desdeo 1.1.3__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. desdeo/__init__.py +8 -8
  2. desdeo/api/README.md +73 -0
  3. desdeo/api/__init__.py +15 -0
  4. desdeo/api/app.py +40 -0
  5. desdeo/api/config.py +69 -0
  6. desdeo/api/config.toml +53 -0
  7. desdeo/api/db.py +25 -0
  8. desdeo/api/db_init.py +79 -0
  9. desdeo/api/db_models.py +164 -0
  10. desdeo/api/malaga_db_init.py +27 -0
  11. desdeo/api/models/__init__.py +66 -0
  12. desdeo/api/models/archive.py +34 -0
  13. desdeo/api/models/preference.py +90 -0
  14. desdeo/api/models/problem.py +507 -0
  15. desdeo/api/models/reference_point_method.py +18 -0
  16. desdeo/api/models/session.py +46 -0
  17. desdeo/api/models/state.py +96 -0
  18. desdeo/api/models/user.py +51 -0
  19. desdeo/api/routers/_NAUTILUS.py +245 -0
  20. desdeo/api/routers/_NAUTILUS_navigator.py +233 -0
  21. desdeo/api/routers/_NIMBUS.py +762 -0
  22. desdeo/api/routers/__init__.py +5 -0
  23. desdeo/api/routers/problem.py +110 -0
  24. desdeo/api/routers/reference_point_method.py +117 -0
  25. desdeo/api/routers/session.py +76 -0
  26. desdeo/api/routers/test.py +16 -0
  27. desdeo/api/routers/user_authentication.py +366 -0
  28. desdeo/api/schema.py +94 -0
  29. desdeo/api/tests/__init__.py +0 -0
  30. desdeo/api/tests/conftest.py +59 -0
  31. desdeo/api/tests/test_models.py +701 -0
  32. desdeo/api/tests/test_routes.py +216 -0
  33. desdeo/api/utils/database.py +274 -0
  34. desdeo/api/utils/logger.py +29 -0
  35. desdeo/core.py +27 -0
  36. desdeo/emo/__init__.py +29 -0
  37. desdeo/emo/hooks/archivers.py +172 -0
  38. desdeo/emo/methods/EAs.py +418 -0
  39. desdeo/emo/methods/__init__.py +0 -0
  40. desdeo/emo/methods/bases.py +59 -0
  41. desdeo/emo/operators/__init__.py +1 -0
  42. desdeo/emo/operators/crossover.py +780 -0
  43. desdeo/emo/operators/evaluator.py +118 -0
  44. desdeo/emo/operators/generator.py +356 -0
  45. desdeo/emo/operators/mutation.py +1053 -0
  46. desdeo/emo/operators/selection.py +1036 -0
  47. desdeo/emo/operators/termination.py +178 -0
  48. desdeo/explanations/__init__.py +6 -0
  49. desdeo/explanations/explainer.py +100 -0
  50. desdeo/explanations/utils.py +90 -0
  51. desdeo/mcdm/__init__.py +19 -0
  52. desdeo/mcdm/nautili.py +345 -0
  53. desdeo/mcdm/nautilus.py +477 -0
  54. desdeo/mcdm/nautilus_navigator.py +655 -0
  55. desdeo/mcdm/nimbus.py +417 -0
  56. desdeo/mcdm/pareto_navigator.py +269 -0
  57. desdeo/mcdm/reference_point_method.py +116 -0
  58. desdeo/problem/__init__.py +79 -0
  59. desdeo/problem/evaluator.py +561 -0
  60. desdeo/problem/gurobipy_evaluator.py +562 -0
  61. desdeo/problem/infix_parser.py +341 -0
  62. desdeo/problem/json_parser.py +944 -0
  63. desdeo/problem/pyomo_evaluator.py +468 -0
  64. desdeo/problem/schema.py +1808 -0
  65. desdeo/problem/simulator_evaluator.py +298 -0
  66. desdeo/problem/sympy_evaluator.py +244 -0
  67. desdeo/problem/testproblems/__init__.py +73 -0
  68. desdeo/problem/testproblems/binh_and_korn_problem.py +88 -0
  69. desdeo/problem/testproblems/dtlz2_problem.py +102 -0
  70. desdeo/problem/testproblems/forest_problem.py +275 -0
  71. desdeo/problem/testproblems/knapsack_problem.py +163 -0
  72. desdeo/problem/testproblems/mcwb_problem.py +831 -0
  73. desdeo/problem/testproblems/mixed_variable_dimenrions_problem.py +83 -0
  74. desdeo/problem/testproblems/momip_problem.py +172 -0
  75. desdeo/problem/testproblems/nimbus_problem.py +143 -0
  76. desdeo/problem/testproblems/pareto_navigator_problem.py +89 -0
  77. desdeo/problem/testproblems/re_problem.py +492 -0
  78. desdeo/problem/testproblems/river_pollution_problem.py +434 -0
  79. desdeo/problem/testproblems/rocket_injector_design_problem.py +140 -0
  80. desdeo/problem/testproblems/simple_problem.py +351 -0
  81. desdeo/problem/testproblems/simulator_problem.py +92 -0
  82. desdeo/problem/testproblems/spanish_sustainability_problem.py +945 -0
  83. desdeo/problem/testproblems/zdt_problem.py +271 -0
  84. desdeo/problem/utils.py +245 -0
  85. desdeo/tools/GenerateReferencePoints.py +181 -0
  86. desdeo/tools/__init__.py +102 -0
  87. desdeo/tools/generics.py +145 -0
  88. desdeo/tools/gurobipy_solver_interfaces.py +258 -0
  89. desdeo/tools/indicators_binary.py +11 -0
  90. desdeo/tools/indicators_unary.py +375 -0
  91. desdeo/tools/interaction_schema.py +38 -0
  92. desdeo/tools/intersection.py +54 -0
  93. desdeo/tools/iterative_pareto_representer.py +99 -0
  94. desdeo/tools/message.py +234 -0
  95. desdeo/tools/ng_solver_interfaces.py +199 -0
  96. desdeo/tools/non_dominated_sorting.py +133 -0
  97. desdeo/tools/patterns.py +281 -0
  98. desdeo/tools/proximal_solver.py +99 -0
  99. desdeo/tools/pyomo_solver_interfaces.py +464 -0
  100. desdeo/tools/reference_vectors.py +462 -0
  101. desdeo/tools/scalarization.py +3138 -0
  102. desdeo/tools/scipy_solver_interfaces.py +454 -0
  103. desdeo/tools/score_bands.py +464 -0
  104. desdeo/tools/utils.py +320 -0
  105. desdeo/utopia_stuff/__init__.py +0 -0
  106. desdeo/utopia_stuff/data/1.json +15 -0
  107. desdeo/utopia_stuff/data/2.json +13 -0
  108. desdeo/utopia_stuff/data/3.json +15 -0
  109. desdeo/utopia_stuff/data/4.json +17 -0
  110. desdeo/utopia_stuff/data/5.json +15 -0
  111. desdeo/utopia_stuff/from_json.py +40 -0
  112. desdeo/utopia_stuff/reinit_user.py +38 -0
  113. desdeo/utopia_stuff/utopia_db_init.py +212 -0
  114. desdeo/utopia_stuff/utopia_problem.py +403 -0
  115. desdeo/utopia_stuff/utopia_problem_old.py +415 -0
  116. desdeo/utopia_stuff/utopia_reference_solutions.py +79 -0
  117. desdeo-2.0.0.dist-info/LICENSE +21 -0
  118. desdeo-2.0.0.dist-info/METADATA +168 -0
  119. desdeo-2.0.0.dist-info/RECORD +120 -0
  120. {desdeo-1.1.3.dist-info → desdeo-2.0.0.dist-info}/WHEEL +1 -1
  121. desdeo-1.1.3.dist-info/METADATA +0 -18
  122. desdeo-1.1.3.dist-info/RECORD +0 -4
@@ -0,0 +1,178 @@
1
+ """The base class for termination criteria.
2
+
3
+ The termination criterion is used to determine when the optimization process should stop. In this implementation, it
4
+ also includes a simple counter for the number of elapsed generations. This counter is increased by one each time the
5
+ termination criterion is called. The simplest termination criterion is reaching the maximum number of generations.
6
+ The implementation also contains a counter for the number of evaluations. This counter is updated by the Evaluator
7
+ and Generator classes. The termination criterion can be based on the number of evaluations as well.
8
+
9
+ Warning:
10
+ Each subclass of BaseTerminator must implement the do method. The do method should always call the
11
+ super().do method to increment the generation counter _before_ conducting the termination check.
12
+ """
13
+
14
+ from collections.abc import Sequence
15
+
16
+ from desdeo.tools.message import (
17
+ EvaluatorMessageTopics,
18
+ GeneratorMessageTopics,
19
+ IntMessage,
20
+ Message,
21
+ TerminatorMessageTopics,
22
+ )
23
+ from desdeo.tools.patterns import Subscriber
24
+
25
+
26
+ class BaseTerminator(Subscriber):
27
+ """The base class for the termination criteria.
28
+
29
+ Also includes a simple counter for number of elapsed generations. This counter is increased by one each time the
30
+ termination criterion is called.
31
+ """
32
+
33
+ @property
34
+ def provided_topics(self) -> dict[int, Sequence[TerminatorMessageTopics]]:
35
+ """Return the topics provided by the terminator.
36
+
37
+ Returns:
38
+ dict[int, Sequence[TerminatorMessageTopics]]: The topics provided by the terminator.
39
+ """
40
+ return {
41
+ 0: [],
42
+ 1: [
43
+ TerminatorMessageTopics.GENERATION,
44
+ TerminatorMessageTopics.EVALUATION,
45
+ TerminatorMessageTopics.MAX_GENERATIONS,
46
+ TerminatorMessageTopics.MAX_EVALUATIONS,
47
+ ],
48
+ }
49
+
50
+ @property
51
+ def interested_topics(self):
52
+ """Return the message topics that the terminator is interested in."""
53
+ return [EvaluatorMessageTopics.NEW_EVALUATIONS, GeneratorMessageTopics.NEW_EVALUATIONS]
54
+
55
+ def __init__(self, **kwargs):
56
+ """Initialize a termination criterion."""
57
+ super().__init__(**kwargs)
58
+ self.current_generation: int = 1
59
+ self.current_evaluations: int = 0
60
+ self.max_generations: int = 0
61
+ self.max_evaluations: int = 0
62
+
63
+ def check(self) -> bool | None:
64
+ """Check if the termination criterion is reached.
65
+
66
+ Returns:
67
+ bool: True if the termination criterion is reached, False otherwise.
68
+ """
69
+ self.current_generation += 1
70
+
71
+ def state(self) -> Sequence[Message]:
72
+ """Return the state of the termination criterion."""
73
+ state = [
74
+ IntMessage(
75
+ topic=TerminatorMessageTopics.GENERATION,
76
+ value=self.current_generation,
77
+ source=self.__class__.__name__,
78
+ ),
79
+ IntMessage(
80
+ topic=TerminatorMessageTopics.EVALUATION, value=self.current_evaluations, source=self.__class__.__name__
81
+ ),
82
+ ]
83
+ if self.max_evaluations != 0:
84
+ state.append(
85
+ IntMessage(
86
+ topic=TerminatorMessageTopics.MAX_EVALUATIONS,
87
+ value=self.max_evaluations,
88
+ source=self.__class__.__name__,
89
+ )
90
+ )
91
+ if self.max_generations != 0:
92
+ state.append(
93
+ IntMessage(
94
+ topic=TerminatorMessageTopics.MAX_GENERATIONS,
95
+ value=self.max_generations,
96
+ source=self.__class__.__name__,
97
+ )
98
+ )
99
+ return state
100
+
101
+ def update(self, message: Message) -> None:
102
+ """Update the number of evaluations.
103
+
104
+ Note that for this method to work, this class must be registered as an observer of a subject that sends
105
+ messages with the key "num_evaluations". The Evaluator class does this.
106
+
107
+ Args:
108
+ message (dict): the message from the subject, must contain the key "num_evaluations".
109
+ """
110
+ if not isinstance(message, IntMessage):
111
+ return
112
+ if not isinstance(message.topic, EvaluatorMessageTopics) or isinstance(message.topic, GeneratorMessageTopics):
113
+ return
114
+ if (
115
+ message.topic == EvaluatorMessageTopics.NEW_EVALUATIONS # NOQA: PLR1714
116
+ or message.topic == GeneratorMessageTopics.NEW_EVALUATIONS
117
+ ):
118
+ self.current_evaluations += message.value
119
+
120
+
121
+ class MaxGenerationsTerminator(BaseTerminator):
122
+ """A class for a termination criterion based on the number of generations."""
123
+
124
+ def __init__(self, max_generations: int, **kwargs):
125
+ """Initialize a termination criterion based on the number of generations.
126
+
127
+ Args:
128
+ max_generations (int): the maximum number of generations.
129
+ kwargs: Additional keyword arguments. These are passed to the Subscriber class. At the very least, the
130
+ publisher must be passed. See the Subscriber class for more information.
131
+ """
132
+ super().__init__(**kwargs)
133
+ self.max_generations = max_generations
134
+
135
+ def check(self) -> bool:
136
+ """Check if the termination criterion based on the number of generations is reached.
137
+
138
+ Args:
139
+ new_generation (bool, optional): Increment the generation counter. Defaults to True.
140
+
141
+ Returns:
142
+ bool: True if the termination criterion is reached, False otherwise.
143
+ """
144
+ super().check()
145
+ self.notify()
146
+ return self.current_generation > self.max_generations
147
+
148
+
149
+ # TODO (@light-weaver): This check is done _after_ the evaluations have taken place.
150
+ # This means that the algorithm will run for one more generation than it should.
151
+ class MaxEvaluationsTerminator(BaseTerminator):
152
+ """A class for a termination criterion based on the number of evaluations."""
153
+
154
+ def __init__(self, max_evaluations: int, **kwargs):
155
+ """Initialize a termination criterion based on the number of evaluations.
156
+
157
+ Looks for messages with key "num_evaluations" to update the number of evaluations.
158
+
159
+ Args:
160
+ max_evaluations (int): the maximum number of evaluations.
161
+ kwargs: Additional keyword arguments. These are passed to the Subscriber class. At the very least, the
162
+ publisher must be passed. See the Subscriber class for more information.
163
+ """
164
+ super().__init__(**kwargs)
165
+ if not isinstance(max_evaluations, int) or max_evaluations < 0:
166
+ raise ValueError("max_evaluations must be a non-negative integer")
167
+ self.max_evaluations = max_evaluations
168
+ self.current_evaluations = 0
169
+
170
+ def check(self) -> bool:
171
+ """Check if the termination criterion based on the number of evaluations is reached.
172
+
173
+ Returns:
174
+ bool: True if the termination criterion is reached, False otherwise.
175
+ """
176
+ super().check()
177
+ self.notify()
178
+ return self.current_evaluations >= self.max_evaluations
@@ -0,0 +1,6 @@
1
+ """This module contains tools to generate and analyze explanations."""
2
+
3
+ __all__ = ["ShapExplainer", "generate_biased_mean_data"]
4
+
5
+ from .explainer import ShapExplainer
6
+ from .utils import generate_biased_mean_data
@@ -0,0 +1,100 @@
1
+ """Explainers are defined here."""
2
+
3
+ import numpy as np
4
+ import polars as pl
5
+ import shap
6
+ from scipy.spatial import cKDTree
7
+
8
+
9
+ class ShapExplainer:
10
+ """Defines a SHAP explainer for reference point based methods."""
11
+
12
+ def __init__(self, problem_data: pl.DataFrame, input_symbols: list[str], output_symbols: list[str]):
13
+ """Initialize the explainer.
14
+
15
+ Initializes the explainer with given data, and input and output symbols.
16
+ The data should contain the columns listed in the input and output symbols.
17
+ This data is then used to simulate the inputs and outputs of an (interactive)
18
+ multiobjective optimization method, which is used to explain the relation of its
19
+ inputs and outputs using SHAP values.
20
+
21
+ Note:
22
+ The `data` can be generated by for a reference point based based by, e.g.,
23
+ randomly sampling the input space and then evaluating the methods with the
24
+ sampled inputs to generate outputs.
25
+
26
+ Args:
27
+ problem_data (pl.DataFrame): the data to simulate the input and
28
+ outputs of a multiobjective optimization method.
29
+ input_symbols (list[str]): the input symbols present in `data`.
30
+ These symbols represent the inputs to the method.
31
+ output_symbols (list[str]): the output symbols present in `data`.
32
+ These symbols represent the outputs of the method.
33
+ """
34
+ self.data = problem_data
35
+ self.input_symbols = input_symbols
36
+ self.output_symbols = output_symbols
37
+ self.input_array = self.data[self.input_symbols].to_numpy()
38
+ self.output_array = self.data[self.output_symbols].to_numpy()
39
+ self.to_output_tree = cKDTree(self.input_array)
40
+ self.explainer = None
41
+
42
+ def setup(self, background_data: pl.DataFrame):
43
+ """Setup the explainer.
44
+
45
+ Setups the SHAP explainer with the given background data. The
46
+ background data should have the columns `self.input_symbols`. The
47
+ background data is used as the background (or missing data) when
48
+ computing SHAP values. The mean (or expected values) of the background
49
+ data's output (`self.output_symbols`) will determine the baseline of the
50
+ SHAP values.
51
+
52
+ Note:
53
+ To generate a dataset with meaningful expected values, e.g., in case
54
+ the SHAP values are better understood by relating them to a specific baseline,
55
+ see `desdeo.explanations.generate_biased_mean_data`.
56
+
57
+ Args:
58
+ background_data (pl.DataFrame): the background data.
59
+ """
60
+ self.explainer = shap.Explainer(
61
+ self.evaluate,
62
+ masker=background_data[self.input_symbols].to_numpy(),
63
+ )
64
+
65
+ def evaluate(self, evaluate_array: np.ndarray) -> np.ndarray:
66
+ """Evaluates the multiobjective optimization method represented by the data.
67
+
68
+ Note:
69
+ Evaluation happens by finding the closest matching input array in the
70
+ `self.input_array` and then using that value's corresponding output
71
+ as the evaluation result. Closest means lowest Euclidean distance.
72
+
73
+ Args:
74
+ evaluate_array (np.ndarray): the inputs to the method represented by the data.
75
+ Can be either a single input, or an array of multiple inputs. Used mainly by
76
+ `self.explain_input`.
77
+
78
+ Returns:
79
+ np.ndarray: the evaluated output(s) corresponding to the input data.
80
+ """
81
+ _, indices = self.to_output_tree.query(evaluate_array)
82
+
83
+ return self.output_array[indices]
84
+
85
+ def explain_input(self, to_be_explained: pl.DataFrame) -> dict:
86
+ """Explain an input and produces SHAP values.
87
+
88
+ Args:
89
+ to_be_explained (pl.DataFrame): the input to be explained. The
90
+ dataframe must have the columns defined in `self.input_symbols`.
91
+
92
+ Returns:
93
+ dict: the key 'shaps' corresponds to the computed SHAP values for
94
+ the input, the key 'base_values' is the baseline the SHAP values
95
+ were computed against, and the key 'data' is the input the SHAP
96
+ values were computed for.
97
+ """
98
+ _to_be_explained = to_be_explained[self.input_symbols].to_numpy()
99
+
100
+ return self.explainer(_to_be_explained)
@@ -0,0 +1,90 @@
1
+ """Utilities specific to explainable multiobjective optimization."""
2
+
3
+ import cvxpy as cp
4
+ import numpy as np
5
+
6
+
7
+ def generate_biased_mean_data(
8
+ data: np.ndarray, target_means: np.ndarray, min_size: int = 2, max_size: int | None = None, solver: str = "SCIP"
9
+ ) -> list | None:
10
+ r"""Finds a subset of the provided data that has a mean value close to provided target values.
11
+
12
+ Finds a subset of the provided data that has a mean value close to the
13
+ provided target values. Formulates a mixed-integer quadratic programming problem to
14
+ find a subset of `data` with a mean as close as possible to `target_values`
15
+ and a size between `min_size` and `max_size`. In other words, the following problems is solved:
16
+
17
+ \begin{align}
18
+ &\min_{\mathbf{x}} & f(\mathbf{x}) & = \sum_{i=1}^m \left[ \left(\frac{1}{k}
19
+ \sum_{j=1}^n x_j \times \text{data}_j\right)_i - \text{target}_i \right]^2 \\
20
+ &\text{s.t.,} & k & = \sum_{i=1}^n x_i,\\
21
+ & & k & \leq \text{max_size},\\
22
+ & & k & \geq \text{min_size},\\
23
+ \end{align},
24
+ where $n$ is the number of rows in `data`, $m$ is the number of columns in
25
+ `data`, and $k$ is the size of the subset. Notice that the closeness to the
26
+ target means is based on the Euclidean distance.
27
+
28
+ Note:
29
+ Be mindful that this functions can take a long time with a very large
30
+ data set and large upper bound for the desired subset.
31
+
32
+ Args:
33
+ data (np.ndarray): the data from which to generate the subset with a
34
+ biased mean. Should be a 2D array with each row representing a sample
35
+ and each column the value of the variables in the sample.
36
+ target_means (np.ndarray): the target mean values for each column the
37
+ generated subset should have values close to.
38
+ min_size (int, optional): the minimum size of the generated subset. Defaults to 2.
39
+ max_size (int | None, optional): the maximum size of the generated
40
+ subset. If None, then the maximum size is bound by the numbers of rows
41
+ in `data`. Defaults to None.
42
+ solver (str, optional): the selected solver to be used by cvxpy. The
43
+ solver should support mixed-integer quadratic programming. Defaults to
44
+ "SCIP".
45
+
46
+ Returns:
47
+ list | None: the indices of the samples of the generated subset respect to
48
+ `data`, i.e., the generated subset is `data[indices]`. If optimization is not successful,
49
+ returns None instead.
50
+ """
51
+ # Number of rows and columns
52
+ n_rows, n_cols = data.shape
53
+ max_size = n_rows if max_size is None else max_size
54
+
55
+ # Big M used to penalize the auxiliary variable z
56
+ big_m = data.max(axis=0)
57
+
58
+ # Binary variables to select rows from the data
59
+ x = cp.Variable(n_rows, boolean=True)
60
+
61
+ # Auxiliary variables, z represents the mean. phi is the weighted sum of the data (weighted by x)
62
+ z = cp.Variable(n_cols)
63
+ phi = cp.Variable((n_rows, n_cols))
64
+
65
+ # The objective function, squared values of the difference between the mean
66
+ # of the currently selected subset and the target values.
67
+ objective = cp.sum_squares(z - target_means)
68
+
69
+ # Define the constraints
70
+ constraints = [
71
+ # Sets the value of phi
72
+ *[cp.sum(phi[:, col]) == cp.sum(cp.multiply(x, data[:, col])) for col in range(n_cols)],
73
+ # Constraints the values of phi using big M, in practice setting z to be the mean values
74
+ *[phi[:, col] <= cp.multiply(big_m[col], x) for col in range(n_cols)],
75
+ *[phi[:, col] <= z[col] for col in range(n_cols)],
76
+ *[phi[:, col] >= z[col] - cp.multiply(big_m[col], 1 - x) for col in range(n_cols)],
77
+ phi >= 0,
78
+ # Bounds the size of the set: min_size <= k <= max_size
79
+ cp.sum(x) >= min_size,
80
+ cp.sum(x) <= max_size,
81
+ ]
82
+
83
+ # Create the problem model
84
+ problem = cp.Problem(cp.Minimize(objective), constraints)
85
+
86
+ # Solve the problem
87
+ problem.solve(solver=solver)
88
+
89
+ # Return the indices of the found subset
90
+ return [i for i in range(n_rows) if x.value[i] == 1]
@@ -0,0 +1,19 @@
1
+ """Imports available from the desdeo-mcdm package."""
2
+
3
+ __all__ = [
4
+ "NimbusError",
5
+ "generate_starting_point",
6
+ "infer_classifications",
7
+ "solve_intermediate_solutions",
8
+ "solve_sub_problems",
9
+ "rpm_solve_solutions",
10
+ ]
11
+
12
+ from .nimbus import (
13
+ NimbusError,
14
+ generate_starting_point,
15
+ infer_classifications,
16
+ solve_intermediate_solutions,
17
+ solve_sub_problems,
18
+ )
19
+ from .reference_point_method import rpm_solve_solutions