desdeo 2.0.0__py3-none-any.whl → 2.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- desdeo/adm/ADMAfsar.py +551 -0
- desdeo/adm/ADMChen.py +414 -0
- desdeo/adm/BaseADM.py +119 -0
- desdeo/adm/__init__.py +11 -0
- desdeo/api/__init__.py +6 -6
- desdeo/api/app.py +38 -28
- desdeo/api/config.py +65 -44
- desdeo/api/config.toml +23 -12
- desdeo/api/db.py +10 -8
- desdeo/api/db_init.py +12 -6
- desdeo/api/models/__init__.py +220 -20
- desdeo/api/models/archive.py +16 -27
- desdeo/api/models/emo.py +128 -0
- desdeo/api/models/enautilus.py +69 -0
- desdeo/api/models/gdm/gdm_aggregate.py +139 -0
- desdeo/api/models/gdm/gdm_base.py +69 -0
- desdeo/api/models/gdm/gdm_score_bands.py +114 -0
- desdeo/api/models/gdm/gnimbus.py +138 -0
- desdeo/api/models/generic.py +104 -0
- desdeo/api/models/generic_states.py +401 -0
- desdeo/api/models/nimbus.py +158 -0
- desdeo/api/models/preference.py +44 -6
- desdeo/api/models/problem.py +274 -64
- desdeo/api/models/session.py +4 -1
- desdeo/api/models/state.py +419 -52
- desdeo/api/models/user.py +7 -6
- desdeo/api/models/utopia.py +25 -0
- desdeo/api/routers/_EMO.backup +309 -0
- desdeo/api/routers/_NIMBUS.py +6 -3
- desdeo/api/routers/emo.py +497 -0
- desdeo/api/routers/enautilus.py +237 -0
- desdeo/api/routers/gdm/gdm_aggregate.py +234 -0
- desdeo/api/routers/gdm/gdm_base.py +420 -0
- desdeo/api/routers/gdm/gdm_score_bands/gdm_score_bands_manager.py +398 -0
- desdeo/api/routers/gdm/gdm_score_bands/gdm_score_bands_routers.py +377 -0
- desdeo/api/routers/gdm/gnimbus/gnimbus_manager.py +698 -0
- desdeo/api/routers/gdm/gnimbus/gnimbus_routers.py +591 -0
- desdeo/api/routers/generic.py +233 -0
- desdeo/api/routers/nimbus.py +705 -0
- desdeo/api/routers/problem.py +201 -4
- desdeo/api/routers/reference_point_method.py +20 -44
- desdeo/api/routers/session.py +50 -26
- desdeo/api/routers/user_authentication.py +180 -26
- desdeo/api/routers/utils.py +187 -0
- desdeo/api/routers/utopia.py +230 -0
- desdeo/api/schema.py +10 -4
- desdeo/api/tests/conftest.py +94 -2
- desdeo/api/tests/test_enautilus.py +330 -0
- desdeo/api/tests/test_models.py +550 -72
- desdeo/api/tests/test_routes.py +902 -43
- desdeo/api/utils/_database.py +263 -0
- desdeo/api/utils/database.py +28 -266
- desdeo/api/utils/emo_database.py +40 -0
- desdeo/core.py +7 -0
- desdeo/emo/__init__.py +154 -24
- desdeo/emo/hooks/archivers.py +18 -2
- desdeo/emo/methods/EAs.py +128 -5
- desdeo/emo/methods/bases.py +9 -56
- desdeo/emo/methods/templates.py +111 -0
- desdeo/emo/operators/crossover.py +544 -42
- desdeo/emo/operators/evaluator.py +10 -14
- desdeo/emo/operators/generator.py +127 -24
- desdeo/emo/operators/mutation.py +212 -41
- desdeo/emo/operators/scalar_selection.py +202 -0
- desdeo/emo/operators/selection.py +956 -214
- desdeo/emo/operators/termination.py +124 -16
- desdeo/emo/options/__init__.py +108 -0
- desdeo/emo/options/algorithms.py +435 -0
- desdeo/emo/options/crossover.py +164 -0
- desdeo/emo/options/generator.py +131 -0
- desdeo/emo/options/mutation.py +260 -0
- desdeo/emo/options/repair.py +61 -0
- desdeo/emo/options/scalar_selection.py +66 -0
- desdeo/emo/options/selection.py +127 -0
- desdeo/emo/options/templates.py +383 -0
- desdeo/emo/options/termination.py +143 -0
- desdeo/gdm/__init__.py +22 -0
- desdeo/gdm/gdmtools.py +45 -0
- desdeo/gdm/score_bands.py +114 -0
- desdeo/gdm/voting_rules.py +50 -0
- desdeo/mcdm/__init__.py +23 -1
- desdeo/mcdm/enautilus.py +338 -0
- desdeo/mcdm/gnimbus.py +484 -0
- desdeo/mcdm/nautilus_navigator.py +7 -6
- desdeo/mcdm/reference_point_method.py +70 -0
- desdeo/problem/__init__.py +16 -11
- desdeo/problem/evaluator.py +4 -5
- desdeo/problem/external/__init__.py +18 -0
- desdeo/problem/external/core.py +356 -0
- desdeo/problem/external/pymoo_provider.py +266 -0
- desdeo/problem/external/runtime.py +44 -0
- desdeo/problem/gurobipy_evaluator.py +37 -12
- desdeo/problem/infix_parser.py +1 -16
- desdeo/problem/json_parser.py +7 -11
- desdeo/problem/pyomo_evaluator.py +25 -6
- desdeo/problem/schema.py +73 -55
- desdeo/problem/simulator_evaluator.py +65 -15
- desdeo/problem/testproblems/__init__.py +26 -11
- desdeo/problem/testproblems/benchmarks_server.py +120 -0
- desdeo/problem/testproblems/cake_problem.py +185 -0
- desdeo/problem/testproblems/dmitry_forest_problem_discrete.py +71 -0
- desdeo/problem/testproblems/forest_problem.py +77 -69
- desdeo/problem/testproblems/multi_valued_constraints.py +119 -0
- desdeo/problem/testproblems/{river_pollution_problem.py → river_pollution_problems.py} +28 -22
- desdeo/problem/testproblems/single_objective.py +289 -0
- desdeo/problem/testproblems/zdt_problem.py +4 -1
- desdeo/problem/utils.py +1 -1
- desdeo/tools/__init__.py +39 -21
- desdeo/tools/desc_gen.py +22 -0
- desdeo/tools/generics.py +22 -2
- desdeo/tools/group_scalarization.py +3090 -0
- desdeo/tools/indicators_binary.py +107 -1
- desdeo/tools/indicators_unary.py +3 -16
- desdeo/tools/message.py +33 -2
- desdeo/tools/non_dominated_sorting.py +4 -3
- desdeo/tools/patterns.py +9 -7
- desdeo/tools/pyomo_solver_interfaces.py +49 -36
- desdeo/tools/reference_vectors.py +118 -351
- desdeo/tools/scalarization.py +340 -1413
- desdeo/tools/score_bands.py +491 -328
- desdeo/tools/utils.py +117 -49
- desdeo/tools/visualizations.py +67 -0
- desdeo/utopia_stuff/utopia_problem.py +1 -1
- desdeo/utopia_stuff/utopia_problem_old.py +1 -1
- {desdeo-2.0.0.dist-info → desdeo-2.1.1.dist-info}/METADATA +47 -30
- desdeo-2.1.1.dist-info/RECORD +180 -0
- {desdeo-2.0.0.dist-info → desdeo-2.1.1.dist-info}/WHEEL +1 -1
- desdeo-2.0.0.dist-info/RECORD +0 -120
- /desdeo/api/utils/{logger.py → _logger.py} +0 -0
- {desdeo-2.0.0.dist-info → desdeo-2.1.1.dist-info/licenses}/LICENSE +0 -0
|
@@ -16,7 +16,13 @@ from desdeo.problem.schema import (
|
|
|
16
16
|
VariableTypeEnum,
|
|
17
17
|
)
|
|
18
18
|
|
|
19
|
-
|
|
19
|
+
|
|
20
|
+
def forest_problem(
|
|
21
|
+
simulation_results: str = "./tests/data/alternatives_290124.csv",
|
|
22
|
+
treatment_key: str = "./tests/data/alternatives_key_290124.csv",
|
|
23
|
+
holding: int = 1,
|
|
24
|
+
comparing: bool = False,
|
|
25
|
+
) -> Problem:
|
|
20
26
|
r"""Defines a test forest problem that has TensorConstants and TensorVariables.
|
|
21
27
|
|
|
22
28
|
The problem has TensorConstants V, W and P as vectors taking values from a data file and
|
|
@@ -45,8 +51,8 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
45
51
|
simulation_results (str): Location of the simulation results file.
|
|
46
52
|
treatment_key (str): Location of the file with the treatment information.
|
|
47
53
|
holding (int, optional): The number of the holding to be optimized. Defaults to 1.
|
|
48
|
-
comparing (bool, optional):
|
|
49
|
-
Defaults to False.
|
|
54
|
+
comparing (bool, optional): This is only used for testing the method.
|
|
55
|
+
If comparing == True, the results are nonsense. Defaults to False.
|
|
50
56
|
|
|
51
57
|
Returns:
|
|
52
58
|
Problem: An instance of the test forest problem.
|
|
@@ -54,58 +60,60 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
54
60
|
df = pl.read_csv(simulation_results, schema_overrides={"unit": pl.Float64})
|
|
55
61
|
df_key = pl.read_csv(treatment_key, schema_overrides={"unit": pl.Float64})
|
|
56
62
|
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
selected_df_w = df.filter(pl.col("holding") == holding).select(["unit", "schedule", "stock_2025", "stock_2035"])
|
|
72
|
-
selected_df_w.group_by(["unit", "schedule"])
|
|
73
|
-
rows_by_key = selected_df_w.rows_by_key(key=["unit", "schedule"])
|
|
74
|
-
selected_df_key_w = df_key.select(["unit", "schedule", "treatment"])
|
|
75
|
-
selected_df_key_w.group_by(["unit", "schedule"])
|
|
76
|
-
rows_by_key_df_key = selected_df_key_w.rows_by_key(key=["unit", "schedule"])
|
|
77
|
-
w_array = np.zeros((selected_df_w["unit"].n_unique(), selected_df_w["schedule"].n_unique()))
|
|
78
|
-
for i in range(np.shape(w_array)[0]):
|
|
79
|
-
for j in range(np.shape(w_array)[1]):
|
|
80
|
-
if len(rows_by_key_df_key[(unique_units[i], j)]) == 0:
|
|
81
|
-
continue
|
|
82
|
-
if (unique_units[i], j) in rows_by_key:
|
|
83
|
-
w_array[i][j] = rows_by_key[(unique_units[i], j)][0][1] - rows_by_key[(unique_units[i], j)][0][0]
|
|
84
|
-
else:
|
|
85
|
-
selected_df_w = df.filter(pl.col("holding") == holding).select(["unit", "schedule", "stock_2035"])
|
|
86
|
-
selected_df_w.group_by(["unit", "schedule"])
|
|
87
|
-
rows_by_key = selected_df_w.rows_by_key(key=["unit", "schedule"])
|
|
88
|
-
selected_df_key_w = df_key.select(["unit", "schedule", "treatment"])
|
|
89
|
-
selected_df_key_w.group_by(["unit", "schedule"])
|
|
90
|
-
rows_by_key_df_key = selected_df_key_w.rows_by_key(key=["unit", "schedule"])
|
|
91
|
-
w_array = np.zeros((selected_df_w["unit"].n_unique(), selected_df_w["schedule"].n_unique()))
|
|
92
|
-
for i in range(np.shape(w_array)[0]):
|
|
93
|
-
for j in range(np.shape(w_array)[1]):
|
|
94
|
-
if len(rows_by_key_df_key[(unique_units[i], j)]) == 0:
|
|
95
|
-
continue
|
|
96
|
-
if (unique_units[i], j) in rows_by_key:
|
|
97
|
-
w_array[i][j] = rows_by_key[(unique_units[i], j)][0][0]
|
|
98
|
-
|
|
99
|
-
selected_df_p = df.filter(pl.col("holding") == holding).select(
|
|
100
|
-
["unit", "schedule", "harvest_value_period_2025", "harvest_value_period_2030", "harvest_value_period_2035"]
|
|
63
|
+
df_joined = df.join(df_key, on=["holding", "unit", "schedule"], how="left")
|
|
64
|
+
|
|
65
|
+
selected_df = df_joined.filter(pl.col("holding") == holding).select(
|
|
66
|
+
[
|
|
67
|
+
"unit",
|
|
68
|
+
"schedule",
|
|
69
|
+
"npv_5_percent",
|
|
70
|
+
"stock_2025",
|
|
71
|
+
"stock_2035",
|
|
72
|
+
"harvest_value_period_2025",
|
|
73
|
+
"harvest_value_period_2030",
|
|
74
|
+
"harvest_value_period_2035",
|
|
75
|
+
"treatment",
|
|
76
|
+
]
|
|
101
77
|
)
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
78
|
+
unique_units = selected_df.unique(["unit"], maintain_order=True).get_column("unit")
|
|
79
|
+
n_units = len(unique_units)
|
|
80
|
+
unique_schedules = selected_df.unique(["schedule"], maintain_order=True).get_column("schedule")
|
|
81
|
+
n_schedules = len(unique_schedules)
|
|
82
|
+
|
|
83
|
+
v_array = np.zeros((n_units, n_schedules))
|
|
84
|
+
w_array = np.zeros((n_units, n_schedules))
|
|
85
|
+
p_array = np.zeros((n_units, n_schedules))
|
|
86
|
+
|
|
87
|
+
# This is not the fastest way to do this, but the code is probably more understandable
|
|
88
|
+
for i in range(n_units):
|
|
89
|
+
for j in range(n_schedules):
|
|
90
|
+
unit = unique_units[i]
|
|
91
|
+
schedule = unique_schedules[j]
|
|
92
|
+
print(f"unit {unit} schedule {schedule}")
|
|
93
|
+
if selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule)).height == 0:
|
|
94
|
+
continue
|
|
95
|
+
v_array[i][j] = (
|
|
96
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
97
|
+
.select("npv_5_percent")
|
|
98
|
+
.item()
|
|
99
|
+
)
|
|
100
|
+
w_array[i][j] = (
|
|
101
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
102
|
+
.select("stock_2035")
|
|
103
|
+
.item()
|
|
104
|
+
)
|
|
105
|
+
if comparing:
|
|
106
|
+
w_array[i][j] -= (
|
|
107
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
108
|
+
.select("stock_2025")
|
|
109
|
+
.item()
|
|
110
|
+
)
|
|
111
|
+
# The harvest values are not going to be discounted like this
|
|
112
|
+
p_array[i][j] = sum(
|
|
113
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
114
|
+
.select(["harvest_value_period_2025", "harvest_value_period_2030", "harvest_value_period_2035"])
|
|
115
|
+
.row(0)
|
|
116
|
+
)
|
|
109
117
|
|
|
110
118
|
constants = []
|
|
111
119
|
variables = []
|
|
@@ -114,25 +122,25 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
114
122
|
f_2_func = []
|
|
115
123
|
f_3_func = []
|
|
116
124
|
# define the constants V, W and P, decision variable X, constraints, and objective function expressions in one loop
|
|
117
|
-
for i in range(
|
|
125
|
+
for i in range(n_units):
|
|
118
126
|
# Constants V, W and P
|
|
119
127
|
v = TensorConstant(
|
|
120
|
-
name=f"V_{i+1}",
|
|
121
|
-
symbol=f"V_{i+1}",
|
|
128
|
+
name=f"V_{i + 1}",
|
|
129
|
+
symbol=f"V_{i + 1}",
|
|
122
130
|
shape=[np.shape(v_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
123
131
|
values=v_array[i].tolist(),
|
|
124
132
|
)
|
|
125
133
|
constants.append(v)
|
|
126
134
|
w = TensorConstant(
|
|
127
|
-
name=f"W_{i+1}",
|
|
128
|
-
symbol=f"W_{i+1}",
|
|
135
|
+
name=f"W_{i + 1}",
|
|
136
|
+
symbol=f"W_{i + 1}",
|
|
129
137
|
shape=[np.shape(w_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
130
138
|
values=w_array[i].tolist(),
|
|
131
139
|
)
|
|
132
140
|
constants.append(w)
|
|
133
141
|
p = TensorConstant(
|
|
134
|
-
name=f"P_{i+1}",
|
|
135
|
-
symbol=f"P_{i+1}",
|
|
142
|
+
name=f"P_{i + 1}",
|
|
143
|
+
symbol=f"P_{i + 1}",
|
|
136
144
|
shape=[np.shape(p_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
137
145
|
values=p_array[i].tolist(),
|
|
138
146
|
)
|
|
@@ -140,8 +148,8 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
140
148
|
# Decision variable X
|
|
141
149
|
constants.append(p)
|
|
142
150
|
x = TensorVariable(
|
|
143
|
-
name=f"X_{i+1}",
|
|
144
|
-
symbol=f"X_{i+1}",
|
|
151
|
+
name=f"X_{i + 1}",
|
|
152
|
+
symbol=f"X_{i + 1}",
|
|
145
153
|
variable_type=VariableTypeEnum.binary,
|
|
146
154
|
shape=[np.shape(v_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
147
155
|
lowerbounds=np.shape(v_array)[1] * [0],
|
|
@@ -152,10 +160,10 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
152
160
|
|
|
153
161
|
# Constraints
|
|
154
162
|
con = Constraint(
|
|
155
|
-
name=f"x_con_{i+1}",
|
|
156
|
-
symbol=f"x_con_{i+1}",
|
|
163
|
+
name=f"x_con_{i + 1}",
|
|
164
|
+
symbol=f"x_con_{i + 1}",
|
|
157
165
|
cons_type=ConstraintTypeEnum.EQ,
|
|
158
|
-
func=f"Sum(X_{i+1}) - 1",
|
|
166
|
+
func=f"Sum(X_{i + 1}) - 1",
|
|
159
167
|
is_linear=True,
|
|
160
168
|
is_convex=False, # not checked
|
|
161
169
|
is_twice_differentiable=True,
|
|
@@ -163,13 +171,13 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
163
171
|
constraints.append(con)
|
|
164
172
|
|
|
165
173
|
# Objective function expressions
|
|
166
|
-
exprs = f"V_{i+1}@X_{i+1}"
|
|
174
|
+
exprs = f"V_{i + 1}@X_{i + 1}"
|
|
167
175
|
f_1_func.append(exprs)
|
|
168
176
|
|
|
169
|
-
exprs = f"W_{i+1}@X_{i+1}"
|
|
177
|
+
exprs = f"W_{i + 1}@X_{i + 1}"
|
|
170
178
|
f_2_func.append(exprs)
|
|
171
179
|
|
|
172
|
-
exprs = f"P_{i+1}@X_{i+1}"
|
|
180
|
+
exprs = f"P_{i + 1}@X_{i + 1}"
|
|
173
181
|
f_3_func.append(exprs)
|
|
174
182
|
|
|
175
183
|
# form the objective function sums
|
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
"""Defines a test problem with a constraint that is multi-valued."""
|
|
2
|
+
|
|
3
|
+
from desdeo.problem import (
|
|
4
|
+
Constant,
|
|
5
|
+
Constraint,
|
|
6
|
+
ConstraintTypeEnum,
|
|
7
|
+
Objective,
|
|
8
|
+
ObjectiveTypeEnum,
|
|
9
|
+
Problem,
|
|
10
|
+
TensorConstant,
|
|
11
|
+
TensorVariable,
|
|
12
|
+
Variable,
|
|
13
|
+
VariableTypeEnum,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def multi_valued_constraint_problem() -> Problem:
|
|
18
|
+
r"""Defines a test problem with a multi-valued constraint.
|
|
19
|
+
|
|
20
|
+
The problem has two objectives, two variables, and two constraints, the other of which, is multi-valued.
|
|
21
|
+
The problem is defined as follows:
|
|
22
|
+
\[
|
|
23
|
+
\begin{aligned}
|
|
24
|
+
\text{Min} \quad
|
|
25
|
+
& f_1(x_1, x_2, y) = x_1^2 + x_2^2 + y^2, \\[4pt]
|
|
26
|
+
\text{Min} \quad
|
|
27
|
+
& f_2(x_1, x_2, y) = (x_1 - 2)^2 + (x_2 - 1)^2 + (y - 1)^2, \\[6pt]
|
|
28
|
+
\text{subject to} \quad
|
|
29
|
+
& g(x_1, x_2, y) = x_1^2 + x_2 + y - 2 \le 0, \\[4pt]
|
|
30
|
+
& G(x_1, x_2) = A
|
|
31
|
+
\begin{bmatrix}
|
|
32
|
+
x_1 \\[2pt]
|
|
33
|
+
x_2
|
|
34
|
+
\end{bmatrix}
|
|
35
|
+
\le 0,
|
|
36
|
+
\quad
|
|
37
|
+
A =
|
|
38
|
+
\begin{bmatrix}
|
|
39
|
+
1 & -1 \\[2pt]
|
|
40
|
+
-1 & -2
|
|
41
|
+
\end{bmatrix}.
|
|
42
|
+
\end{aligned}
|
|
43
|
+
\]
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
Returns:
|
|
47
|
+
Problem: the problem model.
|
|
48
|
+
"""
|
|
49
|
+
xs = TensorVariable(
|
|
50
|
+
name="x",
|
|
51
|
+
symbol="X",
|
|
52
|
+
variable_type=VariableTypeEnum.real,
|
|
53
|
+
shape=[2, 1],
|
|
54
|
+
lowerbounds=-5.0,
|
|
55
|
+
upperbounds=5.0,
|
|
56
|
+
initial_values=0.1,
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
y = Variable(
|
|
60
|
+
name="y",
|
|
61
|
+
symbol="y",
|
|
62
|
+
variable_type=VariableTypeEnum.real,
|
|
63
|
+
lowerbound=-10.0,
|
|
64
|
+
upperbound=10.0,
|
|
65
|
+
initial_value=0.1,
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
a = TensorConstant(name="A", symbol="A", shape=[2, 2], values=[[1.0, -1.0], [-1.0, -2.0]])
|
|
69
|
+
|
|
70
|
+
one = Constant(name="one", symbol="one", value=1.0)
|
|
71
|
+
|
|
72
|
+
f_1_expr = "X[1, 1]**2 + X[2, 1]**2 + y**2"
|
|
73
|
+
f_2_expr = "(X[1, 1] - 2)**2 + (X[2, 1] - one)**2 + (y - one)**2"
|
|
74
|
+
|
|
75
|
+
g_1_expr = "X[1, 1]**2 + X[2, 1] + y - 2"
|
|
76
|
+
big_g_expr = "A @ X"
|
|
77
|
+
|
|
78
|
+
f_1 = Objective(
|
|
79
|
+
name="f1",
|
|
80
|
+
symbol="f_1",
|
|
81
|
+
func=f_1_expr,
|
|
82
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
83
|
+
ideal=0.0,
|
|
84
|
+
nadir=150.0,
|
|
85
|
+
is_twice_differentiable=True,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
f_2 = Objective(
|
|
89
|
+
name="f2",
|
|
90
|
+
symbol="f_2",
|
|
91
|
+
func=f_2_expr,
|
|
92
|
+
ideal=0.0,
|
|
93
|
+
nadir=206.0,
|
|
94
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
95
|
+
is_twice_differentiable=True,
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
g_1 = Constraint(
|
|
99
|
+
name="g1", symbol="g_1", cons_type=ConstraintTypeEnum.LTE, func=g_1_expr, is_twice_differentiable=True
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
big_g = Constraint(
|
|
103
|
+
name="big_g",
|
|
104
|
+
symbol="G",
|
|
105
|
+
cons_type=ConstraintTypeEnum.LTE,
|
|
106
|
+
func=big_g_expr,
|
|
107
|
+
is_twice_differentiable=True,
|
|
108
|
+
is_linear=True,
|
|
109
|
+
is_convex=True,
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
return Problem(
|
|
113
|
+
name="Multi-valued-constraint problem",
|
|
114
|
+
description="Problem for testing problems with multi-valued constraints.",
|
|
115
|
+
constants=[a, one],
|
|
116
|
+
variables=[xs, y],
|
|
117
|
+
constraints=[g_1, big_g],
|
|
118
|
+
objectives=[f_1, f_2],
|
|
119
|
+
)
|
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
"""Variants of the river pollution problem are defined here."""
|
|
2
|
+
|
|
1
3
|
from pathlib import Path
|
|
2
4
|
|
|
3
5
|
import polars as pl
|
|
@@ -12,6 +14,7 @@ from desdeo.problem.schema import (
|
|
|
12
14
|
VariableTypeEnum,
|
|
13
15
|
)
|
|
14
16
|
|
|
17
|
+
|
|
15
18
|
def river_pollution_problem(*, five_objective_variant: bool = True) -> Problem:
|
|
16
19
|
r"""Create a pydantic dataclass representation of the river pollution problem with either five or four variables.
|
|
17
20
|
|
|
@@ -164,34 +167,34 @@ def river_pollution_problem_discrete(*, five_objective_variant: bool = True) ->
|
|
|
164
167
|
Heidelberg, 1997.
|
|
165
168
|
"""
|
|
166
169
|
filename = "datasets/river_poll_4_objs.csv"
|
|
167
|
-
|
|
168
|
-
|
|
170
|
+
true_var_names = {"x_1": "BOD", "x_2": "DO"}
|
|
171
|
+
true_obj_names = {"f1": "DO city", "f2": "DO municipality", "f3": "ROI fishery", "f4": "ROI city"}
|
|
169
172
|
if five_objective_variant:
|
|
170
173
|
filename = "datasets/river_poll_5_objs.csv"
|
|
171
|
-
|
|
174
|
+
true_obj_names["f5"] = "BOD deviation"
|
|
172
175
|
|
|
173
176
|
path = Path(__file__).parent.parent.parent.parent / filename
|
|
174
177
|
data = pl.read_csv(path, has_header=True)
|
|
175
178
|
|
|
176
179
|
variables = [
|
|
177
180
|
Variable(
|
|
178
|
-
name=
|
|
181
|
+
name=true_var_names[varName],
|
|
179
182
|
symbol=varName,
|
|
180
183
|
variable_type=VariableTypeEnum.real,
|
|
181
184
|
lowerbound=0.3,
|
|
182
185
|
upperbound=1.0,
|
|
183
186
|
initial_value=0.65,
|
|
184
187
|
)
|
|
185
|
-
for varName in
|
|
188
|
+
for varName in true_var_names
|
|
186
189
|
]
|
|
187
190
|
maximize = {"f1": True, "f2": True, "f3": True, "f4": True, "f5": False}
|
|
188
|
-
ideal = {objName: (data[objName].max() if maximize[objName] else data[objName].min()) for objName in
|
|
189
|
-
nadir = {objName: (data[objName].min() if maximize[objName] else data[objName].max()) for objName in
|
|
191
|
+
ideal = {objName: (data[objName].max() if maximize[objName] else data[objName].min()) for objName in true_obj_names}
|
|
192
|
+
nadir = {objName: (data[objName].min() if maximize[objName] else data[objName].max()) for objName in true_obj_names}
|
|
190
193
|
units = {"f1": "mg/L", "f2": "mg/L", "f3": "%", "f4": "%", "f5": "mg/L"}
|
|
191
194
|
|
|
192
195
|
objectives = [
|
|
193
196
|
Objective(
|
|
194
|
-
name=
|
|
197
|
+
name=true_obj_names[objName],
|
|
195
198
|
symbol=objName,
|
|
196
199
|
func=None,
|
|
197
200
|
unit=units[objName],
|
|
@@ -200,12 +203,12 @@ def river_pollution_problem_discrete(*, five_objective_variant: bool = True) ->
|
|
|
200
203
|
ideal=ideal[objName],
|
|
201
204
|
nadir=nadir[objName],
|
|
202
205
|
)
|
|
203
|
-
for objName in
|
|
206
|
+
for objName in true_obj_names
|
|
204
207
|
]
|
|
205
208
|
|
|
206
209
|
discrete_def = DiscreteRepresentation(
|
|
207
|
-
variable_values=data[list(
|
|
208
|
-
objective_values=data[list(
|
|
210
|
+
variable_values=data[list(true_var_names.keys())].to_dict(),
|
|
211
|
+
objective_values=data[list(true_obj_names.keys())].to_dict(),
|
|
209
212
|
)
|
|
210
213
|
|
|
211
214
|
return Problem(
|
|
@@ -254,8 +257,10 @@ def river_pollution_scenario() -> Problem:
|
|
|
254
257
|
$$
|
|
255
258
|
\\begin{equation}
|
|
256
259
|
\\begin{array}{rll}
|
|
257
|
-
\\text{maximize} & f_1(\\mathbf{x}) = & \\alpha + \\left(\\log\\left(\\left(\\frac{\\beta}{2}
|
|
258
|
-
|
|
260
|
+
\\text{maximize} & f_1(\\mathbf{x}) = & \\alpha + \\left(\\log\\left(\\left(\\frac{\\beta}{2}
|
|
261
|
+
- 1.14\\right)^2\\right) + \\beta^3\\right) x_1 \\\\
|
|
262
|
+
\\text{maximize} & f_2(\\mathbf{x}) = & \\gamma + \\delta x_1 + \\xi x_2 + \\frac{0.01}{\\eta - x_1^2}
|
|
263
|
+
+ \\frac{0.30}{\\eta - x_2^2} \\\\
|
|
259
264
|
\\text{maximize} & f_3(\\mathbf{x}) = & r - \\frac{0.71}{1.09 - x_1^2} \\\\
|
|
260
265
|
\\text{minimize} & f_4(\\mathbf{x}) = & -0.96 + \\frac{0.96}{1.09 - x_2^2} \\\\
|
|
261
266
|
\\text{subject to} & & 0.3 \\leq x_1, x_2 \\leq 1.0.
|
|
@@ -278,7 +283,7 @@ def river_pollution_scenario() -> Problem:
|
|
|
278
283
|
Analysis: Proceedings of the XIth International Conference on MCDM, 1-6
|
|
279
284
|
August 1994, Coimbra, Portugal. Berlin, Heidelberg: Springer Berlin
|
|
280
285
|
Heidelberg, 1997.
|
|
281
|
-
"""
|
|
286
|
+
""" # noqa: RUF002
|
|
282
287
|
num_scenarios = 6
|
|
283
288
|
scenario_key_stub = "scenario"
|
|
284
289
|
|
|
@@ -351,22 +356,23 @@ def river_pollution_scenario() -> Problem:
|
|
|
351
356
|
scenario_keys = []
|
|
352
357
|
|
|
353
358
|
for i in range(num_scenarios):
|
|
354
|
-
scenario_key = f"{scenario_key_stub}_{i+1}"
|
|
359
|
+
scenario_key = f"{scenario_key_stub}_{i + 1}"
|
|
355
360
|
scenario_keys.append(scenario_key)
|
|
356
361
|
|
|
357
|
-
gamma_expr = f"Ln(alpha[{i+1}]/2 - 1) + alpha[{i+1}]/2 + 1.5"
|
|
362
|
+
gamma_expr = f"Ln(alpha[{i + 1}]/2 - 1) + alpha[{i + 1}]/2 + 1.5"
|
|
358
363
|
|
|
359
|
-
f1_expr = f"alpha[{i+1}] + (Ln((beta[{i+1}]/2 - 1.14)**2) + beta[{i+1}]**3)*x_1"
|
|
364
|
+
f1_expr = f"alpha[{i + 1}] + (Ln((beta[{i + 1}]/2 - 1.14)**2) + beta[{i + 1}]**3)*x_1"
|
|
360
365
|
f2_expr = (
|
|
361
|
-
f"{gamma_expr} + delta[{i+1}]*x_1 + xi[{i+1}]*x_2 + 0.01/(eta[{i+1}] - x_1**2)
|
|
366
|
+
f"{gamma_expr} + delta[{i + 1}]*x_1 + xi[{i + 1}]*x_2 + 0.01/(eta[{i + 1}] - x_1**2) "
|
|
367
|
+
f"+ 0.3/(eta[{i + 1}] - x_2**2)"
|
|
362
368
|
)
|
|
363
|
-
f3_expr = f"r[{i+1}] - 0.71/(1.09 - x_1**2)"
|
|
369
|
+
f3_expr = f"r[{i + 1}] - 0.71/(1.09 - x_1**2)"
|
|
364
370
|
|
|
365
371
|
# f1
|
|
366
372
|
objectives.append(
|
|
367
373
|
Objective(
|
|
368
374
|
name="DO level city",
|
|
369
|
-
symbol=f"f1_{i+1}",
|
|
375
|
+
symbol=f"f1_{i + 1}",
|
|
370
376
|
scenario_keys=[scenario_key],
|
|
371
377
|
func=f1_expr,
|
|
372
378
|
objective_type=ObjectiveTypeEnum.analytical,
|
|
@@ -381,7 +387,7 @@ def river_pollution_scenario() -> Problem:
|
|
|
381
387
|
objectives.append(
|
|
382
388
|
Objective(
|
|
383
389
|
name="DO level fishery",
|
|
384
|
-
symbol=f"f2_{i+1}",
|
|
390
|
+
symbol=f"f2_{i + 1}",
|
|
385
391
|
scenario_keys=[scenario_key],
|
|
386
392
|
func=f2_expr,
|
|
387
393
|
objective_type=ObjectiveTypeEnum.analytical,
|
|
@@ -396,7 +402,7 @@ def river_pollution_scenario() -> Problem:
|
|
|
396
402
|
objectives.append(
|
|
397
403
|
Objective(
|
|
398
404
|
name="Return of investment",
|
|
399
|
-
symbol=f"f3_{i+1}",
|
|
405
|
+
symbol=f"f3_{i + 1}",
|
|
400
406
|
scenario_keys=[scenario_key],
|
|
401
407
|
func=f3_expr,
|
|
402
408
|
objective_type=ObjectiveTypeEnum.analytical,
|