dao-ai 0.1.2__py3-none-any.whl → 0.1.20__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dao_ai/apps/__init__.py +24 -0
- dao_ai/apps/handlers.py +105 -0
- dao_ai/apps/model_serving.py +29 -0
- dao_ai/apps/resources.py +1122 -0
- dao_ai/apps/server.py +39 -0
- dao_ai/cli.py +546 -37
- dao_ai/config.py +1179 -139
- dao_ai/evaluation.py +543 -0
- dao_ai/genie/__init__.py +55 -7
- dao_ai/genie/cache/__init__.py +34 -7
- dao_ai/genie/cache/base.py +143 -2
- dao_ai/genie/cache/context_aware/__init__.py +31 -0
- dao_ai/genie/cache/context_aware/base.py +1151 -0
- dao_ai/genie/cache/context_aware/in_memory.py +609 -0
- dao_ai/genie/cache/context_aware/persistent.py +802 -0
- dao_ai/genie/cache/context_aware/postgres.py +1166 -0
- dao_ai/genie/cache/core.py +1 -1
- dao_ai/genie/cache/lru.py +257 -75
- dao_ai/genie/cache/optimization.py +890 -0
- dao_ai/genie/core.py +235 -11
- dao_ai/memory/postgres.py +175 -39
- dao_ai/middleware/__init__.py +38 -0
- dao_ai/middleware/assertions.py +3 -3
- dao_ai/middleware/context_editing.py +230 -0
- dao_ai/middleware/core.py +4 -4
- dao_ai/middleware/guardrails.py +3 -3
- dao_ai/middleware/human_in_the_loop.py +3 -2
- dao_ai/middleware/message_validation.py +4 -4
- dao_ai/middleware/model_call_limit.py +77 -0
- dao_ai/middleware/model_retry.py +121 -0
- dao_ai/middleware/pii.py +157 -0
- dao_ai/middleware/summarization.py +1 -1
- dao_ai/middleware/tool_call_limit.py +210 -0
- dao_ai/middleware/tool_retry.py +174 -0
- dao_ai/middleware/tool_selector.py +129 -0
- dao_ai/models.py +327 -370
- dao_ai/nodes.py +9 -16
- dao_ai/orchestration/core.py +33 -9
- dao_ai/orchestration/supervisor.py +29 -13
- dao_ai/orchestration/swarm.py +6 -1
- dao_ai/{prompts.py → prompts/__init__.py} +12 -61
- dao_ai/prompts/instructed_retriever_decomposition.yaml +58 -0
- dao_ai/prompts/instruction_reranker.yaml +14 -0
- dao_ai/prompts/router.yaml +37 -0
- dao_ai/prompts/verifier.yaml +46 -0
- dao_ai/providers/base.py +28 -2
- dao_ai/providers/databricks.py +363 -33
- dao_ai/state.py +1 -0
- dao_ai/tools/__init__.py +5 -3
- dao_ai/tools/genie.py +103 -26
- dao_ai/tools/instructed_retriever.py +366 -0
- dao_ai/tools/instruction_reranker.py +202 -0
- dao_ai/tools/mcp.py +539 -97
- dao_ai/tools/router.py +89 -0
- dao_ai/tools/slack.py +13 -2
- dao_ai/tools/sql.py +7 -3
- dao_ai/tools/unity_catalog.py +32 -10
- dao_ai/tools/vector_search.py +493 -160
- dao_ai/tools/verifier.py +159 -0
- dao_ai/utils.py +182 -2
- dao_ai/vector_search.py +46 -1
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/METADATA +45 -9
- dao_ai-0.1.20.dist-info/RECORD +89 -0
- dao_ai/agent_as_code.py +0 -22
- dao_ai/genie/cache/semantic.py +0 -970
- dao_ai-0.1.2.dist-info/RECORD +0 -64
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/WHEEL +0 -0
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/entry_points.txt +0 -0
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/licenses/LICENSE +0 -0
dao_ai/tools/genie.py
CHANGED
|
@@ -6,7 +6,7 @@ interact with Databricks Genie.
|
|
|
6
6
|
|
|
7
7
|
For the core Genie service and cache implementations, see:
|
|
8
8
|
- dao_ai.genie: GenieService, GenieServiceBase
|
|
9
|
-
- dao_ai.genie.cache: LRUCacheService,
|
|
9
|
+
- dao_ai.genie.cache: LRUCacheService, PostgresContextAwareGenieService, InMemoryContextAwareGenieService
|
|
10
10
|
"""
|
|
11
11
|
|
|
12
12
|
import json
|
|
@@ -25,13 +25,19 @@ from pydantic import BaseModel
|
|
|
25
25
|
from dao_ai.config import (
|
|
26
26
|
AnyVariable,
|
|
27
27
|
CompositeVariableModel,
|
|
28
|
+
GenieContextAwareCacheParametersModel,
|
|
29
|
+
GenieInMemorySemanticCacheParametersModel,
|
|
28
30
|
GenieLRUCacheParametersModel,
|
|
29
31
|
GenieRoomModel,
|
|
30
|
-
GenieSemanticCacheParametersModel,
|
|
31
32
|
value_of,
|
|
32
33
|
)
|
|
33
34
|
from dao_ai.genie import GenieService, GenieServiceBase
|
|
34
|
-
from dao_ai.genie.cache import
|
|
35
|
+
from dao_ai.genie.cache import (
|
|
36
|
+
CacheResult,
|
|
37
|
+
InMemoryContextAwareGenieService,
|
|
38
|
+
LRUCacheService,
|
|
39
|
+
PostgresContextAwareGenieService,
|
|
40
|
+
)
|
|
35
41
|
from dao_ai.state import AgentState, Context, SessionState
|
|
36
42
|
|
|
37
43
|
|
|
@@ -64,7 +70,10 @@ def create_genie_tool(
|
|
|
64
70
|
persist_conversation: bool = True,
|
|
65
71
|
truncate_results: bool = False,
|
|
66
72
|
lru_cache_parameters: GenieLRUCacheParametersModel | dict[str, Any] | None = None,
|
|
67
|
-
semantic_cache_parameters:
|
|
73
|
+
semantic_cache_parameters: GenieContextAwareCacheParametersModel
|
|
74
|
+
| dict[str, Any]
|
|
75
|
+
| None = None,
|
|
76
|
+
in_memory_semantic_cache_parameters: GenieInMemorySemanticCacheParametersModel
|
|
68
77
|
| dict[str, Any]
|
|
69
78
|
| None = None,
|
|
70
79
|
) -> Callable[..., Command]:
|
|
@@ -84,7 +93,9 @@ def create_genie_tool(
|
|
|
84
93
|
truncate_results: Whether to truncate large query results to fit token limits
|
|
85
94
|
lru_cache_parameters: Optional LRU cache configuration for SQL query caching
|
|
86
95
|
semantic_cache_parameters: Optional semantic cache configuration using pg_vector
|
|
87
|
-
for similarity-based query matching
|
|
96
|
+
for similarity-based query matching (requires PostgreSQL/Lakebase)
|
|
97
|
+
in_memory_semantic_cache_parameters: Optional in-memory semantic cache configuration
|
|
98
|
+
for similarity-based query matching (no database required)
|
|
88
99
|
|
|
89
100
|
Returns:
|
|
90
101
|
A LangGraph tool that processes natural language queries through Genie
|
|
@@ -97,6 +108,7 @@ def create_genie_tool(
|
|
|
97
108
|
name=name,
|
|
98
109
|
has_lru_cache=lru_cache_parameters is not None,
|
|
99
110
|
has_semantic_cache=semantic_cache_parameters is not None,
|
|
111
|
+
has_in_memory_semantic_cache=in_memory_semantic_cache_parameters is not None,
|
|
100
112
|
)
|
|
101
113
|
|
|
102
114
|
if isinstance(genie_room, dict):
|
|
@@ -106,10 +118,15 @@ def create_genie_tool(
|
|
|
106
118
|
lru_cache_parameters = GenieLRUCacheParametersModel(**lru_cache_parameters)
|
|
107
119
|
|
|
108
120
|
if isinstance(semantic_cache_parameters, dict):
|
|
109
|
-
semantic_cache_parameters =
|
|
121
|
+
semantic_cache_parameters = GenieContextAwareCacheParametersModel(
|
|
110
122
|
**semantic_cache_parameters
|
|
111
123
|
)
|
|
112
124
|
|
|
125
|
+
if isinstance(in_memory_semantic_cache_parameters, dict):
|
|
126
|
+
in_memory_semantic_cache_parameters = GenieInMemorySemanticCacheParametersModel(
|
|
127
|
+
**in_memory_semantic_cache_parameters
|
|
128
|
+
)
|
|
129
|
+
|
|
113
130
|
space_id: AnyVariable = genie_room.space_id or os.environ.get(
|
|
114
131
|
"DATABRICKS_GENIE_SPACE_ID"
|
|
115
132
|
)
|
|
@@ -139,29 +156,61 @@ Returns:
|
|
|
139
156
|
GenieResponse: A response object containing the conversation ID and result from Genie."""
|
|
140
157
|
tool_description = tool_description + function_docs
|
|
141
158
|
|
|
142
|
-
genie
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
)
|
|
159
|
+
# Cache for genie service - created lazily on first call
|
|
160
|
+
# This allows us to use workspace_client_from with runtime context for OBO
|
|
161
|
+
_cached_genie_service: GenieServiceBase | None = None
|
|
162
|
+
|
|
163
|
+
def _get_genie_service(context: Context | None) -> GenieServiceBase:
|
|
164
|
+
"""Get or create the Genie service, using context for OBO auth if available."""
|
|
165
|
+
nonlocal _cached_genie_service
|
|
166
|
+
|
|
167
|
+
# Use cached service if available (for non-OBO or after first call)
|
|
168
|
+
# For OBO, we need fresh workspace client each time to use the user's token
|
|
169
|
+
if _cached_genie_service is not None and not genie_room.on_behalf_of_user:
|
|
170
|
+
return _cached_genie_service
|
|
147
171
|
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
# Wrap with LRU cache last (checked first - fast O(1) exact match)
|
|
159
|
-
if lru_cache_parameters is not None:
|
|
160
|
-
genie_service = LRUCacheService(
|
|
161
|
-
impl=genie_service,
|
|
162
|
-
parameters=lru_cache_parameters,
|
|
172
|
+
# Get workspace client using context for OBO support
|
|
173
|
+
from databricks.sdk import WorkspaceClient
|
|
174
|
+
|
|
175
|
+
workspace_client: WorkspaceClient = genie_room.workspace_client_from(context)
|
|
176
|
+
|
|
177
|
+
genie: Genie = Genie(
|
|
178
|
+
space_id=space_id,
|
|
179
|
+
client=workspace_client,
|
|
180
|
+
truncate_results=truncate_results,
|
|
163
181
|
)
|
|
164
182
|
|
|
183
|
+
genie_service: GenieServiceBase = GenieService(genie)
|
|
184
|
+
|
|
185
|
+
# Wrap with context-aware cache first (checked second/third due to decorator pattern)
|
|
186
|
+
if semantic_cache_parameters is not None:
|
|
187
|
+
genie_service = PostgresContextAwareGenieService(
|
|
188
|
+
impl=genie_service,
|
|
189
|
+
parameters=semantic_cache_parameters,
|
|
190
|
+
workspace_client=workspace_client,
|
|
191
|
+
).initialize()
|
|
192
|
+
|
|
193
|
+
# Wrap with in-memory context-aware cache (alternative to PostgreSQL context-aware cache)
|
|
194
|
+
if in_memory_semantic_cache_parameters is not None:
|
|
195
|
+
genie_service = InMemoryContextAwareGenieService(
|
|
196
|
+
impl=genie_service,
|
|
197
|
+
parameters=in_memory_semantic_cache_parameters,
|
|
198
|
+
workspace_client=workspace_client,
|
|
199
|
+
).initialize()
|
|
200
|
+
|
|
201
|
+
# Wrap with LRU cache last (checked first - fast O(1) exact match)
|
|
202
|
+
if lru_cache_parameters is not None:
|
|
203
|
+
genie_service = LRUCacheService(
|
|
204
|
+
impl=genie_service,
|
|
205
|
+
parameters=lru_cache_parameters,
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
# Cache for non-OBO scenarios
|
|
209
|
+
if not genie_room.on_behalf_of_user:
|
|
210
|
+
_cached_genie_service = genie_service
|
|
211
|
+
|
|
212
|
+
return genie_service
|
|
213
|
+
|
|
165
214
|
@tool(
|
|
166
215
|
name_or_callable=tool_name,
|
|
167
216
|
description=tool_description,
|
|
@@ -177,6 +226,10 @@ GenieResponse: A response object containing the conversation ID and result from
|
|
|
177
226
|
# Access state through runtime
|
|
178
227
|
state: AgentState = runtime.state
|
|
179
228
|
tool_call_id: str = runtime.tool_call_id
|
|
229
|
+
context: Context | None = runtime.context
|
|
230
|
+
|
|
231
|
+
# Get genie service with OBO support via context
|
|
232
|
+
genie_service: GenieServiceBase = _get_genie_service(context)
|
|
180
233
|
|
|
181
234
|
# Ensure space_id is a string for state keys
|
|
182
235
|
space_id_str: str = str(space_id)
|
|
@@ -194,6 +247,14 @@ GenieResponse: A response object containing the conversation ID and result from
|
|
|
194
247
|
conversation_id=existing_conversation_id,
|
|
195
248
|
)
|
|
196
249
|
|
|
250
|
+
# Log the prompt being sent to Genie
|
|
251
|
+
logger.trace(
|
|
252
|
+
"Sending prompt to Genie",
|
|
253
|
+
space_id=space_id_str,
|
|
254
|
+
conversation_id=existing_conversation_id,
|
|
255
|
+
prompt=question[:500] + "..." if len(question) > 500 else question,
|
|
256
|
+
)
|
|
257
|
+
|
|
197
258
|
# Call ask_question which always returns CacheResult with cache metadata
|
|
198
259
|
cache_result: CacheResult = genie_service.ask_question(
|
|
199
260
|
question, conversation_id=existing_conversation_id
|
|
@@ -211,6 +272,22 @@ GenieResponse: A response object containing the conversation ID and result from
|
|
|
211
272
|
cache_key=cache_key,
|
|
212
273
|
)
|
|
213
274
|
|
|
275
|
+
# Log truncated response for debugging
|
|
276
|
+
result_preview: str = str(genie_response.result)
|
|
277
|
+
if len(result_preview) > 500:
|
|
278
|
+
result_preview = result_preview[:500] + "..."
|
|
279
|
+
logger.trace(
|
|
280
|
+
"Genie response content",
|
|
281
|
+
question=question[:100] + "..." if len(question) > 100 else question,
|
|
282
|
+
query=genie_response.query,
|
|
283
|
+
description=(
|
|
284
|
+
genie_response.description[:200] + "..."
|
|
285
|
+
if genie_response.description and len(genie_response.description) > 200
|
|
286
|
+
else genie_response.description
|
|
287
|
+
),
|
|
288
|
+
result_preview=result_preview,
|
|
289
|
+
)
|
|
290
|
+
|
|
214
291
|
# Update session state with cache information
|
|
215
292
|
if persist_conversation:
|
|
216
293
|
session.genie.update_space(
|
|
@@ -0,0 +1,366 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Instructed retriever for query decomposition and result fusion.
|
|
3
|
+
|
|
4
|
+
This module provides functions for decomposing user queries into multiple
|
|
5
|
+
subqueries with metadata filters and merging results using Reciprocal Rank Fusion.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import json
|
|
9
|
+
from datetime import datetime
|
|
10
|
+
from pathlib import Path
|
|
11
|
+
from typing import Any, Optional, Union
|
|
12
|
+
|
|
13
|
+
import mlflow
|
|
14
|
+
import yaml
|
|
15
|
+
from langchain_core.documents import Document
|
|
16
|
+
from langchain_core.language_models import BaseChatModel
|
|
17
|
+
from langchain_core.runnables import Runnable
|
|
18
|
+
from loguru import logger
|
|
19
|
+
from mlflow.entities import SpanType
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field
|
|
21
|
+
|
|
22
|
+
from dao_ai.config import (
|
|
23
|
+
ColumnInfo,
|
|
24
|
+
DecomposedQueries,
|
|
25
|
+
FilterItem,
|
|
26
|
+
LLMModel,
|
|
27
|
+
SearchQuery,
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
# Module-level cache for LLM clients
|
|
31
|
+
_llm_cache: dict[str, BaseChatModel] = {}
|
|
32
|
+
|
|
33
|
+
# Load prompt template
|
|
34
|
+
_PROMPT_PATH = (
|
|
35
|
+
Path(__file__).parent.parent / "prompts" / "instructed_retriever_decomposition.yaml"
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def _load_prompt_template() -> dict[str, Any]:
|
|
40
|
+
"""Load the decomposition prompt template from YAML."""
|
|
41
|
+
with open(_PROMPT_PATH) as f:
|
|
42
|
+
return yaml.safe_load(f)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def _get_cached_llm(model_config: LLMModel) -> BaseChatModel:
|
|
46
|
+
"""
|
|
47
|
+
Get or create cached LLM client for decomposition.
|
|
48
|
+
|
|
49
|
+
Uses full config as cache key to avoid collisions when same model name
|
|
50
|
+
has different parameters (temperature, API keys, etc.).
|
|
51
|
+
"""
|
|
52
|
+
cache_key = model_config.model_dump_json()
|
|
53
|
+
if cache_key not in _llm_cache:
|
|
54
|
+
_llm_cache[cache_key] = model_config.as_chat_model()
|
|
55
|
+
logger.debug(
|
|
56
|
+
"Created new LLM client for decomposition", model=model_config.name
|
|
57
|
+
)
|
|
58
|
+
return _llm_cache[cache_key]
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def _format_constraints(constraints: list[str] | None) -> str:
|
|
62
|
+
"""Format constraints list for prompt injection."""
|
|
63
|
+
if not constraints:
|
|
64
|
+
return "No additional constraints."
|
|
65
|
+
return "\n".join(f"- {c}" for c in constraints)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def _format_examples(examples: list[dict[str, Any]] | None) -> str:
|
|
69
|
+
"""Format few-shot examples for prompt injection.
|
|
70
|
+
|
|
71
|
+
Converts dict-style filters from config to FilterItem array format
|
|
72
|
+
to match the expected JSON schema output.
|
|
73
|
+
"""
|
|
74
|
+
if not examples:
|
|
75
|
+
return "No examples provided."
|
|
76
|
+
|
|
77
|
+
formatted = []
|
|
78
|
+
for i, ex in enumerate(examples, 1):
|
|
79
|
+
query = ex.get("query", "")
|
|
80
|
+
filters = ex.get("filters", {})
|
|
81
|
+
# Convert dict to FilterItem array format
|
|
82
|
+
filter_items = [{"key": k, "value": v} for k, v in filters.items()]
|
|
83
|
+
formatted.append(
|
|
84
|
+
f'Example {i}:\n Query: "{query}"\n Filters: {json.dumps(filter_items)}'
|
|
85
|
+
)
|
|
86
|
+
return "\n".join(formatted)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def create_decomposition_schema(
|
|
90
|
+
columns: list[ColumnInfo] | None = None,
|
|
91
|
+
) -> type[BaseModel]:
|
|
92
|
+
"""Create schema-aware DecomposedQueries model with dynamic descriptions.
|
|
93
|
+
|
|
94
|
+
When columns are provided, the column names and valid operators are embedded
|
|
95
|
+
directly into the JSON schema that with_structured_output sends to the LLM.
|
|
96
|
+
This improves accuracy by making valid filter keys explicit in the schema.
|
|
97
|
+
|
|
98
|
+
Args:
|
|
99
|
+
columns: List of column metadata for dynamic schema generation
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
A DecomposedQueries-compatible Pydantic model class
|
|
103
|
+
"""
|
|
104
|
+
if not columns:
|
|
105
|
+
# Fall back to generic models
|
|
106
|
+
return DecomposedQueries
|
|
107
|
+
|
|
108
|
+
# Build column info with types for the schema description
|
|
109
|
+
column_info = ", ".join(f"{c.name} ({c.type})" for c in columns)
|
|
110
|
+
|
|
111
|
+
# Build operator list from column definitions (union of all column operators)
|
|
112
|
+
all_operators: set[str] = set()
|
|
113
|
+
for col in columns:
|
|
114
|
+
all_operators.update(col.operators)
|
|
115
|
+
# Remove empty string (equality) and sort for consistent output
|
|
116
|
+
named_operators = sorted(all_operators - {""})
|
|
117
|
+
operator_list = ", ".join(named_operators) if named_operators else "equality only"
|
|
118
|
+
|
|
119
|
+
# Build valid key examples with operators
|
|
120
|
+
key_examples: list[str] = []
|
|
121
|
+
for col in columns[:3]: # Show examples for first 3 columns
|
|
122
|
+
key_examples.append(f"'{col.name}'")
|
|
123
|
+
if "<" in col.operators:
|
|
124
|
+
key_examples.append(f"'{col.name} <'")
|
|
125
|
+
if "NOT" in col.operators:
|
|
126
|
+
key_examples.append(f"'{col.name} NOT'")
|
|
127
|
+
|
|
128
|
+
# Create dynamic FilterItem with schema-aware description
|
|
129
|
+
class SchemaFilterItem(BaseModel):
|
|
130
|
+
"""A metadata filter for vector search with schema-specific columns."""
|
|
131
|
+
|
|
132
|
+
model_config = ConfigDict(extra="forbid")
|
|
133
|
+
key: str = Field(
|
|
134
|
+
description=(
|
|
135
|
+
f"Column name with optional operator suffix. "
|
|
136
|
+
f"Valid columns: {column_info}. "
|
|
137
|
+
f"Operators: (none) for equality, {operator_list}. "
|
|
138
|
+
f"Examples: {', '.join(key_examples[:5])}"
|
|
139
|
+
)
|
|
140
|
+
)
|
|
141
|
+
value: Union[str, int, float, bool, list[Union[str, int, float, bool]]] = Field(
|
|
142
|
+
description="The filter value matching the column type."
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# Create dynamic SearchQuery using SchemaFilterItem
|
|
146
|
+
class SchemaSearchQuery(BaseModel):
|
|
147
|
+
"""A search query with schema-aware filters."""
|
|
148
|
+
|
|
149
|
+
model_config = ConfigDict(extra="forbid")
|
|
150
|
+
text: str = Field(
|
|
151
|
+
description=(
|
|
152
|
+
"Natural language search query text optimized for semantic similarity. "
|
|
153
|
+
"Should be focused on a single search intent. "
|
|
154
|
+
"Do NOT include filter criteria in the text; use the filters field instead."
|
|
155
|
+
)
|
|
156
|
+
)
|
|
157
|
+
filters: Optional[list[SchemaFilterItem]] = Field(
|
|
158
|
+
default=None,
|
|
159
|
+
description=(
|
|
160
|
+
f"Metadata filters to constrain search results. "
|
|
161
|
+
f"Valid filter columns: {column_info}. "
|
|
162
|
+
f"Set to null if no filters apply."
|
|
163
|
+
),
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
# Create dynamic DecomposedQueries using SchemaSearchQuery
|
|
167
|
+
class SchemaDecomposedQueries(BaseModel):
|
|
168
|
+
"""Decomposed search queries with schema-aware filters."""
|
|
169
|
+
|
|
170
|
+
model_config = ConfigDict(extra="forbid")
|
|
171
|
+
queries: list[SchemaSearchQuery] = Field(
|
|
172
|
+
description=(
|
|
173
|
+
"List of search queries extracted from the user request. "
|
|
174
|
+
"Each query should target a distinct search intent. "
|
|
175
|
+
"Order queries by importance, with the most relevant first."
|
|
176
|
+
)
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
return SchemaDecomposedQueries
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
@mlflow.trace(name="decompose_query", span_type=SpanType.LLM)
|
|
183
|
+
def decompose_query(
|
|
184
|
+
llm: BaseChatModel,
|
|
185
|
+
query: str,
|
|
186
|
+
schema_description: str,
|
|
187
|
+
constraints: list[str] | None = None,
|
|
188
|
+
max_subqueries: int = 3,
|
|
189
|
+
examples: list[dict[str, Any]] | None = None,
|
|
190
|
+
previous_feedback: str | None = None,
|
|
191
|
+
columns: list[ColumnInfo] | None = None,
|
|
192
|
+
) -> list[SearchQuery]:
|
|
193
|
+
"""
|
|
194
|
+
Decompose a user query into multiple search queries with filters.
|
|
195
|
+
|
|
196
|
+
Uses structured output for reliable parsing and injects current time
|
|
197
|
+
for resolving relative date references. When columns are provided,
|
|
198
|
+
schema-aware Pydantic models are used for improved filter accuracy.
|
|
199
|
+
|
|
200
|
+
Args:
|
|
201
|
+
llm: Language model for decomposition
|
|
202
|
+
query: User's search query
|
|
203
|
+
schema_description: Column names, types, and valid filter syntax
|
|
204
|
+
constraints: Default constraints to apply
|
|
205
|
+
max_subqueries: Maximum number of subqueries to generate
|
|
206
|
+
examples: Few-shot examples for domain-specific filter translation
|
|
207
|
+
previous_feedback: Feedback from failed verification (for retry)
|
|
208
|
+
columns: Structured column info for dynamic schema generation
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
List of SearchQuery objects with text and optional filters
|
|
212
|
+
"""
|
|
213
|
+
current_time = datetime.now().isoformat()
|
|
214
|
+
|
|
215
|
+
# Load and format prompt
|
|
216
|
+
prompt_config = _load_prompt_template()
|
|
217
|
+
prompt_template = prompt_config["template"]
|
|
218
|
+
|
|
219
|
+
# Add previous feedback section if provided (for retry)
|
|
220
|
+
feedback_section = ""
|
|
221
|
+
if previous_feedback:
|
|
222
|
+
feedback_section = f"\n\n## Previous Attempt Feedback\nThe previous search attempt failed verification: {previous_feedback}\nAdjust your filters to address this feedback."
|
|
223
|
+
|
|
224
|
+
prompt = (
|
|
225
|
+
prompt_template.format(
|
|
226
|
+
current_time=current_time,
|
|
227
|
+
schema_description=schema_description,
|
|
228
|
+
constraints=_format_constraints(constraints),
|
|
229
|
+
examples=_format_examples(examples),
|
|
230
|
+
max_subqueries=max_subqueries,
|
|
231
|
+
query=query,
|
|
232
|
+
)
|
|
233
|
+
+ feedback_section
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
logger.trace(
|
|
237
|
+
"Decomposing query",
|
|
238
|
+
query=query[:100],
|
|
239
|
+
max_subqueries=max_subqueries,
|
|
240
|
+
dynamic_schema=columns is not None,
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
# Create schema-aware model when columns are provided
|
|
244
|
+
DecompositionSchema: type[BaseModel] = create_decomposition_schema(columns)
|
|
245
|
+
|
|
246
|
+
# Use LangChain's with_structured_output for automatic strategy selection
|
|
247
|
+
# (JSON schema vs tool calling based on model capabilities)
|
|
248
|
+
try:
|
|
249
|
+
structured_llm: Runnable[str, BaseModel] = llm.with_structured_output(
|
|
250
|
+
DecompositionSchema
|
|
251
|
+
)
|
|
252
|
+
result: BaseModel = structured_llm.invoke(prompt)
|
|
253
|
+
except Exception as e:
|
|
254
|
+
logger.warning("Query decomposition failed", error=str(e))
|
|
255
|
+
raise
|
|
256
|
+
|
|
257
|
+
# Extract queries from result (works with both static and dynamic schemas)
|
|
258
|
+
subqueries: list[SearchQuery] = []
|
|
259
|
+
for query_obj in result.queries[:max_subqueries]:
|
|
260
|
+
# Convert dynamic schema objects to SearchQuery for consistent return type
|
|
261
|
+
filters: list[FilterItem] | None = None
|
|
262
|
+
if query_obj.filters:
|
|
263
|
+
filters = [FilterItem(key=f.key, value=f.value) for f in query_obj.filters]
|
|
264
|
+
subqueries.append(SearchQuery(text=query_obj.text, filters=filters))
|
|
265
|
+
|
|
266
|
+
# Log for observability
|
|
267
|
+
mlflow.set_tag("num_subqueries", len(subqueries))
|
|
268
|
+
mlflow.log_text(
|
|
269
|
+
json.dumps([sq.model_dump() for sq in subqueries], indent=2),
|
|
270
|
+
"decomposition.json",
|
|
271
|
+
)
|
|
272
|
+
|
|
273
|
+
logger.debug(
|
|
274
|
+
"Query decomposed",
|
|
275
|
+
num_subqueries=len(subqueries),
|
|
276
|
+
queries=[sq.text[:50] for sq in subqueries],
|
|
277
|
+
)
|
|
278
|
+
|
|
279
|
+
return subqueries
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
def rrf_merge(
|
|
283
|
+
results_lists: list[list[Document]],
|
|
284
|
+
k: int = 60,
|
|
285
|
+
primary_key: str | None = None,
|
|
286
|
+
) -> list[Document]:
|
|
287
|
+
"""
|
|
288
|
+
Merge results from multiple queries using Reciprocal Rank Fusion.
|
|
289
|
+
|
|
290
|
+
RRF is safer than raw score sorting because Databricks Vector Search
|
|
291
|
+
scores aren't normalized across query types (HYBRID vs ANN).
|
|
292
|
+
|
|
293
|
+
RRF Score = Σ 1 / (k + rank_i) for each result list
|
|
294
|
+
|
|
295
|
+
Args:
|
|
296
|
+
results_lists: List of document lists from different subqueries
|
|
297
|
+
k: RRF constant (lower values weight top ranks more heavily)
|
|
298
|
+
primary_key: Metadata key for document identity (for deduplication)
|
|
299
|
+
|
|
300
|
+
Returns:
|
|
301
|
+
Merged and deduplicated documents sorted by RRF score
|
|
302
|
+
"""
|
|
303
|
+
if not results_lists:
|
|
304
|
+
return []
|
|
305
|
+
|
|
306
|
+
# Filter empty lists first
|
|
307
|
+
non_empty = [r for r in results_lists if r]
|
|
308
|
+
if not non_empty:
|
|
309
|
+
return []
|
|
310
|
+
|
|
311
|
+
# Single list optimization (still add RRF scores for consistency)
|
|
312
|
+
if len(non_empty) == 1:
|
|
313
|
+
docs_with_scores: list[Document] = []
|
|
314
|
+
for rank, doc in enumerate(non_empty[0]):
|
|
315
|
+
rrf_score = 1.0 / (k + rank + 1)
|
|
316
|
+
docs_with_scores.append(
|
|
317
|
+
Document(
|
|
318
|
+
page_content=doc.page_content,
|
|
319
|
+
metadata={**doc.metadata, "rrf_score": rrf_score},
|
|
320
|
+
)
|
|
321
|
+
)
|
|
322
|
+
return docs_with_scores
|
|
323
|
+
|
|
324
|
+
# Calculate RRF scores
|
|
325
|
+
# Key: document identifier, Value: (total_rrf_score, Document)
|
|
326
|
+
doc_scores: dict[str, tuple[float, Document]] = {}
|
|
327
|
+
|
|
328
|
+
def get_doc_id(doc: Document) -> str:
|
|
329
|
+
"""Get unique identifier for document."""
|
|
330
|
+
if primary_key and primary_key in doc.metadata:
|
|
331
|
+
return str(doc.metadata[primary_key])
|
|
332
|
+
# Fallback to content hash
|
|
333
|
+
return str(hash(doc.page_content))
|
|
334
|
+
|
|
335
|
+
for result_list in non_empty:
|
|
336
|
+
for rank, doc in enumerate(result_list):
|
|
337
|
+
doc_id = get_doc_id(doc)
|
|
338
|
+
rrf_score = 1.0 / (k + rank + 1) # rank is 0-indexed
|
|
339
|
+
|
|
340
|
+
if doc_id in doc_scores:
|
|
341
|
+
# Accumulate RRF score for duplicates
|
|
342
|
+
existing_score, existing_doc = doc_scores[doc_id]
|
|
343
|
+
doc_scores[doc_id] = (existing_score + rrf_score, existing_doc)
|
|
344
|
+
else:
|
|
345
|
+
doc_scores[doc_id] = (rrf_score, doc)
|
|
346
|
+
|
|
347
|
+
# Sort by RRF score descending
|
|
348
|
+
sorted_docs = sorted(doc_scores.values(), key=lambda x: x[0], reverse=True)
|
|
349
|
+
|
|
350
|
+
# Add RRF score to metadata
|
|
351
|
+
merged_docs: list[Document] = []
|
|
352
|
+
for rrf_score, doc in sorted_docs:
|
|
353
|
+
merged_doc = Document(
|
|
354
|
+
page_content=doc.page_content,
|
|
355
|
+
metadata={**doc.metadata, "rrf_score": rrf_score},
|
|
356
|
+
)
|
|
357
|
+
merged_docs.append(merged_doc)
|
|
358
|
+
|
|
359
|
+
logger.debug(
|
|
360
|
+
"RRF merge complete",
|
|
361
|
+
input_lists=len(results_lists),
|
|
362
|
+
total_docs=sum(len(r) for r in results_lists),
|
|
363
|
+
unique_docs=len(merged_docs),
|
|
364
|
+
)
|
|
365
|
+
|
|
366
|
+
return merged_docs
|