dgenerate-ultralytics-headless 8.3.137__py3-none-any.whl → 8.3.224__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (215) hide show
  1. {dgenerate_ultralytics_headless-8.3.137.dist-info → dgenerate_ultralytics_headless-8.3.224.dist-info}/METADATA +41 -34
  2. dgenerate_ultralytics_headless-8.3.224.dist-info/RECORD +285 -0
  3. {dgenerate_ultralytics_headless-8.3.137.dist-info → dgenerate_ultralytics_headless-8.3.224.dist-info}/WHEEL +1 -1
  4. tests/__init__.py +7 -6
  5. tests/conftest.py +15 -39
  6. tests/test_cli.py +17 -17
  7. tests/test_cuda.py +17 -8
  8. tests/test_engine.py +36 -10
  9. tests/test_exports.py +98 -37
  10. tests/test_integrations.py +12 -15
  11. tests/test_python.py +126 -82
  12. tests/test_solutions.py +319 -135
  13. ultralytics/__init__.py +27 -9
  14. ultralytics/cfg/__init__.py +83 -87
  15. ultralytics/cfg/datasets/Argoverse.yaml +4 -4
  16. ultralytics/cfg/datasets/DOTAv1.5.yaml +2 -2
  17. ultralytics/cfg/datasets/DOTAv1.yaml +2 -2
  18. ultralytics/cfg/datasets/GlobalWheat2020.yaml +2 -2
  19. ultralytics/cfg/datasets/HomeObjects-3K.yaml +4 -5
  20. ultralytics/cfg/datasets/ImageNet.yaml +3 -3
  21. ultralytics/cfg/datasets/Objects365.yaml +24 -20
  22. ultralytics/cfg/datasets/SKU-110K.yaml +9 -9
  23. ultralytics/cfg/datasets/VOC.yaml +10 -13
  24. ultralytics/cfg/datasets/VisDrone.yaml +43 -33
  25. ultralytics/cfg/datasets/african-wildlife.yaml +5 -5
  26. ultralytics/cfg/datasets/brain-tumor.yaml +4 -5
  27. ultralytics/cfg/datasets/carparts-seg.yaml +5 -5
  28. ultralytics/cfg/datasets/coco-pose.yaml +26 -4
  29. ultralytics/cfg/datasets/coco.yaml +4 -4
  30. ultralytics/cfg/datasets/coco128-seg.yaml +2 -2
  31. ultralytics/cfg/datasets/coco128.yaml +2 -2
  32. ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
  33. ultralytics/cfg/datasets/coco8-multispectral.yaml +2 -2
  34. ultralytics/cfg/datasets/coco8-pose.yaml +23 -2
  35. ultralytics/cfg/datasets/coco8-seg.yaml +2 -2
  36. ultralytics/cfg/datasets/coco8.yaml +2 -2
  37. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  38. ultralytics/cfg/datasets/crack-seg.yaml +5 -5
  39. ultralytics/cfg/datasets/dog-pose.yaml +32 -4
  40. ultralytics/cfg/datasets/dota8-multispectral.yaml +2 -2
  41. ultralytics/cfg/datasets/dota8.yaml +2 -2
  42. ultralytics/cfg/datasets/hand-keypoints.yaml +29 -4
  43. ultralytics/cfg/datasets/lvis.yaml +9 -9
  44. ultralytics/cfg/datasets/medical-pills.yaml +4 -5
  45. ultralytics/cfg/datasets/open-images-v7.yaml +7 -10
  46. ultralytics/cfg/datasets/package-seg.yaml +5 -5
  47. ultralytics/cfg/datasets/signature.yaml +4 -4
  48. ultralytics/cfg/datasets/tiger-pose.yaml +20 -4
  49. ultralytics/cfg/datasets/xView.yaml +5 -5
  50. ultralytics/cfg/default.yaml +96 -93
  51. ultralytics/cfg/trackers/botsort.yaml +16 -17
  52. ultralytics/cfg/trackers/bytetrack.yaml +9 -11
  53. ultralytics/data/__init__.py +4 -4
  54. ultralytics/data/annotator.py +12 -12
  55. ultralytics/data/augment.py +531 -564
  56. ultralytics/data/base.py +76 -81
  57. ultralytics/data/build.py +206 -42
  58. ultralytics/data/converter.py +179 -78
  59. ultralytics/data/dataset.py +121 -121
  60. ultralytics/data/loaders.py +114 -91
  61. ultralytics/data/split.py +28 -15
  62. ultralytics/data/split_dota.py +67 -48
  63. ultralytics/data/utils.py +110 -89
  64. ultralytics/engine/exporter.py +422 -460
  65. ultralytics/engine/model.py +224 -252
  66. ultralytics/engine/predictor.py +94 -89
  67. ultralytics/engine/results.py +345 -595
  68. ultralytics/engine/trainer.py +231 -134
  69. ultralytics/engine/tuner.py +279 -73
  70. ultralytics/engine/validator.py +53 -46
  71. ultralytics/hub/__init__.py +26 -28
  72. ultralytics/hub/auth.py +30 -16
  73. ultralytics/hub/google/__init__.py +34 -36
  74. ultralytics/hub/session.py +53 -77
  75. ultralytics/hub/utils.py +23 -109
  76. ultralytics/models/__init__.py +1 -1
  77. ultralytics/models/fastsam/__init__.py +1 -1
  78. ultralytics/models/fastsam/model.py +36 -18
  79. ultralytics/models/fastsam/predict.py +33 -44
  80. ultralytics/models/fastsam/utils.py +4 -5
  81. ultralytics/models/fastsam/val.py +12 -14
  82. ultralytics/models/nas/__init__.py +1 -1
  83. ultralytics/models/nas/model.py +16 -20
  84. ultralytics/models/nas/predict.py +12 -14
  85. ultralytics/models/nas/val.py +4 -5
  86. ultralytics/models/rtdetr/__init__.py +1 -1
  87. ultralytics/models/rtdetr/model.py +9 -9
  88. ultralytics/models/rtdetr/predict.py +22 -17
  89. ultralytics/models/rtdetr/train.py +20 -16
  90. ultralytics/models/rtdetr/val.py +79 -59
  91. ultralytics/models/sam/__init__.py +8 -2
  92. ultralytics/models/sam/amg.py +53 -38
  93. ultralytics/models/sam/build.py +29 -31
  94. ultralytics/models/sam/model.py +33 -38
  95. ultralytics/models/sam/modules/blocks.py +159 -182
  96. ultralytics/models/sam/modules/decoders.py +38 -47
  97. ultralytics/models/sam/modules/encoders.py +114 -133
  98. ultralytics/models/sam/modules/memory_attention.py +38 -31
  99. ultralytics/models/sam/modules/sam.py +114 -93
  100. ultralytics/models/sam/modules/tiny_encoder.py +268 -291
  101. ultralytics/models/sam/modules/transformer.py +59 -66
  102. ultralytics/models/sam/modules/utils.py +55 -72
  103. ultralytics/models/sam/predict.py +745 -341
  104. ultralytics/models/utils/loss.py +118 -107
  105. ultralytics/models/utils/ops.py +118 -71
  106. ultralytics/models/yolo/__init__.py +1 -1
  107. ultralytics/models/yolo/classify/predict.py +28 -26
  108. ultralytics/models/yolo/classify/train.py +50 -81
  109. ultralytics/models/yolo/classify/val.py +68 -61
  110. ultralytics/models/yolo/detect/predict.py +12 -15
  111. ultralytics/models/yolo/detect/train.py +56 -46
  112. ultralytics/models/yolo/detect/val.py +279 -223
  113. ultralytics/models/yolo/model.py +167 -86
  114. ultralytics/models/yolo/obb/predict.py +7 -11
  115. ultralytics/models/yolo/obb/train.py +23 -25
  116. ultralytics/models/yolo/obb/val.py +107 -99
  117. ultralytics/models/yolo/pose/__init__.py +1 -1
  118. ultralytics/models/yolo/pose/predict.py +12 -14
  119. ultralytics/models/yolo/pose/train.py +31 -69
  120. ultralytics/models/yolo/pose/val.py +119 -254
  121. ultralytics/models/yolo/segment/predict.py +21 -25
  122. ultralytics/models/yolo/segment/train.py +12 -66
  123. ultralytics/models/yolo/segment/val.py +126 -305
  124. ultralytics/models/yolo/world/train.py +53 -45
  125. ultralytics/models/yolo/world/train_world.py +51 -32
  126. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  127. ultralytics/models/yolo/yoloe/predict.py +30 -37
  128. ultralytics/models/yolo/yoloe/train.py +89 -71
  129. ultralytics/models/yolo/yoloe/train_seg.py +15 -17
  130. ultralytics/models/yolo/yoloe/val.py +56 -41
  131. ultralytics/nn/__init__.py +9 -11
  132. ultralytics/nn/autobackend.py +179 -107
  133. ultralytics/nn/modules/__init__.py +67 -67
  134. ultralytics/nn/modules/activation.py +8 -7
  135. ultralytics/nn/modules/block.py +302 -323
  136. ultralytics/nn/modules/conv.py +61 -104
  137. ultralytics/nn/modules/head.py +488 -186
  138. ultralytics/nn/modules/transformer.py +183 -123
  139. ultralytics/nn/modules/utils.py +15 -20
  140. ultralytics/nn/tasks.py +327 -203
  141. ultralytics/nn/text_model.py +81 -65
  142. ultralytics/py.typed +1 -0
  143. ultralytics/solutions/__init__.py +12 -12
  144. ultralytics/solutions/ai_gym.py +19 -27
  145. ultralytics/solutions/analytics.py +36 -26
  146. ultralytics/solutions/config.py +29 -28
  147. ultralytics/solutions/distance_calculation.py +23 -24
  148. ultralytics/solutions/heatmap.py +17 -19
  149. ultralytics/solutions/instance_segmentation.py +21 -19
  150. ultralytics/solutions/object_blurrer.py +16 -17
  151. ultralytics/solutions/object_counter.py +48 -53
  152. ultralytics/solutions/object_cropper.py +22 -16
  153. ultralytics/solutions/parking_management.py +61 -58
  154. ultralytics/solutions/queue_management.py +19 -19
  155. ultralytics/solutions/region_counter.py +63 -50
  156. ultralytics/solutions/security_alarm.py +22 -25
  157. ultralytics/solutions/similarity_search.py +107 -60
  158. ultralytics/solutions/solutions.py +343 -262
  159. ultralytics/solutions/speed_estimation.py +35 -31
  160. ultralytics/solutions/streamlit_inference.py +104 -40
  161. ultralytics/solutions/templates/similarity-search.html +31 -24
  162. ultralytics/solutions/trackzone.py +24 -24
  163. ultralytics/solutions/vision_eye.py +11 -12
  164. ultralytics/trackers/__init__.py +1 -1
  165. ultralytics/trackers/basetrack.py +18 -27
  166. ultralytics/trackers/bot_sort.py +48 -39
  167. ultralytics/trackers/byte_tracker.py +94 -94
  168. ultralytics/trackers/track.py +7 -16
  169. ultralytics/trackers/utils/gmc.py +37 -69
  170. ultralytics/trackers/utils/kalman_filter.py +68 -76
  171. ultralytics/trackers/utils/matching.py +13 -17
  172. ultralytics/utils/__init__.py +251 -275
  173. ultralytics/utils/autobatch.py +19 -7
  174. ultralytics/utils/autodevice.py +68 -38
  175. ultralytics/utils/benchmarks.py +169 -130
  176. ultralytics/utils/callbacks/base.py +12 -13
  177. ultralytics/utils/callbacks/clearml.py +14 -15
  178. ultralytics/utils/callbacks/comet.py +139 -66
  179. ultralytics/utils/callbacks/dvc.py +19 -27
  180. ultralytics/utils/callbacks/hub.py +8 -6
  181. ultralytics/utils/callbacks/mlflow.py +6 -10
  182. ultralytics/utils/callbacks/neptune.py +11 -19
  183. ultralytics/utils/callbacks/platform.py +73 -0
  184. ultralytics/utils/callbacks/raytune.py +3 -4
  185. ultralytics/utils/callbacks/tensorboard.py +9 -12
  186. ultralytics/utils/callbacks/wb.py +33 -30
  187. ultralytics/utils/checks.py +163 -114
  188. ultralytics/utils/cpu.py +89 -0
  189. ultralytics/utils/dist.py +24 -20
  190. ultralytics/utils/downloads.py +176 -146
  191. ultralytics/utils/errors.py +11 -13
  192. ultralytics/utils/events.py +113 -0
  193. ultralytics/utils/export/__init__.py +7 -0
  194. ultralytics/utils/{export.py → export/engine.py} +81 -63
  195. ultralytics/utils/export/imx.py +294 -0
  196. ultralytics/utils/export/tensorflow.py +217 -0
  197. ultralytics/utils/files.py +33 -36
  198. ultralytics/utils/git.py +137 -0
  199. ultralytics/utils/instance.py +105 -120
  200. ultralytics/utils/logger.py +404 -0
  201. ultralytics/utils/loss.py +99 -61
  202. ultralytics/utils/metrics.py +649 -478
  203. ultralytics/utils/nms.py +337 -0
  204. ultralytics/utils/ops.py +263 -451
  205. ultralytics/utils/patches.py +70 -31
  206. ultralytics/utils/plotting.py +253 -223
  207. ultralytics/utils/tal.py +48 -61
  208. ultralytics/utils/torch_utils.py +244 -251
  209. ultralytics/utils/tqdm.py +438 -0
  210. ultralytics/utils/triton.py +22 -23
  211. ultralytics/utils/tuner.py +11 -10
  212. dgenerate_ultralytics_headless-8.3.137.dist-info/RECORD +0 -272
  213. {dgenerate_ultralytics_headless-8.3.137.dist-info → dgenerate_ultralytics_headless-8.3.224.dist-info}/entry_points.txt +0 -0
  214. {dgenerate_ultralytics_headless-8.3.137.dist-info → dgenerate_ultralytics_headless-8.3.224.dist-info}/licenses/LICENSE +0 -0
  215. {dgenerate_ultralytics_headless-8.3.137.dist-info → dgenerate_ultralytics_headless-8.3.224.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,113 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ import json
4
+ import random
5
+ import time
6
+ from pathlib import Path
7
+ from threading import Thread
8
+ from urllib.request import Request, urlopen
9
+
10
+ from ultralytics import SETTINGS, __version__
11
+ from ultralytics.utils import ARGV, ENVIRONMENT, GIT, IS_PIP_PACKAGE, ONLINE, PYTHON_VERSION, RANK, TESTS_RUNNING
12
+ from ultralytics.utils.downloads import GITHUB_ASSETS_NAMES
13
+ from ultralytics.utils.torch_utils import get_cpu_info
14
+
15
+
16
+ def _post(url: str, data: dict, timeout: float = 5.0) -> None:
17
+ """Send a one-shot JSON POST request."""
18
+ try:
19
+ body = json.dumps(data, separators=(",", ":")).encode() # compact JSON
20
+ req = Request(url, data=body, headers={"Content-Type": "application/json"})
21
+ urlopen(req, timeout=timeout).close()
22
+ except Exception:
23
+ pass
24
+
25
+
26
+ class Events:
27
+ """Collect and send anonymous usage analytics with rate-limiting.
28
+
29
+ Event collection and transmission are enabled when sync is enabled in settings, the current process is rank -1 or 0,
30
+ tests are not running, the environment is online, and the installation source is either pip or the official
31
+ Ultralytics GitHub repository.
32
+
33
+ Attributes:
34
+ url (str): Measurement Protocol endpoint for receiving anonymous events.
35
+ events (list[dict]): In-memory queue of event payloads awaiting transmission.
36
+ rate_limit (float): Minimum time in seconds between POST requests.
37
+ t (float): Timestamp of the last transmission in seconds since the epoch.
38
+ metadata (dict): Static metadata describing runtime, installation source, and environment.
39
+ enabled (bool): Flag indicating whether analytics collection is active.
40
+
41
+ Methods:
42
+ __init__: Initialize the event queue, rate limiter, and runtime metadata.
43
+ __call__: Queue an event and trigger a non-blocking send when the rate limit elapses.
44
+ """
45
+
46
+ url = "https://www.google-analytics.com/mp/collect?measurement_id=G-X8NCJYTQXM&api_secret=QLQrATrNSwGRFRLE-cbHJw"
47
+
48
+ def __init__(self) -> None:
49
+ """Initialize the Events instance with queue, rate limiter, and environment metadata."""
50
+ self.events = [] # pending events
51
+ self.rate_limit = 30.0 # rate limit (seconds)
52
+ self.t = 0.0 # last send timestamp (seconds)
53
+ self.metadata = {
54
+ "cli": Path(ARGV[0]).name == "yolo",
55
+ "install": "git" if GIT.is_repo else "pip" if IS_PIP_PACKAGE else "other",
56
+ "python": PYTHON_VERSION.rsplit(".", 1)[0], # i.e. 3.13
57
+ "CPU": get_cpu_info(),
58
+ # "GPU": get_gpu_info(index=0) if cuda else None,
59
+ "version": __version__,
60
+ "env": ENVIRONMENT,
61
+ "session_id": round(random.random() * 1e15),
62
+ "engagement_time_msec": 1000,
63
+ }
64
+ self.enabled = (
65
+ SETTINGS["sync"]
66
+ and RANK in {-1, 0}
67
+ and not TESTS_RUNNING
68
+ and ONLINE
69
+ and (IS_PIP_PACKAGE or GIT.origin == "https://github.com/ultralytics/ultralytics.git")
70
+ )
71
+
72
+ def __call__(self, cfg, device=None) -> None:
73
+ """Queue an event and flush the queue asynchronously when the rate limit elapses.
74
+
75
+ Args:
76
+ cfg (IterableSimpleNamespace): The configuration object containing mode and task information.
77
+ device (torch.device | str, optional): The device type (e.g., 'cpu', 'cuda').
78
+ """
79
+ if not self.enabled:
80
+ # Events disabled, do nothing
81
+ return
82
+
83
+ # Attempt to enqueue a new event
84
+ if len(self.events) < 25: # Queue limited to 25 events to bound memory and traffic
85
+ params = {
86
+ **self.metadata,
87
+ "task": cfg.task,
88
+ "model": cfg.model if cfg.model in GITHUB_ASSETS_NAMES else "custom",
89
+ "device": str(device),
90
+ }
91
+ if cfg.mode == "export":
92
+ params["format"] = cfg.format
93
+ self.events.append({"name": cfg.mode, "params": params})
94
+
95
+ # Check rate limit and return early if under limit
96
+ t = time.time()
97
+ if (t - self.t) < self.rate_limit:
98
+ return
99
+
100
+ # Overrate limit: send a snapshot of queued events in a background thread
101
+ payload_events = list(self.events) # snapshot to avoid race with queue reset
102
+ Thread(
103
+ target=_post,
104
+ args=(self.url, {"client_id": SETTINGS["uuid"], "events": payload_events}), # SHA-256 anonymized
105
+ daemon=True,
106
+ ).start()
107
+
108
+ # Reset queue and rate limit timer
109
+ self.events = []
110
+ self.t = t
111
+
112
+
113
+ events = Events()
@@ -0,0 +1,7 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from .engine import onnx2engine, torch2onnx
4
+ from .imx import torch2imx
5
+ from .tensorflow import keras2pb, onnx2saved_model, pb2tfjs, tflite2edgetpu
6
+
7
+ __all__ = ["keras2pb", "onnx2engine", "onnx2saved_model", "pb2tfjs", "tflite2edgetpu", "torch2imx", "torch2onnx"]
@@ -1,37 +1,40 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
+ from __future__ import annotations
4
+
3
5
  import json
4
6
  from pathlib import Path
5
7
 
6
8
  import torch
7
9
 
8
10
  from ultralytics.utils import IS_JETSON, LOGGER
11
+ from ultralytics.utils.torch_utils import TORCH_2_4
9
12
 
10
13
 
11
- def export_onnx(
12
- torch_model,
13
- im,
14
- onnx_file,
15
- opset=14,
16
- input_names=["images"],
17
- output_names=["output0"],
18
- dynamic=False,
19
- ):
20
- """
21
- Exports a PyTorch model to ONNX format.
14
+ def torch2onnx(
15
+ torch_model: torch.nn.Module,
16
+ im: torch.Tensor,
17
+ onnx_file: str,
18
+ opset: int = 14,
19
+ input_names: list[str] = ["images"],
20
+ output_names: list[str] = ["output0"],
21
+ dynamic: bool | dict = False,
22
+ ) -> None:
23
+ """Export a PyTorch model to ONNX format.
22
24
 
23
25
  Args:
24
26
  torch_model (torch.nn.Module): The PyTorch model to export.
25
27
  im (torch.Tensor): Example input tensor for the model.
26
28
  onnx_file (str): Path to save the exported ONNX file.
27
29
  opset (int): ONNX opset version to use for export.
28
- input_names (list): List of input tensor names.
29
- output_names (list): List of output tensor names.
30
- dynamic (bool | dict, optional): Whether to enable dynamic axes. Defaults to False.
30
+ input_names (list[str]): List of input tensor names.
31
+ output_names (list[str]): List of output tensor names.
32
+ dynamic (bool | dict, optional): Whether to enable dynamic axes.
31
33
 
32
34
  Notes:
33
- - Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
35
+ Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
34
36
  """
37
+ kwargs = {"dynamo": False} if TORCH_2_4 else {}
35
38
  torch.onnx.export(
36
39
  torch_model,
37
40
  im,
@@ -42,50 +45,50 @@ def export_onnx(
42
45
  input_names=input_names,
43
46
  output_names=output_names,
44
47
  dynamic_axes=dynamic or None,
48
+ **kwargs,
45
49
  )
46
50
 
47
51
 
48
- def export_engine(
49
- onnx_file,
50
- engine_file=None,
51
- workspace=None,
52
- half=False,
53
- int8=False,
54
- dynamic=False,
55
- shape=(1, 3, 640, 640),
56
- dla=None,
52
+ def onnx2engine(
53
+ onnx_file: str,
54
+ engine_file: str | None = None,
55
+ workspace: int | None = None,
56
+ half: bool = False,
57
+ int8: bool = False,
58
+ dynamic: bool = False,
59
+ shape: tuple[int, int, int, int] = (1, 3, 640, 640),
60
+ dla: int | None = None,
57
61
  dataset=None,
58
- metadata=None,
59
- verbose=False,
60
- prefix="",
61
- ):
62
- """
63
- Exports a YOLO model to TensorRT engine format.
62
+ metadata: dict | None = None,
63
+ verbose: bool = False,
64
+ prefix: str = "",
65
+ ) -> None:
66
+ """Export a YOLO model to TensorRT engine format.
64
67
 
65
68
  Args:
66
69
  onnx_file (str): Path to the ONNX file to be converted.
67
70
  engine_file (str, optional): Path to save the generated TensorRT engine file.
68
- workspace (int, optional): Workspace size in GB for TensorRT. Defaults to None.
69
- half (bool, optional): Enable FP16 precision. Defaults to False.
70
- int8 (bool, optional): Enable INT8 precision. Defaults to False.
71
- dynamic (bool, optional): Enable dynamic input shapes. Defaults to False.
72
- shape (tuple, optional): Input shape (batch, channels, height, width). Defaults to (1, 3, 640, 640).
73
- dla (int, optional): DLA core to use (Jetson devices only). Defaults to None.
74
- dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration. Defaults to None.
75
- metadata (dict, optional): Metadata to include in the engine file. Defaults to None.
76
- verbose (bool, optional): Enable verbose logging. Defaults to False.
77
- prefix (str, optional): Prefix for log messages. Defaults to "".
71
+ workspace (int, optional): Workspace size in GB for TensorRT.
72
+ half (bool, optional): Enable FP16 precision.
73
+ int8 (bool, optional): Enable INT8 precision.
74
+ dynamic (bool, optional): Enable dynamic input shapes.
75
+ shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
76
+ dla (int, optional): DLA core to use (Jetson devices only).
77
+ dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
78
+ metadata (dict, optional): Metadata to include in the engine file.
79
+ verbose (bool, optional): Enable verbose logging.
80
+ prefix (str, optional): Prefix for log messages.
78
81
 
79
82
  Raises:
80
83
  ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
81
84
  RuntimeError: If the ONNX file cannot be parsed.
82
85
 
83
86
  Notes:
84
- - TensorRT version compatibility is handled for workspace size and engine building.
85
- - INT8 calibration requires a dataset and generates a calibration cache.
86
- - Metadata is serialized and written to the engine file if provided.
87
+ TensorRT version compatibility is handled for workspace size and engine building.
88
+ INT8 calibration requires a dataset and generates a calibration cache.
89
+ Metadata is serialized and written to the engine file if provided.
87
90
  """
88
- import tensorrt as trt # noqa
91
+ import tensorrt as trt
89
92
 
90
93
  engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
91
94
 
@@ -96,12 +99,12 @@ def export_engine(
96
99
  # Engine builder
97
100
  builder = trt.Builder(logger)
98
101
  config = builder.create_builder_config()
99
- workspace = int((workspace or 0) * (1 << 30))
100
- is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
101
- if is_trt10 and workspace > 0:
102
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
103
- elif workspace > 0: # TensorRT versions 7, 8
104
- config.max_workspace_size = workspace
102
+ workspace_bytes = int((workspace or 0) * (1 << 30))
103
+ is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
104
+ if is_trt10 and workspace_bytes > 0:
105
+ config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
106
+ elif workspace_bytes > 0: # TensorRT versions 7, 8
107
+ config.max_workspace_size = workspace_bytes
105
108
  flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
106
109
  network = builder.create_network(flag)
107
110
  half = builder.platform_has_fast_fp16 and half
@@ -134,29 +137,39 @@ def export_engine(
134
137
  LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
135
138
 
136
139
  if dynamic:
137
- if shape[0] <= 1:
138
- LOGGER.warning(f"{prefix} 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
139
140
  profile = builder.create_optimization_profile()
140
141
  min_shape = (1, shape[1], 32, 32) # minimum input shape
141
142
  max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
142
143
  for inp in inputs:
143
144
  profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
144
145
  config.add_optimization_profile(profile)
146
+ if int8:
147
+ config.set_calibration_profile(profile)
145
148
 
146
149
  LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
147
150
  if int8:
148
151
  config.set_flag(trt.BuilderFlag.INT8)
149
- config.set_calibration_profile(profile)
150
152
  config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
151
153
 
152
154
  class EngineCalibrator(trt.IInt8Calibrator):
153
- """
154
- Custom INT8 calibrator for TensorRT.
155
+ """Custom INT8 calibrator for TensorRT engine optimization.
156
+
157
+ This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration using
158
+ a dataset. It handles batch generation, caching, and calibration algorithm selection.
155
159
 
156
- Args:
157
- dataset (object): Dataset for calibration.
160
+ Attributes:
161
+ dataset: Dataset for calibration.
162
+ data_iter: Iterator over the calibration dataset.
163
+ algo (trt.CalibrationAlgoType): Calibration algorithm type.
158
164
  batch (int): Batch size for calibration.
159
- cache (str, optional): Path to save the calibration cache. Defaults to "".
165
+ cache (Path): Path to save the calibration cache.
166
+
167
+ Methods:
168
+ get_algorithm: Get the calibration algorithm to use.
169
+ get_batch_size: Get the batch size to use for calibration.
170
+ get_batch: Get the next batch to use for calibration.
171
+ read_calibration_cache: Use existing cache instead of calibrating again.
172
+ write_calibration_cache: Write calibration cache to disk.
160
173
  """
161
174
 
162
175
  def __init__(
@@ -164,10 +177,15 @@ def export_engine(
164
177
  dataset, # ultralytics.data.build.InfiniteDataLoader
165
178
  cache: str = "",
166
179
  ) -> None:
180
+ """Initialize the INT8 calibrator with dataset and cache path."""
167
181
  trt.IInt8Calibrator.__init__(self)
168
182
  self.dataset = dataset
169
183
  self.data_iter = iter(dataset)
170
- self.algo = trt.CalibrationAlgoType.MINMAX_CALIBRATION
184
+ self.algo = (
185
+ trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
186
+ if dla is not None
187
+ else trt.CalibrationAlgoType.MINMAX_CALIBRATION
188
+ )
171
189
  self.batch = dataset.batch_size
172
190
  self.cache = Path(cache)
173
191
 
@@ -179,22 +197,22 @@ def export_engine(
179
197
  """Get the batch size to use for calibration."""
180
198
  return self.batch or 1
181
199
 
182
- def get_batch(self, names) -> list:
200
+ def get_batch(self, names) -> list[int] | None:
183
201
  """Get the next batch to use for calibration, as a list of device memory pointers."""
184
202
  try:
185
203
  im0s = next(self.data_iter)["img"] / 255.0
186
204
  im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
187
205
  return [int(im0s.data_ptr())]
188
206
  except StopIteration:
189
- # Return [] or None, signal to TensorRT there is no calibration data remaining
207
+ # Return None to signal to TensorRT there is no calibration data remaining
190
208
  return None
191
209
 
192
- def read_calibration_cache(self) -> bytes:
210
+ def read_calibration_cache(self) -> bytes | None:
193
211
  """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
194
212
  if self.cache.exists() and self.cache.suffix == ".cache":
195
213
  return self.cache.read_bytes()
196
214
 
197
- def write_calibration_cache(self, cache) -> None:
215
+ def write_calibration_cache(self, cache: bytes) -> None:
198
216
  """Write calibration cache to disk."""
199
217
  _ = self.cache.write_bytes(cache)
200
218
 
@@ -0,0 +1,294 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from __future__ import annotations
4
+
5
+ import subprocess
6
+ import types
7
+ from pathlib import Path
8
+
9
+ import numpy as np
10
+ import torch
11
+
12
+ from ultralytics.nn.modules import Detect, Pose
13
+ from ultralytics.utils import LOGGER
14
+ from ultralytics.utils.tal import make_anchors
15
+ from ultralytics.utils.torch_utils import copy_attr
16
+
17
+ # Configuration for Model Compression Toolkit (MCT) quantization
18
+ MCT_CONFIG = {
19
+ "YOLO11": {
20
+ "detect": {
21
+ "layer_names": ["sub", "mul_2", "add_14", "cat_21"],
22
+ "weights_memory": 2585350.2439,
23
+ "n_layers": 238,
24
+ },
25
+ "pose": {
26
+ "layer_names": ["sub", "mul_2", "add_14", "cat_22", "cat_23", "mul_4", "add_15"],
27
+ "weights_memory": 2437771.67,
28
+ "n_layers": 257,
29
+ },
30
+ "classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": 112},
31
+ },
32
+ "YOLOv8": {
33
+ "detect": {"layer_names": ["sub", "mul", "add_6", "cat_17"], "weights_memory": 2550540.8, "n_layers": 168},
34
+ "pose": {
35
+ "layer_names": ["add_7", "mul_2", "cat_19", "mul", "sub", "add_6", "cat_18"],
36
+ "weights_memory": 2482451.85,
37
+ "n_layers": 187,
38
+ },
39
+ "classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": 73},
40
+ },
41
+ }
42
+
43
+
44
+ class FXModel(torch.nn.Module):
45
+ """A custom model class for torch.fx compatibility.
46
+
47
+ This class extends `torch.nn.Module` and is designed to ensure compatibility with torch.fx for tracing and graph
48
+ manipulation. It copies attributes from an existing model and explicitly sets the model attribute to ensure proper
49
+ copying.
50
+
51
+ Attributes:
52
+ model (nn.Module): The original model's layers.
53
+ """
54
+
55
+ def __init__(self, model, imgsz=(640, 640)):
56
+ """Initialize the FXModel.
57
+
58
+ Args:
59
+ model (nn.Module): The original model to wrap for torch.fx compatibility.
60
+ imgsz (tuple[int, int]): The input image size (height, width). Default is (640, 640).
61
+ """
62
+ super().__init__()
63
+ copy_attr(self, model)
64
+ # Explicitly set `model` since `copy_attr` somehow does not copy it.
65
+ self.model = model.model
66
+ self.imgsz = imgsz
67
+
68
+ def forward(self, x):
69
+ """Forward pass through the model.
70
+
71
+ This method performs the forward pass through the model, handling the dependencies between layers and saving
72
+ intermediate outputs.
73
+
74
+ Args:
75
+ x (torch.Tensor): The input tensor to the model.
76
+
77
+ Returns:
78
+ (torch.Tensor): The output tensor from the model.
79
+ """
80
+ y = [] # outputs
81
+ for m in self.model:
82
+ if m.f != -1: # if not from previous layer
83
+ # from earlier layers
84
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]
85
+ if isinstance(m, Detect):
86
+ m._inference = types.MethodType(_inference, m) # bind method to Detect
87
+ m.anchors, m.strides = (
88
+ x.transpose(0, 1)
89
+ for x in make_anchors(
90
+ torch.cat([s / m.stride.unsqueeze(-1) for s in self.imgsz], dim=1), m.stride, 0.5
91
+ )
92
+ )
93
+ if type(m) is Pose:
94
+ m.forward = types.MethodType(pose_forward, m) # bind method to Detect
95
+ x = m(x) # run
96
+ y.append(x) # save output
97
+ return x
98
+
99
+
100
+ def _inference(self, x: list[torch.Tensor]) -> tuple[torch.Tensor]:
101
+ """Decode boxes and cls scores for imx object detection."""
102
+ x_cat = torch.cat([xi.view(x[0].shape[0], self.no, -1) for xi in x], 2)
103
+ box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
104
+ dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
105
+ return dbox.transpose(1, 2), cls.sigmoid().permute(0, 2, 1)
106
+
107
+
108
+ def pose_forward(self, x: list[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
109
+ """Forward pass for imx pose estimation, including keypoint decoding."""
110
+ bs = x[0].shape[0] # batch size
111
+ kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
112
+ x = Detect.forward(self, x)
113
+ pred_kpt = self.kpts_decode(bs, kpt)
114
+ return (*x, pred_kpt.permute(0, 2, 1))
115
+
116
+
117
+ class NMSWrapper(torch.nn.Module):
118
+ """Wrap PyTorch Module with multiclass_nms layer from sony_custom_layers."""
119
+
120
+ def __init__(
121
+ self,
122
+ model: torch.nn.Module,
123
+ score_threshold: float = 0.001,
124
+ iou_threshold: float = 0.7,
125
+ max_detections: int = 300,
126
+ task: str = "detect",
127
+ ):
128
+ """Initialize NMSWrapper with PyTorch Module and NMS parameters.
129
+
130
+ Args:
131
+ model (torch.nn.Module): Model instance.
132
+ score_threshold (float): Score threshold for non-maximum suppression.
133
+ iou_threshold (float): Intersection over union threshold for non-maximum suppression.
134
+ max_detections (int): The number of detections to return.
135
+ task (str): Task type, either 'detect' or 'pose'.
136
+ """
137
+ super().__init__()
138
+ self.model = model
139
+ self.score_threshold = score_threshold
140
+ self.iou_threshold = iou_threshold
141
+ self.max_detections = max_detections
142
+ self.task = task
143
+
144
+ def forward(self, images):
145
+ """Forward pass with model inference and NMS post-processing."""
146
+ from sony_custom_layers.pytorch import multiclass_nms_with_indices
147
+
148
+ # model inference
149
+ outputs = self.model(images)
150
+ boxes, scores = outputs[0], outputs[1]
151
+ nms_outputs = multiclass_nms_with_indices(
152
+ boxes=boxes,
153
+ scores=scores,
154
+ score_threshold=self.score_threshold,
155
+ iou_threshold=self.iou_threshold,
156
+ max_detections=self.max_detections,
157
+ )
158
+ if self.task == "pose":
159
+ kpts = outputs[2] # (bs, max_detections, kpts 17*3)
160
+ out_kpts = torch.gather(kpts, 1, nms_outputs.indices.unsqueeze(-1).expand(-1, -1, kpts.size(-1)))
161
+ return nms_outputs.boxes, nms_outputs.scores, nms_outputs.labels, out_kpts
162
+ return nms_outputs.boxes, nms_outputs.scores, nms_outputs.labels, nms_outputs.n_valid
163
+
164
+
165
+ def torch2imx(
166
+ model: torch.nn.Module,
167
+ file: Path | str,
168
+ conf: float,
169
+ iou: float,
170
+ max_det: int,
171
+ metadata: dict | None = None,
172
+ gptq: bool = False,
173
+ dataset=None,
174
+ prefix: str = "",
175
+ ):
176
+ """Export YOLO model to IMX format for deployment on Sony IMX500 devices.
177
+
178
+ This function quantizes a YOLO model using Model Compression Toolkit (MCT) and exports it to IMX format compatible
179
+ with Sony IMX500 edge devices. It supports both YOLOv8n and YOLO11n models for detection and pose estimation tasks.
180
+
181
+ Args:
182
+ model (torch.nn.Module): The YOLO model to export. Must be YOLOv8n or YOLO11n.
183
+ file (Path | str): Output file path for the exported model.
184
+ conf (float): Confidence threshold for NMS post-processing.
185
+ iou (float): IoU threshold for NMS post-processing.
186
+ max_det (int): Maximum number of detections to return.
187
+ metadata (dict | None, optional): Metadata to embed in the ONNX model. Defaults to None.
188
+ gptq (bool, optional): Whether to use Gradient-Based Post Training Quantization. If False, uses standard Post
189
+ Training Quantization. Defaults to False.
190
+ dataset (optional): Representative dataset for quantization calibration. Defaults to None.
191
+ prefix (str, optional): Logging prefix string. Defaults to "".
192
+
193
+ Returns:
194
+ f (Path): Path to the exported IMX model directory
195
+
196
+ Raises:
197
+ ValueError: If the model is not a supported YOLOv8n or YOLO11n variant.
198
+
199
+ Examples:
200
+ >>> from ultralytics import YOLO
201
+ >>> model = YOLO("yolo11n.pt")
202
+ >>> path, _ = export_imx(model, "model.imx", conf=0.25, iou=0.45, max_det=300)
203
+
204
+ Notes:
205
+ - Requires model_compression_toolkit, onnx, edgemdt_tpc, and sony_custom_layers packages
206
+ - Only supports YOLOv8n and YOLO11n models (detection and pose tasks)
207
+ - Output includes quantized ONNX model, IMX binary, and labels.txt file
208
+ """
209
+ import model_compression_toolkit as mct
210
+ import onnx
211
+ from edgemdt_tpc import get_target_platform_capabilities
212
+
213
+ LOGGER.info(f"\n{prefix} starting export with model_compression_toolkit {mct.__version__}...")
214
+
215
+ def representative_dataset_gen(dataloader=dataset):
216
+ for batch in dataloader:
217
+ img = batch["img"]
218
+ img = img / 255.0
219
+ yield [img]
220
+
221
+ tpc = get_target_platform_capabilities(tpc_version="4.0", device_type="imx500")
222
+
223
+ bit_cfg = mct.core.BitWidthConfig()
224
+ mct_config = MCT_CONFIG["YOLO11" if "C2PSA" in model.__str__() else "YOLOv8"][model.task]
225
+
226
+ # Check if the model has the expected number of layers
227
+ if len(list(model.modules())) != mct_config["n_layers"]:
228
+ raise ValueError("IMX export only supported for YOLOv8n and YOLO11n models.")
229
+
230
+ for layer_name in mct_config["layer_names"]:
231
+ bit_cfg.set_manual_activation_bit_width([mct.core.common.network_editors.NodeNameFilter(layer_name)], 16)
232
+
233
+ config = mct.core.CoreConfig(
234
+ mixed_precision_config=mct.core.MixedPrecisionQuantizationConfig(num_of_images=10),
235
+ quantization_config=mct.core.QuantizationConfig(concat_threshold_update=True),
236
+ bit_width_config=bit_cfg,
237
+ )
238
+
239
+ resource_utilization = mct.core.ResourceUtilization(weights_memory=mct_config["weights_memory"])
240
+
241
+ quant_model = (
242
+ mct.gptq.pytorch_gradient_post_training_quantization( # Perform Gradient-Based Post Training Quantization
243
+ model=model,
244
+ representative_data_gen=representative_dataset_gen,
245
+ target_resource_utilization=resource_utilization,
246
+ gptq_config=mct.gptq.get_pytorch_gptq_config(
247
+ n_epochs=1000, use_hessian_based_weights=False, use_hessian_sample_attention=False
248
+ ),
249
+ core_config=config,
250
+ target_platform_capabilities=tpc,
251
+ )[0]
252
+ if gptq
253
+ else mct.ptq.pytorch_post_training_quantization( # Perform post training quantization
254
+ in_module=model,
255
+ representative_data_gen=representative_dataset_gen,
256
+ target_resource_utilization=resource_utilization,
257
+ core_config=config,
258
+ target_platform_capabilities=tpc,
259
+ )[0]
260
+ )
261
+
262
+ if model.task != "classify":
263
+ quant_model = NMSWrapper(
264
+ model=quant_model,
265
+ score_threshold=conf or 0.001,
266
+ iou_threshold=iou,
267
+ max_detections=max_det,
268
+ task=model.task,
269
+ )
270
+
271
+ f = Path(str(file).replace(file.suffix, "_imx_model"))
272
+ f.mkdir(exist_ok=True)
273
+ onnx_model = f / Path(str(file.name).replace(file.suffix, "_imx.onnx")) # js dir
274
+ mct.exporter.pytorch_export_model(
275
+ model=quant_model, save_model_path=onnx_model, repr_dataset=representative_dataset_gen
276
+ )
277
+
278
+ model_onnx = onnx.load(onnx_model) # load onnx model
279
+ for k, v in metadata.items():
280
+ meta = model_onnx.metadata_props.add()
281
+ meta.key, meta.value = k, str(v)
282
+
283
+ onnx.save(model_onnx, onnx_model)
284
+
285
+ subprocess.run(
286
+ ["imxconv-pt", "-i", str(onnx_model), "-o", str(f), "--no-input-persistency", "--overwrite-output"],
287
+ check=True,
288
+ )
289
+
290
+ # Needed for imx models.
291
+ with open(f / "labels.txt", "w", encoding="utf-8") as file:
292
+ file.writelines([f"{name}\n" for _, name in model.names.items()])
293
+
294
+ return f