desdeo 2.0.0__py3-none-any.whl → 2.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- desdeo/adm/ADMAfsar.py +551 -0
- desdeo/adm/ADMChen.py +414 -0
- desdeo/adm/BaseADM.py +119 -0
- desdeo/adm/__init__.py +11 -0
- desdeo/api/__init__.py +6 -6
- desdeo/api/app.py +38 -28
- desdeo/api/config.py +65 -44
- desdeo/api/config.toml +23 -12
- desdeo/api/db.py +10 -8
- desdeo/api/db_init.py +12 -6
- desdeo/api/models/__init__.py +220 -20
- desdeo/api/models/archive.py +16 -27
- desdeo/api/models/emo.py +128 -0
- desdeo/api/models/enautilus.py +69 -0
- desdeo/api/models/gdm/gdm_aggregate.py +139 -0
- desdeo/api/models/gdm/gdm_base.py +69 -0
- desdeo/api/models/gdm/gdm_score_bands.py +114 -0
- desdeo/api/models/gdm/gnimbus.py +138 -0
- desdeo/api/models/generic.py +104 -0
- desdeo/api/models/generic_states.py +401 -0
- desdeo/api/models/nimbus.py +158 -0
- desdeo/api/models/preference.py +44 -6
- desdeo/api/models/problem.py +274 -64
- desdeo/api/models/session.py +4 -1
- desdeo/api/models/state.py +419 -52
- desdeo/api/models/user.py +7 -6
- desdeo/api/models/utopia.py +25 -0
- desdeo/api/routers/_EMO.backup +309 -0
- desdeo/api/routers/_NIMBUS.py +6 -3
- desdeo/api/routers/emo.py +497 -0
- desdeo/api/routers/enautilus.py +237 -0
- desdeo/api/routers/gdm/gdm_aggregate.py +234 -0
- desdeo/api/routers/gdm/gdm_base.py +420 -0
- desdeo/api/routers/gdm/gdm_score_bands/gdm_score_bands_manager.py +398 -0
- desdeo/api/routers/gdm/gdm_score_bands/gdm_score_bands_routers.py +377 -0
- desdeo/api/routers/gdm/gnimbus/gnimbus_manager.py +698 -0
- desdeo/api/routers/gdm/gnimbus/gnimbus_routers.py +591 -0
- desdeo/api/routers/generic.py +233 -0
- desdeo/api/routers/nimbus.py +705 -0
- desdeo/api/routers/problem.py +201 -4
- desdeo/api/routers/reference_point_method.py +20 -44
- desdeo/api/routers/session.py +50 -26
- desdeo/api/routers/user_authentication.py +180 -26
- desdeo/api/routers/utils.py +187 -0
- desdeo/api/routers/utopia.py +230 -0
- desdeo/api/schema.py +10 -4
- desdeo/api/tests/conftest.py +94 -2
- desdeo/api/tests/test_enautilus.py +330 -0
- desdeo/api/tests/test_models.py +550 -72
- desdeo/api/tests/test_routes.py +902 -43
- desdeo/api/utils/_database.py +263 -0
- desdeo/api/utils/database.py +28 -266
- desdeo/api/utils/emo_database.py +40 -0
- desdeo/core.py +7 -0
- desdeo/emo/__init__.py +154 -24
- desdeo/emo/hooks/archivers.py +18 -2
- desdeo/emo/methods/EAs.py +128 -5
- desdeo/emo/methods/bases.py +9 -56
- desdeo/emo/methods/templates.py +111 -0
- desdeo/emo/operators/crossover.py +544 -42
- desdeo/emo/operators/evaluator.py +10 -14
- desdeo/emo/operators/generator.py +127 -24
- desdeo/emo/operators/mutation.py +212 -41
- desdeo/emo/operators/scalar_selection.py +202 -0
- desdeo/emo/operators/selection.py +956 -214
- desdeo/emo/operators/termination.py +124 -16
- desdeo/emo/options/__init__.py +108 -0
- desdeo/emo/options/algorithms.py +435 -0
- desdeo/emo/options/crossover.py +164 -0
- desdeo/emo/options/generator.py +131 -0
- desdeo/emo/options/mutation.py +260 -0
- desdeo/emo/options/repair.py +61 -0
- desdeo/emo/options/scalar_selection.py +66 -0
- desdeo/emo/options/selection.py +127 -0
- desdeo/emo/options/templates.py +383 -0
- desdeo/emo/options/termination.py +143 -0
- desdeo/gdm/__init__.py +22 -0
- desdeo/gdm/gdmtools.py +45 -0
- desdeo/gdm/score_bands.py +114 -0
- desdeo/gdm/voting_rules.py +50 -0
- desdeo/mcdm/__init__.py +23 -1
- desdeo/mcdm/enautilus.py +338 -0
- desdeo/mcdm/gnimbus.py +484 -0
- desdeo/mcdm/nautilus_navigator.py +7 -6
- desdeo/mcdm/reference_point_method.py +70 -0
- desdeo/problem/__init__.py +5 -1
- desdeo/problem/external/__init__.py +18 -0
- desdeo/problem/external/core.py +356 -0
- desdeo/problem/external/pymoo_provider.py +266 -0
- desdeo/problem/external/runtime.py +44 -0
- desdeo/problem/infix_parser.py +2 -2
- desdeo/problem/pyomo_evaluator.py +25 -6
- desdeo/problem/schema.py +69 -48
- desdeo/problem/simulator_evaluator.py +65 -15
- desdeo/problem/testproblems/__init__.py +26 -11
- desdeo/problem/testproblems/benchmarks_server.py +120 -0
- desdeo/problem/testproblems/cake_problem.py +185 -0
- desdeo/problem/testproblems/dmitry_forest_problem_discrete.py +71 -0
- desdeo/problem/testproblems/forest_problem.py +77 -69
- desdeo/problem/testproblems/multi_valued_constraints.py +119 -0
- desdeo/problem/testproblems/{river_pollution_problem.py → river_pollution_problems.py} +28 -22
- desdeo/problem/testproblems/single_objective.py +289 -0
- desdeo/problem/testproblems/zdt_problem.py +4 -1
- desdeo/tools/__init__.py +39 -21
- desdeo/tools/desc_gen.py +22 -0
- desdeo/tools/generics.py +22 -2
- desdeo/tools/group_scalarization.py +3090 -0
- desdeo/tools/indicators_binary.py +107 -1
- desdeo/tools/indicators_unary.py +3 -16
- desdeo/tools/message.py +33 -2
- desdeo/tools/non_dominated_sorting.py +4 -3
- desdeo/tools/patterns.py +9 -7
- desdeo/tools/pyomo_solver_interfaces.py +48 -35
- desdeo/tools/reference_vectors.py +118 -351
- desdeo/tools/scalarization.py +340 -1413
- desdeo/tools/score_bands.py +491 -328
- desdeo/tools/utils.py +117 -49
- desdeo/tools/visualizations.py +67 -0
- desdeo/utopia_stuff/utopia_problem.py +1 -1
- desdeo/utopia_stuff/utopia_problem_old.py +1 -1
- {desdeo-2.0.0.dist-info → desdeo-2.1.0.dist-info}/METADATA +46 -28
- desdeo-2.1.0.dist-info/RECORD +180 -0
- {desdeo-2.0.0.dist-info → desdeo-2.1.0.dist-info}/WHEEL +1 -1
- desdeo-2.0.0.dist-info/RECORD +0 -120
- /desdeo/api/utils/{logger.py → _logger.py} +0 -0
- {desdeo-2.0.0.dist-info → desdeo-2.1.0.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
"""Defines the 'best cake problem'."""
|
|
2
|
+
|
|
3
|
+
from desdeo.problem.schema import (
|
|
4
|
+
Constant,
|
|
5
|
+
Objective,
|
|
6
|
+
ObjectiveTypeEnum,
|
|
7
|
+
Problem,
|
|
8
|
+
Variable,
|
|
9
|
+
VariableTypeEnum,
|
|
10
|
+
)
|
|
11
|
+
|
|
12
|
+
PI = 3.14159265358979323846
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
## Helper func
|
|
16
|
+
def U(z: float):
|
|
17
|
+
return 4.0 * z * (1.0 - z)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
## Helper funcs to return string representations
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def bowl_str(z: str, a: str, invD: str) -> str:
|
|
24
|
+
tmp: str = f"({z} - {a})*{invD}"
|
|
25
|
+
return f"({tmp}*{tmp})"
|
|
26
|
+
# return f"{clamp01_str(f"{tmp}*{tmp}")}"
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def U_str(z: str) -> str:
|
|
30
|
+
tmp: str = f"(4*{z}*(1.0 - {z}))"
|
|
31
|
+
return f"({tmp}*{tmp})"
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def ripple_str(t: str) -> str:
|
|
35
|
+
tmp: str = f"Sin({PI} * {t})"
|
|
36
|
+
return f"({tmp}*{tmp})"
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
# Objective function string representations
|
|
40
|
+
def f0_str() -> str:
|
|
41
|
+
yliq: str = "(0.5*x5 + 0.3*x4 + 0.2*x3)"
|
|
42
|
+
v: str = (
|
|
43
|
+
f"(0.4 * {bowl_str('x1', 'T1', 'INV_D1')}) + "
|
|
44
|
+
f"(0.4 * {bowl_str(yliq, 'Y_LIQ_STAR', 'INV_D_YLIQ')}) + "
|
|
45
|
+
f" (0.2 * {ripple_str('((x1 + x6) - (T1 + T6))')})"
|
|
46
|
+
)
|
|
47
|
+
return f"14*({v})"
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def f1_str() -> str:
|
|
51
|
+
sbar: str = "((x2 + 0.5*x3)/1.5)"
|
|
52
|
+
w25: str = f"({U_str('x2')}*{U_str('x5')})"
|
|
53
|
+
d25: str = f"(({w25} - W25_STAR)*INV_DW25)"
|
|
54
|
+
v: str = f"(0.4*{bowl_str('x2', 'T2', 'INV_D2')}) + (0.3*{ripple_str(f'{sbar} - SBAR_STAR')}) +(0.3*{d25}*{d25})"
|
|
55
|
+
return f"14*({v})"
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def f2_str() -> str:
|
|
59
|
+
v: str = (
|
|
60
|
+
f"(0.35*{bowl_str('x6', 'T6', 'INV_D6')}) + "
|
|
61
|
+
f"(0.25*{bowl_str('x4', 'T4', 'INV_D4')}) + "
|
|
62
|
+
f"(0.4*{ripple_str('((x6 - 0.5*x4) - (T6 - 0.5*T4))')})"
|
|
63
|
+
)
|
|
64
|
+
return f"14*({v})"
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def f3_str() -> str:
|
|
68
|
+
w35: str = f"({U_str('x3')}*{U_str('x5')})"
|
|
69
|
+
d35: str = f"(({w35} - W35_STAR) * INV_DW35)"
|
|
70
|
+
v: str = f"(0.3*{bowl_str('x3', 'T3', 'INV_D3')}) + (0.3*{bowl_str('x5', 'T5', 'INV_D5')}) + (0.4*({d35}*{d35}))"
|
|
71
|
+
return f"14*({v})"
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def f4_str() -> str:
|
|
75
|
+
v: str = (
|
|
76
|
+
f"(0.25*{bowl_str('x2', 'T2', 'INV_D2')}) + "
|
|
77
|
+
f"(0.25*{bowl_str('x3', 'T3', 'INV_D3')}) + "
|
|
78
|
+
f"(0.20*{ripple_str('(x4 - T4)')}) + "
|
|
79
|
+
f"(0.30*{ripple_str('((x2 - x5) - (T2 - T5))')})"
|
|
80
|
+
)
|
|
81
|
+
return f"14*({v})"
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
## The cake problem
|
|
85
|
+
def best_cake_problem() -> Problem:
|
|
86
|
+
"""Defines the best cake problem."""
|
|
87
|
+
variable_inits = [
|
|
88
|
+
("Flour", 0.70),
|
|
89
|
+
("Sugar", 0.10),
|
|
90
|
+
("Butter", 0.40),
|
|
91
|
+
("Eggs", 0.50),
|
|
92
|
+
("Milk", 0.20),
|
|
93
|
+
("Baking powder", 0.80),
|
|
94
|
+
]
|
|
95
|
+
variables = [
|
|
96
|
+
Variable(
|
|
97
|
+
name=var[0],
|
|
98
|
+
symbol=f"x{i + 1}",
|
|
99
|
+
variable_type=VariableTypeEnum.real,
|
|
100
|
+
lowerbound=0.0,
|
|
101
|
+
upperbound=1.0,
|
|
102
|
+
initial_value=var[1],
|
|
103
|
+
)
|
|
104
|
+
for i, var in enumerate(variable_inits)
|
|
105
|
+
]
|
|
106
|
+
|
|
107
|
+
constants_init = [
|
|
108
|
+
("T1", 0.60),
|
|
109
|
+
("T2", 0.35),
|
|
110
|
+
("T3", 0.25),
|
|
111
|
+
("T4", 0.30),
|
|
112
|
+
("T5", 0.35),
|
|
113
|
+
("T6", 0.40),
|
|
114
|
+
("INV_D1", 1.0 / 0.60),
|
|
115
|
+
("INV_D2", 1.0 / 0.65),
|
|
116
|
+
("INV_D3", 1.0 / 0.75),
|
|
117
|
+
("INV_D4", 1.0 / 0.70),
|
|
118
|
+
("INV_D5", 1.0 / 0.65),
|
|
119
|
+
("INV_D6", 1.0 / 0.60),
|
|
120
|
+
("Y_LIQ_STAR", 0.5 * 0.35 + 0.3 * 0.30 + 0.2 * 0.25),
|
|
121
|
+
("INV_D_YLIQ", 1.0 / 0.685),
|
|
122
|
+
("SBAR_STAR", (0.35 + 0.5 * 0.25) / 1.5),
|
|
123
|
+
("W25_STAR", U(0.35) * U(0.35)),
|
|
124
|
+
("INV_DW25", 1.0 / 0.8281),
|
|
125
|
+
("W35_STAR", U(0.25) * U(0.35)),
|
|
126
|
+
("INV_DW35", 1.0 / 0.6825),
|
|
127
|
+
]
|
|
128
|
+
|
|
129
|
+
constants = [Constant(name=const[0], symbol=const[0], value=const[1]) for const in constants_init]
|
|
130
|
+
|
|
131
|
+
objectives = [
|
|
132
|
+
Objective(
|
|
133
|
+
name="Dry/crumb error",
|
|
134
|
+
symbol="dry_crumb",
|
|
135
|
+
func=f0_str(),
|
|
136
|
+
ideal=0.0,
|
|
137
|
+
nadir=14.0,
|
|
138
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
139
|
+
is_twice_differentiable=True, # right?
|
|
140
|
+
),
|
|
141
|
+
Objective(
|
|
142
|
+
name="Sweetness/texture off-target",
|
|
143
|
+
symbol="sweet_texture",
|
|
144
|
+
func=f1_str(),
|
|
145
|
+
ideal=0.0,
|
|
146
|
+
nadir=14.0,
|
|
147
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
148
|
+
is_twice_differentiable=True,
|
|
149
|
+
),
|
|
150
|
+
Objective(
|
|
151
|
+
name="Rise/collapse risk",
|
|
152
|
+
symbol="rise_collapse",
|
|
153
|
+
func=f2_str(),
|
|
154
|
+
ideal=0.0,
|
|
155
|
+
nadir=14.0,
|
|
156
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
157
|
+
is_twice_differentiable=True,
|
|
158
|
+
),
|
|
159
|
+
Objective(
|
|
160
|
+
name="Moistness/grease imbalance",
|
|
161
|
+
symbol="moistness_grease",
|
|
162
|
+
func=f3_str(),
|
|
163
|
+
ideal=0.0,
|
|
164
|
+
nadir=14.0,
|
|
165
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
166
|
+
is_twice_differentiable=True,
|
|
167
|
+
),
|
|
168
|
+
Objective(
|
|
169
|
+
name="Browning/burn risk",
|
|
170
|
+
symbol="browning_burn",
|
|
171
|
+
func=f4_str(),
|
|
172
|
+
ideal=0.0,
|
|
173
|
+
nadir=14.0,
|
|
174
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
175
|
+
is_twice_differentiable=True,
|
|
176
|
+
),
|
|
177
|
+
]
|
|
178
|
+
|
|
179
|
+
return Problem(
|
|
180
|
+
name="Cake problem",
|
|
181
|
+
description="Try to find the most delicious cake!",
|
|
182
|
+
constants=constants,
|
|
183
|
+
variables=variables,
|
|
184
|
+
objectives=objectives,
|
|
185
|
+
)
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
"""A forest problem with discrete representation."""
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
|
|
4
|
+
import polars as pl
|
|
5
|
+
|
|
6
|
+
from desdeo.problem.schema import (
|
|
7
|
+
DiscreteRepresentation,
|
|
8
|
+
Objective,
|
|
9
|
+
ObjectiveTypeEnum,
|
|
10
|
+
Problem,
|
|
11
|
+
Variable,
|
|
12
|
+
VariableTypeEnum,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
def dmitry_forest_problem_disc() -> Problem:
|
|
17
|
+
"""Implements the dmitry forest problem using Pareto front representation.
|
|
18
|
+
|
|
19
|
+
Returns:
|
|
20
|
+
Problem: A problem instance representing the forest problem.
|
|
21
|
+
"""
|
|
22
|
+
path = Path(__file__)
|
|
23
|
+
while not str(path).endswith("/DESDEO"):
|
|
24
|
+
path = path.parent
|
|
25
|
+
|
|
26
|
+
path = path / "tests/data/dmitry_discrete_repr/dmitry_forest_problem_non_dom_solns.csv"
|
|
27
|
+
|
|
28
|
+
obj_names = ["Rev", "HA", "Carb", "DW"]
|
|
29
|
+
|
|
30
|
+
var_name = "index"
|
|
31
|
+
|
|
32
|
+
data = pl.read_csv(
|
|
33
|
+
path, has_header=True, columns=["Rev", "HA", "Carb", "DW"], separator=",", #decimal_comma=True
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
variables = [
|
|
37
|
+
Variable(
|
|
38
|
+
name=var_name,
|
|
39
|
+
symbol=var_name,
|
|
40
|
+
variable_type=VariableTypeEnum.integer,
|
|
41
|
+
lowerbound=0,
|
|
42
|
+
upperbound=len(data) - 1,
|
|
43
|
+
initial_value=0,
|
|
44
|
+
)
|
|
45
|
+
]
|
|
46
|
+
|
|
47
|
+
objectives = [
|
|
48
|
+
Objective(
|
|
49
|
+
name=obj_name,
|
|
50
|
+
symbol=obj_name,
|
|
51
|
+
objective_type=ObjectiveTypeEnum.data_based,
|
|
52
|
+
ideal=data[obj_name].max(),
|
|
53
|
+
nadir=data[obj_name].min(),
|
|
54
|
+
maximize=True,
|
|
55
|
+
)
|
|
56
|
+
for obj_name in obj_names
|
|
57
|
+
]
|
|
58
|
+
|
|
59
|
+
discrete_def = DiscreteRepresentation(
|
|
60
|
+
variable_values={"index": list(range(len(data)))},
|
|
61
|
+
objective_values=data[[obj.symbol for obj in objectives]].to_dict(),
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
return Problem(
|
|
65
|
+
name="Dmitry Forest Problem (Discrete)",
|
|
66
|
+
description="Defines a forest problem with four objectives: revenue, habitat availability, carbon storage, and deadwood.",
|
|
67
|
+
variables=variables,
|
|
68
|
+
objectives=objectives,
|
|
69
|
+
discrete_representation=discrete_def,
|
|
70
|
+
is_twice_differentiable=False,
|
|
71
|
+
)
|
|
@@ -16,7 +16,13 @@ from desdeo.problem.schema import (
|
|
|
16
16
|
VariableTypeEnum,
|
|
17
17
|
)
|
|
18
18
|
|
|
19
|
-
|
|
19
|
+
|
|
20
|
+
def forest_problem(
|
|
21
|
+
simulation_results: str = "./tests/data/alternatives_290124.csv",
|
|
22
|
+
treatment_key: str = "./tests/data/alternatives_key_290124.csv",
|
|
23
|
+
holding: int = 1,
|
|
24
|
+
comparing: bool = False,
|
|
25
|
+
) -> Problem:
|
|
20
26
|
r"""Defines a test forest problem that has TensorConstants and TensorVariables.
|
|
21
27
|
|
|
22
28
|
The problem has TensorConstants V, W and P as vectors taking values from a data file and
|
|
@@ -45,8 +51,8 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
45
51
|
simulation_results (str): Location of the simulation results file.
|
|
46
52
|
treatment_key (str): Location of the file with the treatment information.
|
|
47
53
|
holding (int, optional): The number of the holding to be optimized. Defaults to 1.
|
|
48
|
-
comparing (bool, optional):
|
|
49
|
-
Defaults to False.
|
|
54
|
+
comparing (bool, optional): This is only used for testing the method.
|
|
55
|
+
If comparing == True, the results are nonsense. Defaults to False.
|
|
50
56
|
|
|
51
57
|
Returns:
|
|
52
58
|
Problem: An instance of the test forest problem.
|
|
@@ -54,58 +60,60 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
54
60
|
df = pl.read_csv(simulation_results, schema_overrides={"unit": pl.Float64})
|
|
55
61
|
df_key = pl.read_csv(treatment_key, schema_overrides={"unit": pl.Float64})
|
|
56
62
|
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
selected_df_w = df.filter(pl.col("holding") == holding).select(["unit", "schedule", "stock_2025", "stock_2035"])
|
|
72
|
-
selected_df_w.group_by(["unit", "schedule"])
|
|
73
|
-
rows_by_key = selected_df_w.rows_by_key(key=["unit", "schedule"])
|
|
74
|
-
selected_df_key_w = df_key.select(["unit", "schedule", "treatment"])
|
|
75
|
-
selected_df_key_w.group_by(["unit", "schedule"])
|
|
76
|
-
rows_by_key_df_key = selected_df_key_w.rows_by_key(key=["unit", "schedule"])
|
|
77
|
-
w_array = np.zeros((selected_df_w["unit"].n_unique(), selected_df_w["schedule"].n_unique()))
|
|
78
|
-
for i in range(np.shape(w_array)[0]):
|
|
79
|
-
for j in range(np.shape(w_array)[1]):
|
|
80
|
-
if len(rows_by_key_df_key[(unique_units[i], j)]) == 0:
|
|
81
|
-
continue
|
|
82
|
-
if (unique_units[i], j) in rows_by_key:
|
|
83
|
-
w_array[i][j] = rows_by_key[(unique_units[i], j)][0][1] - rows_by_key[(unique_units[i], j)][0][0]
|
|
84
|
-
else:
|
|
85
|
-
selected_df_w = df.filter(pl.col("holding") == holding).select(["unit", "schedule", "stock_2035"])
|
|
86
|
-
selected_df_w.group_by(["unit", "schedule"])
|
|
87
|
-
rows_by_key = selected_df_w.rows_by_key(key=["unit", "schedule"])
|
|
88
|
-
selected_df_key_w = df_key.select(["unit", "schedule", "treatment"])
|
|
89
|
-
selected_df_key_w.group_by(["unit", "schedule"])
|
|
90
|
-
rows_by_key_df_key = selected_df_key_w.rows_by_key(key=["unit", "schedule"])
|
|
91
|
-
w_array = np.zeros((selected_df_w["unit"].n_unique(), selected_df_w["schedule"].n_unique()))
|
|
92
|
-
for i in range(np.shape(w_array)[0]):
|
|
93
|
-
for j in range(np.shape(w_array)[1]):
|
|
94
|
-
if len(rows_by_key_df_key[(unique_units[i], j)]) == 0:
|
|
95
|
-
continue
|
|
96
|
-
if (unique_units[i], j) in rows_by_key:
|
|
97
|
-
w_array[i][j] = rows_by_key[(unique_units[i], j)][0][0]
|
|
98
|
-
|
|
99
|
-
selected_df_p = df.filter(pl.col("holding") == holding).select(
|
|
100
|
-
["unit", "schedule", "harvest_value_period_2025", "harvest_value_period_2030", "harvest_value_period_2035"]
|
|
63
|
+
df_joined = df.join(df_key, on=["holding", "unit", "schedule"], how="left")
|
|
64
|
+
|
|
65
|
+
selected_df = df_joined.filter(pl.col("holding") == holding).select(
|
|
66
|
+
[
|
|
67
|
+
"unit",
|
|
68
|
+
"schedule",
|
|
69
|
+
"npv_5_percent",
|
|
70
|
+
"stock_2025",
|
|
71
|
+
"stock_2035",
|
|
72
|
+
"harvest_value_period_2025",
|
|
73
|
+
"harvest_value_period_2030",
|
|
74
|
+
"harvest_value_period_2035",
|
|
75
|
+
"treatment",
|
|
76
|
+
]
|
|
101
77
|
)
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
78
|
+
unique_units = selected_df.unique(["unit"], maintain_order=True).get_column("unit")
|
|
79
|
+
n_units = len(unique_units)
|
|
80
|
+
unique_schedules = selected_df.unique(["schedule"], maintain_order=True).get_column("schedule")
|
|
81
|
+
n_schedules = len(unique_schedules)
|
|
82
|
+
|
|
83
|
+
v_array = np.zeros((n_units, n_schedules))
|
|
84
|
+
w_array = np.zeros((n_units, n_schedules))
|
|
85
|
+
p_array = np.zeros((n_units, n_schedules))
|
|
86
|
+
|
|
87
|
+
# This is not the fastest way to do this, but the code is probably more understandable
|
|
88
|
+
for i in range(n_units):
|
|
89
|
+
for j in range(n_schedules):
|
|
90
|
+
unit = unique_units[i]
|
|
91
|
+
schedule = unique_schedules[j]
|
|
92
|
+
print(f"unit {unit} schedule {schedule}")
|
|
93
|
+
if selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule)).height == 0:
|
|
94
|
+
continue
|
|
95
|
+
v_array[i][j] = (
|
|
96
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
97
|
+
.select("npv_5_percent")
|
|
98
|
+
.item()
|
|
99
|
+
)
|
|
100
|
+
w_array[i][j] = (
|
|
101
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
102
|
+
.select("stock_2035")
|
|
103
|
+
.item()
|
|
104
|
+
)
|
|
105
|
+
if comparing:
|
|
106
|
+
w_array[i][j] -= (
|
|
107
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
108
|
+
.select("stock_2025")
|
|
109
|
+
.item()
|
|
110
|
+
)
|
|
111
|
+
# The harvest values are not going to be discounted like this
|
|
112
|
+
p_array[i][j] = sum(
|
|
113
|
+
selected_df.filter((pl.col("unit") == unit) & (pl.col("schedule") == schedule))
|
|
114
|
+
.select(["harvest_value_period_2025", "harvest_value_period_2030", "harvest_value_period_2035"])
|
|
115
|
+
.row(0)
|
|
116
|
+
)
|
|
109
117
|
|
|
110
118
|
constants = []
|
|
111
119
|
variables = []
|
|
@@ -114,25 +122,25 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
114
122
|
f_2_func = []
|
|
115
123
|
f_3_func = []
|
|
116
124
|
# define the constants V, W and P, decision variable X, constraints, and objective function expressions in one loop
|
|
117
|
-
for i in range(
|
|
125
|
+
for i in range(n_units):
|
|
118
126
|
# Constants V, W and P
|
|
119
127
|
v = TensorConstant(
|
|
120
|
-
name=f"V_{i+1}",
|
|
121
|
-
symbol=f"V_{i+1}",
|
|
128
|
+
name=f"V_{i + 1}",
|
|
129
|
+
symbol=f"V_{i + 1}",
|
|
122
130
|
shape=[np.shape(v_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
123
131
|
values=v_array[i].tolist(),
|
|
124
132
|
)
|
|
125
133
|
constants.append(v)
|
|
126
134
|
w = TensorConstant(
|
|
127
|
-
name=f"W_{i+1}",
|
|
128
|
-
symbol=f"W_{i+1}",
|
|
135
|
+
name=f"W_{i + 1}",
|
|
136
|
+
symbol=f"W_{i + 1}",
|
|
129
137
|
shape=[np.shape(w_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
130
138
|
values=w_array[i].tolist(),
|
|
131
139
|
)
|
|
132
140
|
constants.append(w)
|
|
133
141
|
p = TensorConstant(
|
|
134
|
-
name=f"P_{i+1}",
|
|
135
|
-
symbol=f"P_{i+1}",
|
|
142
|
+
name=f"P_{i + 1}",
|
|
143
|
+
symbol=f"P_{i + 1}",
|
|
136
144
|
shape=[np.shape(p_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
137
145
|
values=p_array[i].tolist(),
|
|
138
146
|
)
|
|
@@ -140,8 +148,8 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
140
148
|
# Decision variable X
|
|
141
149
|
constants.append(p)
|
|
142
150
|
x = TensorVariable(
|
|
143
|
-
name=f"X_{i+1}",
|
|
144
|
-
symbol=f"X_{i+1}",
|
|
151
|
+
name=f"X_{i + 1}",
|
|
152
|
+
symbol=f"X_{i + 1}",
|
|
145
153
|
variable_type=VariableTypeEnum.binary,
|
|
146
154
|
shape=[np.shape(v_array)[1]], # NOTE: vectors have to be of form [2] instead of [2,1] or [1,2]
|
|
147
155
|
lowerbounds=np.shape(v_array)[1] * [0],
|
|
@@ -152,10 +160,10 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
152
160
|
|
|
153
161
|
# Constraints
|
|
154
162
|
con = Constraint(
|
|
155
|
-
name=f"x_con_{i+1}",
|
|
156
|
-
symbol=f"x_con_{i+1}",
|
|
163
|
+
name=f"x_con_{i + 1}",
|
|
164
|
+
symbol=f"x_con_{i + 1}",
|
|
157
165
|
cons_type=ConstraintTypeEnum.EQ,
|
|
158
|
-
func=f"Sum(X_{i+1}) - 1",
|
|
166
|
+
func=f"Sum(X_{i + 1}) - 1",
|
|
159
167
|
is_linear=True,
|
|
160
168
|
is_convex=False, # not checked
|
|
161
169
|
is_twice_differentiable=True,
|
|
@@ -163,13 +171,13 @@ def forest_problem(simulation_results: str, treatment_key: str, holding: int = 1
|
|
|
163
171
|
constraints.append(con)
|
|
164
172
|
|
|
165
173
|
# Objective function expressions
|
|
166
|
-
exprs = f"V_{i+1}@X_{i+1}"
|
|
174
|
+
exprs = f"V_{i + 1}@X_{i + 1}"
|
|
167
175
|
f_1_func.append(exprs)
|
|
168
176
|
|
|
169
|
-
exprs = f"W_{i+1}@X_{i+1}"
|
|
177
|
+
exprs = f"W_{i + 1}@X_{i + 1}"
|
|
170
178
|
f_2_func.append(exprs)
|
|
171
179
|
|
|
172
|
-
exprs = f"P_{i+1}@X_{i+1}"
|
|
180
|
+
exprs = f"P_{i + 1}@X_{i + 1}"
|
|
173
181
|
f_3_func.append(exprs)
|
|
174
182
|
|
|
175
183
|
# form the objective function sums
|
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
"""Defines a test problem with a constraint that is multi-valued."""
|
|
2
|
+
|
|
3
|
+
from desdeo.problem import (
|
|
4
|
+
Constant,
|
|
5
|
+
Constraint,
|
|
6
|
+
ConstraintTypeEnum,
|
|
7
|
+
Objective,
|
|
8
|
+
ObjectiveTypeEnum,
|
|
9
|
+
Problem,
|
|
10
|
+
TensorConstant,
|
|
11
|
+
TensorVariable,
|
|
12
|
+
Variable,
|
|
13
|
+
VariableTypeEnum,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def multi_valued_constraint_problem() -> Problem:
|
|
18
|
+
r"""Defines a test problem with a multi-valued constraint.
|
|
19
|
+
|
|
20
|
+
The problem has two objectives, two variables, and two constraints, the other of which, is multi-valued.
|
|
21
|
+
The problem is defined as follows:
|
|
22
|
+
\[
|
|
23
|
+
\begin{aligned}
|
|
24
|
+
\text{Min} \quad
|
|
25
|
+
& f_1(x_1, x_2, y) = x_1^2 + x_2^2 + y^2, \\[4pt]
|
|
26
|
+
\text{Min} \quad
|
|
27
|
+
& f_2(x_1, x_2, y) = (x_1 - 2)^2 + (x_2 - 1)^2 + (y - 1)^2, \\[6pt]
|
|
28
|
+
\text{subject to} \quad
|
|
29
|
+
& g(x_1, x_2, y) = x_1^2 + x_2 + y - 2 \le 0, \\[4pt]
|
|
30
|
+
& G(x_1, x_2) = A
|
|
31
|
+
\begin{bmatrix}
|
|
32
|
+
x_1 \\[2pt]
|
|
33
|
+
x_2
|
|
34
|
+
\end{bmatrix}
|
|
35
|
+
\le 0,
|
|
36
|
+
\quad
|
|
37
|
+
A =
|
|
38
|
+
\begin{bmatrix}
|
|
39
|
+
1 & -1 \\[2pt]
|
|
40
|
+
-1 & -2
|
|
41
|
+
\end{bmatrix}.
|
|
42
|
+
\end{aligned}
|
|
43
|
+
\]
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
Returns:
|
|
47
|
+
Problem: the problem model.
|
|
48
|
+
"""
|
|
49
|
+
xs = TensorVariable(
|
|
50
|
+
name="x",
|
|
51
|
+
symbol="X",
|
|
52
|
+
variable_type=VariableTypeEnum.real,
|
|
53
|
+
shape=[2, 1],
|
|
54
|
+
lowerbounds=-5.0,
|
|
55
|
+
upperbounds=5.0,
|
|
56
|
+
initial_values=0.1,
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
y = Variable(
|
|
60
|
+
name="y",
|
|
61
|
+
symbol="y",
|
|
62
|
+
variable_type=VariableTypeEnum.real,
|
|
63
|
+
lowerbound=-10.0,
|
|
64
|
+
upperbound=10.0,
|
|
65
|
+
initial_value=0.1,
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
a = TensorConstant(name="A", symbol="A", shape=[2, 2], values=[[1.0, -1.0], [-1.0, -2.0]])
|
|
69
|
+
|
|
70
|
+
one = Constant(name="one", symbol="one", value=1.0)
|
|
71
|
+
|
|
72
|
+
f_1_expr = "X[1, 1]**2 + X[2, 1]**2 + y**2"
|
|
73
|
+
f_2_expr = "(X[1, 1] - 2)**2 + (X[2, 1] - one)**2 + (y - one)**2"
|
|
74
|
+
|
|
75
|
+
g_1_expr = "X[1, 1]**2 + X[2, 1] + y - 2"
|
|
76
|
+
big_g_expr = "A @ X"
|
|
77
|
+
|
|
78
|
+
f_1 = Objective(
|
|
79
|
+
name="f1",
|
|
80
|
+
symbol="f_1",
|
|
81
|
+
func=f_1_expr,
|
|
82
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
83
|
+
ideal=0.0,
|
|
84
|
+
nadir=150.0,
|
|
85
|
+
is_twice_differentiable=True,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
f_2 = Objective(
|
|
89
|
+
name="f2",
|
|
90
|
+
symbol="f_2",
|
|
91
|
+
func=f_2_expr,
|
|
92
|
+
ideal=0.0,
|
|
93
|
+
nadir=206.0,
|
|
94
|
+
objective_type=ObjectiveTypeEnum.analytical,
|
|
95
|
+
is_twice_differentiable=True,
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
g_1 = Constraint(
|
|
99
|
+
name="g1", symbol="g_1", cons_type=ConstraintTypeEnum.LTE, func=g_1_expr, is_twice_differentiable=True
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
big_g = Constraint(
|
|
103
|
+
name="big_g",
|
|
104
|
+
symbol="G",
|
|
105
|
+
cons_type=ConstraintTypeEnum.LTE,
|
|
106
|
+
func=big_g_expr,
|
|
107
|
+
is_twice_differentiable=True,
|
|
108
|
+
is_linear=True,
|
|
109
|
+
is_convex=True,
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
return Problem(
|
|
113
|
+
name="Multi-valued-constraint problem",
|
|
114
|
+
description="Problem for testing problems with multi-valued constraints.",
|
|
115
|
+
constants=[a, one],
|
|
116
|
+
variables=[xs, y],
|
|
117
|
+
constraints=[g_1, big_g],
|
|
118
|
+
objectives=[f_1, f_2],
|
|
119
|
+
)
|