dataeval 0.74.1__py3-none-any.whl → 0.75.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dataeval/__init__.py +33 -10
- dataeval/detectors/__init__.py +2 -2
- dataeval/detectors/drift/__init__.py +14 -12
- dataeval/detectors/drift/base.py +1 -1
- dataeval/detectors/drift/cvm.py +1 -1
- dataeval/detectors/drift/ks.py +1 -1
- dataeval/detectors/drift/mmd.py +6 -5
- dataeval/detectors/drift/torch.py +12 -12
- dataeval/detectors/drift/uncertainty.py +3 -2
- dataeval/detectors/linters/__init__.py +4 -4
- dataeval/detectors/linters/clusterer.py +2 -7
- dataeval/detectors/linters/duplicates.py +6 -10
- dataeval/detectors/linters/outliers.py +4 -2
- dataeval/detectors/ood/__init__.py +3 -10
- dataeval/detectors/ood/{ae_torch.py → ae.py} +6 -4
- dataeval/detectors/ood/base.py +64 -161
- dataeval/detectors/ood/metadata_ks_compare.py +34 -42
- dataeval/detectors/ood/metadata_least_likely.py +3 -3
- dataeval/detectors/ood/metadata_ood_mi.py +6 -5
- dataeval/detectors/ood/mixin.py +146 -0
- dataeval/detectors/ood/output.py +63 -0
- dataeval/interop.py +16 -3
- dataeval/log.py +18 -0
- dataeval/metrics/__init__.py +2 -2
- dataeval/metrics/bias/__init__.py +9 -12
- dataeval/metrics/bias/balance.py +10 -8
- dataeval/metrics/bias/coverage.py +52 -4
- dataeval/metrics/bias/diversity.py +42 -14
- dataeval/metrics/bias/parity.py +15 -12
- dataeval/metrics/estimators/__init__.py +2 -2
- dataeval/metrics/estimators/ber.py +3 -1
- dataeval/metrics/estimators/divergence.py +1 -1
- dataeval/metrics/estimators/uap.py +1 -1
- dataeval/metrics/stats/__init__.py +18 -18
- dataeval/metrics/stats/base.py +4 -4
- dataeval/metrics/stats/boxratiostats.py +8 -9
- dataeval/metrics/stats/datasetstats.py +10 -14
- dataeval/metrics/stats/dimensionstats.py +4 -4
- dataeval/metrics/stats/hashstats.py +12 -8
- dataeval/metrics/stats/labelstats.py +5 -5
- dataeval/metrics/stats/pixelstats.py +4 -9
- dataeval/metrics/stats/visualstats.py +4 -9
- dataeval/output.py +1 -1
- dataeval/utils/__init__.py +4 -13
- dataeval/utils/dataset/__init__.py +7 -0
- dataeval/utils/{torch → dataset}/datasets.py +2 -0
- dataeval/utils/dataset/read.py +63 -0
- dataeval/utils/dataset/split.py +527 -0
- dataeval/utils/image.py +2 -2
- dataeval/utils/metadata.py +310 -5
- dataeval/{metrics/bias/metadata_utils.py → utils/plot.py} +1 -104
- dataeval/utils/torch/__init__.py +2 -17
- dataeval/utils/torch/gmm.py +29 -6
- dataeval/utils/torch/{utils.py → internal.py} +82 -58
- dataeval/utils/torch/models.py +10 -8
- dataeval/utils/torch/trainer.py +6 -85
- dataeval/workflows/__init__.py +2 -5
- dataeval/workflows/sufficiency.py +16 -6
- dataeval-0.75.0.dist-info/METADATA +136 -0
- dataeval-0.75.0.dist-info/RECORD +67 -0
- dataeval/detectors/ood/base_torch.py +0 -109
- dataeval/metrics/bias/metadata_preprocessing.py +0 -285
- dataeval/utils/gmm.py +0 -26
- dataeval/utils/split_dataset.py +0 -492
- dataeval-0.74.1.dist-info/METADATA +0 -120
- dataeval-0.74.1.dist-info/RECORD +0 -65
- {dataeval-0.74.1.dist-info → dataeval-0.75.0.dist-info}/LICENSE.txt +0 -0
- {dataeval-0.74.1.dist-info → dataeval-0.75.0.dist-info}/WHEEL +0 -0
dataeval/__init__.py
CHANGED
@@ -1,17 +1,40 @@
|
|
1
|
-
|
1
|
+
"""
|
2
|
+
DataEval provides a simple interface to characterize image data and its impact on model performance
|
3
|
+
across classification and object-detection tasks. It also provides capabilities to select and curate
|
4
|
+
datasets to test and train performant, robust, unbiased and reliable AI models and monitor for data
|
5
|
+
shifts that impact performance of deployed models.
|
6
|
+
"""
|
2
7
|
|
3
|
-
from
|
8
|
+
from __future__ import annotations
|
4
9
|
|
5
|
-
|
6
|
-
|
10
|
+
__all__ = ["detectors", "log", "metrics", "utils", "workflows"]
|
11
|
+
__version__ = "0.75.0"
|
7
12
|
|
8
|
-
|
13
|
+
import logging
|
9
14
|
|
10
|
-
from dataeval import detectors, metrics
|
15
|
+
from dataeval import detectors, metrics, utils, workflows
|
11
16
|
|
12
|
-
|
17
|
+
logging.getLogger(__name__).addHandler(logging.NullHandler())
|
13
18
|
|
14
|
-
if _IS_TORCH_AVAILABLE:
|
15
|
-
from dataeval import utils, workflows
|
16
19
|
|
17
|
-
|
20
|
+
def log(level: int = logging.DEBUG, handler: logging.Handler | None = None) -> None:
|
21
|
+
"""
|
22
|
+
Helper for quickly adding a StreamHandler to the logger. Useful for debugging.
|
23
|
+
|
24
|
+
Parameters
|
25
|
+
----------
|
26
|
+
level : int, default logging.DEBUG(10)
|
27
|
+
Set the logging level for the logger
|
28
|
+
handler : logging.Handler, optional
|
29
|
+
Sets the logging handler for the logger if provided, otherwise logger will be
|
30
|
+
provided with a StreamHandler
|
31
|
+
"""
|
32
|
+
import logging
|
33
|
+
|
34
|
+
logger = logging.getLogger(__name__)
|
35
|
+
if handler is None:
|
36
|
+
handler = logging.StreamHandler() if handler is None else handler
|
37
|
+
handler.setFormatter(logging.Formatter("%(asctime)s %(levelname)s %(message)s"))
|
38
|
+
logger.addHandler(handler)
|
39
|
+
logger.setLevel(level)
|
40
|
+
logger.debug(f"Added logging handler {handler} to logger: {__name__}")
|
dataeval/detectors/__init__.py
CHANGED
@@ -2,19 +2,21 @@
|
|
2
2
|
:term:`Drift` detectors identify if the statistical properties of the data has changed.
|
3
3
|
"""
|
4
4
|
|
5
|
-
|
5
|
+
__all__ = [
|
6
|
+
"DriftCVM",
|
7
|
+
"DriftKS",
|
8
|
+
"DriftMMD",
|
9
|
+
"DriftMMDOutput",
|
10
|
+
"DriftOutput",
|
11
|
+
"DriftUncertainty",
|
12
|
+
"preprocess_drift",
|
13
|
+
"updates",
|
14
|
+
]
|
15
|
+
|
6
16
|
from dataeval.detectors.drift import updates
|
7
17
|
from dataeval.detectors.drift.base import DriftOutput
|
8
18
|
from dataeval.detectors.drift.cvm import DriftCVM
|
9
19
|
from dataeval.detectors.drift.ks import DriftKS
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
if _IS_TORCH_AVAILABLE:
|
14
|
-
from dataeval.detectors.drift.mmd import DriftMMD, DriftMMDOutput
|
15
|
-
from dataeval.detectors.drift.torch import preprocess_drift
|
16
|
-
from dataeval.detectors.drift.uncertainty import DriftUncertainty
|
17
|
-
|
18
|
-
__all__ += ["DriftMMD", "DriftMMDOutput", "DriftUncertainty", "preprocess_drift"]
|
19
|
-
|
20
|
-
del _IS_TORCH_AVAILABLE
|
20
|
+
from dataeval.detectors.drift.mmd import DriftMMD, DriftMMDOutput
|
21
|
+
from dataeval.detectors.drift.torch import preprocess_drift
|
22
|
+
from dataeval.detectors.drift.uncertainty import DriftUncertainty
|
dataeval/detectors/drift/base.py
CHANGED
dataeval/detectors/drift/cvm.py
CHANGED
dataeval/detectors/drift/ks.py
CHANGED
dataeval/detectors/drift/mmd.py
CHANGED
@@ -8,7 +8,7 @@ Licensed under Apache Software License (Apache 2.0)
|
|
8
8
|
|
9
9
|
from __future__ import annotations
|
10
10
|
|
11
|
-
__all__ = [
|
11
|
+
__all__ = []
|
12
12
|
|
13
13
|
from dataclasses import dataclass
|
14
14
|
from typing import Callable
|
@@ -17,9 +17,10 @@ import torch
|
|
17
17
|
from numpy.typing import ArrayLike
|
18
18
|
|
19
19
|
from dataeval.detectors.drift.base import BaseDrift, DriftBaseOutput, UpdateStrategy, preprocess_x, update_x_ref
|
20
|
-
from dataeval.detectors.drift.torch import
|
20
|
+
from dataeval.detectors.drift.torch import GaussianRBF, mmd2_from_kernel_matrix
|
21
21
|
from dataeval.interop import as_numpy
|
22
22
|
from dataeval.output import set_metadata
|
23
|
+
from dataeval.utils.torch.internal import get_device
|
23
24
|
|
24
25
|
|
25
26
|
@dataclass(frozen=True)
|
@@ -109,7 +110,7 @@ class DriftMMD(BaseDrift):
|
|
109
110
|
|
110
111
|
# initialize kernel
|
111
112
|
sigma_tensor = torch.from_numpy(as_numpy(sigma)).to(self.device) if sigma is not None else None
|
112
|
-
self._kernel =
|
113
|
+
self._kernel = GaussianRBF(sigma_tensor).to(self.device)
|
113
114
|
|
114
115
|
# compute kernel matrix for the reference data
|
115
116
|
if self._infer_sigma or isinstance(sigma_tensor, torch.Tensor):
|
@@ -150,9 +151,9 @@ class DriftMMD(BaseDrift):
|
|
150
151
|
n = x.shape[0]
|
151
152
|
kernel_mat = self._kernel_matrix(x_ref, torch.from_numpy(x).to(self.device))
|
152
153
|
kernel_mat = kernel_mat - torch.diag(kernel_mat.diag()) # zero diagonal
|
153
|
-
mmd2 =
|
154
|
+
mmd2 = mmd2_from_kernel_matrix(kernel_mat, n, permute=False, zero_diag=False)
|
154
155
|
mmd2_permuted = torch.Tensor(
|
155
|
-
[
|
156
|
+
[mmd2_from_kernel_matrix(kernel_mat, n, permute=True, zero_diag=False) for _ in range(self.n_permutations)]
|
156
157
|
)
|
157
158
|
mmd2, mmd2_permuted = mmd2.detach().cpu(), mmd2_permuted.detach().cpu()
|
158
159
|
p_val = (mmd2 <= mmd2_permuted).float().mean()
|
@@ -17,10 +17,10 @@ import torch
|
|
17
17
|
import torch.nn as nn
|
18
18
|
from numpy.typing import NDArray
|
19
19
|
|
20
|
-
from dataeval.utils.torch.
|
20
|
+
from dataeval.utils.torch.internal import get_device, predict_batch
|
21
21
|
|
22
22
|
|
23
|
-
def
|
23
|
+
def mmd2_from_kernel_matrix(
|
24
24
|
kernel_mat: torch.Tensor, m: int, permute: bool = False, zero_diag: bool = True
|
25
25
|
) -> torch.Tensor:
|
26
26
|
"""
|
@@ -127,7 +127,7 @@ def _squared_pairwise_distance(
|
|
127
127
|
|
128
128
|
def sigma_median(x: torch.Tensor, y: torch.Tensor, dist: torch.Tensor) -> torch.Tensor:
|
129
129
|
"""
|
130
|
-
Bandwidth estimation using the median heuristic
|
130
|
+
Bandwidth estimation using the median heuristic `Gretton2012`
|
131
131
|
|
132
132
|
Parameters
|
133
133
|
----------
|
@@ -151,7 +151,7 @@ def sigma_median(x: torch.Tensor, y: torch.Tensor, dist: torch.Tensor) -> torch.
|
|
151
151
|
return sigma
|
152
152
|
|
153
153
|
|
154
|
-
class
|
154
|
+
class GaussianRBF(nn.Module):
|
155
155
|
"""
|
156
156
|
Gaussian RBF kernel: k(x,y) = exp(-(1/(2*sigma^2)||x-y||^2).
|
157
157
|
|
@@ -179,18 +179,18 @@ class _GaussianRBF(nn.Module):
|
|
179
179
|
) -> None:
|
180
180
|
super().__init__()
|
181
181
|
init_sigma_fn = sigma_median if init_sigma_fn is None else init_sigma_fn
|
182
|
-
self.config = {
|
182
|
+
self.config: dict[str, Any] = {
|
183
183
|
"sigma": sigma,
|
184
184
|
"trainable": trainable,
|
185
185
|
"init_sigma_fn": init_sigma_fn,
|
186
186
|
}
|
187
187
|
if sigma is None:
|
188
|
-
self.log_sigma = nn.Parameter(torch.empty(1), requires_grad=trainable)
|
189
|
-
self.init_required = True
|
188
|
+
self.log_sigma: nn.Parameter = nn.Parameter(torch.empty(1), requires_grad=trainable)
|
189
|
+
self.init_required: bool = True
|
190
190
|
else:
|
191
191
|
sigma = sigma.reshape(-1) # [Ns,]
|
192
|
-
self.log_sigma = nn.Parameter(sigma.log(), requires_grad=trainable)
|
193
|
-
self.init_required = False
|
192
|
+
self.log_sigma: nn.Parameter = nn.Parameter(sigma.log(), requires_grad=trainable)
|
193
|
+
self.init_required: bool = False
|
194
194
|
self.init_sigma_fn = init_sigma_fn
|
195
195
|
self.trainable = trainable
|
196
196
|
|
@@ -200,8 +200,8 @@ class _GaussianRBF(nn.Module):
|
|
200
200
|
|
201
201
|
def forward(
|
202
202
|
self,
|
203
|
-
x: np.ndarray | torch.Tensor,
|
204
|
-
y: np.ndarray | torch.Tensor,
|
203
|
+
x: np.ndarray[Any, Any] | torch.Tensor,
|
204
|
+
y: np.ndarray[Any, Any] | torch.Tensor,
|
205
205
|
infer_sigma: bool = False,
|
206
206
|
) -> torch.Tensor:
|
207
207
|
x, y = torch.as_tensor(x), torch.as_tensor(y)
|
@@ -213,7 +213,7 @@ class _GaussianRBF(nn.Module):
|
|
213
213
|
sigma = self.init_sigma_fn(x, y, dist)
|
214
214
|
with torch.no_grad():
|
215
215
|
self.log_sigma.copy_(sigma.log().clone())
|
216
|
-
self.init_required = False
|
216
|
+
self.init_required: bool = False
|
217
217
|
|
218
218
|
gamma = 1.0 / (2.0 * self.sigma**2) # [Ns,]
|
219
219
|
# TODO: do matrix multiplication after all?
|
@@ -8,7 +8,7 @@ Licensed under Apache Software License (Apache 2.0)
|
|
8
8
|
|
9
9
|
from __future__ import annotations
|
10
10
|
|
11
|
-
__all__ = [
|
11
|
+
__all__ = []
|
12
12
|
|
13
13
|
from functools import partial
|
14
14
|
from typing import Callable, Literal
|
@@ -20,7 +20,8 @@ from scipy.stats import entropy
|
|
20
20
|
|
21
21
|
from dataeval.detectors.drift.base import DriftOutput, UpdateStrategy
|
22
22
|
from dataeval.detectors.drift.ks import DriftKS
|
23
|
-
from dataeval.detectors.drift.torch import
|
23
|
+
from dataeval.detectors.drift.torch import preprocess_drift
|
24
|
+
from dataeval.utils.torch.internal import get_device
|
24
25
|
|
25
26
|
|
26
27
|
def classifier_uncertainty(
|
@@ -2,10 +2,6 @@
|
|
2
2
|
Linters help identify potential issues in training and test data and are an important aspect of data cleaning.
|
3
3
|
"""
|
4
4
|
|
5
|
-
from dataeval.detectors.linters.clusterer import Clusterer, ClustererOutput
|
6
|
-
from dataeval.detectors.linters.duplicates import Duplicates, DuplicatesOutput
|
7
|
-
from dataeval.detectors.linters.outliers import Outliers, OutliersOutput
|
8
|
-
|
9
5
|
__all__ = [
|
10
6
|
"Clusterer",
|
11
7
|
"ClustererOutput",
|
@@ -14,3 +10,7 @@ __all__ = [
|
|
14
10
|
"Outliers",
|
15
11
|
"OutliersOutput",
|
16
12
|
]
|
13
|
+
|
14
|
+
from dataeval.detectors.linters.clusterer import Clusterer, ClustererOutput
|
15
|
+
from dataeval.detectors.linters.duplicates import Duplicates, DuplicatesOutput
|
16
|
+
from dataeval.detectors.linters.outliers import Outliers, OutliersOutput
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
__all__ = [
|
3
|
+
__all__ = []
|
4
4
|
|
5
5
|
from dataclasses import dataclass
|
6
6
|
from typing import Any, Iterable, NamedTuple, cast
|
@@ -147,12 +147,6 @@ class Clusterer:
|
|
147
147
|
----
|
148
148
|
The Clusterer works best when the length of the feature dimension, P, is less than 500.
|
149
149
|
If flattening a CxHxW image results in a dimension larger than 500, then it is recommended to reduce the dimensions.
|
150
|
-
|
151
|
-
Example
|
152
|
-
-------
|
153
|
-
Initialize the Clusterer class:
|
154
|
-
|
155
|
-
>>> cluster = Clusterer(dataset)
|
156
150
|
"""
|
157
151
|
|
158
152
|
def __init__(self, dataset: ArrayLike) -> None:
|
@@ -506,6 +500,7 @@ class Clusterer:
|
|
506
500
|
|
507
501
|
Example
|
508
502
|
-------
|
503
|
+
>>> cluster = Clusterer(clusterer_images)
|
509
504
|
>>> cluster.evaluate()
|
510
505
|
ClustererOutput(outliers=[18, 21, 34, 35, 45], potential_outliers=[13, 15, 42], duplicates=[[9, 24], [23, 48]], potential_duplicates=[[1, 11]])
|
511
506
|
""" # noqa: E501
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
__all__ = [
|
3
|
+
__all__ = []
|
4
4
|
|
5
5
|
from dataclasses import dataclass
|
6
6
|
from typing import Generic, Iterable, Sequence, TypeVar, overload
|
@@ -51,13 +51,6 @@ class Duplicates:
|
|
51
51
|
----------
|
52
52
|
only_exact : bool, default False
|
53
53
|
Only inspect the dataset for exact image matches
|
54
|
-
|
55
|
-
Example
|
56
|
-
-------
|
57
|
-
Initialize the Duplicates class:
|
58
|
-
|
59
|
-
>>> all_dupes = Duplicates()
|
60
|
-
>>> exact_dupes = Duplicates(only_exact=True)
|
61
54
|
"""
|
62
55
|
|
63
56
|
def __init__(self, only_exact: bool = False) -> None:
|
@@ -73,7 +66,8 @@ class Duplicates:
|
|
73
66
|
if not self.only_exact:
|
74
67
|
near_dict: dict[int, list] = {}
|
75
68
|
for i, value in enumerate(stats["pchash"]):
|
76
|
-
|
69
|
+
if value:
|
70
|
+
near_dict.setdefault(value, []).append(i)
|
77
71
|
near = [sorted(v) for v in near_dict.values() if len(v) > 1 and not any(set(v).issubset(x) for x in exact)]
|
78
72
|
else:
|
79
73
|
near = []
|
@@ -112,6 +106,7 @@ class Duplicates:
|
|
112
106
|
|
113
107
|
Example
|
114
108
|
-------
|
109
|
+
>>> exact_dupes = Duplicates(only_exact=True)
|
115
110
|
>>> exact_dupes.from_stats([hashes1, hashes2])
|
116
111
|
DuplicatesOutput(exact=[{0: [3, 20]}, {0: [16], 1: [12]}], near=[])
|
117
112
|
"""
|
@@ -159,7 +154,8 @@ class Duplicates:
|
|
159
154
|
|
160
155
|
Example
|
161
156
|
-------
|
162
|
-
>>> all_dupes
|
157
|
+
>>> all_dupes = Duplicates()
|
158
|
+
>>> all_dupes.evaluate(duplicate_images)
|
163
159
|
DuplicatesOutput(exact=[[3, 20], [16, 37]], near=[[3, 20, 22], [12, 18], [13, 36], [14, 31], [17, 27], [19, 38, 47]])
|
164
160
|
""" # noqa: E501
|
165
161
|
self.stats = hashstats(data)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
__all__ = [
|
3
|
+
__all__ = []
|
4
4
|
|
5
5
|
from dataclasses import dataclass
|
6
6
|
from typing import Generic, Iterable, Literal, Sequence, TypeVar, Union, overload
|
@@ -188,6 +188,7 @@ class Outliers:
|
|
188
188
|
-------
|
189
189
|
Evaluate the dataset:
|
190
190
|
|
191
|
+
>>> outliers = Outliers(outlier_method="zscore", outlier_threshold=3.5)
|
191
192
|
>>> results = outliers.from_stats([stats1, stats2])
|
192
193
|
>>> len(results)
|
193
194
|
2
|
@@ -248,7 +249,8 @@ class Outliers:
|
|
248
249
|
-------
|
249
250
|
Evaluate the dataset:
|
250
251
|
|
251
|
-
>>>
|
252
|
+
>>> outliers = Outliers(outlier_method="zscore", outlier_threshold=3.5)
|
253
|
+
>>> results = outliers.evaluate(outlier_images)
|
252
254
|
>>> list(results.issues)
|
253
255
|
[10, 12]
|
254
256
|
>>> results.issues[10]
|
@@ -2,14 +2,7 @@
|
|
2
2
|
Out-of-distribution (OOD)` detectors identify data that is different from the data used to train a particular model.
|
3
3
|
"""
|
4
4
|
|
5
|
-
|
6
|
-
from dataeval.detectors.ood.base import OODOutput, OODScoreOutput
|
5
|
+
__all__ = ["OODOutput", "OODScoreOutput", "OOD_AE"]
|
7
6
|
|
8
|
-
|
9
|
-
|
10
|
-
if _IS_TORCH_AVAILABLE:
|
11
|
-
from dataeval.detectors.ood.ae_torch import OOD_AE
|
12
|
-
|
13
|
-
__all__ += ["OOD_AE"]
|
14
|
-
|
15
|
-
del _IS_TORCH_AVAILABLE
|
7
|
+
from dataeval.detectors.ood.ae import OOD_AE
|
8
|
+
from dataeval.detectors.ood.output import OODOutput, OODScoreOutput
|
@@ -10,16 +10,18 @@ Licensed under Apache Software License (Apache 2.0)
|
|
10
10
|
|
11
11
|
from __future__ import annotations
|
12
12
|
|
13
|
+
__all__ = []
|
14
|
+
|
13
15
|
from typing import Callable
|
14
16
|
|
15
17
|
import numpy as np
|
16
18
|
import torch
|
17
19
|
from numpy.typing import ArrayLike
|
18
20
|
|
19
|
-
from dataeval.detectors.ood.base import
|
20
|
-
from dataeval.detectors.ood.
|
21
|
+
from dataeval.detectors.ood.base import OODBase
|
22
|
+
from dataeval.detectors.ood.output import OODScoreOutput
|
21
23
|
from dataeval.interop import as_numpy
|
22
|
-
from dataeval.utils.torch.
|
24
|
+
from dataeval.utils.torch.internal import predict_batch
|
23
25
|
|
24
26
|
|
25
27
|
class OOD_AE(OODBase):
|
@@ -28,7 +30,7 @@ class OOD_AE(OODBase):
|
|
28
30
|
|
29
31
|
Parameters
|
30
32
|
----------
|
31
|
-
model :
|
33
|
+
model : Autoencoder
|
32
34
|
An Autoencoder model.
|
33
35
|
"""
|
34
36
|
|