dao-ai 0.1.2__py3-none-any.whl → 0.1.20__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dao_ai/apps/__init__.py +24 -0
- dao_ai/apps/handlers.py +105 -0
- dao_ai/apps/model_serving.py +29 -0
- dao_ai/apps/resources.py +1122 -0
- dao_ai/apps/server.py +39 -0
- dao_ai/cli.py +546 -37
- dao_ai/config.py +1179 -139
- dao_ai/evaluation.py +543 -0
- dao_ai/genie/__init__.py +55 -7
- dao_ai/genie/cache/__init__.py +34 -7
- dao_ai/genie/cache/base.py +143 -2
- dao_ai/genie/cache/context_aware/__init__.py +31 -0
- dao_ai/genie/cache/context_aware/base.py +1151 -0
- dao_ai/genie/cache/context_aware/in_memory.py +609 -0
- dao_ai/genie/cache/context_aware/persistent.py +802 -0
- dao_ai/genie/cache/context_aware/postgres.py +1166 -0
- dao_ai/genie/cache/core.py +1 -1
- dao_ai/genie/cache/lru.py +257 -75
- dao_ai/genie/cache/optimization.py +890 -0
- dao_ai/genie/core.py +235 -11
- dao_ai/memory/postgres.py +175 -39
- dao_ai/middleware/__init__.py +38 -0
- dao_ai/middleware/assertions.py +3 -3
- dao_ai/middleware/context_editing.py +230 -0
- dao_ai/middleware/core.py +4 -4
- dao_ai/middleware/guardrails.py +3 -3
- dao_ai/middleware/human_in_the_loop.py +3 -2
- dao_ai/middleware/message_validation.py +4 -4
- dao_ai/middleware/model_call_limit.py +77 -0
- dao_ai/middleware/model_retry.py +121 -0
- dao_ai/middleware/pii.py +157 -0
- dao_ai/middleware/summarization.py +1 -1
- dao_ai/middleware/tool_call_limit.py +210 -0
- dao_ai/middleware/tool_retry.py +174 -0
- dao_ai/middleware/tool_selector.py +129 -0
- dao_ai/models.py +327 -370
- dao_ai/nodes.py +9 -16
- dao_ai/orchestration/core.py +33 -9
- dao_ai/orchestration/supervisor.py +29 -13
- dao_ai/orchestration/swarm.py +6 -1
- dao_ai/{prompts.py → prompts/__init__.py} +12 -61
- dao_ai/prompts/instructed_retriever_decomposition.yaml +58 -0
- dao_ai/prompts/instruction_reranker.yaml +14 -0
- dao_ai/prompts/router.yaml +37 -0
- dao_ai/prompts/verifier.yaml +46 -0
- dao_ai/providers/base.py +28 -2
- dao_ai/providers/databricks.py +363 -33
- dao_ai/state.py +1 -0
- dao_ai/tools/__init__.py +5 -3
- dao_ai/tools/genie.py +103 -26
- dao_ai/tools/instructed_retriever.py +366 -0
- dao_ai/tools/instruction_reranker.py +202 -0
- dao_ai/tools/mcp.py +539 -97
- dao_ai/tools/router.py +89 -0
- dao_ai/tools/slack.py +13 -2
- dao_ai/tools/sql.py +7 -3
- dao_ai/tools/unity_catalog.py +32 -10
- dao_ai/tools/vector_search.py +493 -160
- dao_ai/tools/verifier.py +159 -0
- dao_ai/utils.py +182 -2
- dao_ai/vector_search.py +46 -1
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/METADATA +45 -9
- dao_ai-0.1.20.dist-info/RECORD +89 -0
- dao_ai/agent_as_code.py +0 -22
- dao_ai/genie/cache/semantic.py +0 -970
- dao_ai-0.1.2.dist-info/RECORD +0 -64
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/WHEEL +0 -0
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/entry_points.txt +0 -0
- {dao_ai-0.1.2.dist-info → dao_ai-0.1.20.dist-info}/licenses/LICENSE +0 -0
|
@@ -150,7 +150,7 @@ def create_summarization_middleware(
|
|
|
150
150
|
chat_history: ChatHistoryModel configuration for summarization
|
|
151
151
|
|
|
152
152
|
Returns:
|
|
153
|
-
LoggingSummarizationMiddleware configured with the specified parameters
|
|
153
|
+
List containing LoggingSummarizationMiddleware configured with the specified parameters
|
|
154
154
|
|
|
155
155
|
Example:
|
|
156
156
|
from dao_ai.config import ChatHistoryModel, LLMModel
|
|
@@ -0,0 +1,210 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Tool call limit middleware for DAO AI agents.
|
|
3
|
+
|
|
4
|
+
This module provides a factory for creating LangChain's ToolCallLimitMiddleware
|
|
5
|
+
from DAO AI configuration.
|
|
6
|
+
|
|
7
|
+
Example:
|
|
8
|
+
from dao_ai.middleware import create_tool_call_limit_middleware
|
|
9
|
+
|
|
10
|
+
# Global limit across all tools
|
|
11
|
+
middleware = create_tool_call_limit_middleware(
|
|
12
|
+
thread_limit=20,
|
|
13
|
+
run_limit=10,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
# Limit specific tool by name
|
|
17
|
+
search_limiter = create_tool_call_limit_middleware(
|
|
18
|
+
tool="search_web",
|
|
19
|
+
run_limit=3,
|
|
20
|
+
exit_behavior="continue",
|
|
21
|
+
)
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
from __future__ import annotations
|
|
25
|
+
|
|
26
|
+
from typing import Any, Literal
|
|
27
|
+
|
|
28
|
+
from langchain.agents.middleware import ToolCallLimitMiddleware
|
|
29
|
+
from langchain_core.tools import BaseTool
|
|
30
|
+
from loguru import logger
|
|
31
|
+
|
|
32
|
+
from dao_ai.config import BaseFunctionModel, ToolModel
|
|
33
|
+
|
|
34
|
+
__all__ = [
|
|
35
|
+
"ToolCallLimitMiddleware",
|
|
36
|
+
"create_tool_call_limit_middleware",
|
|
37
|
+
]
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def _resolve_tool(tool: str | ToolModel | dict[str, Any]) -> list[str]:
|
|
41
|
+
"""
|
|
42
|
+
Resolve tool argument to a list of actual tool names.
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
tool: String name, ToolModel, or dict to resolve
|
|
46
|
+
|
|
47
|
+
Returns:
|
|
48
|
+
List of tool name strings
|
|
49
|
+
|
|
50
|
+
Raises:
|
|
51
|
+
ValueError: If dict cannot be converted to ToolModel
|
|
52
|
+
TypeError: If tool is not a supported type
|
|
53
|
+
"""
|
|
54
|
+
# String: return as single-item list
|
|
55
|
+
if isinstance(tool, str):
|
|
56
|
+
return [tool]
|
|
57
|
+
|
|
58
|
+
# Dict: convert to ToolModel first
|
|
59
|
+
if isinstance(tool, dict):
|
|
60
|
+
try:
|
|
61
|
+
tool_model = ToolModel(**tool)
|
|
62
|
+
except Exception as e:
|
|
63
|
+
raise ValueError(
|
|
64
|
+
f"Failed to construct ToolModel from dict: {e}\n"
|
|
65
|
+
f"Dict must have 'name' and 'function' keys."
|
|
66
|
+
) from e
|
|
67
|
+
elif isinstance(tool, ToolModel):
|
|
68
|
+
tool_model = tool
|
|
69
|
+
else:
|
|
70
|
+
raise TypeError(
|
|
71
|
+
f"tool must be str, ToolModel, or dict, got {type(tool).__name__}"
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
# Extract tool names from ToolModel
|
|
75
|
+
return _extract_tool_names(tool_model)
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def _extract_tool_names(tool_model: ToolModel) -> list[str]:
|
|
79
|
+
"""
|
|
80
|
+
Extract actual tool names from a ToolModel.
|
|
81
|
+
|
|
82
|
+
A single ToolModel can produce multiple tools (e.g., UC functions).
|
|
83
|
+
Falls back to ToolModel.name if extraction fails.
|
|
84
|
+
"""
|
|
85
|
+
function = tool_model.function
|
|
86
|
+
|
|
87
|
+
# String function references can't be introspected
|
|
88
|
+
if not isinstance(function, BaseFunctionModel):
|
|
89
|
+
logger.debug(
|
|
90
|
+
"Cannot extract names from string function, using ToolModel.name",
|
|
91
|
+
tool_model_name=tool_model.name,
|
|
92
|
+
)
|
|
93
|
+
return [tool_model.name]
|
|
94
|
+
|
|
95
|
+
# Try to extract names from created tools
|
|
96
|
+
try:
|
|
97
|
+
tool_names = [
|
|
98
|
+
tool.name
|
|
99
|
+
for tool in function.as_tools()
|
|
100
|
+
if isinstance(tool, BaseTool) and tool.name
|
|
101
|
+
]
|
|
102
|
+
if tool_names:
|
|
103
|
+
logger.trace(
|
|
104
|
+
"Extracted tool names",
|
|
105
|
+
tool_model_name=tool_model.name,
|
|
106
|
+
tool_names=tool_names,
|
|
107
|
+
)
|
|
108
|
+
return tool_names
|
|
109
|
+
except Exception as e:
|
|
110
|
+
logger.warning(
|
|
111
|
+
"Error extracting tool names from ToolModel",
|
|
112
|
+
tool_model_name=tool_model.name,
|
|
113
|
+
error=str(e),
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Fallback to ToolModel.name
|
|
117
|
+
logger.debug(
|
|
118
|
+
"Falling back to ToolModel.name",
|
|
119
|
+
tool_model_name=tool_model.name,
|
|
120
|
+
)
|
|
121
|
+
return [tool_model.name]
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def create_tool_call_limit_middleware(
|
|
125
|
+
tool: str | ToolModel | dict[str, Any] | None = None,
|
|
126
|
+
thread_limit: int | None = None,
|
|
127
|
+
run_limit: int | None = None,
|
|
128
|
+
exit_behavior: Literal["continue", "error", "end"] = "continue",
|
|
129
|
+
) -> ToolCallLimitMiddleware:
|
|
130
|
+
"""
|
|
131
|
+
Create a ToolCallLimitMiddleware with graceful termination support.
|
|
132
|
+
|
|
133
|
+
Factory for LangChain's ToolCallLimitMiddleware that supports DAO AI
|
|
134
|
+
configuration types.
|
|
135
|
+
|
|
136
|
+
Args:
|
|
137
|
+
tool: Tool to limit. Can be:
|
|
138
|
+
- None: Global limit on all tools
|
|
139
|
+
- str: Limit specific tool by name
|
|
140
|
+
- ToolModel: Limit tool(s) from DAO AI config
|
|
141
|
+
- dict: Tool config dict (converted to ToolModel)
|
|
142
|
+
thread_limit: Max calls per thread (conversation). Requires checkpointer.
|
|
143
|
+
run_limit: Max calls per run (single invocation).
|
|
144
|
+
exit_behavior: What to do when limit hit:
|
|
145
|
+
- "continue": Block tool with error message, let agent continue
|
|
146
|
+
- "error": Raise ToolCallLimitExceededError immediately
|
|
147
|
+
- "end": Stop execution gracefully (single-tool only)
|
|
148
|
+
|
|
149
|
+
Returns:
|
|
150
|
+
A ToolCallLimitMiddleware instance. If ToolModel produces multiple tools,
|
|
151
|
+
only the first tool is used (with a warning logged).
|
|
152
|
+
|
|
153
|
+
Raises:
|
|
154
|
+
ValueError: If no limits specified, or invalid dict
|
|
155
|
+
TypeError: If tool is unsupported type
|
|
156
|
+
|
|
157
|
+
Example:
|
|
158
|
+
# Global limit
|
|
159
|
+
limiter = create_tool_call_limit_middleware(run_limit=10)
|
|
160
|
+
|
|
161
|
+
# Tool-specific limit
|
|
162
|
+
limiter = create_tool_call_limit_middleware(
|
|
163
|
+
tool="search_web",
|
|
164
|
+
run_limit=3,
|
|
165
|
+
exit_behavior="continue",
|
|
166
|
+
)
|
|
167
|
+
"""
|
|
168
|
+
if thread_limit is None and run_limit is None:
|
|
169
|
+
raise ValueError("At least one of thread_limit or run_limit must be specified.")
|
|
170
|
+
|
|
171
|
+
# Global limit: no tool parameter
|
|
172
|
+
if tool is None:
|
|
173
|
+
logger.debug(
|
|
174
|
+
"Creating global tool call limit",
|
|
175
|
+
thread_limit=thread_limit,
|
|
176
|
+
run_limit=run_limit,
|
|
177
|
+
exit_behavior=exit_behavior,
|
|
178
|
+
)
|
|
179
|
+
return ToolCallLimitMiddleware(
|
|
180
|
+
thread_limit=thread_limit,
|
|
181
|
+
run_limit=run_limit,
|
|
182
|
+
exit_behavior=exit_behavior,
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
# Resolve to list of tool names
|
|
186
|
+
names = _resolve_tool(tool)
|
|
187
|
+
|
|
188
|
+
# Use first tool name (warn if multiple)
|
|
189
|
+
tool_name = names[0]
|
|
190
|
+
if len(names) > 1:
|
|
191
|
+
logger.warning(
|
|
192
|
+
"ToolModel resolved to multiple tool names, using first only",
|
|
193
|
+
tool_names=names,
|
|
194
|
+
using=tool_name,
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
logger.debug(
|
|
198
|
+
"Creating tool call limit middleware",
|
|
199
|
+
tool_name=tool_name,
|
|
200
|
+
thread_limit=thread_limit,
|
|
201
|
+
run_limit=run_limit,
|
|
202
|
+
exit_behavior=exit_behavior,
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
return ToolCallLimitMiddleware(
|
|
206
|
+
tool_name=tool_name,
|
|
207
|
+
thread_limit=thread_limit,
|
|
208
|
+
run_limit=run_limit,
|
|
209
|
+
exit_behavior=exit_behavior,
|
|
210
|
+
)
|
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Tool retry middleware for DAO AI agents.
|
|
3
|
+
|
|
4
|
+
Automatically retries failed tool calls with configurable exponential backoff.
|
|
5
|
+
|
|
6
|
+
Example:
|
|
7
|
+
from dao_ai.middleware import create_tool_retry_middleware
|
|
8
|
+
|
|
9
|
+
# Retry failed tool calls with exponential backoff
|
|
10
|
+
middleware = create_tool_retry_middleware(
|
|
11
|
+
max_retries=3,
|
|
12
|
+
backoff_factor=2.0,
|
|
13
|
+
initial_delay=1.0,
|
|
14
|
+
)
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
from __future__ import annotations
|
|
18
|
+
|
|
19
|
+
from typing import Any, Callable, Literal
|
|
20
|
+
|
|
21
|
+
from langchain.agents.middleware import ToolRetryMiddleware
|
|
22
|
+
from langchain_core.tools import BaseTool
|
|
23
|
+
from loguru import logger
|
|
24
|
+
|
|
25
|
+
from dao_ai.config import BaseFunctionModel, ToolModel
|
|
26
|
+
|
|
27
|
+
__all__ = [
|
|
28
|
+
"ToolRetryMiddleware",
|
|
29
|
+
"create_tool_retry_middleware",
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def _resolve_tools(
|
|
34
|
+
tools: list[str | ToolModel | dict[str, Any]] | None,
|
|
35
|
+
) -> list[str] | None:
|
|
36
|
+
"""
|
|
37
|
+
Resolve tool specs to a list of tool name strings.
|
|
38
|
+
|
|
39
|
+
Returns None if tools is None (apply to all tools).
|
|
40
|
+
"""
|
|
41
|
+
if tools is None:
|
|
42
|
+
return None
|
|
43
|
+
|
|
44
|
+
result: list[str] = []
|
|
45
|
+
for tool in tools:
|
|
46
|
+
if isinstance(tool, str):
|
|
47
|
+
result.append(tool)
|
|
48
|
+
elif isinstance(tool, dict):
|
|
49
|
+
try:
|
|
50
|
+
tool_model = ToolModel(**tool)
|
|
51
|
+
result.extend(_extract_tool_names(tool_model))
|
|
52
|
+
except Exception as e:
|
|
53
|
+
raise ValueError(f"Failed to construct ToolModel from dict: {e}") from e
|
|
54
|
+
elif isinstance(tool, ToolModel):
|
|
55
|
+
result.extend(_extract_tool_names(tool))
|
|
56
|
+
else:
|
|
57
|
+
raise TypeError(
|
|
58
|
+
f"Tool must be str, ToolModel, or dict, got {type(tool).__name__}"
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
return result if result else None
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def _extract_tool_names(tool_model: ToolModel) -> list[str]:
|
|
65
|
+
"""Extract tool names from ToolModel, falling back to ToolModel.name."""
|
|
66
|
+
function = tool_model.function
|
|
67
|
+
|
|
68
|
+
if not isinstance(function, BaseFunctionModel):
|
|
69
|
+
return [tool_model.name]
|
|
70
|
+
|
|
71
|
+
try:
|
|
72
|
+
tool_names = [
|
|
73
|
+
tool.name
|
|
74
|
+
for tool in function.as_tools()
|
|
75
|
+
if isinstance(tool, BaseTool) and tool.name
|
|
76
|
+
]
|
|
77
|
+
return tool_names if tool_names else [tool_model.name]
|
|
78
|
+
except Exception:
|
|
79
|
+
return [tool_model.name]
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def create_tool_retry_middleware(
|
|
83
|
+
max_retries: int = 3,
|
|
84
|
+
backoff_factor: float = 2.0,
|
|
85
|
+
initial_delay: float = 1.0,
|
|
86
|
+
max_delay: float | None = None,
|
|
87
|
+
jitter: bool = False,
|
|
88
|
+
tools: list[str | ToolModel | dict[str, Any]] | None = None,
|
|
89
|
+
retry_on: tuple[type[Exception], ...] | Callable[[Exception], bool] | None = None,
|
|
90
|
+
on_failure: Literal["continue", "error"] | Callable[[Exception], str] = "continue",
|
|
91
|
+
) -> ToolRetryMiddleware:
|
|
92
|
+
"""
|
|
93
|
+
Create a ToolRetryMiddleware for automatic tool call retries.
|
|
94
|
+
|
|
95
|
+
Handles transient failures in external API calls with exponential backoff.
|
|
96
|
+
|
|
97
|
+
Args:
|
|
98
|
+
max_retries: Max retry attempts after initial call. Default 3.
|
|
99
|
+
backoff_factor: Multiplier for exponential backoff. Default 2.0.
|
|
100
|
+
Delay = initial_delay * (backoff_factor ** retry_number)
|
|
101
|
+
Set to 0.0 for constant delay.
|
|
102
|
+
initial_delay: Initial delay in seconds before first retry. Default 1.0.
|
|
103
|
+
max_delay: Max delay in seconds (caps exponential growth). None = no cap.
|
|
104
|
+
jitter: Add ±25% random jitter to avoid thundering herd. Default False.
|
|
105
|
+
tools: List of tools to apply retry to. Can be:
|
|
106
|
+
- None: Apply to all tools (default)
|
|
107
|
+
- list of str: Tool names
|
|
108
|
+
- list of ToolModel: DAO AI tool models
|
|
109
|
+
- list of dict: Tool config dicts
|
|
110
|
+
retry_on: When to retry:
|
|
111
|
+
- None: Retry on all errors (default)
|
|
112
|
+
- tuple of Exception types: Retry only on these
|
|
113
|
+
- callable: Function(exception) -> bool
|
|
114
|
+
on_failure: Behavior when all retries exhausted:
|
|
115
|
+
- "continue": Return error message, let agent continue (default)
|
|
116
|
+
- "error": Re-raise exception, stop execution
|
|
117
|
+
- callable: Function(exception) -> str for custom message
|
|
118
|
+
|
|
119
|
+
Returns:
|
|
120
|
+
List containing ToolRetryMiddleware instance
|
|
121
|
+
|
|
122
|
+
Example:
|
|
123
|
+
# Basic retry with defaults
|
|
124
|
+
retry = create_tool_retry_middleware()
|
|
125
|
+
|
|
126
|
+
# Retry specific tools with custom backoff
|
|
127
|
+
retry = create_tool_retry_middleware(
|
|
128
|
+
max_retries=5,
|
|
129
|
+
backoff_factor=1.5,
|
|
130
|
+
initial_delay=0.5,
|
|
131
|
+
tools=["search_web", "query_database"],
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
# Retry only on specific exceptions
|
|
135
|
+
retry = create_tool_retry_middleware(
|
|
136
|
+
max_retries=3,
|
|
137
|
+
retry_on=(TimeoutError, ConnectionError),
|
|
138
|
+
on_failure="error",
|
|
139
|
+
)
|
|
140
|
+
"""
|
|
141
|
+
tool_names = _resolve_tools(tools)
|
|
142
|
+
|
|
143
|
+
logger.debug(
|
|
144
|
+
"Creating tool retry middleware",
|
|
145
|
+
max_retries=max_retries,
|
|
146
|
+
backoff_factor=backoff_factor,
|
|
147
|
+
initial_delay=initial_delay,
|
|
148
|
+
max_delay=max_delay,
|
|
149
|
+
jitter=jitter,
|
|
150
|
+
tools=tool_names or "all",
|
|
151
|
+
on_failure=on_failure if isinstance(on_failure, str) else "custom",
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
# Build kwargs
|
|
155
|
+
kwargs: dict[str, Any] = {
|
|
156
|
+
"max_retries": max_retries,
|
|
157
|
+
"backoff_factor": backoff_factor,
|
|
158
|
+
"initial_delay": initial_delay,
|
|
159
|
+
"on_failure": on_failure,
|
|
160
|
+
}
|
|
161
|
+
|
|
162
|
+
if tool_names is not None:
|
|
163
|
+
kwargs["tools"] = tool_names
|
|
164
|
+
|
|
165
|
+
if max_delay is not None:
|
|
166
|
+
kwargs["max_delay"] = max_delay
|
|
167
|
+
|
|
168
|
+
if jitter:
|
|
169
|
+
kwargs["jitter"] = jitter
|
|
170
|
+
|
|
171
|
+
if retry_on is not None:
|
|
172
|
+
kwargs["retry_on"] = retry_on
|
|
173
|
+
|
|
174
|
+
return ToolRetryMiddleware(**kwargs)
|
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Tool selector middleware for intelligently filtering tools before LLM calls.
|
|
3
|
+
|
|
4
|
+
This middleware uses an LLM to select relevant tools from a large set, improving
|
|
5
|
+
performance and accuracy by reducing context size and improving focus.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from __future__ import annotations
|
|
9
|
+
|
|
10
|
+
from typing import Any
|
|
11
|
+
|
|
12
|
+
from langchain.agents.middleware import LLMToolSelectorMiddleware
|
|
13
|
+
from langchain_core.language_models import LanguageModelLike
|
|
14
|
+
from loguru import logger
|
|
15
|
+
|
|
16
|
+
from dao_ai.config import ToolModel
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def create_llm_tool_selector_middleware(
|
|
20
|
+
model: LanguageModelLike,
|
|
21
|
+
max_tools: int = 3,
|
|
22
|
+
always_include: list[str | ToolModel | dict[str, Any]] | None = None,
|
|
23
|
+
) -> LLMToolSelectorMiddleware:
|
|
24
|
+
"""
|
|
25
|
+
Create an LLMToolSelectorMiddleware for intelligent tool selection.
|
|
26
|
+
|
|
27
|
+
Uses an LLM to analyze the current query and select the most relevant tools
|
|
28
|
+
before calling the main model. This is particularly useful for agents with
|
|
29
|
+
many tools (10+) where most aren't relevant for any given query.
|
|
30
|
+
|
|
31
|
+
Benefits:
|
|
32
|
+
- Reduces token usage by filtering irrelevant tools
|
|
33
|
+
- Improves model focus and accuracy
|
|
34
|
+
- Optimizes cost for agents with large tool sets
|
|
35
|
+
- Maintains context window efficiency
|
|
36
|
+
|
|
37
|
+
Args:
|
|
38
|
+
model: The LLM to use for tool selection. Typically a smaller, faster
|
|
39
|
+
model like "gpt-4o-mini" or similar.
|
|
40
|
+
max_tools: Maximum number of tools to select for each query.
|
|
41
|
+
Default 3. Adjust based on your use case - higher values
|
|
42
|
+
increase context but improve tool coverage.
|
|
43
|
+
always_include: List of tools that should always be included regardless
|
|
44
|
+
of the LLM's selection. Can be:
|
|
45
|
+
- str: Tool name
|
|
46
|
+
- ToolModel: Full tool configuration
|
|
47
|
+
- dict: Tool configuration dictionary
|
|
48
|
+
Use this for critical tools that should always be available.
|
|
49
|
+
|
|
50
|
+
Returns:
|
|
51
|
+
LLMToolSelectorMiddleware configured with the specified parameters
|
|
52
|
+
|
|
53
|
+
Example:
|
|
54
|
+
from dao_ai.middleware import create_llm_tool_selector_middleware
|
|
55
|
+
from dao_ai.llms import create_llm
|
|
56
|
+
|
|
57
|
+
# Use a fast, cheap model for tool selection
|
|
58
|
+
selector_llm = create_llm("databricks-gpt-4o-mini")
|
|
59
|
+
|
|
60
|
+
middleware = create_llm_tool_selector_middleware(
|
|
61
|
+
model=selector_llm,
|
|
62
|
+
max_tools=3,
|
|
63
|
+
always_include=["search_web"], # Always include search
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
Use Cases:
|
|
67
|
+
- Large tool sets (10+ tools) where most are specialized
|
|
68
|
+
- Cost optimization by reducing tokens in main model calls
|
|
69
|
+
- Improved accuracy by reducing tool confusion
|
|
70
|
+
- Dynamic tool filtering based on query relevance
|
|
71
|
+
|
|
72
|
+
Note:
|
|
73
|
+
The selector model makes an additional LLM call for each agent turn.
|
|
74
|
+
Choose a fast, inexpensive model to minimize latency and cost overhead.
|
|
75
|
+
"""
|
|
76
|
+
# Extract tool names from always_include
|
|
77
|
+
always_include_names: list[str] = []
|
|
78
|
+
if always_include:
|
|
79
|
+
always_include_names = _resolve_tool_names(always_include)
|
|
80
|
+
|
|
81
|
+
logger.debug(
|
|
82
|
+
"Creating LLM tool selector middleware",
|
|
83
|
+
max_tools=max_tools,
|
|
84
|
+
always_include_count=len(always_include_names),
|
|
85
|
+
always_include=always_include_names,
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
return LLMToolSelectorMiddleware(
|
|
89
|
+
model=model,
|
|
90
|
+
max_tools=max_tools,
|
|
91
|
+
always_include=always_include_names if always_include_names else None,
|
|
92
|
+
)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
def _resolve_tool_names(tools: list[str | ToolModel | dict[str, Any]]) -> list[str]:
|
|
96
|
+
"""
|
|
97
|
+
Extract tool names from a list of tool specifications.
|
|
98
|
+
|
|
99
|
+
Args:
|
|
100
|
+
tools: List of tool specifications (strings, ToolModels, or dicts)
|
|
101
|
+
|
|
102
|
+
Returns:
|
|
103
|
+
List of tool names as strings
|
|
104
|
+
"""
|
|
105
|
+
names: list[str] = []
|
|
106
|
+
|
|
107
|
+
for tool_spec in tools:
|
|
108
|
+
if isinstance(tool_spec, str):
|
|
109
|
+
# Simple string tool name
|
|
110
|
+
names.append(tool_spec)
|
|
111
|
+
elif isinstance(tool_spec, ToolModel):
|
|
112
|
+
# ToolModel - use its name
|
|
113
|
+
names.append(tool_spec.name)
|
|
114
|
+
elif isinstance(tool_spec, dict):
|
|
115
|
+
# Dictionary - try to extract name
|
|
116
|
+
if "name" in tool_spec:
|
|
117
|
+
names.append(tool_spec["name"])
|
|
118
|
+
else:
|
|
119
|
+
logger.warning(
|
|
120
|
+
"Tool dict missing 'name' field, skipping",
|
|
121
|
+
tool_spec=tool_spec,
|
|
122
|
+
)
|
|
123
|
+
else:
|
|
124
|
+
logger.warning(
|
|
125
|
+
"Unknown tool specification type, skipping",
|
|
126
|
+
tool_spec_type=type(tool_spec).__name__,
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
return names
|