desdeo 2.0.0__py3-none-any.whl → 2.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (130) hide show
  1. desdeo/adm/ADMAfsar.py +551 -0
  2. desdeo/adm/ADMChen.py +414 -0
  3. desdeo/adm/BaseADM.py +119 -0
  4. desdeo/adm/__init__.py +11 -0
  5. desdeo/api/__init__.py +6 -6
  6. desdeo/api/app.py +38 -28
  7. desdeo/api/config.py +65 -44
  8. desdeo/api/config.toml +23 -12
  9. desdeo/api/db.py +10 -8
  10. desdeo/api/db_init.py +12 -6
  11. desdeo/api/models/__init__.py +220 -20
  12. desdeo/api/models/archive.py +16 -27
  13. desdeo/api/models/emo.py +128 -0
  14. desdeo/api/models/enautilus.py +69 -0
  15. desdeo/api/models/gdm/gdm_aggregate.py +139 -0
  16. desdeo/api/models/gdm/gdm_base.py +69 -0
  17. desdeo/api/models/gdm/gdm_score_bands.py +114 -0
  18. desdeo/api/models/gdm/gnimbus.py +138 -0
  19. desdeo/api/models/generic.py +104 -0
  20. desdeo/api/models/generic_states.py +401 -0
  21. desdeo/api/models/nimbus.py +158 -0
  22. desdeo/api/models/preference.py +44 -6
  23. desdeo/api/models/problem.py +274 -64
  24. desdeo/api/models/session.py +4 -1
  25. desdeo/api/models/state.py +419 -52
  26. desdeo/api/models/user.py +7 -6
  27. desdeo/api/models/utopia.py +25 -0
  28. desdeo/api/routers/_EMO.backup +309 -0
  29. desdeo/api/routers/_NIMBUS.py +6 -3
  30. desdeo/api/routers/emo.py +497 -0
  31. desdeo/api/routers/enautilus.py +237 -0
  32. desdeo/api/routers/gdm/gdm_aggregate.py +234 -0
  33. desdeo/api/routers/gdm/gdm_base.py +420 -0
  34. desdeo/api/routers/gdm/gdm_score_bands/gdm_score_bands_manager.py +398 -0
  35. desdeo/api/routers/gdm/gdm_score_bands/gdm_score_bands_routers.py +377 -0
  36. desdeo/api/routers/gdm/gnimbus/gnimbus_manager.py +698 -0
  37. desdeo/api/routers/gdm/gnimbus/gnimbus_routers.py +591 -0
  38. desdeo/api/routers/generic.py +233 -0
  39. desdeo/api/routers/nimbus.py +705 -0
  40. desdeo/api/routers/problem.py +201 -4
  41. desdeo/api/routers/reference_point_method.py +20 -44
  42. desdeo/api/routers/session.py +50 -26
  43. desdeo/api/routers/user_authentication.py +180 -26
  44. desdeo/api/routers/utils.py +187 -0
  45. desdeo/api/routers/utopia.py +230 -0
  46. desdeo/api/schema.py +10 -4
  47. desdeo/api/tests/conftest.py +94 -2
  48. desdeo/api/tests/test_enautilus.py +330 -0
  49. desdeo/api/tests/test_models.py +550 -72
  50. desdeo/api/tests/test_routes.py +902 -43
  51. desdeo/api/utils/_database.py +263 -0
  52. desdeo/api/utils/database.py +28 -266
  53. desdeo/api/utils/emo_database.py +40 -0
  54. desdeo/core.py +7 -0
  55. desdeo/emo/__init__.py +154 -24
  56. desdeo/emo/hooks/archivers.py +18 -2
  57. desdeo/emo/methods/EAs.py +128 -5
  58. desdeo/emo/methods/bases.py +9 -56
  59. desdeo/emo/methods/templates.py +111 -0
  60. desdeo/emo/operators/crossover.py +544 -42
  61. desdeo/emo/operators/evaluator.py +10 -14
  62. desdeo/emo/operators/generator.py +127 -24
  63. desdeo/emo/operators/mutation.py +212 -41
  64. desdeo/emo/operators/scalar_selection.py +202 -0
  65. desdeo/emo/operators/selection.py +956 -214
  66. desdeo/emo/operators/termination.py +124 -16
  67. desdeo/emo/options/__init__.py +108 -0
  68. desdeo/emo/options/algorithms.py +435 -0
  69. desdeo/emo/options/crossover.py +164 -0
  70. desdeo/emo/options/generator.py +131 -0
  71. desdeo/emo/options/mutation.py +260 -0
  72. desdeo/emo/options/repair.py +61 -0
  73. desdeo/emo/options/scalar_selection.py +66 -0
  74. desdeo/emo/options/selection.py +127 -0
  75. desdeo/emo/options/templates.py +383 -0
  76. desdeo/emo/options/termination.py +143 -0
  77. desdeo/gdm/__init__.py +22 -0
  78. desdeo/gdm/gdmtools.py +45 -0
  79. desdeo/gdm/score_bands.py +114 -0
  80. desdeo/gdm/voting_rules.py +50 -0
  81. desdeo/mcdm/__init__.py +23 -1
  82. desdeo/mcdm/enautilus.py +338 -0
  83. desdeo/mcdm/gnimbus.py +484 -0
  84. desdeo/mcdm/nautilus_navigator.py +7 -6
  85. desdeo/mcdm/reference_point_method.py +70 -0
  86. desdeo/problem/__init__.py +16 -11
  87. desdeo/problem/evaluator.py +4 -5
  88. desdeo/problem/external/__init__.py +18 -0
  89. desdeo/problem/external/core.py +356 -0
  90. desdeo/problem/external/pymoo_provider.py +266 -0
  91. desdeo/problem/external/runtime.py +44 -0
  92. desdeo/problem/gurobipy_evaluator.py +37 -12
  93. desdeo/problem/infix_parser.py +1 -16
  94. desdeo/problem/json_parser.py +7 -11
  95. desdeo/problem/pyomo_evaluator.py +25 -6
  96. desdeo/problem/schema.py +73 -55
  97. desdeo/problem/simulator_evaluator.py +65 -15
  98. desdeo/problem/testproblems/__init__.py +26 -11
  99. desdeo/problem/testproblems/benchmarks_server.py +120 -0
  100. desdeo/problem/testproblems/cake_problem.py +185 -0
  101. desdeo/problem/testproblems/dmitry_forest_problem_discrete.py +71 -0
  102. desdeo/problem/testproblems/forest_problem.py +77 -69
  103. desdeo/problem/testproblems/multi_valued_constraints.py +119 -0
  104. desdeo/problem/testproblems/{river_pollution_problem.py → river_pollution_problems.py} +28 -22
  105. desdeo/problem/testproblems/single_objective.py +289 -0
  106. desdeo/problem/testproblems/zdt_problem.py +4 -1
  107. desdeo/problem/utils.py +1 -1
  108. desdeo/tools/__init__.py +39 -21
  109. desdeo/tools/desc_gen.py +22 -0
  110. desdeo/tools/generics.py +22 -2
  111. desdeo/tools/group_scalarization.py +3090 -0
  112. desdeo/tools/indicators_binary.py +107 -1
  113. desdeo/tools/indicators_unary.py +3 -16
  114. desdeo/tools/message.py +33 -2
  115. desdeo/tools/non_dominated_sorting.py +4 -3
  116. desdeo/tools/patterns.py +9 -7
  117. desdeo/tools/pyomo_solver_interfaces.py +49 -36
  118. desdeo/tools/reference_vectors.py +118 -351
  119. desdeo/tools/scalarization.py +340 -1413
  120. desdeo/tools/score_bands.py +491 -328
  121. desdeo/tools/utils.py +117 -49
  122. desdeo/tools/visualizations.py +67 -0
  123. desdeo/utopia_stuff/utopia_problem.py +1 -1
  124. desdeo/utopia_stuff/utopia_problem_old.py +1 -1
  125. {desdeo-2.0.0.dist-info → desdeo-2.1.1.dist-info}/METADATA +47 -30
  126. desdeo-2.1.1.dist-info/RECORD +180 -0
  127. {desdeo-2.0.0.dist-info → desdeo-2.1.1.dist-info}/WHEEL +1 -1
  128. desdeo-2.0.0.dist-info/RECORD +0 -120
  129. /desdeo/api/utils/{logger.py → _logger.py} +0 -0
  130. {desdeo-2.0.0.dist-info → desdeo-2.1.1.dist-info/licenses}/LICENSE +0 -0
@@ -0,0 +1,289 @@
1
+ """Here a variety of single-objective optimization problems are defined."""
2
+
3
+ import math
4
+
5
+ from desdeo.problem import (
6
+ Constant,
7
+ Constraint,
8
+ ConstraintTypeEnum,
9
+ ExtraFunction,
10
+ Objective,
11
+ Problem,
12
+ Variable,
13
+ VariableTypeEnum,
14
+ )
15
+
16
+
17
+ def mystery_function() -> Problem:
18
+ r"""Add the constrained mystery function as defined in Sasena 2002.
19
+
20
+ Global solution's value (constrained): -1.174261 at x = [2.5044, 2.5778].
21
+
22
+ Returns:
23
+ Problem: the problem model.
24
+
25
+ References:
26
+ Michael Sasena. 2002. Flexibility and Eiciency Enhancements For
27
+ Constrained Global Design Optimization with Kriging Approximations. Ph.D. Dissertation.
28
+ """
29
+ pi = Constant(name="Pi", symbol="PI", value=math.pi)
30
+ x_1 = Variable(
31
+ name="x_1", symbol="x_1", variable_type=VariableTypeEnum.real, lowerbound=0.0, upperbound=5.0, initial_value=0.1
32
+ )
33
+ x_2 = Variable(
34
+ name="x_2", symbol="x_2", variable_type=VariableTypeEnum.real, lowerbound=0.0, upperbound=5.0, initial_value=0.1
35
+ )
36
+
37
+ f_1_def = "2 + 0.01*(x_2 - x_1**2)**2 + (1 - x_1)**2 + 2*(2 - x_2)**2 + 7*Sin(0.5*x_1)*Sin(0.7*x_1*x_2)"
38
+ f_1 = Objective(
39
+ name="f_1",
40
+ symbol="f_1",
41
+ func=f_1_def,
42
+ maximize=False,
43
+ is_linear=False,
44
+ is_convex=False,
45
+ is_twice_differentiable=True,
46
+ )
47
+
48
+ c_1_def = "-Sin(x_1 - x_2 - PI/8.0)"
49
+ c_1 = Constraint(
50
+ name="c_1",
51
+ symbol="c_1",
52
+ cons_type=ConstraintTypeEnum.LTE,
53
+ func=c_1_def,
54
+ is_linear=False,
55
+ is_convex=False,
56
+ is_twice_differentiable=True,
57
+ )
58
+
59
+ return Problem(
60
+ name="Mystery function",
61
+ description="The single-objective mystery function.",
62
+ constants=[pi],
63
+ variables=[x_1, x_2],
64
+ objectives=[f_1],
65
+ constraints=[c_1],
66
+ )
67
+
68
+
69
+ def new_branin_function() -> Problem:
70
+ """Implements the new Branin function.
71
+
72
+ Global optimal -268.78792 at x = [3.2730, 0.0489].
73
+ """
74
+ pi = Constant(name="Pi", symbol="PI", value=math.pi)
75
+ x_1 = Variable(
76
+ name="x_1",
77
+ symbol="x_1",
78
+ variable_type=VariableTypeEnum.real,
79
+ lowerbound=-5.0,
80
+ upperbound=10.0,
81
+ initial_value=0.1,
82
+ )
83
+ x_2 = Variable(
84
+ name="x_2",
85
+ symbol="x_2",
86
+ variable_type=VariableTypeEnum.real,
87
+ lowerbound=0.0,
88
+ upperbound=15.0,
89
+ initial_value=0.1,
90
+ )
91
+
92
+ f_1_def = "-(x_1 - 10)**2 - (x_2 - 15)**2"
93
+ f_1 = Objective(
94
+ name="f_1",
95
+ symbol="f_1",
96
+ func=f_1_def,
97
+ maximize=False,
98
+ is_linear=False,
99
+ is_convex=False,
100
+ is_twice_differentiable=True,
101
+ )
102
+
103
+ c_1_def = "(x_2 - (5.1 / (4*PI**2)) * x_1**2 + (5 / PI)*x_1 - 6)**2 + 10*(1 - 1/(8*PI))*Cos(x_1) + 5"
104
+ c_1 = Constraint(
105
+ name="c_1",
106
+ symbol="c_1",
107
+ cons_type=ConstraintTypeEnum.LTE,
108
+ func=c_1_def,
109
+ is_linear=False,
110
+ is_convex=False,
111
+ is_twice_differentiable=True,
112
+ )
113
+
114
+ return Problem(
115
+ name="New Branin function",
116
+ description="The single-objective mystery function.",
117
+ constants=[pi],
118
+ variables=[x_1, x_2],
119
+ objectives=[f_1],
120
+ constraints=[c_1],
121
+ )
122
+
123
+
124
+ def mishras_bird_constrained() -> Problem:
125
+ """Implements the constrained variant of Mishra's bird function.
126
+
127
+ Global optima: -106.7645367 at [-3.1302468, -1.5821422]
128
+ """
129
+ x_1 = Variable(
130
+ name="x_1",
131
+ symbol="x_1",
132
+ variable_type=VariableTypeEnum.real,
133
+ lowerbound=-10.0,
134
+ upperbound=0.0,
135
+ initial_value=-0.1,
136
+ )
137
+ x_2 = Variable(
138
+ name="x_2",
139
+ symbol="x_2",
140
+ variable_type=VariableTypeEnum.real,
141
+ lowerbound=-6.5,
142
+ upperbound=0.0,
143
+ initial_value=-0.1,
144
+ )
145
+
146
+ f_1_def = "Sin(x_2)*Exp((1 - Cos(x_1))**2) + Cos(x_1)*Exp((1 - Sin(x_2))**2) + (x_1 - x_2)**2"
147
+ f_1 = Objective(
148
+ name="f_1",
149
+ symbol="f_1",
150
+ func=f_1_def,
151
+ maximize=False,
152
+ is_linear=False,
153
+ is_convex=False,
154
+ is_twice_differentiable=True,
155
+ )
156
+
157
+ c_1_def = "(x_1 + 5)**2 + (x_2 + 5)**2 - 25"
158
+ c_1 = Constraint(
159
+ name="c_1",
160
+ symbol="c_1",
161
+ cons_type=ConstraintTypeEnum.LTE,
162
+ func=c_1_def,
163
+ is_linear=False,
164
+ is_convex=False,
165
+ is_twice_differentiable=True,
166
+ )
167
+
168
+ return Problem(
169
+ name="Mishra's bird function",
170
+ description="The constrained variant of Mishra's bird function",
171
+ variables=[x_1, x_2],
172
+ objectives=[f_1],
173
+ constraints=[c_1],
174
+ )
175
+
176
+
177
+ def rosenbrock_disk() -> Problem:
178
+ """Defines the Rosenbrock test functions constrained to a disk.
179
+
180
+ Global optima is 0 at [1.0, 1.0].
181
+ """
182
+ x = Variable(
183
+ name="x",
184
+ symbol="x",
185
+ variable_type=VariableTypeEnum.real,
186
+ lowerbound=-1.5,
187
+ upperbound=1.5,
188
+ initial_value=0.1,
189
+ )
190
+ y = Variable(
191
+ name="y",
192
+ symbol="y",
193
+ variable_type=VariableTypeEnum.real,
194
+ lowerbound=-1.5,
195
+ upperbound=1.5,
196
+ initial_value=0.1,
197
+ )
198
+
199
+ f_1_def = "(1 - x)**2 + 100*(y - x**2)**2"
200
+ f_1 = Objective(
201
+ name="f_1",
202
+ symbol="f_1",
203
+ func=f_1_def,
204
+ maximize=False,
205
+ is_linear=False,
206
+ is_convex=False,
207
+ is_twice_differentiable=True,
208
+ )
209
+
210
+ c_1_def = "x**2 + y**2 - 2.0"
211
+ c_1 = Constraint(
212
+ name="c_1",
213
+ symbol="c_1",
214
+ cons_type=ConstraintTypeEnum.LTE,
215
+ func=c_1_def,
216
+ is_linear=False,
217
+ is_convex=False,
218
+ is_twice_differentiable=True,
219
+ )
220
+
221
+ return Problem(
222
+ name="Rosenbrock test function",
223
+ description="The Rosenbrock test function constrained to a disk.",
224
+ variables=[x, y],
225
+ objectives=[f_1],
226
+ constraints=[c_1],
227
+ )
228
+
229
+
230
+ def townsend_modified() -> Problem:
231
+ """Implements the modified Townsend function.
232
+
233
+ Global optima is -2.0239884 at [2.0052938, 1.1944509].
234
+ """
235
+ x = Variable(
236
+ name="x",
237
+ symbol="x",
238
+ variable_type=VariableTypeEnum.real,
239
+ lowerbound=-2.25,
240
+ upperbound=2.25,
241
+ initial_value=0.1,
242
+ )
243
+ y = Variable(
244
+ name="y",
245
+ symbol="y",
246
+ variable_type=VariableTypeEnum.real,
247
+ lowerbound=-2.5,
248
+ upperbound=1.75,
249
+ initial_value=0.1,
250
+ )
251
+
252
+ f_1_def = "-1.0 * (Cos((x - 0.1)*y))**2 - x*Sin(3.0*x + y)"
253
+ f_1 = Objective(
254
+ name="f_1",
255
+ symbol="f_1",
256
+ func=f_1_def,
257
+ maximize=False,
258
+ is_linear=False,
259
+ is_convex=False,
260
+ is_twice_differentiable=True,
261
+ )
262
+
263
+ # define the atan2 functions as the double of the arctangent of the half tangent
264
+ # Obs! Risk of dividing by zero!
265
+ t_symbol = "t"
266
+ t_def = "2.0*Arctan(x / (Sqrt(y**2 + x**2) + y))"
267
+ t = ExtraFunction(
268
+ name="Atan2", symbol=t_symbol, func=t_def, is_convex=False, is_linear=False, is_twice_differentiable=True
269
+ )
270
+
271
+ c_1_def = "x**2 + y**2 - (2.0*Cos(t) - 0.5*Cos(2.0*t) - 0.25*Cos(3.0*t) - 0.125*Cos(4.0*t))**2 - (2.0*Sin(t))**2"
272
+ c_1 = Constraint(
273
+ name="c_1",
274
+ symbol="c_1",
275
+ cons_type=ConstraintTypeEnum.LTE,
276
+ func=c_1_def,
277
+ is_linear=False,
278
+ is_convex=False,
279
+ is_twice_differentiable=True,
280
+ )
281
+
282
+ return Problem(
283
+ name="Townsend function",
284
+ description="The modified Townsend function.",
285
+ variables=[x, y],
286
+ objectives=[f_1],
287
+ constraints=[c_1],
288
+ extra_funcs=[t],
289
+ )
@@ -1,3 +1,5 @@
1
+ from math import pi
2
+
1
3
  from desdeo.problem.schema import (
2
4
  ExtraFunction,
3
5
  Objective,
@@ -5,6 +7,7 @@ from desdeo.problem.schema import (
5
7
  Variable,
6
8
  )
7
9
 
10
+
8
11
  def zdt1(number_of_variables: int) -> Problem:
9
12
  r"""Defines the ZDT1 test problem.
10
13
 
@@ -214,7 +217,7 @@ def zdt3(
214
217
 
215
218
  # function h(f, g)
216
219
  h_symbol = "h"
217
- h_expr = f"1 - Sqrt(({f1_expr}) / ({g_expr})) - (({f1_expr}) / ({g_expr})) * Sin (10 * {np.pi} * {f1_expr}) "
220
+ h_expr = f"1 - Sqrt(({f1_expr}) / ({g_expr})) - (({f1_expr}) / ({g_expr})) * Sin (10 * {pi} * {f1_expr}) "
218
221
 
219
222
  # function f_2
220
223
  f2_symbol = "f_2"
desdeo/problem/utils.py CHANGED
@@ -115,7 +115,7 @@ def unflatten_variable_array(problem: Problem, var_array: np.ndarray) -> dict[st
115
115
  # check if values remain in var_array
116
116
  if array_i < len(var_array):
117
117
  # some values remain, warn user, but do not raise an error
118
- msg = f"Warning, the variable array had some values that were not unflattened: f{["...", *var_array[array_i:]]}"
118
+ msg = f"Warning, the variable array had some values that were not unflattened: f{['...', *var_array[array_i:]]}"
119
119
  warnings.warn(msg, stacklevel=2)
120
120
 
121
121
  # return the variable dict
desdeo/tools/__init__.py CHANGED
@@ -3,8 +3,8 @@
3
3
  __all__ = [
4
4
  "BaseSolver",
5
5
  "BonminOptions",
6
- "IpoptOptions",
7
6
  "GurobipySolver",
7
+ "IpoptOptions",
8
8
  "NevergradGenericOptions",
9
9
  "NevergradGenericSolver",
10
10
  "PersistentGurobipySolver",
@@ -13,26 +13,34 @@ __all__ = [
13
13
  "PyomoCBCSolver",
14
14
  "PyomoGurobiSolver",
15
15
  "PyomoIpoptSolver",
16
+ "ScalarizationError",
16
17
  "ScipyDeSolver",
17
18
  "ScipyMinimizeSolver",
18
19
  "SolverOptions",
19
20
  "SolverResults",
20
- "ScalarizationError",
21
21
  "add_asf_diff",
22
- "add_asf_generic_nondiff",
23
22
  "add_asf_generic_diff",
23
+ "add_asf_generic_nondiff",
24
24
  "add_asf_nondiff",
25
25
  "add_epsilon_constraints",
26
- "add_guess_sf_diff",
27
- "add_guess_sf_nondiff",
28
26
  "add_group_asf",
27
+ "add_group_asf_agg",
28
+ "add_group_asf_agg_diff",
29
29
  "add_group_asf_diff",
30
- "add_group_guess_sf",
31
- "add_group_guess_sf_diff",
32
- "add_group_nimbus_sf",
33
- "add_group_nimbus_sf_diff",
34
- "add_group_stom_sf",
35
- "add_group_stom_sf_diff",
30
+ "add_group_guess",
31
+ "add_group_guess_agg",
32
+ "add_group_guess_agg_diff",
33
+ "add_group_guess_diff",
34
+ "add_group_nimbus",
35
+ "add_group_nimbus_compromise",
36
+ "add_group_nimbus_compromise_diff",
37
+ "add_group_nimbus_diff",
38
+ "add_group_stom",
39
+ "add_group_stom_agg",
40
+ "add_group_stom_agg_diff",
41
+ "add_group_stom_diff",
42
+ "add_guess_sf_diff",
43
+ "add_guess_sf_nondiff",
36
44
  "add_nimbus_sf_diff",
37
45
  "add_nimbus_sf_nondiff",
38
46
  "add_objective_as_scalarization",
@@ -42,13 +50,31 @@ __all__ = [
42
50
  "available_nevergrad_optimizers",
43
51
  "available_solvers",
44
52
  "find_compatible_solvers",
53
+ "flip_maximized_objective_values",
45
54
  "get_corrected_ideal_and_nadir",
46
- "get_corrected_reference_point",
47
55
  "guess_best_solver",
48
56
  "payoff_table_method",
49
57
  ]
50
58
 
51
59
  from desdeo.tools.generics import BaseSolver, SolverOptions, SolverResults
60
+ from desdeo.tools.group_scalarization import (
61
+ add_group_asf,
62
+ add_group_asf_agg,
63
+ add_group_asf_agg_diff,
64
+ add_group_asf_diff,
65
+ add_group_guess,
66
+ add_group_guess_agg,
67
+ add_group_guess_agg_diff,
68
+ add_group_guess_diff,
69
+ add_group_nimbus,
70
+ add_group_nimbus_compromise,
71
+ add_group_nimbus_compromise_diff,
72
+ add_group_nimbus_diff,
73
+ add_group_stom,
74
+ add_group_stom_agg,
75
+ add_group_stom_agg_diff,
76
+ add_group_stom_diff,
77
+ )
52
78
  from desdeo.tools.gurobipy_solver_interfaces import (
53
79
  GurobipySolver,
54
80
  PersistentGurobipySolver,
@@ -74,14 +100,6 @@ from desdeo.tools.scalarization import (
74
100
  add_asf_generic_nondiff,
75
101
  add_asf_nondiff,
76
102
  add_epsilon_constraints,
77
- add_group_asf,
78
- add_group_asf_diff,
79
- add_group_guess_sf,
80
- add_group_guess_sf_diff,
81
- add_group_nimbus_sf,
82
- add_group_nimbus_sf_diff,
83
- add_group_stom_sf,
84
- add_group_stom_sf_diff,
85
103
  add_guess_sf_diff,
86
104
  add_guess_sf_nondiff,
87
105
  add_nimbus_sf_diff,
@@ -95,8 +113,8 @@ from desdeo.tools.scipy_solver_interfaces import ScipyDeSolver, ScipyMinimizeSol
95
113
  from desdeo.tools.utils import (
96
114
  available_solvers,
97
115
  find_compatible_solvers,
116
+ flip_maximized_objective_values,
98
117
  get_corrected_ideal_and_nadir,
99
- get_corrected_reference_point,
100
118
  guess_best_solver,
101
119
  payoff_table_method,
102
120
  )
@@ -0,0 +1,22 @@
1
+ """An utility function to generate descriptions related to UTOPIA matters"""
2
+
3
+ def generate_descriptions(mapjson: dict, sid: str, stand: str, holding: str, extension: str) -> dict:
4
+ descriptions = {}
5
+ if holding:
6
+ for feat in mapjson["features"]:
7
+ if False: # noqa: SIM108
8
+ ext = f".{feat["properties"][extension]}"
9
+ else:
10
+ ext = ""
11
+ descriptions[feat["properties"][sid]] = (
12
+ f"Ala {feat["properties"][holding].split("-")[-1]} kuvio {feat["properties"][stand]}{ext}: "
13
+ )
14
+ else:
15
+ for feat in mapjson["features"]:
16
+ if False: # noqa: SIM108
17
+ ext = f".{feat["properties"][extension]}"
18
+ else:
19
+ ext = ""
20
+ descriptions[feat["properties"][sid]
21
+ ] = f"Kuvio {feat["properties"][stand]}{ext}: "
22
+ return descriptions
desdeo/tools/generics.py CHANGED
@@ -3,7 +3,8 @@
3
3
  from abc import ABC, abstractmethod
4
4
  from typing import Any, TypeVar
5
5
 
6
- from pydantic import BaseModel, Field
6
+ import polars as pl
7
+ from pydantic import BaseModel, ConfigDict, Field, field_serializer
7
8
 
8
9
  from desdeo.problem import (
9
10
  Constraint,
@@ -18,6 +19,25 @@ class SolverError(Exception):
18
19
  """Raised when an error with a solver is encountered."""
19
20
 
20
21
 
22
+ class EMOResult(BaseModel):
23
+ """Defines a schema for a dataclass to store the results of an EMO method."""
24
+
25
+ model_config = ConfigDict(arbitrary_types_allowed=True, use_attribute_docstrings=True)
26
+
27
+ optimal_variables: pl.DataFrame = Field()
28
+ """The decision vectors of the final population."""
29
+ optimal_outputs: pl.DataFrame = Field()
30
+ """The objective vectors, constraint vectors, extra_funcs, and targets of the final population."""
31
+
32
+ @field_serializer("optimal_variables")
33
+ def _serialize_optimal_variables(self, value: pl.DataFrame) -> dict[str, list[int | float]]:
34
+ return value.to_dict(as_series=False)
35
+
36
+ @field_serializer("optimal_outputs")
37
+ def _serialize_optimal_outputs(self, value: pl.DataFrame) -> dict[str, list[int | float]]:
38
+ return value.to_dict(as_series=False)
39
+
40
+
21
41
  class SolverResults(BaseModel):
22
42
  """Defines a schema for a dataclass to store the results of a solver."""
23
43
 
@@ -25,7 +45,7 @@ class SolverResults(BaseModel):
25
45
  optimal_objectives: dict[str, float | list[float]] = Field(
26
46
  description="The objective function values corresponding to the optimal decision variables found."
27
47
  )
28
- constraint_values: dict[str, float | list[float]] | None = Field(
48
+ constraint_values: dict[str, float | int | list[float] | list] | None | Any = Field(
29
49
  description=(
30
50
  "The constraint values of the problem. A negative value means the constraint is respected, "
31
51
  "a positive one means it has been breached."