desdeo 1.1.3__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. desdeo/__init__.py +8 -8
  2. desdeo/api/README.md +73 -0
  3. desdeo/api/__init__.py +15 -0
  4. desdeo/api/app.py +40 -0
  5. desdeo/api/config.py +69 -0
  6. desdeo/api/config.toml +53 -0
  7. desdeo/api/db.py +25 -0
  8. desdeo/api/db_init.py +79 -0
  9. desdeo/api/db_models.py +164 -0
  10. desdeo/api/malaga_db_init.py +27 -0
  11. desdeo/api/models/__init__.py +66 -0
  12. desdeo/api/models/archive.py +34 -0
  13. desdeo/api/models/preference.py +90 -0
  14. desdeo/api/models/problem.py +507 -0
  15. desdeo/api/models/reference_point_method.py +18 -0
  16. desdeo/api/models/session.py +46 -0
  17. desdeo/api/models/state.py +96 -0
  18. desdeo/api/models/user.py +51 -0
  19. desdeo/api/routers/_NAUTILUS.py +245 -0
  20. desdeo/api/routers/_NAUTILUS_navigator.py +233 -0
  21. desdeo/api/routers/_NIMBUS.py +762 -0
  22. desdeo/api/routers/__init__.py +5 -0
  23. desdeo/api/routers/problem.py +110 -0
  24. desdeo/api/routers/reference_point_method.py +117 -0
  25. desdeo/api/routers/session.py +76 -0
  26. desdeo/api/routers/test.py +16 -0
  27. desdeo/api/routers/user_authentication.py +366 -0
  28. desdeo/api/schema.py +94 -0
  29. desdeo/api/tests/__init__.py +0 -0
  30. desdeo/api/tests/conftest.py +59 -0
  31. desdeo/api/tests/test_models.py +701 -0
  32. desdeo/api/tests/test_routes.py +216 -0
  33. desdeo/api/utils/database.py +274 -0
  34. desdeo/api/utils/logger.py +29 -0
  35. desdeo/core.py +27 -0
  36. desdeo/emo/__init__.py +29 -0
  37. desdeo/emo/hooks/archivers.py +172 -0
  38. desdeo/emo/methods/EAs.py +418 -0
  39. desdeo/emo/methods/__init__.py +0 -0
  40. desdeo/emo/methods/bases.py +59 -0
  41. desdeo/emo/operators/__init__.py +1 -0
  42. desdeo/emo/operators/crossover.py +780 -0
  43. desdeo/emo/operators/evaluator.py +118 -0
  44. desdeo/emo/operators/generator.py +356 -0
  45. desdeo/emo/operators/mutation.py +1053 -0
  46. desdeo/emo/operators/selection.py +1036 -0
  47. desdeo/emo/operators/termination.py +178 -0
  48. desdeo/explanations/__init__.py +6 -0
  49. desdeo/explanations/explainer.py +100 -0
  50. desdeo/explanations/utils.py +90 -0
  51. desdeo/mcdm/__init__.py +19 -0
  52. desdeo/mcdm/nautili.py +345 -0
  53. desdeo/mcdm/nautilus.py +477 -0
  54. desdeo/mcdm/nautilus_navigator.py +655 -0
  55. desdeo/mcdm/nimbus.py +417 -0
  56. desdeo/mcdm/pareto_navigator.py +269 -0
  57. desdeo/mcdm/reference_point_method.py +116 -0
  58. desdeo/problem/__init__.py +79 -0
  59. desdeo/problem/evaluator.py +561 -0
  60. desdeo/problem/gurobipy_evaluator.py +562 -0
  61. desdeo/problem/infix_parser.py +341 -0
  62. desdeo/problem/json_parser.py +944 -0
  63. desdeo/problem/pyomo_evaluator.py +468 -0
  64. desdeo/problem/schema.py +1808 -0
  65. desdeo/problem/simulator_evaluator.py +298 -0
  66. desdeo/problem/sympy_evaluator.py +244 -0
  67. desdeo/problem/testproblems/__init__.py +73 -0
  68. desdeo/problem/testproblems/binh_and_korn_problem.py +88 -0
  69. desdeo/problem/testproblems/dtlz2_problem.py +102 -0
  70. desdeo/problem/testproblems/forest_problem.py +275 -0
  71. desdeo/problem/testproblems/knapsack_problem.py +163 -0
  72. desdeo/problem/testproblems/mcwb_problem.py +831 -0
  73. desdeo/problem/testproblems/mixed_variable_dimenrions_problem.py +83 -0
  74. desdeo/problem/testproblems/momip_problem.py +172 -0
  75. desdeo/problem/testproblems/nimbus_problem.py +143 -0
  76. desdeo/problem/testproblems/pareto_navigator_problem.py +89 -0
  77. desdeo/problem/testproblems/re_problem.py +492 -0
  78. desdeo/problem/testproblems/river_pollution_problem.py +434 -0
  79. desdeo/problem/testproblems/rocket_injector_design_problem.py +140 -0
  80. desdeo/problem/testproblems/simple_problem.py +351 -0
  81. desdeo/problem/testproblems/simulator_problem.py +92 -0
  82. desdeo/problem/testproblems/spanish_sustainability_problem.py +945 -0
  83. desdeo/problem/testproblems/zdt_problem.py +271 -0
  84. desdeo/problem/utils.py +245 -0
  85. desdeo/tools/GenerateReferencePoints.py +181 -0
  86. desdeo/tools/__init__.py +102 -0
  87. desdeo/tools/generics.py +145 -0
  88. desdeo/tools/gurobipy_solver_interfaces.py +258 -0
  89. desdeo/tools/indicators_binary.py +11 -0
  90. desdeo/tools/indicators_unary.py +375 -0
  91. desdeo/tools/interaction_schema.py +38 -0
  92. desdeo/tools/intersection.py +54 -0
  93. desdeo/tools/iterative_pareto_representer.py +99 -0
  94. desdeo/tools/message.py +234 -0
  95. desdeo/tools/ng_solver_interfaces.py +199 -0
  96. desdeo/tools/non_dominated_sorting.py +133 -0
  97. desdeo/tools/patterns.py +281 -0
  98. desdeo/tools/proximal_solver.py +99 -0
  99. desdeo/tools/pyomo_solver_interfaces.py +464 -0
  100. desdeo/tools/reference_vectors.py +462 -0
  101. desdeo/tools/scalarization.py +3138 -0
  102. desdeo/tools/scipy_solver_interfaces.py +454 -0
  103. desdeo/tools/score_bands.py +464 -0
  104. desdeo/tools/utils.py +320 -0
  105. desdeo/utopia_stuff/__init__.py +0 -0
  106. desdeo/utopia_stuff/data/1.json +15 -0
  107. desdeo/utopia_stuff/data/2.json +13 -0
  108. desdeo/utopia_stuff/data/3.json +15 -0
  109. desdeo/utopia_stuff/data/4.json +17 -0
  110. desdeo/utopia_stuff/data/5.json +15 -0
  111. desdeo/utopia_stuff/from_json.py +40 -0
  112. desdeo/utopia_stuff/reinit_user.py +38 -0
  113. desdeo/utopia_stuff/utopia_db_init.py +212 -0
  114. desdeo/utopia_stuff/utopia_problem.py +403 -0
  115. desdeo/utopia_stuff/utopia_problem_old.py +415 -0
  116. desdeo/utopia_stuff/utopia_reference_solutions.py +79 -0
  117. desdeo-2.0.0.dist-info/LICENSE +21 -0
  118. desdeo-2.0.0.dist-info/METADATA +168 -0
  119. desdeo-2.0.0.dist-info/RECORD +120 -0
  120. {desdeo-1.1.3.dist-info → desdeo-2.0.0.dist-info}/WHEEL +1 -1
  121. desdeo-1.1.3.dist-info/METADATA +0 -18
  122. desdeo-1.1.3.dist-info/RECORD +0 -4
@@ -0,0 +1,118 @@
1
+ """Classes for evaluating the objectives and constraints of the individuals in the population."""
2
+
3
+ import warnings
4
+ from collections.abc import Sequence
5
+
6
+ import polars as pl
7
+
8
+ from desdeo.problem import Evaluator, Problem
9
+ from desdeo.tools.message import (
10
+ EvaluatorMessageTopics,
11
+ GenericMessage,
12
+ IntMessage,
13
+ Message,
14
+ PolarsDataFrameMessage,
15
+ )
16
+ from desdeo.tools.patterns import Subscriber
17
+
18
+
19
+ class EMOEvaluator(Subscriber):
20
+ """Base class for evaluating the objectives and constraints of the individuals in the population.
21
+
22
+ This class should be inherited by the classes that implement the evaluation of the objectives
23
+ and constraints of the individuals in the population.
24
+
25
+ """
26
+
27
+ @property
28
+ def provided_topics(self) -> dict[int, Sequence[EvaluatorMessageTopics]]:
29
+ """The topics provided by the Evaluator."""
30
+ return {
31
+ 0: [],
32
+ 1: [EvaluatorMessageTopics.NEW_EVALUATIONS],
33
+ 2: [
34
+ EvaluatorMessageTopics.NEW_EVALUATIONS,
35
+ EvaluatorMessageTopics.VERBOSE_OUTPUTS,
36
+ ],
37
+ }
38
+
39
+ @property
40
+ def interested_topics(self):
41
+ """The topics that the Evaluator is interested in."""
42
+ return []
43
+
44
+ def __init__(
45
+ self,
46
+ problem: Problem,
47
+ verbosity: int = 1,
48
+ **kwargs,
49
+ ):
50
+ """Initialize the EMOEvaluator class."""
51
+ super().__init__(**kwargs)
52
+ self.problem = problem
53
+ # TODO(@light-weaver, @gialmisi): This can be so much more efficient.
54
+ self.evaluator = lambda x: Evaluator(problem).evaluate(
55
+ {name.symbol: x[name.symbol].to_list() for name in problem.get_flattened_variables()}, flat=True
56
+ )
57
+ self.variable_symbols = [name.symbol for name in problem.variables]
58
+ self.population: pl.DataFrame
59
+ self.outs: pl.DataFrame
60
+ self.verbosity: int = verbosity
61
+ self.new_evals: int = 0
62
+
63
+ def evaluate(self, population: pl.DataFrame) -> pl.DataFrame:
64
+ """Evaluate and return the objectives.
65
+
66
+ Args:
67
+ population (pl.Dataframe): The set of decision variables to evaluate.
68
+
69
+ Returns:
70
+ pl.Dataframe: A dataframe of objective vectors, target vectors, and constraint vectors.
71
+ """
72
+ self.population = population
73
+ out = self.evaluator(population)
74
+ # remove variable_symbols from the output
75
+ self.out = out.drop(self.variable_symbols)
76
+ self.new_evals = len(population)
77
+ # merge the objectives and targets
78
+
79
+ self.notify()
80
+ return self.out
81
+
82
+ def state(self) -> Sequence[Message]:
83
+ """The state of the evaluator sent to the Publisher."""
84
+ if self.population is None or self.out is None or self.population is None or self.verbosity == 0:
85
+ return []
86
+ if self.verbosity == 1:
87
+ return [
88
+ IntMessage(
89
+ topic=EvaluatorMessageTopics.NEW_EVALUATIONS,
90
+ value=self.new_evals,
91
+ source=self.__class__.__name__,
92
+ )
93
+ ]
94
+
95
+ if isinstance(self.population, pl.DataFrame):
96
+ message = PolarsDataFrameMessage(
97
+ topic=EvaluatorMessageTopics.VERBOSE_OUTPUTS,
98
+ value=pl.concat([self.population, self.out], how="horizontal"),
99
+ source=self.__class__.__name__,
100
+ )
101
+ else:
102
+ warnings.warn("Population is not a Polars DataFrame. Defaulting to providing OUTPUTS only.", stacklevel=2)
103
+ message = PolarsDataFrameMessage(
104
+ topic=EvaluatorMessageTopics.VERBOSE_OUTPUTS,
105
+ value=self.out,
106
+ source=self.__class__.__name__,
107
+ )
108
+ return [
109
+ IntMessage(
110
+ topic=EvaluatorMessageTopics.NEW_EVALUATIONS,
111
+ value=self.new_evals,
112
+ source=self.__class__.__name__,
113
+ ),
114
+ message,
115
+ ]
116
+
117
+ def update(self, *_, **__):
118
+ """Update the parameters of the evaluator."""
@@ -0,0 +1,356 @@
1
+ """Class for generating initial population for the evolutionary optimization algorithms."""
2
+
3
+ from abc import abstractmethod
4
+ from collections.abc import Sequence
5
+
6
+ import numpy as np
7
+ import polars as pl
8
+ from scipy.stats.qmc import LatinHypercube
9
+
10
+ from desdeo.emo.operators.evaluator import EMOEvaluator
11
+ from desdeo.problem import Problem, VariableTypeEnum
12
+ from desdeo.tools.message import GeneratorMessageTopics, IntMessage, Message, PolarsDataFrameMessage
13
+ from desdeo.tools.patterns import Subscriber
14
+
15
+
16
+ class BaseGenerator(Subscriber):
17
+ """Base class for generating initial population for the evolutionary optimization algorithms.
18
+
19
+ This class should be inherited by the classes that implement the initial population generation
20
+ for the evolutionary optimization algorithms.
21
+
22
+ """
23
+
24
+ @property
25
+ def provided_topics(self) -> dict[int, Sequence[GeneratorMessageTopics]]:
26
+ """Return the topics provided by the generator.
27
+
28
+ Returns:
29
+ dict[int, Sequence[GeneratorMessageTopics]]: The topics provided by the generator.
30
+ """
31
+ return {
32
+ 0: [],
33
+ 1: [GeneratorMessageTopics.NEW_EVALUATIONS],
34
+ 2: [
35
+ GeneratorMessageTopics.NEW_EVALUATIONS,
36
+ GeneratorMessageTopics.VERBOSE_OUTPUTS,
37
+ ],
38
+ }
39
+
40
+ @property
41
+ def interested_topics(self):
42
+ """Return the message topics that the generator is interested in."""
43
+ return []
44
+
45
+ def __init__(self, problem: Problem, **kwargs):
46
+ """Initialize the BaseGenerator class."""
47
+ super().__init__(**kwargs)
48
+ self.problem = problem
49
+ self.variable_symbols = [var.symbol for var in problem.get_flattened_variables()]
50
+ self.bounds = np.array([[var.lowerbound, var.upperbound] for var in problem.get_flattened_variables()])
51
+ self.population: pl.DataFrame = None
52
+ self.out: pl.DataFrame = None
53
+
54
+ @abstractmethod
55
+ def do(self) -> tuple[pl.DataFrame, pl.DataFrame]:
56
+ """Generate the initial population.
57
+
58
+ This method should be implemented by the inherited classes.
59
+
60
+ Returns:
61
+ tuple[pl.DataFrame, pl.DataFrame]: The initial population as the first element,
62
+ the corresponding objectives, the constraint violations, and the targets as the
63
+ second element.
64
+ """
65
+
66
+ def state(self) -> Sequence[Message]:
67
+ """Return the state of the generator.
68
+
69
+ This method should be implemented by the inherited classes.
70
+
71
+ Returns:
72
+ dict: The state of the generator.
73
+ """
74
+ if self.population is None or self.out is None or self.verbosity == 0:
75
+ return []
76
+ if self.verbosity == 1:
77
+ return [
78
+ IntMessage(
79
+ topic=GeneratorMessageTopics.NEW_EVALUATIONS,
80
+ value=self.population.shape[0],
81
+ source=self.__class__.__name__,
82
+ ),
83
+ ]
84
+ # verbosity == 2
85
+ return [
86
+ PolarsDataFrameMessage(
87
+ topic=GeneratorMessageTopics.VERBOSE_OUTPUTS,
88
+ value=pl.concat([self.population, self.out], how="horizontal"),
89
+ source=self.__class__.__name__,
90
+ ),
91
+ IntMessage(
92
+ topic=GeneratorMessageTopics.NEW_EVALUATIONS,
93
+ value=self.population.shape[0],
94
+ source=self.__class__.__name__,
95
+ ),
96
+ ]
97
+
98
+
99
+ class RandomGenerator(BaseGenerator):
100
+ """Class for generating random initial population for the evolutionary optimization algorithms.
101
+
102
+ This class generates the initial population by randomly sampling the points from the variable bounds. The
103
+ distribution of the points is uniform. If the seed is not provided, the seed is set to 0.
104
+ """
105
+
106
+ def __init__(self, problem: Problem, evaluator: EMOEvaluator, n_points: int, seed: int, **kwargs):
107
+ """Initialize the RandomGenerator class.
108
+
109
+ Args:
110
+ problem (Problem): The problem to solve.
111
+ evaluator (BaseEvaluator): The evaluator to evaluate the population.
112
+ n_points (int): The number of points to generate for the initial population.
113
+ seed (int): The seed for the random number generator.
114
+ kwargs: Additional keyword arguments. Check the Subscriber class for more information.
115
+ At the very least, the publisher argument should be provided.
116
+ """
117
+ super().__init__(problem, **kwargs)
118
+ self.n_points = n_points
119
+ self.evaluator = evaluator
120
+ self.rng = np.random.default_rng(seed)
121
+ self.seed = seed
122
+
123
+ def do(self) -> tuple[pl.DataFrame, pl.DataFrame]:
124
+ """Generate the initial population.
125
+
126
+ This method should be implemented by the inherited classes.
127
+
128
+ Returns:
129
+ tuple[pl.DataFrame, pl.DataFrame]: The initial population as the first element,
130
+ the corresponding objectives, the constraint violations, and the targets as the second element.
131
+ """
132
+ if self.population is not None and self.out is not None:
133
+ self.notify()
134
+ return self.population, self.out
135
+ self.population = pl.from_numpy(
136
+ self.rng.uniform(low=self.bounds[:, 0], high=self.bounds[:, 1], size=(self.n_points, self.bounds.shape[0])),
137
+ schema=self.variable_symbols,
138
+ )
139
+ self.out = self.evaluator.evaluate(self.population)
140
+ self.notify()
141
+ return self.population, self.out
142
+
143
+ def update(self, message) -> None:
144
+ """Update the generator based on the message."""
145
+
146
+
147
+ class LHSGenerator(RandomGenerator):
148
+ """Class for generating Latin Hypercube Sampling (LHS) initial population for the MOEAs.
149
+
150
+ This class generates the initial population by using the Latin Hypercube Sampling (LHS) method.
151
+ If the seed is not provided, the seed is set to 0.
152
+ """
153
+
154
+ def __init__(self, problem: Problem, evaluator: EMOEvaluator, n_points: int, seed: int, **kwargs):
155
+ """Initialize the LHSGenerator class.
156
+
157
+ Args:
158
+ problem (Problem): The problem to solve.
159
+ evaluator (BaseEvaluator): The evaluator to evaluate the population.
160
+ n_points (int): The number of points to generate for the initial population.
161
+ seed (int): The seed for the random number generator.
162
+ kwargs: Additional keyword arguments. Check the Subscriber class for more information.
163
+ At the very least, the publisher argument should be provided.
164
+ """
165
+ super().__init__(problem, evaluator, n_points, seed, **kwargs)
166
+ self.lhsrng = LatinHypercube(d=len(self.variable_symbols), seed=seed)
167
+ self.seed = seed
168
+
169
+ def do(self) -> tuple[pl.DataFrame, pl.DataFrame]:
170
+ """Generate the initial population.
171
+
172
+ This method should be implemented by the inherited classes.
173
+
174
+ Returns:
175
+ tuple[pl.DataFrame, pl.DataFrame]: The initial population as the first element,
176
+ the corresponding objectives, the constraint violations, and the targets as the second element.
177
+ """
178
+ if self.population is not None and self.out is not None:
179
+ self.notify()
180
+ return self.population, self.out
181
+ self.population = pl.from_numpy(
182
+ self.lhsrng.random(n=self.n_points) * (self.bounds[:, 1] - self.bounds[:, 0]) + self.bounds[:, 0],
183
+ schema=self.variable_symbols,
184
+ )
185
+ self.out = self.evaluator.evaluate(self.population)
186
+ self.notify()
187
+ return self.population, self.out
188
+
189
+ def update(self, message) -> None:
190
+ """Update the generator based on the message."""
191
+
192
+
193
+ class RandomBinaryGenerator(BaseGenerator):
194
+ """Class for generating random initial population for problems with binary variables.
195
+
196
+ This class generates an initial population by randomly setting variable values to be either 0 or 1.
197
+ """
198
+
199
+ def __init__(self, problem: Problem, evaluator: EMOEvaluator, n_points: int, seed: int, **kwargs):
200
+ """Initialize the RandomBinaryGenerator class.
201
+
202
+ Args:
203
+ problem (Problem): The problem to solve.
204
+ evaluator (BaseEvaluator): The evaluator to evaluate the population.
205
+ n_points (int): The number of points to generate for the initial population.
206
+ seed (int): The seed for the random number generator.
207
+ kwargs: Additional keyword arguments. Check the Subscriber class for more information.
208
+ At the very least, the publisher argument should be provided.
209
+ """
210
+ super().__init__(problem, **kwargs)
211
+ self.n_points = n_points
212
+ self.evaluator = evaluator
213
+ self.rng = np.random.default_rng(seed)
214
+ self.seed = seed
215
+
216
+ def do(self) -> tuple[pl.DataFrame, pl.DataFrame]:
217
+ """Generate the initial population.
218
+
219
+ Returns:
220
+ tuple[pl.DataFrame, pl.DataFrame]: The initial population as the first element,
221
+ the corresponding objectives, the constraint violations, and the targets as the second element.
222
+ """
223
+ if self.population is not None and self.out is not None:
224
+ self.notify()
225
+ return self.population, self.out
226
+
227
+ self.population = pl.from_numpy(
228
+ self.rng.integers(low=0, high=2, size=(self.n_points, self.bounds.shape[0])).astype(dtype=np.float64),
229
+ schema=self.variable_symbols,
230
+ )
231
+
232
+ self.out = self.evaluator.evaluate(self.population)
233
+ self.notify()
234
+ return self.population, self.out
235
+
236
+ def update(self, message) -> None:
237
+ """Update the generator based on the message."""
238
+
239
+
240
+ class RandomIntegerGenerator(BaseGenerator):
241
+ """Class for generating random initial population for problems with integer variables.
242
+
243
+ This class generates an initial population by randomly setting variable values to be integers between the bounds of
244
+ the variables.
245
+ """
246
+
247
+ def __init__(self, problem: Problem, evaluator: EMOEvaluator, n_points: int, seed: int, **kwargs):
248
+ """Initialize the RandomIntegerGenerator class.
249
+
250
+ Args:
251
+ problem (Problem): The problem to solve.
252
+ evaluator (BaseEvaluator): The evaluator to evaluate the population.
253
+ n_points (int): The number of points to generate for the initial population.
254
+ seed (int): The seed for the random number generator.
255
+ kwargs: Additional keyword arguments. Check the Subscriber class for more information.
256
+ At the very least, the publisher argument should be provided.
257
+ """
258
+ super().__init__(problem, **kwargs)
259
+ self.n_points = n_points
260
+ self.evaluator = evaluator
261
+ self.rng = np.random.default_rng(seed)
262
+ self.seed = seed
263
+
264
+ def do(self) -> tuple[pl.DataFrame, pl.DataFrame]:
265
+ """Generate the initial population.
266
+
267
+ Returns:
268
+ tuple[pl.DataFrame, pl.DataFrame]: The initial population as the first element,
269
+ the corresponding objectives, the constraint violations, and the targets as the second element.
270
+ """
271
+ if self.population is not None and self.out is not None:
272
+ self.notify()
273
+ return self.population, self.out
274
+
275
+ self.population = pl.from_numpy(
276
+ self.rng.integers(
277
+ low=self.bounds[:, 0],
278
+ high=self.bounds[:, 1],
279
+ size=(self.n_points, self.bounds.shape[0]),
280
+ endpoint=True,
281
+ ).astype(dtype=float),
282
+ schema=self.variable_symbols,
283
+ )
284
+
285
+ self.out = self.evaluator.evaluate(self.population)
286
+ self.notify()
287
+ return self.population, self.out
288
+
289
+ def update(self, message) -> None:
290
+ """Update the generator based on the message."""
291
+
292
+
293
+ class RandomMixedIntegerGenerator(BaseGenerator):
294
+ """Class for generating random initial population for problems with mixed-integer variables.
295
+
296
+ This class generates an initial population by randomly setting variable
297
+ values to be integers or floats between the bounds of the variables.
298
+ """
299
+
300
+ def __init__(self, problem: Problem, evaluator: EMOEvaluator, n_points: int, seed: int, **kwargs):
301
+ """Initialize the RandomMixedIntegerGenerator class.
302
+
303
+ Args:
304
+ problem (Problem): The problem to solve.
305
+ evaluator (BaseEvaluator): The evaluator to evaluate the population.
306
+ n_points (int): The number of points to generate for the initial population.
307
+ seed (int): The seed for the random number generator.
308
+ kwargs: Additional keyword arguments. Check the Subscriber class for more information.
309
+ At the very least, the publisher argument should be provided.
310
+ """
311
+ super().__init__(problem, **kwargs)
312
+ self.var_symbol_types = {
313
+ VariableTypeEnum.real: [
314
+ var.symbol for var in problem.variables if var.variable_type == VariableTypeEnum.real
315
+ ],
316
+ VariableTypeEnum.integer: [
317
+ var.symbol
318
+ for var in problem.variables
319
+ if var.variable_type in [VariableTypeEnum.integer, VariableTypeEnum.binary]
320
+ ],
321
+ }
322
+ self.n_points = n_points
323
+ self.evaluator = evaluator
324
+ self.rng = np.random.default_rng(seed)
325
+ self.seed = seed
326
+
327
+ def do(self) -> tuple[pl.DataFrame, pl.DataFrame]:
328
+ """Generate the initial population.
329
+
330
+ Returns:
331
+ tuple[pl.DataFrame, pl.DataFrame]: The initial population as the first element,
332
+ the corresponding objectives, the constraint violations, and the targets as the second element.
333
+ """
334
+ if self.population is not None and self.out is not None:
335
+ self.notify()
336
+ return self.population, self.out
337
+
338
+ tmp = {
339
+ var.symbol: self.rng.integers(
340
+ low=var.lowerbound, high=var.upperbound, size=self.n_points, endpoint=True
341
+ ).astype(dtype=float)
342
+ if var.variable_type in [VariableTypeEnum.binary, VariableTypeEnum.integer]
343
+ else self.rng.uniform(low=var.lowerbound, high=var.upperbound, size=self.n_points).astype(dtype=float)
344
+ for var in self.problem.variables
345
+ }
346
+
347
+ # combine
348
+ # self.population
349
+ self.population = pl.DataFrame(tmp)
350
+
351
+ self.out = self.evaluator.evaluate(self.population)
352
+ self.notify()
353
+ return self.population, self.out
354
+
355
+ def update(self, message) -> None:
356
+ """Update the generator based on the message."""