self.export else (y, x)
|
512
760
|
|
513
|
-
def forward(
|
761
|
+
def forward(
|
762
|
+
self, x: List[torch.Tensor], cls_pe: torch.Tensor, return_mask: bool = False
|
763
|
+
) -> Union[torch.Tensor, Tuple]:
|
514
764
|
"""Process features with class prompt embeddings to generate detections."""
|
515
765
|
if hasattr(self, "lrpc"): # for prompt-free inference
|
516
766
|
return self.forward_lrpc(x, return_mask)
|
@@ -535,10 +785,43 @@ class YOLOEDetect(Detect):
|
|
535
785
|
|
536
786
|
|
537
787
|
class YOLOESegment(YOLOEDetect):
|
538
|
-
"""
|
788
|
+
"""
|
789
|
+
YOLO segmentation head with text embedding capabilities.
|
790
|
+
|
791
|
+
This class extends YOLOEDetect to include mask prediction capabilities for instance segmentation tasks
|
792
|
+
with text-guided semantic understanding.
|
539
793
|
|
540
|
-
|
541
|
-
|
794
|
+
Attributes:
|
795
|
+
nm (int): Number of masks.
|
796
|
+
npr (int): Number of protos.
|
797
|
+
proto (Proto): Prototype generation module.
|
798
|
+
cv5 (nn.ModuleList): Convolution layers for mask coefficients.
|
799
|
+
|
800
|
+
Methods:
|
801
|
+
forward: Return model outputs and mask coefficients.
|
802
|
+
|
803
|
+
Examples:
|
804
|
+
Create a YOLOESegment head
|
805
|
+
>>> yoloe_segment = YOLOESegment(nc=80, nm=32, npr=256, embed=512, with_bn=True, ch=(256, 512, 1024))
|
806
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
807
|
+
>>> text = torch.randn(1, 80, 512)
|
808
|
+
>>> outputs = yoloe_segment(x, text)
|
809
|
+
"""
|
810
|
+
|
811
|
+
def __init__(
|
812
|
+
self, nc: int = 80, nm: int = 32, npr: int = 256, embed: int = 512, with_bn: bool = False, ch: Tuple = ()
|
813
|
+
):
|
814
|
+
"""
|
815
|
+
Initialize YOLOESegment with class count, mask parameters, and embedding dimensions.
|
816
|
+
|
817
|
+
Args:
|
818
|
+
nc (int): Number of classes.
|
819
|
+
nm (int): Number of masks.
|
820
|
+
npr (int): Number of protos.
|
821
|
+
embed (int): Embedding dimension.
|
822
|
+
with_bn (bool): Whether to use batch normalization in contrastive head.
|
823
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
824
|
+
"""
|
542
825
|
super().__init__(nc, embed, with_bn, ch)
|
543
826
|
self.nm = nm
|
544
827
|
self.npr = npr
|
@@ -547,7 +830,7 @@ class YOLOESegment(YOLOEDetect):
|
|
547
830
|
c5 = max(ch[0] // 4, self.nm)
|
548
831
|
self.cv5 = nn.ModuleList(nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nm, 1)) for x in ch)
|
549
832
|
|
550
|
-
def forward(self, x, text):
|
833
|
+
def forward(self, x: List[torch.Tensor], text: torch.Tensor) -> Union[Tuple, torch.Tensor]:
|
551
834
|
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
552
835
|
p = self.proto(x[0]) # mask protos
|
553
836
|
bs = p.shape[0] # batch size
|
@@ -576,48 +859,80 @@ class RTDETRDecoder(nn.Module):
|
|
576
859
|
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
|
577
860
|
and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
|
578
861
|
Transformer decoder layers to output the final predictions.
|
862
|
+
|
863
|
+
Attributes:
|
864
|
+
export (bool): Export mode flag.
|
865
|
+
hidden_dim (int): Dimension of hidden layers.
|
866
|
+
nhead (int): Number of heads in multi-head attention.
|
867
|
+
nl (int): Number of feature levels.
|
868
|
+
nc (int): Number of classes.
|
869
|
+
num_queries (int): Number of query points.
|
870
|
+
num_decoder_layers (int): Number of decoder layers.
|
871
|
+
input_proj (nn.ModuleList): Input projection layers for backbone features.
|
872
|
+
decoder (DeformableTransformerDecoder): Transformer decoder module.
|
873
|
+
denoising_class_embed (nn.Embedding): Class embeddings for denoising.
|
874
|
+
num_denoising (int): Number of denoising queries.
|
875
|
+
label_noise_ratio (float): Label noise ratio for training.
|
876
|
+
box_noise_scale (float): Box noise scale for training.
|
877
|
+
learnt_init_query (bool): Whether to learn initial query embeddings.
|
878
|
+
tgt_embed (nn.Embedding): Target embeddings for queries.
|
879
|
+
query_pos_head (MLP): Query position head.
|
880
|
+
enc_output (nn.Sequential): Encoder output layers.
|
881
|
+
enc_score_head (nn.Linear): Encoder score prediction head.
|
882
|
+
enc_bbox_head (MLP): Encoder bbox prediction head.
|
883
|
+
dec_score_head (nn.ModuleList): Decoder score prediction heads.
|
884
|
+
dec_bbox_head (nn.ModuleList): Decoder bbox prediction heads.
|
885
|
+
|
886
|
+
Methods:
|
887
|
+
forward: Run forward pass and return bounding box and classification scores.
|
888
|
+
|
889
|
+
Examples:
|
890
|
+
Create an RTDETRDecoder
|
891
|
+
>>> decoder = RTDETRDecoder(nc=80, ch=(512, 1024, 2048), hd=256, nq=300)
|
892
|
+
>>> x = [torch.randn(1, 512, 64, 64), torch.randn(1, 1024, 32, 32), torch.randn(1, 2048, 16, 16)]
|
893
|
+
>>> outputs = decoder(x)
|
579
894
|
"""
|
580
895
|
|
581
896
|
export = False # export mode
|
582
897
|
|
583
898
|
def __init__(
|
584
899
|
self,
|
585
|
-
nc=80,
|
586
|
-
ch=(512, 1024, 2048),
|
587
|
-
hd=256, # hidden dim
|
588
|
-
nq=300, # num queries
|
589
|
-
ndp=4, # num decoder points
|
590
|
-
nh=8, # num head
|
591
|
-
ndl=6, # num decoder layers
|
592
|
-
d_ffn=1024, # dim of feedforward
|
593
|
-
dropout=0.0,
|
594
|
-
act=nn.ReLU(),
|
595
|
-
eval_idx
|
900
|
+
nc: int = 80,
|
901
|
+
ch: Tuple = (512, 1024, 2048),
|
902
|
+
hd: int = 256, # hidden dim
|
903
|
+
nq: int = 300, # num queries
|
904
|
+
ndp: int = 4, # num decoder points
|
905
|
+
nh: int = 8, # num head
|
906
|
+
ndl: int = 6, # num decoder layers
|
907
|
+
d_ffn: int = 1024, # dim of feedforward
|
908
|
+
dropout: float = 0.0,
|
909
|
+
act: nn.Module = nn.ReLU(),
|
910
|
+
eval_idx: int = -1,
|
596
911
|
# Training args
|
597
|
-
nd=100, # num denoising
|
598
|
-
label_noise_ratio=0.5,
|
599
|
-
box_noise_scale=1.0,
|
600
|
-
learnt_init_query=False,
|
912
|
+
nd: int = 100, # num denoising
|
913
|
+
label_noise_ratio: float = 0.5,
|
914
|
+
box_noise_scale: float = 1.0,
|
915
|
+
learnt_init_query: bool = False,
|
601
916
|
):
|
602
917
|
"""
|
603
|
-
|
918
|
+
Initialize the RTDETRDecoder module with the given parameters.
|
604
919
|
|
605
920
|
Args:
|
606
|
-
nc (int): Number of classes.
|
607
|
-
ch (tuple): Channels in the backbone feature maps.
|
608
|
-
hd (int): Dimension of hidden layers.
|
609
|
-
nq (int): Number of query points.
|
610
|
-
ndp (int): Number of decoder points.
|
611
|
-
nh (int): Number of heads in multi-head attention.
|
612
|
-
ndl (int): Number of decoder layers.
|
613
|
-
d_ffn (int): Dimension of the feed-forward networks.
|
614
|
-
dropout (float): Dropout rate.
|
615
|
-
act (nn.Module): Activation function.
|
616
|
-
eval_idx (int): Evaluation index.
|
617
|
-
nd (int): Number of denoising.
|
618
|
-
label_noise_ratio (float): Label noise ratio.
|
619
|
-
box_noise_scale (float): Box noise scale.
|
620
|
-
learnt_init_query (bool): Whether to learn initial query embeddings.
|
921
|
+
nc (int): Number of classes.
|
922
|
+
ch (tuple): Channels in the backbone feature maps.
|
923
|
+
hd (int): Dimension of hidden layers.
|
924
|
+
nq (int): Number of query points.
|
925
|
+
ndp (int): Number of decoder points.
|
926
|
+
nh (int): Number of heads in multi-head attention.
|
927
|
+
ndl (int): Number of decoder layers.
|
928
|
+
d_ffn (int): Dimension of the feed-forward networks.
|
929
|
+
dropout (float): Dropout rate.
|
930
|
+
act (nn.Module): Activation function.
|
931
|
+
eval_idx (int): Evaluation index.
|
932
|
+
nd (int): Number of denoising.
|
933
|
+
label_noise_ratio (float): Label noise ratio.
|
934
|
+
box_noise_scale (float): Box noise scale.
|
935
|
+
learnt_init_query (bool): Whether to learn initial query embeddings.
|
621
936
|
"""
|
622
937
|
super().__init__()
|
623
938
|
self.hidden_dim = hd
|
@@ -659,17 +974,18 @@ class RTDETRDecoder(nn.Module):
|
|
659
974
|
|
660
975
|
self._reset_parameters()
|
661
976
|
|
662
|
-
def forward(self, x, batch=None):
|
977
|
+
def forward(self, x: List[torch.Tensor], batch: Optional[dict] = None) -> Union[Tuple, torch.Tensor]:
|
663
978
|
"""
|
664
|
-
|
979
|
+
Run the forward pass of the module, returning bounding box and classification scores for the input.
|
665
980
|
|
666
981
|
Args:
|
667
982
|
x (List[torch.Tensor]): List of feature maps from the backbone.
|
668
983
|
batch (dict, optional): Batch information for training.
|
669
984
|
|
670
985
|
Returns:
|
671
|
-
(tuple | torch.Tensor): During training, returns a tuple of bounding boxes, scores, and other
|
672
|
-
During inference, returns a tensor of shape (bs, 300, 4+nc) containing bounding boxes and
|
986
|
+
outputs (tuple | torch.Tensor): During training, returns a tuple of bounding boxes, scores, and other
|
987
|
+
metadata. During inference, returns a tensor of shape (bs, 300, 4+nc) containing bounding boxes and
|
988
|
+
class scores.
|
673
989
|
"""
|
674
990
|
from ultralytics.models.utils.ops import get_cdn_group
|
675
991
|
|
@@ -708,19 +1024,27 @@ class RTDETRDecoder(nn.Module):
|
|
708
1024
|
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
|
709
1025
|
return y if self.export else (y, x)
|
710
1026
|
|
711
|
-
def _generate_anchors(
|
1027
|
+
def _generate_anchors(
|
1028
|
+
self,
|
1029
|
+
shapes: List[List[int]],
|
1030
|
+
grid_size: float = 0.05,
|
1031
|
+
dtype: torch.dtype = torch.float32,
|
1032
|
+
device: str = "cpu",
|
1033
|
+
eps: float = 1e-2,
|
1034
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
712
1035
|
"""
|
713
|
-
|
1036
|
+
Generate anchor bounding boxes for given shapes with specific grid size and validate them.
|
714
1037
|
|
715
1038
|
Args:
|
716
1039
|
shapes (list): List of feature map shapes.
|
717
|
-
grid_size (float, optional): Base size of grid cells.
|
718
|
-
dtype (torch.dtype, optional): Data type for tensors.
|
719
|
-
device (str, optional): Device to create tensors on.
|
720
|
-
eps (float, optional): Small value for numerical stability.
|
1040
|
+
grid_size (float, optional): Base size of grid cells.
|
1041
|
+
dtype (torch.dtype, optional): Data type for tensors.
|
1042
|
+
device (str, optional): Device to create tensors on.
|
1043
|
+
eps (float, optional): Small value for numerical stability.
|
721
1044
|
|
722
1045
|
Returns:
|
723
|
-
(
|
1046
|
+
anchors (torch.Tensor): Generated anchor boxes.
|
1047
|
+
valid_mask (torch.Tensor): Valid mask for anchors.
|
724
1048
|
"""
|
725
1049
|
anchors = []
|
726
1050
|
for i, (h, w) in enumerate(shapes):
|
@@ -740,15 +1064,16 @@ class RTDETRDecoder(nn.Module):
|
|
740
1064
|
anchors = anchors.masked_fill(~valid_mask, float("inf"))
|
741
1065
|
return anchors, valid_mask
|
742
1066
|
|
743
|
-
def _get_encoder_input(self, x):
|
1067
|
+
def _get_encoder_input(self, x: List[torch.Tensor]) -> Tuple[torch.Tensor, List[List[int]]]:
|
744
1068
|
"""
|
745
|
-
|
1069
|
+
Process and return encoder inputs by getting projection features from input and concatenating them.
|
746
1070
|
|
747
1071
|
Args:
|
748
1072
|
x (List[torch.Tensor]): List of feature maps from the backbone.
|
749
1073
|
|
750
1074
|
Returns:
|
751
|
-
(
|
1075
|
+
feats (torch.Tensor): Processed features.
|
1076
|
+
shapes (list): List of feature map shapes.
|
752
1077
|
"""
|
753
1078
|
# Get projection features
|
754
1079
|
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
|
@@ -766,18 +1091,27 @@ class RTDETRDecoder(nn.Module):
|
|
766
1091
|
feats = torch.cat(feats, 1)
|
767
1092
|
return feats, shapes
|
768
1093
|
|
769
|
-
def _get_decoder_input(
|
1094
|
+
def _get_decoder_input(
|
1095
|
+
self,
|
1096
|
+
feats: torch.Tensor,
|
1097
|
+
shapes: List[List[int]],
|
1098
|
+
dn_embed: Optional[torch.Tensor] = None,
|
1099
|
+
dn_bbox: Optional[torch.Tensor] = None,
|
1100
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
770
1101
|
"""
|
771
|
-
|
1102
|
+
Generate and prepare the input required for the decoder from the provided features and shapes.
|
772
1103
|
|
773
1104
|
Args:
|
774
1105
|
feats (torch.Tensor): Processed features from encoder.
|
775
1106
|
shapes (list): List of feature map shapes.
|
776
|
-
dn_embed (torch.Tensor, optional): Denoising embeddings.
|
777
|
-
dn_bbox (torch.Tensor, optional): Denoising bounding boxes.
|
1107
|
+
dn_embed (torch.Tensor, optional): Denoising embeddings.
|
1108
|
+
dn_bbox (torch.Tensor, optional): Denoising bounding boxes.
|
778
1109
|
|
779
1110
|
Returns:
|
780
|
-
(
|
1111
|
+
embeddings (torch.Tensor): Query embeddings for decoder.
|
1112
|
+
refer_bbox (torch.Tensor): Reference bounding boxes.
|
1113
|
+
enc_bboxes (torch.Tensor): Encoded bounding boxes.
|
1114
|
+
enc_scores (torch.Tensor): Encoded scores.
|
781
1115
|
"""
|
782
1116
|
bs = feats.shape[0]
|
783
1117
|
# Prepare input for decoder
|
@@ -816,7 +1150,7 @@ class RTDETRDecoder(nn.Module):
|
|
816
1150
|
return embeddings, refer_bbox, enc_bboxes, enc_scores
|
817
1151
|
|
818
1152
|
def _reset_parameters(self):
|
819
|
-
"""
|
1153
|
+
"""Initialize or reset the parameters of the model's various components with predefined weights and biases."""
|
820
1154
|
# Class and bbox head init
|
821
1155
|
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
|
822
1156
|
# NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
|
@@ -844,24 +1178,38 @@ class v10Detect(Detect):
|
|
844
1178
|
"""
|
845
1179
|
v10 Detection head from https://arxiv.org/pdf/2405.14458.
|
846
1180
|
|
847
|
-
|
848
|
-
|
849
|
-
ch (tuple): Tuple of channel sizes.
|
1181
|
+
This class implements the YOLOv10 detection head with dual-assignment training and consistent dual predictions
|
1182
|
+
for improved efficiency and performance.
|
850
1183
|
|
851
1184
|
Attributes:
|
1185
|
+
end2end (bool): End-to-end detection mode.
|
852
1186
|
max_det (int): Maximum number of detections.
|
1187
|
+
cv3 (nn.ModuleList): Light classification head layers.
|
1188
|
+
one2one_cv3 (nn.ModuleList): One-to-one classification head layers.
|
853
1189
|
|
854
1190
|
Methods:
|
855
|
-
__init__
|
856
|
-
forward
|
857
|
-
bias_init
|
858
|
-
|
1191
|
+
__init__: Initialize the v10Detect object with specified number of classes and input channels.
|
1192
|
+
forward: Perform forward pass of the v10Detect module.
|
1193
|
+
bias_init: Initialize biases of the Detect module.
|
1194
|
+
fuse: Remove the one2many head for inference optimization.
|
1195
|
+
|
1196
|
+
Examples:
|
1197
|
+
Create a v10Detect head
|
1198
|
+
>>> v10_detect = v10Detect(nc=80, ch=(256, 512, 1024))
|
1199
|
+
>>> x = [torch.randn(1, 256, 80, 80), torch.randn(1, 512, 40, 40), torch.randn(1, 1024, 20, 20)]
|
1200
|
+
>>> outputs = v10_detect(x)
|
859
1201
|
"""
|
860
1202
|
|
861
1203
|
end2end = True
|
862
1204
|
|
863
|
-
def __init__(self, nc=80, ch=()):
|
864
|
-
"""
|
1205
|
+
def __init__(self, nc: int = 80, ch: Tuple = ()):
|
1206
|
+
"""
|
1207
|
+
Initialize the v10Detect object with the specified number of classes and input channels.
|
1208
|
+
|
1209
|
+
Args:
|
1210
|
+
nc (int): Number of classes.
|
1211
|
+
ch (tuple): Tuple of channel sizes from backbone feature maps.
|
1212
|
+
"""
|
865
1213
|
super().__init__(nc, ch)
|
866
1214
|
c3 = max(ch[0], min(self.nc, 100)) # channels
|
867
1215
|
# Light cls head
|
@@ -876,5 +1224,5 @@ class v10Detect(Detect):
|
|
876
1224
|
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
877
1225
|
|
878
1226
|
def fuse(self):
|
879
|
-
"""
|
1227
|
+
"""Remove the one2many head for inference optimization."""
|
880
1228
|
self.cv2 = self.cv3 = nn.ModuleList([nn.Identity()] * self.nl)
|