dataeval 0.74.1__py3-none-any.whl → 0.75.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dataeval/__init__.py +33 -10
- dataeval/detectors/__init__.py +2 -2
- dataeval/detectors/drift/__init__.py +14 -12
- dataeval/detectors/drift/base.py +1 -1
- dataeval/detectors/drift/cvm.py +1 -1
- dataeval/detectors/drift/ks.py +1 -1
- dataeval/detectors/drift/mmd.py +6 -5
- dataeval/detectors/drift/torch.py +12 -12
- dataeval/detectors/drift/uncertainty.py +3 -2
- dataeval/detectors/linters/__init__.py +4 -4
- dataeval/detectors/linters/clusterer.py +2 -7
- dataeval/detectors/linters/duplicates.py +6 -10
- dataeval/detectors/linters/outliers.py +4 -2
- dataeval/detectors/ood/__init__.py +3 -10
- dataeval/detectors/ood/{ae_torch.py → ae.py} +6 -4
- dataeval/detectors/ood/base.py +64 -161
- dataeval/detectors/ood/metadata_ks_compare.py +34 -42
- dataeval/detectors/ood/metadata_least_likely.py +3 -3
- dataeval/detectors/ood/metadata_ood_mi.py +6 -5
- dataeval/detectors/ood/mixin.py +146 -0
- dataeval/detectors/ood/output.py +63 -0
- dataeval/interop.py +16 -3
- dataeval/log.py +18 -0
- dataeval/metrics/__init__.py +2 -2
- dataeval/metrics/bias/__init__.py +9 -12
- dataeval/metrics/bias/balance.py +10 -8
- dataeval/metrics/bias/coverage.py +52 -4
- dataeval/metrics/bias/diversity.py +42 -14
- dataeval/metrics/bias/parity.py +15 -12
- dataeval/metrics/estimators/__init__.py +2 -2
- dataeval/metrics/estimators/ber.py +3 -1
- dataeval/metrics/estimators/divergence.py +1 -1
- dataeval/metrics/estimators/uap.py +1 -1
- dataeval/metrics/stats/__init__.py +18 -18
- dataeval/metrics/stats/base.py +4 -4
- dataeval/metrics/stats/boxratiostats.py +8 -9
- dataeval/metrics/stats/datasetstats.py +10 -14
- dataeval/metrics/stats/dimensionstats.py +4 -4
- dataeval/metrics/stats/hashstats.py +12 -8
- dataeval/metrics/stats/labelstats.py +5 -5
- dataeval/metrics/stats/pixelstats.py +4 -9
- dataeval/metrics/stats/visualstats.py +4 -9
- dataeval/output.py +1 -1
- dataeval/utils/__init__.py +4 -13
- dataeval/utils/dataset/__init__.py +7 -0
- dataeval/utils/{torch → dataset}/datasets.py +2 -0
- dataeval/utils/dataset/read.py +63 -0
- dataeval/utils/dataset/split.py +527 -0
- dataeval/utils/image.py +2 -2
- dataeval/utils/metadata.py +310 -5
- dataeval/{metrics/bias/metadata_utils.py → utils/plot.py} +1 -104
- dataeval/utils/torch/__init__.py +2 -17
- dataeval/utils/torch/gmm.py +29 -6
- dataeval/utils/torch/{utils.py → internal.py} +82 -58
- dataeval/utils/torch/models.py +10 -8
- dataeval/utils/torch/trainer.py +6 -85
- dataeval/workflows/__init__.py +2 -5
- dataeval/workflows/sufficiency.py +16 -6
- dataeval-0.75.0.dist-info/METADATA +136 -0
- dataeval-0.75.0.dist-info/RECORD +67 -0
- dataeval/detectors/ood/base_torch.py +0 -109
- dataeval/metrics/bias/metadata_preprocessing.py +0 -285
- dataeval/utils/gmm.py +0 -26
- dataeval/utils/split_dataset.py +0 -492
- dataeval-0.74.1.dist-info/METADATA +0 -120
- dataeval-0.74.1.dist-info/RECORD +0 -65
- {dataeval-0.74.1.dist-info → dataeval-0.75.0.dist-info}/LICENSE.txt +0 -0
- {dataeval-0.74.1.dist-info → dataeval-0.75.0.dist-info}/WHEEL +0 -0
@@ -1,285 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
|
3
|
-
__all__ = ["MetadataOutput", "metadata_preprocessing"]
|
4
|
-
|
5
|
-
import warnings
|
6
|
-
from dataclasses import dataclass
|
7
|
-
from typing import Any, Iterable, Literal, Mapping, TypeVar
|
8
|
-
|
9
|
-
import numpy as np
|
10
|
-
from numpy.typing import ArrayLike, NDArray
|
11
|
-
from scipy.stats import wasserstein_distance as wd
|
12
|
-
|
13
|
-
from dataeval.interop import as_numpy, to_numpy
|
14
|
-
from dataeval.output import Output, set_metadata
|
15
|
-
from dataeval.utils.metadata import merge_metadata
|
16
|
-
|
17
|
-
TNum = TypeVar("TNum", int, float)
|
18
|
-
DISCRETE_MIN_WD = 0.054
|
19
|
-
CONTINUOUS_MIN_SAMPLE_SIZE = 20
|
20
|
-
|
21
|
-
|
22
|
-
@dataclass(frozen=True)
|
23
|
-
class MetadataOutput(Output):
|
24
|
-
"""
|
25
|
-
Output class for :func:`metadata_binning` function
|
26
|
-
|
27
|
-
Attributes
|
28
|
-
----------
|
29
|
-
discrete_factor_names : list[str]
|
30
|
-
List containing factor names for the original data that was discrete and the binned continuous data
|
31
|
-
discrete_data : NDArray[np.int]
|
32
|
-
Array containing values for the original data that was discrete and the binned continuous data
|
33
|
-
continuous_factor_names : list[str]
|
34
|
-
List containing factor names for the original continuous data
|
35
|
-
continuous_data : NDArray[np.int or np.double] | None
|
36
|
-
Array containing values for the original continuous data or None if there was no continuous data
|
37
|
-
class_labels : NDArray[np.int]
|
38
|
-
Numerical class labels for the images/objects
|
39
|
-
class_names : NDArray[Any]
|
40
|
-
Array of unique class names (for use with plotting)
|
41
|
-
total_num_factors : int
|
42
|
-
Sum of discrete_factor_names and continuous_factor_names plus 1 for class
|
43
|
-
"""
|
44
|
-
|
45
|
-
discrete_factor_names: list[str]
|
46
|
-
discrete_data: NDArray[np.int_]
|
47
|
-
continuous_factor_names: list[str]
|
48
|
-
continuous_data: NDArray[np.int_ | np.double] | None
|
49
|
-
class_labels: NDArray[np.int_]
|
50
|
-
class_names: NDArray[Any]
|
51
|
-
total_num_factors: int
|
52
|
-
|
53
|
-
|
54
|
-
@set_metadata
|
55
|
-
def metadata_preprocessing(
|
56
|
-
raw_metadata: Iterable[Mapping[str, Any]],
|
57
|
-
class_labels: ArrayLike | str,
|
58
|
-
continuous_factor_bins: Mapping[str, int | list[tuple[TNum, TNum]]] | None = None,
|
59
|
-
auto_bin_method: Literal["uniform_width", "uniform_count", "clusters"] = "uniform_width",
|
60
|
-
exclude: Iterable[str] | None = None,
|
61
|
-
) -> MetadataOutput:
|
62
|
-
"""
|
63
|
-
Restructures the metadata to be in the correct format for the bias functions.
|
64
|
-
|
65
|
-
This identifies whether the incoming metadata is discrete or continuous,
|
66
|
-
and whether the data is already binned or still needs binning.
|
67
|
-
It accepts a list of dictionaries containing the per image metadata and
|
68
|
-
automatically adjusts for multiple targets in an image.
|
69
|
-
|
70
|
-
Parameters
|
71
|
-
----------
|
72
|
-
raw_metadata : Iterable[Mapping[str, Any]]
|
73
|
-
Iterable collection of metadata dictionaries to flatten and merge.
|
74
|
-
class_labels : ArrayLike or string or None
|
75
|
-
If arraylike, expects the labels for each image (image classification) or each object (object detection).
|
76
|
-
If the labels are included in the metadata dictionary, pass in the key value.
|
77
|
-
continuous_factor_bins : Mapping[str, int] or Mapping[str, list[tuple[TNum, TNum]]] or None, default None
|
78
|
-
User provided dictionary specifying how to bin the continuous metadata factors
|
79
|
-
auto_bin_method : "uniform_width" or "uniform_count" or "clusters", default "uniform_width"
|
80
|
-
Method by which the function will automatically bin continuous metadata factors. It is recommended
|
81
|
-
that the user provide the bins through the `continuous_factor_bins`.
|
82
|
-
exclude : Iterable[str] or None, default None
|
83
|
-
User provided collection of metadata keys to exclude when processing metadata.
|
84
|
-
|
85
|
-
Returns
|
86
|
-
-------
|
87
|
-
MetadataOutput
|
88
|
-
Output class containing the binned metadata
|
89
|
-
"""
|
90
|
-
# Transform metadata into single, flattened dictionary
|
91
|
-
metadata, image_repeats = merge_metadata(raw_metadata)
|
92
|
-
|
93
|
-
# Drop any excluded metadata keys
|
94
|
-
if exclude:
|
95
|
-
for k in list(metadata):
|
96
|
-
if k in exclude:
|
97
|
-
metadata.pop(k)
|
98
|
-
|
99
|
-
# Get the class label array in numeric form
|
100
|
-
class_array = as_numpy(metadata.pop(class_labels)) if isinstance(class_labels, str) else as_numpy(class_labels)
|
101
|
-
if class_array.ndim > 1:
|
102
|
-
raise ValueError(
|
103
|
-
f"Got class labels with {class_array.ndim}-dimensional "
|
104
|
-
f"shape {class_array.shape}, but expected a 1-dimensional array."
|
105
|
-
)
|
106
|
-
if not np.issubdtype(class_array.dtype, np.int_):
|
107
|
-
unique_classes, numerical_labels = np.unique(class_array, return_inverse=True)
|
108
|
-
else:
|
109
|
-
numerical_labels = class_array
|
110
|
-
unique_classes = np.unique(class_array)
|
111
|
-
|
112
|
-
# Bin according to user supplied bins
|
113
|
-
continuous_metadata = {}
|
114
|
-
discrete_metadata = {}
|
115
|
-
if continuous_factor_bins is not None and continuous_factor_bins != {}:
|
116
|
-
invalid_keys = set(continuous_factor_bins.keys()) - set(metadata.keys())
|
117
|
-
if invalid_keys:
|
118
|
-
raise KeyError(
|
119
|
-
f"The keys - {invalid_keys} - are present in the `continuous_factor_bins` dictionary "
|
120
|
-
"but are not keys in the `metadata` dictionary. Delete these keys from `continuous_factor_bins` "
|
121
|
-
"or add corresponding entries to the `metadata` dictionary."
|
122
|
-
)
|
123
|
-
for factor, grouping in continuous_factor_bins.items():
|
124
|
-
discrete_metadata[factor] = _user_defined_bin(metadata[factor], grouping)
|
125
|
-
continuous_metadata[factor] = metadata[factor]
|
126
|
-
|
127
|
-
# Determine category of the rest of the keys
|
128
|
-
remaining_keys = set(metadata.keys()) - set(continuous_metadata.keys())
|
129
|
-
for key in remaining_keys:
|
130
|
-
data = to_numpy(metadata[key])
|
131
|
-
if np.issubdtype(data.dtype, np.number):
|
132
|
-
result = _is_continuous(data, image_repeats)
|
133
|
-
if result:
|
134
|
-
continuous_metadata[key] = data
|
135
|
-
unique_samples, ordinal_data = np.unique(data, return_inverse=True)
|
136
|
-
if unique_samples.size <= np.max([20, data.size * 0.01]):
|
137
|
-
discrete_metadata[key] = ordinal_data
|
138
|
-
else:
|
139
|
-
warnings.warn(
|
140
|
-
f"A user defined binning was not provided for {key}. "
|
141
|
-
f"Using the {auto_bin_method} method to discretize the data. "
|
142
|
-
"It is recommended that the user rerun and supply the desired "
|
143
|
-
"bins using the continuous_factor_bins parameter.",
|
144
|
-
UserWarning,
|
145
|
-
)
|
146
|
-
discrete_metadata[key] = _binning_function(data, auto_bin_method)
|
147
|
-
else:
|
148
|
-
_, discrete_metadata[key] = np.unique(data, return_inverse=True)
|
149
|
-
|
150
|
-
# splitting out the dictionaries into the keys and values
|
151
|
-
discrete_factor_names = list(discrete_metadata.keys())
|
152
|
-
discrete_data = np.stack(list(discrete_metadata.values()), axis=-1)
|
153
|
-
continuous_factor_names = list(continuous_metadata.keys())
|
154
|
-
continuous_data = np.stack(list(continuous_metadata.values()), axis=-1) if continuous_metadata else None
|
155
|
-
total_num_factors = len(discrete_factor_names + continuous_factor_names) + 1
|
156
|
-
|
157
|
-
return MetadataOutput(
|
158
|
-
discrete_factor_names,
|
159
|
-
discrete_data,
|
160
|
-
continuous_factor_names,
|
161
|
-
continuous_data,
|
162
|
-
numerical_labels,
|
163
|
-
unique_classes,
|
164
|
-
total_num_factors,
|
165
|
-
)
|
166
|
-
|
167
|
-
|
168
|
-
def _user_defined_bin(data: list[Any] | NDArray[Any], binning: int | list[tuple[TNum, TNum]]) -> NDArray[np.intp]:
|
169
|
-
"""
|
170
|
-
Digitizes a list of values into a given number of bins.
|
171
|
-
|
172
|
-
Parameters
|
173
|
-
----------
|
174
|
-
data : list | NDArray
|
175
|
-
The values to be digitized.
|
176
|
-
binning : int | list[tuple[TNum, TNum]]
|
177
|
-
The number of bins for the discrete values that data will be digitized into.
|
178
|
-
|
179
|
-
Returns
|
180
|
-
-------
|
181
|
-
NDArray[np.intp]
|
182
|
-
The digitized values
|
183
|
-
"""
|
184
|
-
|
185
|
-
if not np.all([np.issubdtype(type(n), np.number) for n in data]):
|
186
|
-
raise TypeError(
|
187
|
-
"Encountered a data value with non-numeric type when digitizing a factor. "
|
188
|
-
"Ensure all occurrences of continuous factors are numeric types."
|
189
|
-
)
|
190
|
-
if type(binning) is int:
|
191
|
-
_, bin_edges = np.histogram(data, bins=binning)
|
192
|
-
bin_edges[-1] = np.inf
|
193
|
-
bin_edges[0] = -np.inf
|
194
|
-
else:
|
195
|
-
bin_edges = binning
|
196
|
-
return np.digitize(data, bin_edges)
|
197
|
-
|
198
|
-
|
199
|
-
def _binning_function(data: NDArray[Any], bin_method: str) -> NDArray[np.int_]:
|
200
|
-
"""
|
201
|
-
Bins continuous data through either equal width bins, equal amounts in each bin, or by clusters.
|
202
|
-
"""
|
203
|
-
if bin_method == "clusters":
|
204
|
-
# bin_edges = _binning_by_clusters(data)
|
205
|
-
warnings.warn(
|
206
|
-
"Binning by clusters is currently unavailable until changes to the clustering function go through.",
|
207
|
-
UserWarning,
|
208
|
-
)
|
209
|
-
bin_method = "uniform_width"
|
210
|
-
|
211
|
-
if bin_method != "clusters":
|
212
|
-
counts, bin_edges = np.histogram(data, bins="auto")
|
213
|
-
n_bins = counts.size
|
214
|
-
if counts[counts > 0].min() < 10:
|
215
|
-
for _ in range(20):
|
216
|
-
n_bins -= 1
|
217
|
-
counts, bin_edges = np.histogram(data, bins=n_bins)
|
218
|
-
if counts[counts > 0].min() >= 10 or n_bins < 2:
|
219
|
-
break
|
220
|
-
|
221
|
-
if bin_method == "uniform_count":
|
222
|
-
quantiles = np.linspace(0, 100, n_bins + 1)
|
223
|
-
bin_edges = np.asarray(np.percentile(data, quantiles))
|
224
|
-
|
225
|
-
bin_edges[0] = -np.inf # type: ignore # until the clusters speed up is merged
|
226
|
-
bin_edges[-1] = np.inf # type: ignore # and the _binning_by_clusters can be uncommented
|
227
|
-
return np.digitize(data, bin_edges) # type: ignore
|
228
|
-
|
229
|
-
|
230
|
-
def _is_continuous(data: NDArray[np.number], image_indicies: NDArray[np.number]) -> bool:
|
231
|
-
"""
|
232
|
-
Determines whether the data is continuous or discrete using the Wasserstein distance.
|
233
|
-
|
234
|
-
Given a 1D sample, we consider the intervals between adjacent points. For a continuous distribution,
|
235
|
-
a point is equally likely to lie anywhere in the interval bounded by its two neighbors. Furthermore,
|
236
|
-
we can put all "between neighbor" locations on the same scale of 0 to 1 by subtracting the smaller
|
237
|
-
neighbor and dividing out the length of the interval. (Duplicates are either assigned to zero or
|
238
|
-
ignored, depending on context). These normalized locations will be much more uniformly distributed
|
239
|
-
for continuous data than for discrete, and this gives us a way to distinguish them. Call this the
|
240
|
-
Normalized Near Neighbor distribution (NNN), defined on the interval [0,1].
|
241
|
-
|
242
|
-
The Wasserstein distance is available in scipy.stats.wasserstein_distance. We can use it to measure
|
243
|
-
how close the NNN is to a uniform distribution over [0,1]. We found that as long as a sample has at
|
244
|
-
least 20 points, and furthermore at least half as many points as there are discrete values, we can
|
245
|
-
reliably distinguish discrete from continuous samples by testing that the Wasserstein distance
|
246
|
-
measured from a uniform distribution is greater or less than 0.054, respectively.
|
247
|
-
"""
|
248
|
-
# Check if the metadata is image specific
|
249
|
-
_, data_indicies_unsorted = np.unique(data, return_index=True)
|
250
|
-
if data_indicies_unsorted.size == image_indicies.size:
|
251
|
-
data_indicies = np.sort(data_indicies_unsorted)
|
252
|
-
if (data_indicies == image_indicies).all():
|
253
|
-
data = data[data_indicies]
|
254
|
-
|
255
|
-
# OLD METHOD
|
256
|
-
# uvals = np.unique(data)
|
257
|
-
# pct_unique = uvals.size / data.size
|
258
|
-
# return pct_unique < threshold
|
259
|
-
|
260
|
-
n_examples = len(data)
|
261
|
-
|
262
|
-
if n_examples < CONTINUOUS_MIN_SAMPLE_SIZE:
|
263
|
-
warnings.warn(
|
264
|
-
f"All samples look discrete with so few data points (< {CONTINUOUS_MIN_SAMPLE_SIZE})", UserWarning
|
265
|
-
)
|
266
|
-
return False
|
267
|
-
|
268
|
-
# Require at least 3 unique values before bothering with NNN
|
269
|
-
xu = np.unique(data, axis=None)
|
270
|
-
if xu.size < 3:
|
271
|
-
return False
|
272
|
-
|
273
|
-
Xs = np.sort(data)
|
274
|
-
|
275
|
-
X0, X1 = Xs[0:-2], Xs[2:] # left and right neighbors
|
276
|
-
|
277
|
-
dx = np.zeros(n_examples - 2) # no dx at end points
|
278
|
-
gtz = (X1 - X0) > 0 # check for dups; dx will be zero for them
|
279
|
-
dx[np.logical_not(gtz)] = 0.0
|
280
|
-
|
281
|
-
dx[gtz] = (Xs[1:-1] - X0)[gtz] / (X1 - X0)[gtz] # the core idea: dx is NNN samples.
|
282
|
-
|
283
|
-
shift = wd(dx, np.linspace(0, 1, dx.size)) # how far is dx from uniform, for this feature?
|
284
|
-
|
285
|
-
return shift < DISCRETE_MIN_WD # if NNN is close enough to uniform, consider the sample continuous.
|
dataeval/utils/gmm.py
DELETED
@@ -1,26 +0,0 @@
|
|
1
|
-
from dataclasses import dataclass
|
2
|
-
from typing import Generic, TypeVar
|
3
|
-
|
4
|
-
TGMMData = TypeVar("TGMMData")
|
5
|
-
|
6
|
-
|
7
|
-
@dataclass
|
8
|
-
class GaussianMixtureModelParams(Generic[TGMMData]):
|
9
|
-
"""
|
10
|
-
phi : TGMMData
|
11
|
-
Mixture component distribution weights.
|
12
|
-
mu : TGMMData
|
13
|
-
Mixture means.
|
14
|
-
cov : TGMMData
|
15
|
-
Mixture covariance.
|
16
|
-
L : TGMMData
|
17
|
-
Cholesky decomposition of `cov`.
|
18
|
-
log_det_cov : TGMMData
|
19
|
-
Log of the determinant of `cov`.
|
20
|
-
"""
|
21
|
-
|
22
|
-
phi: TGMMData
|
23
|
-
mu: TGMMData
|
24
|
-
cov: TGMMData
|
25
|
-
L: TGMMData
|
26
|
-
log_det_cov: TGMMData
|