crfm-helm 0.5.4__py3-none-any.whl → 0.5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- crfm_helm-0.5.5.dist-info/METADATA +413 -0
- crfm_helm-0.5.5.dist-info/RECORD +894 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info}/WHEEL +1 -1
- helm/benchmark/adaptation/adapter_spec.py +13 -1
- helm/benchmark/adaptation/adapters/adapter_factory.py +15 -1
- helm/benchmark/adaptation/adapters/binary_ranking_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/chat_adapter.py +49 -0
- helm/benchmark/adaptation/adapters/ehr_instruction_adapter.py +108 -0
- helm/benchmark/adaptation/adapters/generation_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/language_modeling_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/generation_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/test_multimodal_prompt.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_calibrated_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/multiple_choice_joint_chain_of_thought_adapter.py +87 -0
- helm/benchmark/adaptation/adapters/multiple_choice_separate_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/test_generation_adapter.py +3 -3
- helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/common_adapter_specs.py +69 -4
- helm/benchmark/adaptation/prompt.py +1 -1
- helm/benchmark/annotation/aci_bench_annotator.py +95 -0
- helm/benchmark/annotation/air_bench_annotator.py +20 -5
- helm/benchmark/annotation/annotator.py +5 -0
- helm/benchmark/annotation/annotator_factory.py +3 -20
- helm/benchmark/annotation/autobencher_capabilities_annotator.py +107 -0
- helm/benchmark/annotation/autobencher_safety_annotator.py +98 -0
- helm/benchmark/annotation/bigcodebench_annotator.py +108 -0
- helm/benchmark/annotation/bird_sql_annotator.py +58 -0
- helm/benchmark/annotation/chw_care_plan_annotator.py +98 -0
- helm/benchmark/annotation/czech_bank_qa_annotator.py +78 -0
- helm/benchmark/annotation/dischargeme_annotator.py +107 -0
- helm/benchmark/annotation/ehr_sql_annotator.py +87 -0
- helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +131 -0
- helm/benchmark/annotation/image2struct/image_compiler_annotator.py +6 -1
- helm/benchmark/annotation/live_qa_annotator.py +1 -1
- helm/benchmark/annotation/med_dialog_annotator.py +99 -0
- helm/benchmark/annotation/medalign_annotator.py +100 -0
- helm/benchmark/annotation/medi_qa_annotator.py +98 -0
- helm/benchmark/annotation/medication_qa_annotator.py +87 -63
- helm/benchmark/annotation/mental_health_annotator.py +98 -0
- helm/benchmark/annotation/mimic_rrs_annotator.py +100 -0
- helm/benchmark/annotation/model_as_judge.py +218 -6
- helm/benchmark/annotation/mtsamples_procedures_annotator.py +98 -0
- helm/benchmark/annotation/mtsamples_replicate_annotator.py +101 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_template.txt +152 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_zero_shot_template.txt +36 -0
- helm/benchmark/annotation/omni_math_annotator.py +132 -0
- helm/benchmark/annotation/spider_annotator.py +18 -0
- helm/benchmark/annotation/starr_patient_instructions_annotator.py +98 -0
- helm/benchmark/annotation/wildbench/eval_template.pairwise.v2.md +75 -0
- helm/benchmark/annotation/wildbench/eval_template.score.v2.md +66 -0
- helm/benchmark/annotation/wildbench_annotator.py +119 -0
- helm/benchmark/annotation_executor.py +35 -15
- helm/benchmark/augmentations/cleva_perturbation.py +9 -8
- helm/benchmark/augmentations/contraction_expansion_perturbation.py +2 -2
- helm/benchmark/augmentations/contrast_sets_perturbation.py +2 -2
- helm/benchmark/augmentations/dialect_perturbation.py +4 -5
- helm/benchmark/augmentations/extra_space_perturbation.py +2 -2
- helm/benchmark/augmentations/filler_words_perturbation.py +2 -2
- helm/benchmark/augmentations/gender_perturbation.py +2 -2
- helm/benchmark/augmentations/lowercase_perturbation.py +2 -2
- helm/benchmark/augmentations/mild_mix_perturbation.py +6 -6
- helm/benchmark/augmentations/misspelling_perturbation.py +2 -2
- helm/benchmark/augmentations/person_name_perturbation.py +4 -5
- helm/benchmark/augmentations/perturbation.py +1 -1
- helm/benchmark/augmentations/space_perturbation.py +2 -2
- helm/benchmark/augmentations/suffix_perturbation.py +2 -2
- helm/benchmark/augmentations/synonym_perturbation.py +4 -3
- helm/benchmark/augmentations/test_perturbation.py +16 -13
- helm/benchmark/augmentations/translate_perturbation.py +2 -2
- helm/benchmark/augmentations/typos_perturbation.py +2 -2
- helm/benchmark/data_preprocessor.py +2 -2
- helm/benchmark/huggingface_registration.py +2 -7
- helm/benchmark/metrics/aci_bench_metrics.py +34 -0
- helm/benchmark/metrics/basic_metrics.py +6 -6
- helm/benchmark/metrics/bbq_metrics.py +2 -2
- helm/benchmark/metrics/bias_metrics.py +12 -3
- helm/benchmark/metrics/bigcodebench_metrics.py +25 -0
- helm/benchmark/metrics/bird_sql_metrics.py +28 -0
- helm/benchmark/metrics/chw_care_plan_metrics.py +34 -0
- helm/benchmark/metrics/classification_metrics.py +76 -12
- helm/benchmark/metrics/cleva_harms_metrics.py +8 -7
- helm/benchmark/metrics/code_metrics.py +5 -5
- helm/benchmark/metrics/comet_metric.py +125 -0
- helm/benchmark/metrics/common_metric_specs.py +9 -2
- helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +72 -0
- helm/benchmark/metrics/copyright_metrics.py +4 -4
- helm/benchmark/metrics/czech_bank_qa_metrics.py +29 -0
- helm/benchmark/metrics/decodingtrust_fairness_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_privacy_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +2 -2
- helm/benchmark/metrics/dischargeme_metrics.py +34 -0
- helm/benchmark/metrics/disinformation_metrics.py +4 -4
- helm/benchmark/metrics/dry_run_metrics.py +5 -5
- helm/benchmark/metrics/efficiency_metrics.py +3 -3
- helm/benchmark/metrics/ehr_sql_metrics.py +103 -0
- helm/benchmark/metrics/evaluate_instances_metric.py +3 -3
- helm/benchmark/metrics/evaluate_reference_metrics.py +144 -16
- helm/benchmark/metrics/gpqa_chain_of_thought_metric.py +103 -0
- helm/benchmark/metrics/gpt4_audio_critique_metrics.py +167 -0
- helm/benchmark/metrics/helpdesk_call_summarization_metrics.py +36 -0
- helm/benchmark/metrics/ifeval/__init__.py +0 -0
- helm/benchmark/metrics/ifeval/instructions.py +1574 -0
- helm/benchmark/metrics/ifeval/instructions_registry.py +182 -0
- helm/benchmark/metrics/ifeval/instructions_registry.pyi +3 -0
- helm/benchmark/metrics/ifeval/instructions_util.py +153 -0
- helm/benchmark/metrics/ifeval_metrics.py +55 -0
- helm/benchmark/metrics/image_generation/aesthetics_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detection_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detectors/vitdet.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +1 -1
- helm/benchmark/metrics/image_generation/nsfw_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/q16/test_q16.py +3 -1
- helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/skin_tone_metrics.py +2 -2
- helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +1 -1
- helm/benchmark/metrics/image_generation/watermark_metrics.py +1 -1
- helm/benchmark/metrics/instruction_following_critique_metrics.py +4 -4
- helm/benchmark/metrics/language_modeling_metrics.py +4 -4
- helm/benchmark/metrics/machine_translation_metrics.py +2 -2
- helm/benchmark/metrics/med_dialog_metrics.py +34 -0
- helm/benchmark/metrics/medalign_metrics.py +34 -0
- helm/benchmark/metrics/medcalc_bench_metrics.py +124 -0
- helm/benchmark/metrics/medec_metrics.py +101 -0
- helm/benchmark/metrics/medi_qa_metrics.py +34 -0
- helm/benchmark/metrics/medication_qa_metrics.py +15 -4
- helm/benchmark/metrics/mental_health_metrics.py +34 -0
- helm/benchmark/metrics/metric.py +3 -3
- helm/benchmark/metrics/mimic_rrs_metrics.py +34 -0
- helm/benchmark/metrics/mimiciv_billing_code_metrics.py +96 -0
- helm/benchmark/metrics/mtsamples_procedures_metrics.py +34 -0
- helm/benchmark/metrics/mtsamples_replicate_metrics.py +34 -0
- helm/benchmark/metrics/nltk_helper.py +32 -0
- helm/benchmark/metrics/numeracy_metrics.py +4 -4
- helm/benchmark/metrics/omni_math_metrics.py +32 -0
- helm/benchmark/metrics/output_processing_metric.py +60 -0
- helm/benchmark/metrics/output_processors.py +15 -0
- helm/benchmark/metrics/paraphrase_generation_metrics.py +2 -2
- helm/benchmark/metrics/ranking_metrics.py +3 -3
- helm/benchmark/metrics/reference_metric.py +3 -3
- helm/benchmark/metrics/{bhasa_metrics.py → seahelm_metrics.py} +3 -3
- helm/benchmark/metrics/seahelm_metrics_specs.py +10 -0
- helm/benchmark/metrics/spider_metrics.py +7 -0
- helm/benchmark/metrics/starr_patient_instructions_metrics.py +34 -0
- helm/benchmark/metrics/statistic.py +1 -1
- helm/benchmark/metrics/summac/model_summac.py +1 -1
- helm/benchmark/metrics/summarization_critique_metrics.py +4 -4
- helm/benchmark/metrics/summarization_metrics.py +19 -9
- helm/benchmark/metrics/test_bias_metrics.py +5 -1
- helm/benchmark/metrics/test_classification_metrics.py +140 -68
- helm/benchmark/metrics/test_evaluate_reference_metrics.py +15 -0
- helm/benchmark/metrics/test_metric.py +1 -1
- helm/benchmark/metrics/test_statistic.py +2 -2
- helm/benchmark/metrics/tokens/ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/auto_token_cost_estimator.py +6 -6
- helm/benchmark/metrics/tokens/cohere_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/free_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/toxicity_metrics.py +4 -4
- helm/benchmark/metrics/unitxt_metrics.py +4 -1
- helm/benchmark/metrics/vision_language/image_metrics.py +1 -1
- helm/benchmark/metrics/wildbench_metrics.py +34 -0
- helm/benchmark/model_metadata_registry.py +16 -0
- helm/benchmark/presentation/summarize.py +23 -10
- helm/benchmark/presentation/torr_robustness_summarizer.py +178 -0
- helm/benchmark/reeval_run.py +203 -0
- helm/benchmark/reeval_runner.py +355 -0
- helm/benchmark/run.py +8 -17
- helm/benchmark/run_expander.py +78 -8
- helm/benchmark/run_spec_factory.py +12 -0
- helm/benchmark/run_specs/air_bench_run_specs.py +21 -3
- helm/benchmark/run_specs/audio_run_specs.py +613 -0
- helm/benchmark/run_specs/call_center_run_specs.py +49 -0
- helm/benchmark/run_specs/capabilities_run_specs.py +308 -0
- helm/benchmark/run_specs/classic_run_specs.py +1 -69
- helm/benchmark/run_specs/enem_challenge_specs.py +31 -0
- helm/benchmark/run_specs/enterprise_run_specs.py +260 -0
- helm/benchmark/run_specs/experimental_run_specs.py +112 -3
- helm/benchmark/run_specs/imdb_ptbr_run_specs.py +30 -0
- helm/benchmark/run_specs/lite_run_specs.py +2 -2
- helm/benchmark/run_specs/long_context_run_specs.py +89 -0
- helm/benchmark/run_specs/medhelm_run_specs.py +1155 -0
- helm/benchmark/run_specs/mmlu_clinical_afr_run_specs.py +49 -0
- helm/benchmark/run_specs/oab_exams_specs.py +32 -0
- helm/benchmark/run_specs/safety_run_specs.py +37 -0
- helm/benchmark/run_specs/{bhasa_run_specs.py → seahelm_run_specs.py} +44 -44
- helm/benchmark/run_specs/sql_run_specs.py +54 -0
- helm/benchmark/run_specs/tweetsentbr_run_specs.py +32 -0
- helm/benchmark/run_specs/unitxt_run_specs.py +14 -5
- helm/benchmark/run_specs/vlm_run_specs.py +75 -2
- helm/benchmark/run_specs/winogrande_afr_run_specs.py +47 -0
- helm/benchmark/scenarios/aci_bench_scenario.py +120 -0
- helm/benchmark/scenarios/air_bench_scenario.py +6 -1
- helm/benchmark/scenarios/anthropic_hh_rlhf_scenario.py +5 -3
- helm/benchmark/scenarios/anthropic_red_team_scenario.py +1 -1
- helm/benchmark/scenarios/audio_language/__init__.py +0 -0
- helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +128 -0
- helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +154 -0
- helm/benchmark/scenarios/audio_language/ami_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/audio_mnist_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audio_pairs_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audiocaps_scenario.py +59 -0
- helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +152 -0
- helm/benchmark/scenarios/audio_language/common_voice_15_scenario.py +99 -0
- helm/benchmark/scenarios/audio_language/covost2_scenario.py +163 -0
- helm/benchmark/scenarios/audio_language/fleurs_fairness_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/fleurs_scenario.py +312 -0
- helm/benchmark/scenarios/audio_language/iemocap_audio_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/librispeech_fairness_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/meld_audio_scenario.py +113 -0
- helm/benchmark/scenarios/audio_language/multilingual_librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/mustard_scenario.py +142 -0
- helm/benchmark/scenarios/audio_language/mutox_scenario.py +254 -0
- helm/benchmark/scenarios/audio_language/parade_scenario.py +97 -0
- helm/benchmark/scenarios/audio_language/speech_robust_bench_scenario.py +124 -0
- helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +69 -0
- helm/benchmark/scenarios/audio_language/voice_jailbreak_attacks_scenario.py +87 -0
- helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +106 -0
- helm/benchmark/scenarios/autobencher_capabilities_scenario.py +68 -0
- helm/benchmark/scenarios/autobencher_safety_scenario.py +51 -0
- helm/benchmark/scenarios/babi_qa_scenario.py +1 -1
- helm/benchmark/scenarios/banking77_scenario.py +6 -1
- helm/benchmark/scenarios/bbq_scenario.py +1 -1
- helm/benchmark/scenarios/big_bench_scenario.py +11 -1
- helm/benchmark/scenarios/bigcodebench_scenario.py +58 -0
- helm/benchmark/scenarios/bird_sql_scenario.py +94 -0
- helm/benchmark/scenarios/bird_sql_scenario_helper.py +118 -0
- helm/benchmark/scenarios/blimp_scenario.py +1 -1
- helm/benchmark/scenarios/bold_scenario.py +1 -1
- helm/benchmark/scenarios/boolq_scenario.py +1 -1
- helm/benchmark/scenarios/casehold_scenario.py +79 -0
- helm/benchmark/scenarios/chw_care_plan_scenario.py +105 -0
- helm/benchmark/scenarios/civil_comments_scenario.py +1 -1
- helm/benchmark/scenarios/clear_scenario.py +153 -0
- helm/benchmark/scenarios/cleva_scenario.py +2 -2
- helm/benchmark/scenarios/code_scenario.py +17 -4
- helm/benchmark/scenarios/commonsense_scenario.py +1 -1
- helm/benchmark/scenarios/conv_fin_qa_calc_scenario.py +97 -0
- helm/benchmark/scenarios/copyright_scenario.py +1 -1
- helm/benchmark/scenarios/covid_dialog_scenario.py +10 -1
- helm/benchmark/scenarios/cti_to_mitre_scenario.py +240 -0
- helm/benchmark/scenarios/custom_mcqa_scenario.py +1 -1
- helm/benchmark/scenarios/czech_bank_qa_scenario.py +130 -0
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/dialogue_scenarios.py +13 -2
- helm/benchmark/scenarios/dischargeme_scenario.py +157 -0
- helm/benchmark/scenarios/disinformation_scenario.py +10 -1
- helm/benchmark/scenarios/dyck_language_scenario.py +10 -1
- helm/benchmark/scenarios/echr_judgment_classification_scenario.py +113 -0
- helm/benchmark/scenarios/ehr_sql_scenario.py +131 -0
- helm/benchmark/scenarios/ehrshot_scenario.py +1546 -0
- helm/benchmark/scenarios/enem_challenge_scenario.py +58 -0
- helm/benchmark/scenarios/entity_data_imputation_scenario.py +11 -1
- helm/benchmark/scenarios/entity_matching_scenario.py +12 -2
- helm/benchmark/scenarios/financial_phrasebank_scenario.py +94 -0
- helm/benchmark/scenarios/gold_commodity_news_scenario.py +124 -0
- helm/benchmark/scenarios/gpqa_scenario.py +80 -0
- helm/benchmark/scenarios/grammar_scenario.py +2 -2
- helm/benchmark/scenarios/gsm_scenario.py +10 -1
- helm/benchmark/scenarios/harm_bench_gcg_transfer_scenario.py +50 -0
- helm/benchmark/scenarios/harm_bench_scenario.py +1 -1
- helm/benchmark/scenarios/headqa_scenario.py +131 -0
- helm/benchmark/scenarios/helpdesk_call_summarization_scenario.py +37 -0
- helm/benchmark/scenarios/ice_scenario.py +8 -4
- helm/benchmark/scenarios/ifeval_scenario.py +53 -0
- helm/benchmark/scenarios/imdb_ptbr_scenario.py +60 -0
- helm/benchmark/scenarios/imdb_scenario.py +11 -2
- helm/benchmark/scenarios/infinite_bench_sum_scenario.py +82 -0
- helm/benchmark/scenarios/interactive_qa_mmlu_scenario.py +2 -2
- helm/benchmark/scenarios/koala_scenario.py +1 -1
- helm/benchmark/scenarios/legal_contract_summarization_scenario.py +129 -0
- helm/benchmark/scenarios/legal_opinion_sentiment_classification_scenario.py +77 -0
- helm/benchmark/scenarios/legal_summarization_scenario.py +11 -1
- helm/benchmark/scenarios/legal_support_scenario.py +11 -1
- helm/benchmark/scenarios/legalbench_scenario.py +22 -3
- helm/benchmark/scenarios/lex_glue_scenario.py +12 -2
- helm/benchmark/scenarios/lextreme_scenario.py +11 -1
- helm/benchmark/scenarios/live_qa_scenario.py +1 -1
- helm/benchmark/scenarios/lm_entry_scenario.py +1 -1
- helm/benchmark/scenarios/lsat_qa_scenario.py +1 -1
- helm/benchmark/scenarios/math_scenario.py +9 -1
- helm/benchmark/scenarios/me_q_sum_scenario.py +10 -1
- helm/benchmark/scenarios/med_dialog_scenario.py +22 -24
- helm/benchmark/scenarios/med_mcqa_scenario.py +10 -1
- helm/benchmark/scenarios/med_paragraph_simplification_scenario.py +10 -1
- helm/benchmark/scenarios/med_qa_scenario.py +10 -1
- helm/benchmark/scenarios/medalign_scenario.py +88 -0
- helm/benchmark/scenarios/medalign_scenario_helper.py +429 -0
- helm/benchmark/scenarios/medbullets_scenario.py +140 -0
- helm/benchmark/scenarios/medcalc_bench_scenario.py +125 -0
- helm/benchmark/scenarios/medec_scenario.py +120 -0
- helm/benchmark/scenarios/medhallu_scenario.py +66 -0
- helm/benchmark/scenarios/medi_qa_scenario.py +105 -0
- helm/benchmark/scenarios/medication_qa_scenario.py +2 -2
- helm/benchmark/scenarios/mental_health_scenario.py +112 -0
- helm/benchmark/scenarios/mimic_bhc_scenario.py +98 -0
- helm/benchmark/scenarios/mimic_rrs_scenario.py +89 -0
- helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +71 -0
- helm/benchmark/scenarios/mmlu_clinical_afr_scenario.py +74 -0
- helm/benchmark/scenarios/mmlu_pro_scenario.py +95 -0
- helm/benchmark/scenarios/mmlu_scenario.py +11 -1
- helm/benchmark/scenarios/msmarco_scenario.py +1 -1
- helm/benchmark/scenarios/mtsamples_procedures_scenario.py +141 -0
- helm/benchmark/scenarios/mtsamples_replicate_scenario.py +141 -0
- helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +271 -0
- helm/benchmark/scenarios/narrativeqa_scenario.py +1 -1
- helm/benchmark/scenarios/natural_qa_scenario.py +1 -1
- helm/benchmark/scenarios/newsqa_scenario.py +1 -1
- helm/benchmark/scenarios/numeracy_scenario.py +10 -1
- helm/benchmark/scenarios/oab_exams_scenario.py +57 -0
- helm/benchmark/scenarios/omni_math_scenario.py +53 -0
- helm/benchmark/scenarios/open_assistant_scenario.py +11 -2
- helm/benchmark/scenarios/opinions_qa_scenario.py +1 -1
- helm/benchmark/scenarios/pubmed_qa_scenario.py +54 -43
- helm/benchmark/scenarios/quac_scenario.py +10 -1
- helm/benchmark/scenarios/race_based_med_scenario.py +142 -0
- helm/benchmark/scenarios/raft_scenario.py +17 -2
- helm/benchmark/scenarios/real_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/ruler_qa_scenario_helper.py +171 -0
- helm/benchmark/scenarios/ruler_qa_scenarios.py +88 -0
- helm/benchmark/scenarios/scenario.py +9 -1
- helm/benchmark/scenarios/{bhasa_scenario.py → seahelm_scenario.py} +7 -2
- helm/benchmark/scenarios/self_instruct_scenario.py +1 -1
- helm/benchmark/scenarios/shc_bmt_scenario.py +69 -0
- helm/benchmark/scenarios/shc_cdi_scenario.py +70 -0
- helm/benchmark/scenarios/shc_conf_scenario.py +70 -0
- helm/benchmark/scenarios/shc_ent_scenario.py +72 -0
- helm/benchmark/scenarios/shc_gip_scenario.py +66 -0
- helm/benchmark/scenarios/shc_ptbm_scenario.py +76 -0
- helm/benchmark/scenarios/shc_sei_scenario.py +89 -0
- helm/benchmark/scenarios/shc_sequoia_scenario.py +69 -0
- helm/benchmark/scenarios/simple_safety_tests_scenario.py +1 -1
- helm/benchmark/scenarios/spider_scenario.py +91 -0
- helm/benchmark/scenarios/starr_patient_instructions_scenario.py +90 -0
- helm/benchmark/scenarios/summarization_scenario.py +11 -1
- helm/benchmark/scenarios/sumosum_scenario.py +157 -0
- helm/benchmark/scenarios/synthetic_efficiency_scenario.py +1 -1
- helm/benchmark/scenarios/synthetic_reasoning_natural_scenario.py +11 -1
- helm/benchmark/scenarios/synthetic_reasoning_scenario.py +11 -1
- helm/benchmark/scenarios/test_bigcodebench_scenario.py +26 -0
- helm/benchmark/scenarios/test_czech_bank_qa_scenario.py +18 -0
- helm/benchmark/scenarios/test_enem_challenge_scenario.py +53 -0
- helm/benchmark/scenarios/test_ewok_scenario.py +6 -2
- helm/benchmark/scenarios/test_gold_commodity_news_scenario.py +18 -0
- helm/benchmark/scenarios/test_gpqa_scenario.py +44 -0
- helm/benchmark/scenarios/test_ifeval_scenario.py +36 -0
- helm/benchmark/scenarios/test_imdb_ptbr_scenario.py +27 -0
- helm/benchmark/scenarios/test_infinite_bench_sum_scenario.py +46 -0
- helm/benchmark/scenarios/test_math_scenario.py +1 -0
- helm/benchmark/scenarios/test_mmlu_clinical_afr_scenario.py +21 -0
- helm/benchmark/scenarios/test_mmlu_pro_scenario.py +53 -0
- helm/benchmark/scenarios/test_oab_exams_scenario.py +51 -0
- helm/benchmark/scenarios/test_omni_math_scenario.py +27 -0
- helm/benchmark/scenarios/test_tweetsentbr_scenario.py +24 -0
- helm/benchmark/scenarios/test_wildbench_scenario.py +15 -0
- helm/benchmark/scenarios/test_winogrande_afr_scenario.py +19 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +10 -1
- helm/benchmark/scenarios/the_pile_scenario.py +1 -1
- helm/benchmark/scenarios/truthful_qa_scenario.py +10 -1
- helm/benchmark/scenarios/tweetsentbr_scenario.py +66 -0
- helm/benchmark/scenarios/twitter_aae_scenario.py +1 -1
- helm/benchmark/scenarios/unitxt_scenario.py +8 -2
- helm/benchmark/scenarios/verifiability_judgment_scenario.py +1 -1
- helm/benchmark/scenarios/vicuna_scenario.py +1 -1
- helm/benchmark/scenarios/vision_language/blink_scenario.py +140 -0
- helm/benchmark/scenarios/vision_language/mm_star_scenario.py +95 -0
- helm/benchmark/scenarios/vision_language/vqa_rad_scenario.py +88 -0
- helm/benchmark/scenarios/wikifact_scenario.py +11 -1
- helm/benchmark/scenarios/wikitext_103_scenario.py +1 -1
- helm/benchmark/scenarios/wildbench_scenario.py +83 -0
- helm/benchmark/scenarios/winogrande_afr_scenario.py +78 -0
- helm/benchmark/scenarios/wmt_14_scenario.py +14 -2
- helm/benchmark/scenarios/xstest_scenario.py +1 -1
- helm/benchmark/server.py +11 -0
- helm/benchmark/slurm_runner.py +1 -1
- helm/benchmark/static/schema_audio.yaml +752 -0
- helm/benchmark/static/schema_autobencher.yaml +150 -0
- helm/benchmark/static/schema_call_center.yaml +97 -60
- helm/benchmark/static/schema_capabilities.yaml +254 -0
- helm/benchmark/static/schema_czech_bank.yaml +148 -0
- helm/benchmark/static/schema_enem_challenge.yaml +146 -0
- helm/benchmark/static/schema_enterprise.yaml +298 -0
- helm/benchmark/static/schema_finance.yaml +14 -12
- helm/benchmark/static/schema_heim.yaml +1389 -0
- helm/benchmark/static/{schema_medical.yaml → schema_long_context.yaml} +67 -82
- helm/benchmark/static/schema_medhelm.yaml +1081 -0
- helm/benchmark/static/schema_mmlu_winogrande_afr.yaml +1045 -0
- helm/benchmark/static/schema_safety.yaml +18 -1
- helm/benchmark/static/{schema_bhasa.yaml → schema_seahelm.yaml} +30 -16
- helm/benchmark/static/schema_social_audio.yaml +224 -0
- helm/benchmark/static/schema_sql.yaml +171 -0
- helm/benchmark/static/{schema_tables.yaml → schema_torr.yaml} +169 -36
- helm/benchmark/static/schema_tweetsentbr.yaml +146 -0
- helm/benchmark/static/schema_vhelm.yaml +109 -36
- helm/benchmark/static_build/assets/helm-safety-2907a7b6.png +0 -0
- helm/benchmark/static_build/assets/index-262903c1.js +10 -0
- helm/benchmark/static_build/assets/index-42060d71.css +1 -0
- helm/benchmark/static_build/assets/medhelm-overview-3ddfcd65.png +0 -0
- helm/benchmark/static_build/assets/{react-d4a0b69b.js → react-f82877fd.js} +1 -1
- helm/benchmark/static_build/assets/{recharts-6d337683.js → recharts-4037aff0.js} +1 -1
- helm/benchmark/static_build/assets/{tremor-54a99cc4.js → tremor-9cefc3c5.js} +1 -1
- helm/benchmark/static_build/config.js +1 -1
- helm/benchmark/static_build/index.html +5 -5
- helm/benchmark/window_services/default_window_service.py +1 -1
- helm/benchmark/window_services/encoder_decoder_window_service.py +1 -1
- helm/benchmark/window_services/ice_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/lexica_search_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +1 -1
- helm/benchmark/window_services/local_window_service.py +2 -2
- helm/benchmark/window_services/test_anthropic_window_service.py +3 -3
- helm/benchmark/window_services/test_bloom_window_service.py +3 -3
- helm/benchmark/window_services/test_gpt2_window_service.py +7 -2
- helm/benchmark/window_services/test_gpt4_window_service.py +8 -3
- helm/benchmark/window_services/test_gptj_window_service.py +8 -3
- helm/benchmark/window_services/test_gptneox_window_service.py +3 -3
- helm/benchmark/window_services/test_openai_window_service.py +8 -3
- helm/benchmark/window_services/test_opt_window_service.py +3 -3
- helm/benchmark/window_services/test_palmyra_window_service.py +3 -3
- helm/benchmark/window_services/test_t0pp_window_service.py +3 -3
- helm/benchmark/window_services/test_t511b_window_service.py +3 -3
- helm/benchmark/window_services/test_ul2_window_service.py +3 -3
- helm/benchmark/window_services/test_utils.py +1 -1
- helm/benchmark/window_services/test_yalm_window_service.py +3 -3
- helm/benchmark/window_services/yalm_window_service.py +1 -1
- helm/clients/ai21_client.py +3 -3
- helm/clients/aleph_alpha_client.py +1 -1
- helm/clients/audio_language/__init__.py +0 -0
- helm/clients/audio_language/diva_llama_client.py +118 -0
- helm/clients/audio_language/llama_omni_client.py +198 -0
- helm/clients/audio_language/qwen2_audiolm_client.py +188 -0
- helm/clients/audio_language/qwen_audiolm_client.py +150 -0
- helm/clients/auto_client.py +4 -2
- helm/clients/azure_openai_client.py +55 -0
- helm/clients/bedrock_client.py +201 -7
- helm/clients/bedrock_utils.py +33 -0
- helm/clients/clip_scorers/clip_scorer.py +1 -1
- helm/clients/clip_scorers/multilingual_clip_scorer.py +1 -1
- helm/clients/cohere_client.py +3 -3
- helm/clients/google_client.py +1 -1
- helm/clients/http_model_client.py +1 -1
- helm/clients/huggingface_client.py +10 -18
- helm/clients/ibm_client.py +267 -0
- helm/clients/image_generation/adobe_vision_client.py +1 -1
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +1 -1
- helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +3 -3
- helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +2 -2
- helm/clients/image_generation/cogview2_client.py +1 -1
- helm/clients/image_generation/dalle2_client.py +1 -1
- helm/clients/image_generation/dalle3_client.py +2 -2
- helm/clients/image_generation/dalle_mini/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/data.py +1 -1
- helm/clients/image_generation/dalle_mini/model/__init__.py +5 -5
- helm/clients/image_generation/dalle_mini/model/configuration.py +1 -1
- helm/clients/image_generation/dalle_mini/model/modeling.py +2 -2
- helm/clients/image_generation/dalle_mini/model/processor.py +4 -4
- helm/clients/image_generation/dalle_mini/model/tokenizer.py +1 -1
- helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +2 -2
- helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +1 -1
- helm/clients/image_generation/dalle_mini_client.py +1 -1
- helm/clients/image_generation/deep_floyd_client.py +1 -1
- helm/clients/image_generation/huggingface_diffusers_client.py +1 -1
- helm/clients/image_generation/lexica_client.py +1 -1
- helm/clients/image_generation/mindalle/models/__init__.py +6 -6
- helm/clients/image_generation/mindalle/models/stage1/vqgan.py +1 -1
- helm/clients/image_generation/mindalle/models/stage2/transformer.py +1 -1
- helm/clients/image_generation/mindalle/utils/__init__.py +3 -3
- helm/clients/image_generation/mindalle_client.py +1 -1
- helm/clients/image_generation/together_image_generation_client.py +1 -1
- helm/clients/lit_gpt_client.py +2 -2
- helm/clients/mistral_client.py +62 -18
- helm/clients/nvidia_nim_client.py +0 -3
- helm/clients/openai_client.py +241 -22
- helm/clients/palmyra_client.py +1 -4
- helm/clients/reka_client.py +1 -1
- helm/clients/stanfordhealthcare_azure_openai_client.py +58 -0
- helm/clients/stanfordhealthcare_claude_client.py +31 -0
- helm/clients/stanfordhealthcare_google_client.py +43 -0
- helm/clients/stanfordhealthcare_http_model_client.py +93 -0
- helm/clients/stanfordhealthcare_openai_client.py +62 -0
- helm/clients/stanfordhealthcare_shc_openai_client.py +42 -0
- helm/clients/test_client.py +1 -1
- helm/clients/test_together_client.py +6 -1
- helm/clients/together_client.py +47 -7
- helm/clients/upstage_client.py +23 -0
- helm/clients/vertexai_client.py +39 -13
- helm/clients/vision_language/open_flamingo/__init__.py +2 -2
- helm/clients/vision_language/open_flamingo/src/factory.py +3 -3
- helm/clients/vision_language/open_flamingo/src/flamingo.py +2 -2
- helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +2 -2
- helm/clients/vision_language/qwen2_vlm_client.py +175 -0
- helm/clients/vllm_client.py +4 -6
- helm/clients/yi_client.py +0 -3
- helm/common/audio_utils.py +111 -0
- helm/common/file_caches/local_file_cache.py +1 -1
- helm/common/file_caches/test_local_file_cache.py +1 -1
- helm/common/images_utils.py +2 -2
- helm/common/media_object.py +2 -2
- helm/common/multimodal_request_utils.py +26 -0
- helm/common/reeval_parameters.py +12 -0
- helm/common/request.py +6 -2
- helm/common/response_format.py +18 -0
- helm/common/test_media_object.py +1 -1
- helm/config/model_deployments.yaml +1112 -19
- helm/config/model_metadata.yaml +985 -44
- helm/config/tokenizer_configs.yaml +379 -3
- helm/proxy/cli.py +2 -2
- helm/proxy/example_queries.py +1 -1
- helm/proxy/server.py +11 -4
- helm/proxy/services/remote_service.py +1 -1
- helm/proxy/services/server_service.py +1 -1
- helm/proxy/services/test_remote_service.py +2 -2
- helm/proxy/services/test_service.py +1 -1
- helm/proxy/static/general.js +122 -0
- helm/proxy/static/help.html +99 -0
- helm/proxy/static/index.css +57 -0
- helm/proxy/static/index.html +40 -0
- helm/proxy/static/index.js +456 -0
- helm/proxy/static/info-icon.png +0 -0
- helm/proxy/test_retry.py +1 -1
- helm/proxy/token_counters/auto_token_counter.py +1 -1
- helm/tokenizers/aleph_alpha_tokenizer.py +1 -1
- helm/tokenizers/caching_tokenizer.py +2 -30
- helm/tokenizers/http_model_tokenizer.py +1 -1
- helm/tokenizers/huggingface_tokenizer.py +2 -2
- helm/tokenizers/lit_gpt_tokenizer.py +1 -1
- helm/tokenizers/test_anthropic_tokenizer.py +6 -2
- helm/tokenizers/test_huggingface_tokenizer.py +1 -1
- helm/tokenizers/test_yalm_tokenizer.py +1 -1
- helm/tokenizers/tiktoken_tokenizer.py +1 -1
- helm/tokenizers/tokenizer.py +3 -1
- helm/tokenizers/yalm_tokenizer.py +3 -3
- helm/tokenizers/yalm_tokenizer_data/test_yalm_tokenizer.py +1 -1
- crfm_helm-0.5.4.dist-info/METADATA +0 -350
- crfm_helm-0.5.4.dist-info/RECORD +0 -697
- helm/benchmark/metrics/bhasa_metrics_specs.py +0 -10
- helm/benchmark/static_build/assets/01-694cb9b7.png +0 -0
- helm/benchmark/static_build/assets/accenture-6f97eeda.png +0 -0
- helm/benchmark/static_build/assets/ai21-0eb91ec3.png +0 -0
- helm/benchmark/static_build/assets/aisingapore-6dfc9acf.png +0 -0
- helm/benchmark/static_build/assets/aleph-alpha-7ce10034.png +0 -0
- helm/benchmark/static_build/assets/anthropic-70d8bc39.png +0 -0
- helm/benchmark/static_build/assets/bigscience-7f0400c0.png +0 -0
- helm/benchmark/static_build/assets/cohere-3550c6cb.png +0 -0
- helm/benchmark/static_build/assets/cresta-9e22b983.png +0 -0
- helm/benchmark/static_build/assets/cuhk-8c5631e9.png +0 -0
- helm/benchmark/static_build/assets/eleutherai-b9451114.png +0 -0
- helm/benchmark/static_build/assets/google-06d997ad.png +0 -0
- helm/benchmark/static_build/assets/index-05c76bb1.css +0 -1
- helm/benchmark/static_build/assets/index-3ee38b3d.js +0 -10
- helm/benchmark/static_build/assets/meta-5580e9f1.png +0 -0
- helm/benchmark/static_build/assets/microsoft-f5ee5016.png +0 -0
- helm/benchmark/static_build/assets/mistral-18e1be23.png +0 -0
- helm/benchmark/static_build/assets/nvidia-86fa75c1.png +0 -0
- helm/benchmark/static_build/assets/openai-3f8653e4.png +0 -0
- helm/benchmark/static_build/assets/scb10x-204bd786.png +0 -0
- helm/benchmark/static_build/assets/tii-24de195c.png +0 -0
- helm/benchmark/static_build/assets/together-a665a35b.png +0 -0
- helm/benchmark/static_build/assets/tsinghua-keg-97d4b395.png +0 -0
- helm/benchmark/static_build/assets/wellsfargo-a86a6c4a.png +0 -0
- helm/benchmark/static_build/assets/yandex-38e09d70.png +0 -0
- helm/tokenizers/anthropic_tokenizer.py +0 -52
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info/licenses}/LICENSE +0 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info}/top_level.txt +0 -0
helm/config/model_metadata.yaml
CHANGED
|
@@ -18,7 +18,7 @@ models:
|
|
|
18
18
|
access: open
|
|
19
19
|
release_date: 2023-01-01
|
|
20
20
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
21
|
-
|
|
21
|
+
|
|
22
22
|
# Adobe
|
|
23
23
|
- name: adobe/giga-gan
|
|
24
24
|
display_name: GigaGAN (1B)
|
|
@@ -128,7 +128,7 @@ models:
|
|
|
128
128
|
|
|
129
129
|
# AI Singapore
|
|
130
130
|
- name: aisingapore/sea-lion-7b
|
|
131
|
-
display_name: SEA-LION
|
|
131
|
+
display_name: SEA-LION 7B
|
|
132
132
|
description: SEA-LION is a collection of language models which has been pretrained and instruct-tuned on languages from the Southeast Asia region. It utilizes the MPT architecture and a custom SEABPETokenizer for tokenization.
|
|
133
133
|
creator_organization_name: AI Singapore
|
|
134
134
|
access: open
|
|
@@ -137,7 +137,7 @@ models:
|
|
|
137
137
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
138
138
|
|
|
139
139
|
- name: aisingapore/sea-lion-7b-instruct
|
|
140
|
-
display_name: SEA-LION Instruct
|
|
140
|
+
display_name: SEA-LION 7B Instruct
|
|
141
141
|
description: SEA-LION is a collection of language models which has been pretrained and instruct-tuned on languages from the Southeast Asia region. It utilizes the MPT architecture and a custom SEABPETokenizer for tokenization.
|
|
142
142
|
creator_organization_name: AI Singapore
|
|
143
143
|
access: open
|
|
@@ -146,23 +146,77 @@ models:
|
|
|
146
146
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
147
147
|
|
|
148
148
|
- name: aisingapore/llama3-8b-cpt-sea-lionv2-base
|
|
149
|
-
display_name:
|
|
150
|
-
description:
|
|
149
|
+
display_name: Llama3 8B CPT SEA-LIONv2
|
|
150
|
+
description: Llama3 8B CPT SEA-LIONv2 is a multilingual model which was continued pre-trained on 48B additional tokens, including tokens in Southeast Asian languages.
|
|
151
151
|
creator_organization_name: AI Singapore
|
|
152
152
|
access: open
|
|
153
|
-
num_parameters:
|
|
153
|
+
num_parameters: 8030000000
|
|
154
154
|
release_date: 2024-07-31
|
|
155
|
-
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG
|
|
155
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
156
156
|
|
|
157
157
|
- name: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
|
|
158
|
-
display_name:
|
|
159
|
-
description:
|
|
158
|
+
display_name: Llama3 8B CPT SEA-LIONv2.1 Instruct
|
|
159
|
+
description: Llama3 8B CPT SEA-LIONv2.1 Instruct is a multilingual model which has been fine-tuned with around 100,000 English instruction-completion pairs alongside a smaller pool of around 50,000 instruction-completion pairs from other Southeast Asian languages, such as Indonesian, Thai and Vietnamese.
|
|
160
160
|
creator_organization_name: AI Singapore
|
|
161
161
|
access: open
|
|
162
|
-
num_parameters:
|
|
162
|
+
num_parameters: 8030000000
|
|
163
163
|
release_date: 2024-08-21
|
|
164
164
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
165
165
|
|
|
166
|
+
- name: aisingapore/gemma2-9b-cpt-sea-lionv3-base
|
|
167
|
+
display_name: Gemma2 9B CPT SEA-LIONv3
|
|
168
|
+
description: Gemma2 9B CPT SEA-LIONv3 Base is a multilingual model which has undergone continued pre-training on approximately 200B tokens across the 11 official Southeast Asian languages, such as English, Chinese, Vietnamese, Indonesian, Thai, Tamil, Filipino, Malay, Khmer, Lao, Burmese.
|
|
169
|
+
creator_organization_name: AI Singapore
|
|
170
|
+
access: open
|
|
171
|
+
num_parameters: 9240000000
|
|
172
|
+
release_date: 2024-10-30
|
|
173
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
174
|
+
|
|
175
|
+
- name: aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
|
|
176
|
+
display_name: Gemma2 9B CPT SEA-LIONv3 Instruct
|
|
177
|
+
description: Gemma2 9B CPT SEA-LIONv3 Instruct is a multilingual model which has been fine-tuned with around 500,000 English instruction-completion pairs alongside a larger pool of around 1,000,000 instruction-completion pairs from other ASEAN languages, such as Indonesian, Thai and Vietnamese.
|
|
178
|
+
creator_organization_name: AI Singapore
|
|
179
|
+
access: open
|
|
180
|
+
num_parameters: 9240000000
|
|
181
|
+
release_date: 2024-10-30
|
|
182
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
183
|
+
|
|
184
|
+
- name: aisingapore/llama3.1-8b-cpt-sea-lionv3-base
|
|
185
|
+
display_name: Llama3.1 8B CPT SEA-LIONv3
|
|
186
|
+
description: Llama3.1 8B CPT SEA-LIONv3 Base is a multilingual model which has undergone continued pre-training on approximately 200B tokens across 11 SEA languages, such as Burmese, Chinese, English, Filipino, Indonesia, Khmer, Lao, Malay, Tamil, Thai and Vietnamese.
|
|
187
|
+
creator_organization_name: AI Singapore
|
|
188
|
+
access: open
|
|
189
|
+
num_parameters: 9240000000
|
|
190
|
+
release_date: 2024-12-11
|
|
191
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
192
|
+
|
|
193
|
+
- name: aisingapore/llama3.1-8b-cpt-sea-lionv3-instruct
|
|
194
|
+
display_name: Llama3.1 8B CPT SEA-LIONv3 Instruct
|
|
195
|
+
description: Llama3.1 8B CPT SEA-LIONv3 Instruct is a multilingual model that has been fine-tuned in two stages on approximately 12.3M English instruction-completion pairs alongside a pool of 4.5M Southeast Asian instruction-completion pairs from SEA languages such as Indonesian, Javanese, Sundanese, Tamil, Thai and Vietnamese.
|
|
196
|
+
creator_organization_name: AI Singapore
|
|
197
|
+
access: open
|
|
198
|
+
num_parameters: 9240000000
|
|
199
|
+
release_date: 2024-12-11
|
|
200
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
201
|
+
|
|
202
|
+
- name: aisingapore/llama3.1-70b-cpt-sea-lionv3-base
|
|
203
|
+
display_name: Llama3.1 70B CPT SEA-LIONv3
|
|
204
|
+
description: Llama3.1 70B CPT SEA-LIONv3 Base is a multilingual model which has undergone continued pre-training on approximately 200B tokens across 11 SEA languages, such as Burmese, Chinese, English, Filipino, Indonesia, Khmer, Lao, Malay, Tamil, Thai and Vietnamese.
|
|
205
|
+
creator_organization_name: AI Singapore
|
|
206
|
+
access: open
|
|
207
|
+
num_parameters: 70600000000
|
|
208
|
+
release_date: 2024-12-11
|
|
209
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
210
|
+
|
|
211
|
+
- name: aisingapore/llama3.1-70b-cpt-sea-lionv3-instruct
|
|
212
|
+
display_name: Llama3.1 70B CPT SEA-LIONv3 Instruct
|
|
213
|
+
description: Llama3.1 70B CPT SEA-LIONv3 Instruct is a multilingual model that has been fine-tuned in two stages on approximately 12.3M English instruction-completion pairs alongside a pool of 4.5M Southeast Asian instruction-completion pairs from SEA languages such as Indonesian, Javanese, Sundanese, Tamil, Thai, and Vietnamese.
|
|
214
|
+
creator_organization_name: AI Singapore
|
|
215
|
+
access: open
|
|
216
|
+
num_parameters: 70600000000
|
|
217
|
+
release_date: 2024-12-11
|
|
218
|
+
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
219
|
+
|
|
166
220
|
# Aleph Alpha
|
|
167
221
|
# Aleph Alpha's Luminous models: https://docs.aleph-alpha.com/docs/introduction/luminous
|
|
168
222
|
# TODO: add Luminous World when it's released
|
|
@@ -219,7 +273,34 @@ models:
|
|
|
219
273
|
tags: [TEXT_TO_IMAGE_MODEL_TAG]
|
|
220
274
|
|
|
221
275
|
|
|
222
|
-
# Amazon
|
|
276
|
+
# Amazon Nova models
|
|
277
|
+
# References for Amazon Nova models:
|
|
278
|
+
# https://aws.amazon.com/ai/generative-ai/nova/
|
|
279
|
+
- name: amazon/nova-pro-v1:0
|
|
280
|
+
display_name: Amazon Nova Pro
|
|
281
|
+
description: Amazon Nova Pro Model
|
|
282
|
+
creator_organization_name: Amazon
|
|
283
|
+
access: limited
|
|
284
|
+
release_date: 2024-12-03
|
|
285
|
+
tags: [NOVA_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
286
|
+
|
|
287
|
+
- name: amazon/nova-lite-v1:0
|
|
288
|
+
display_name: Amazon Nova Lite
|
|
289
|
+
description: Amazon Nova Lite Model
|
|
290
|
+
creator_organization_name: Amazon
|
|
291
|
+
access: limited
|
|
292
|
+
release_date: 2024-12-03
|
|
293
|
+
tags: [NOVA_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
294
|
+
|
|
295
|
+
- name: amazon/nova-micro-v1:0
|
|
296
|
+
display_name: Amazon Nova Micro
|
|
297
|
+
description: Amazon Nova Micro Model
|
|
298
|
+
creator_organization_name: Amazon
|
|
299
|
+
access: limited
|
|
300
|
+
release_date: 2024-12-03
|
|
301
|
+
tags: [NOVA_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
302
|
+
|
|
303
|
+
# Titan Models
|
|
223
304
|
# References for Amazon Titan models:
|
|
224
305
|
# - https://aws.amazon.com/bedrock/titan/
|
|
225
306
|
# - https://community.aws/content/2ZUVD3fkNtqEOYIa2iUJAFArS7c/family-of-titan-text-models---cli-demo
|
|
@@ -230,16 +311,8 @@ models:
|
|
|
230
311
|
creator_organization_name: Amazon
|
|
231
312
|
access: limited
|
|
232
313
|
release_date: 2023-11-29
|
|
233
|
-
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
234
|
-
|
|
235
|
-
- name: amazon/titan-tg1-large
|
|
236
|
-
display_name: Amazon Titan Large
|
|
237
|
-
description: Amazon Titan Large is efficient model perfect for fine-tuning English-language tasks like summarization, create article, marketing campaign.
|
|
238
|
-
creator_organization_name: Amazon
|
|
239
|
-
access: limited
|
|
240
|
-
release_date: 2023-11-29
|
|
241
|
-
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
242
|
-
|
|
314
|
+
tags: [BEDROCK_MODEL_TAG,TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
315
|
+
|
|
243
316
|
- name: amazon/titan-text-express-v1
|
|
244
317
|
display_name: Amazon Titan Text Express
|
|
245
318
|
description: Amazon Titan Text Express, with a context length of up to 8,000 tokens, excels in advanced language tasks like open-ended text generation and conversational chat. It's also optimized for Retrieval Augmented Generation (RAG). Initially designed for English, the model offers preview multilingual support for over 100 additional languages.
|
|
@@ -248,6 +321,93 @@ models:
|
|
|
248
321
|
release_date: 2023-11-29
|
|
249
322
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
250
323
|
|
|
324
|
+
# Mistral Models on Bedrock
|
|
325
|
+
# References for Mistral on Amazon Bedrock
|
|
326
|
+
# https://aws.amazon.com/bedrock/mistral/
|
|
327
|
+
|
|
328
|
+
- name: mistralai/amazon-mistral-7b-instruct-v0:2
|
|
329
|
+
display_name: Mistral 7B Instruct on Amazon Bedrock
|
|
330
|
+
description: A 7B dense Transformer, fast-deployed and easily customisable. Small, yet powerful for a variety of use cases. Supports English and code, and a 32k context window.
|
|
331
|
+
creator_organization_name: Mistral
|
|
332
|
+
access: limited
|
|
333
|
+
release_date: 2024-03-23
|
|
334
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
335
|
+
|
|
336
|
+
- name: mistralai/amazon-mixtral-8x7b-instruct-v0:1
|
|
337
|
+
display_name: Mixtral 8x7B Instruct on Amazon Bedrock
|
|
338
|
+
description: A 7B sparse Mixture-of-Experts model with stronger capabilities than Mistral 7B. Uses 12B active parameters out of 45B total. Supports multiple languages, code and 32k context window.
|
|
339
|
+
creator_organization_name: Mistral
|
|
340
|
+
access: limited
|
|
341
|
+
release_date: 2023-12-11
|
|
342
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
343
|
+
|
|
344
|
+
- name: mistralai/amazon-mistral-large-2402-v1:0
|
|
345
|
+
display_name: Mistral Large(2402) on Amazon Bedrock
|
|
346
|
+
description: The most advanced Mistral AI Large Language model capable of handling any language task including complex multilingual reasoning, text understanding, transformation, and code generation.
|
|
347
|
+
creator_organization_name: Mistral
|
|
348
|
+
access: limited
|
|
349
|
+
release_date: 2023-07-26
|
|
350
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
351
|
+
|
|
352
|
+
- name: mistralai/amazon-mistral-small-2402-v1:0
|
|
353
|
+
display_name: Mistral Small on Amazon Bedrock
|
|
354
|
+
description: Mistral Small is perfectly suited for straightforward tasks that can be performed in bulk, such as classification, customer support, or text generation. It provides outstanding performance at a cost-effective price point.
|
|
355
|
+
creator_organization_name: Mistral
|
|
356
|
+
access: limited
|
|
357
|
+
release_date: 2023-02-26
|
|
358
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
359
|
+
|
|
360
|
+
- name: mistralai/amazon-mistral-large-2407-v1:0
|
|
361
|
+
display_name: Mistral Large(2407) on Amazon Bedrock
|
|
362
|
+
description: Mistral Large 2407 is an advanced Large Language Model (LLM) that supports dozens of languages and is trained on 80+ coding languages. It has best-in-class agentic capabilities with native function calling JSON outputting and reasoning capabilities.
|
|
363
|
+
creator_organization_name: Mistral
|
|
364
|
+
access: limited
|
|
365
|
+
release_date: 2024-07-24
|
|
366
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
367
|
+
|
|
368
|
+
# Llama3 on Amazon Bedrock
|
|
369
|
+
# References for Llama3 on Amazon Bedrock
|
|
370
|
+
# https://aws.amazon.com/bedrock/llama/
|
|
371
|
+
|
|
372
|
+
- name: meta/amazon-llama3-8b-instruct-v1:0
|
|
373
|
+
display_name: Llama 3 8B Instruct on Amazon Bedrock
|
|
374
|
+
description: Meta Llama 3 is an accessible, open large language model (LLM) designed for developers, researchers, and businesses to build, experiment, and responsibly scale their generative AI ideas. Part of a foundational system, it serves as a bedrock for innovation in the global community. Ideal for limited computational power and resources, edge devices, and faster training times.
|
|
375
|
+
creator_organization_name: Meta
|
|
376
|
+
access: limited
|
|
377
|
+
release_date: 2024-04-23
|
|
378
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
379
|
+
|
|
380
|
+
- name: meta/amazon-llama3-70b-instruct-v1:0
|
|
381
|
+
display_name: Llama 3 70B Instruct on Amazon Bedrock
|
|
382
|
+
description: Meta Llama 3 is an accessible, open large language model (LLM) designed for developers, researchers, and businesses to build, experiment, and responsibly scale their generative AI ideas. Part of a foundational system, it serves as a bedrock for innovation in the global community. Ideal for content creation, conversational AI, language understanding, R&D, and Enterprise applications.
|
|
383
|
+
creator_organization_name: Meta
|
|
384
|
+
access: limited
|
|
385
|
+
release_date: 2024-04-23
|
|
386
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
387
|
+
|
|
388
|
+
- name: meta/amazon-llama3-1-405b-instruct-v1:0
|
|
389
|
+
display_name: Llama 3.1 405b Instruct on Amazon Bedrock.
|
|
390
|
+
description: Meta's Llama 3.1 offers multilingual models (8B, 70B, 405B) with 128K context, improved reasoning, and optimization for dialogue. It outperforms many open-source chat models and is designed for commercial and research use in multiple languages.
|
|
391
|
+
creator_organization_name: Meta
|
|
392
|
+
access: limited
|
|
393
|
+
release_date: 2024-07-26
|
|
394
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
395
|
+
|
|
396
|
+
- name: meta/amazon-llama3-1-70b-instruct-v1:0
|
|
397
|
+
display_name: Llama 3.1 70b Instruct on Amazon Bedrock.
|
|
398
|
+
description: Meta's Llama 3.1 offers multilingual models (8B, 70B, 405B) with 128K context, improved reasoning, and optimization for dialogue. It outperforms many open-source chat models and is designed for commercial and research use in multiple languages.
|
|
399
|
+
creator_organization_name: Meta
|
|
400
|
+
access: limited
|
|
401
|
+
release_date: 2024-07-26
|
|
402
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
403
|
+
|
|
404
|
+
- name: meta/amazon-llama3-1-8b-instruct-v1:0
|
|
405
|
+
display_name: Llama 3.1 8b Instruct on Amazon Bedrock.
|
|
406
|
+
description: Meta's Llama 3.1 offers multilingual models (8B, 70B, 405B) with 128K context, improved reasoning, and optimization for dialogue. It outperforms many open-source chat models and is designed for commercial and research use in multiple languages.
|
|
407
|
+
creator_organization_name: Meta
|
|
408
|
+
access: limited
|
|
409
|
+
release_date: 2024-07-26
|
|
410
|
+
tags: [BEDROCK_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
251
411
|
|
|
252
412
|
# Anthropic
|
|
253
413
|
- name: anthropic/claude-v1.3
|
|
@@ -315,6 +475,14 @@ models:
|
|
|
315
475
|
release_date: 2024-03-04 # https://www.anthropic.com/news/claude-3-family
|
|
316
476
|
tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
317
477
|
|
|
478
|
+
- name: anthropic/claude-3-5-haiku-20241022
|
|
479
|
+
display_name: Claude 3.5 Haiku (20241022)
|
|
480
|
+
description: Claude 3.5 Haiku is a Claude 3 family model which matches the performance of Claude 3 Opus at a similar speed to the previous generation of Haiku ([blog](https://www.anthropic.com/news/3-5-models-and-computer-use)).
|
|
481
|
+
creator_organization_name: Anthropic
|
|
482
|
+
access: limited
|
|
483
|
+
release_date: 2024-11-04 # Released after the blog post
|
|
484
|
+
tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
485
|
+
|
|
318
486
|
- name: anthropic/claude-3-5-sonnet-20240620
|
|
319
487
|
display_name: Claude 3.5 Sonnet (20240620)
|
|
320
488
|
description: Claude 3.5 Sonnet is a Claude 3 family model which outperforms Claude 3 Opus while operating faster and at a lower cost. ([blog](https://www.anthropic.com/news/claude-3-5-sonnet))
|
|
@@ -323,6 +491,22 @@ models:
|
|
|
323
491
|
release_date: 2024-06-20
|
|
324
492
|
tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
325
493
|
|
|
494
|
+
- name: anthropic/claude-3-5-sonnet-20241022
|
|
495
|
+
display_name: Claude 3.5 Sonnet (20241022)
|
|
496
|
+
description: Claude 3.5 Sonnet is a Claude 3 family model which outperforms Claude 3 Opus while operating faster and at a lower cost ([blog](https://www.anthropic.com/news/claude-3-5-sonnet)). This is an upgraded snapshot released on 2024-10-22 ([blog](https://www.anthropic.com/news/3-5-models-and-computer-use)).
|
|
497
|
+
creator_organization_name: Anthropic
|
|
498
|
+
access: limited
|
|
499
|
+
release_date: 2024-10-22
|
|
500
|
+
tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
501
|
+
|
|
502
|
+
- name: anthropic/claude-3-7-sonnet-20250219
|
|
503
|
+
display_name: Claude 3.7 Sonnet (20250219)
|
|
504
|
+
description: Claude 3.7 Sonnet is a Claude 3 family hybrid reasoning model that can produce near-instant responses or extended, step-by-step thinking that is made visible to the user ([blog](https://www.anthropic.com/news/claude-3-7-sonnet)).
|
|
505
|
+
creator_organization_name: Anthropic
|
|
506
|
+
access: limited
|
|
507
|
+
release_date: 2025-02-24
|
|
508
|
+
tags: [ANTHROPIC_CLAUDE_3_MODEL_TAG, TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
509
|
+
|
|
326
510
|
- name: anthropic/stanford-online-all-v4-s3
|
|
327
511
|
display_name: Anthropic-LM v4-s3 (52B)
|
|
328
512
|
description: A 52B parameter language model, trained using reinforcement learning from human feedback [paper](https://arxiv.org/pdf/2204.05862.pdf).
|
|
@@ -342,7 +526,7 @@ models:
|
|
|
342
526
|
access: open
|
|
343
527
|
num_parameters: 13000000000
|
|
344
528
|
release_date: 2022-04-03
|
|
345
|
-
tags: [] # TODO: add tags
|
|
529
|
+
tags: [DEPRECATED_MODEL_TAG] # TODO: add tags
|
|
346
530
|
|
|
347
531
|
|
|
348
532
|
|
|
@@ -363,7 +547,7 @@ models:
|
|
|
363
547
|
access: open
|
|
364
548
|
num_parameters: 176000000000
|
|
365
549
|
release_date: 2022-11-03
|
|
366
|
-
tags: [] # TODO: add tags
|
|
550
|
+
tags: [DEPRECATED_MODEL_TAG] # TODO: add tags
|
|
367
551
|
|
|
368
552
|
- name: bigscience/t0pp
|
|
369
553
|
display_name: T0pp (11B)
|
|
@@ -418,7 +602,7 @@ models:
|
|
|
418
602
|
access: limited
|
|
419
603
|
num_parameters: 6700000000
|
|
420
604
|
release_date: 2023-04-06
|
|
421
|
-
tags: [] # TODO: add tags
|
|
605
|
+
tags: [DEPRECATED_MODEL_TAG] # TODO: add tags
|
|
422
606
|
|
|
423
607
|
- name: cerebras/cerebras-gpt-13b # NOT SUPPORTED
|
|
424
608
|
display_name: Cerebras GPT (13B)
|
|
@@ -427,7 +611,7 @@ models:
|
|
|
427
611
|
access: limited
|
|
428
612
|
num_parameters: 13000000000
|
|
429
613
|
release_date: 2023-04-06
|
|
430
|
-
tags: [] # TODO: add tags
|
|
614
|
+
tags: [DEPRECATED_MODEL_TAG] # TODO: add tags
|
|
431
615
|
|
|
432
616
|
|
|
433
617
|
|
|
@@ -644,7 +828,7 @@ models:
|
|
|
644
828
|
access: closed
|
|
645
829
|
num_parameters: 280000000000
|
|
646
830
|
release_date: 2021-12-08
|
|
647
|
-
tags: []
|
|
831
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
648
832
|
|
|
649
833
|
- name: deepmind/chinchilla # NOT SUPPORTED
|
|
650
834
|
display_name: Chinchilla (70B)
|
|
@@ -653,7 +837,7 @@ models:
|
|
|
653
837
|
access: closed
|
|
654
838
|
num_parameters: 70000000000
|
|
655
839
|
release_date: 2022-03-31
|
|
656
|
-
tags: []
|
|
840
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
657
841
|
|
|
658
842
|
|
|
659
843
|
# Deepseek
|
|
@@ -666,7 +850,36 @@ models:
|
|
|
666
850
|
release_date: 2024-01-05
|
|
667
851
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
668
852
|
|
|
853
|
+
- name: deepseek-ai/deepseek-v3
|
|
854
|
+
display_name: DeepSeek v3
|
|
855
|
+
description: DeepSeek v3 a Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. It adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures. ([paper](https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf))
|
|
856
|
+
creator_organization_name: DeepSeek
|
|
857
|
+
access: open
|
|
858
|
+
# NOTE: The total size of DeepSeek-V3 models on HuggingFace is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights.
|
|
859
|
+
num_parameters: 685000000000
|
|
860
|
+
release_date: 2024-12-24
|
|
861
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
862
|
+
|
|
863
|
+
- name: deepseek-ai/deepseek-r1
|
|
864
|
+
display_name: DeepSeek R1
|
|
865
|
+
description: DeepSeek R1 is DeepSeek's first-generation reasoning model which incoporates which incorporates multi-stage training and cold-start data before RL. ([paper](https://arxiv.org/abs/2501.12948))
|
|
866
|
+
creator_organization_name: DeepSeek
|
|
867
|
+
access: open
|
|
868
|
+
# NOTE: The total size of DeepSeek-R3 model1 on HuggingFace is 685B
|
|
869
|
+
num_parameters: 685000000000
|
|
870
|
+
release_date: 2025-01-20
|
|
871
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
669
872
|
|
|
873
|
+
- name: deepseek-ai/deepseek-r1-hide-reasoning
|
|
874
|
+
display_name: DeepSeek R1 (hide reasoning)
|
|
875
|
+
description: DeepSeek R1 is DeepSeek's first-generation reasoning model which incoporates which incorporates multi-stage training and cold-start data before RL. ([paper](https://arxiv.org/abs/2501.12948)) The reasoning tokens are hidden from the output of the model.
|
|
876
|
+
creator_organization_name: DeepSeek
|
|
877
|
+
access: open
|
|
878
|
+
# NOTE: The total size of DeepSeek-R3 model1 on HuggingFace is 685B
|
|
879
|
+
num_parameters: 685000000000
|
|
880
|
+
release_date: 2025-01-20
|
|
881
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
882
|
+
|
|
670
883
|
# EleutherAI
|
|
671
884
|
- name: eleutherai/gpt-j-6b # Served by GooseAi, HuggingFace and Together.
|
|
672
885
|
display_name: GPT-J (6B)
|
|
@@ -769,7 +982,7 @@ models:
|
|
|
769
982
|
access: closed
|
|
770
983
|
num_parameters: 540000000000
|
|
771
984
|
release_date: 2023-03-01 # was first announced on 2022-04 but remained private.
|
|
772
|
-
tags: []
|
|
985
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
773
986
|
|
|
774
987
|
# Note: This is aliased to a snapshot of gemini-pro. When possible, please use a versioned snapshot instead.
|
|
775
988
|
- name: google/gemini-pro
|
|
@@ -819,7 +1032,7 @@ models:
|
|
|
819
1032
|
creator_organization_name: Google
|
|
820
1033
|
access: limited
|
|
821
1034
|
release_date: 2024-05-24
|
|
822
|
-
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1035
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
823
1036
|
|
|
824
1037
|
- name: google/gemini-1.5-flash-001
|
|
825
1038
|
display_name: Gemini 1.5 Flash (001)
|
|
@@ -827,7 +1040,7 @@ models:
|
|
|
827
1040
|
creator_organization_name: Google
|
|
828
1041
|
access: limited
|
|
829
1042
|
release_date: 2024-05-24
|
|
830
|
-
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1043
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
831
1044
|
|
|
832
1045
|
- name: google/gemini-1.5-pro-preview-0409
|
|
833
1046
|
display_name: Gemini 1.5 Pro (0409 preview)
|
|
@@ -885,6 +1098,70 @@ models:
|
|
|
885
1098
|
release_date: 2024-05-24
|
|
886
1099
|
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
887
1100
|
|
|
1101
|
+
- name: google/gemini-1.5-pro-002
|
|
1102
|
+
display_name: Gemini 1.5 Pro (002)
|
|
1103
|
+
description: Gemini 1.5 Pro is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
1104
|
+
creator_organization_name: Google
|
|
1105
|
+
access: limited
|
|
1106
|
+
release_date: 2024-09-24
|
|
1107
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1108
|
+
|
|
1109
|
+
- name: google/gemini-1.5-flash-002
|
|
1110
|
+
display_name: Gemini 1.5 Flash (002)
|
|
1111
|
+
description: Gemini 1.5 Flash is a multimodal mixture-of-experts model capable of recalling and reasoning over fine-grained information from long contexts. This model is accessed through Vertex AI and has all safety thresholds set to `BLOCK_NONE`. ([paper](https://arxiv.org/abs/2403.05530))
|
|
1112
|
+
creator_organization_name: Google
|
|
1113
|
+
access: limited
|
|
1114
|
+
release_date: 2024-09-24
|
|
1115
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1116
|
+
|
|
1117
|
+
- name: google/gemini-2.0-flash-exp
|
|
1118
|
+
display_name: Gemini 2.0 Flash (Experimental)
|
|
1119
|
+
description: Gemini 2.0 Flash (Experimental) is a Gemini model that supports multimodal inputs like images, video and audio, as well as multimodal output like natively generated images mixed with text and steerable text-to-speech (TTS) multilingual audio. ([blog](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#gemini-2-0-flash))
|
|
1120
|
+
creator_organization_name: Google
|
|
1121
|
+
access: limited
|
|
1122
|
+
release_date: 2024-12-11
|
|
1123
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1124
|
+
|
|
1125
|
+
- name: google/gemini-1.5-flash-8b-001
|
|
1126
|
+
display_name: Gemini 1.5 Flash 8B
|
|
1127
|
+
description: Gemini 1.5 Flash-8B is a small model designed for lower intelligence tasks. ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
|
|
1128
|
+
creator_organization_name: Google
|
|
1129
|
+
access: limited
|
|
1130
|
+
release_date: 2024-10-01
|
|
1131
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1132
|
+
|
|
1133
|
+
- name: google/gemini-2.0-flash-001
|
|
1134
|
+
display_name: Gemini 2.0 Flash
|
|
1135
|
+
description: Gemini 2.0 Flash ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
|
|
1136
|
+
creator_organization_name: Google
|
|
1137
|
+
access: limited
|
|
1138
|
+
release_date: 2025-02-01
|
|
1139
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1140
|
+
|
|
1141
|
+
- name: google/gemini-2.0-flash-lite-preview-02-05
|
|
1142
|
+
display_name: Gemini 2.0 Flash Lite (02-05 preview)
|
|
1143
|
+
description: Gemini 2.0 Flash Lite (02-05 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
|
|
1144
|
+
creator_organization_name: Google
|
|
1145
|
+
access: limited
|
|
1146
|
+
release_date: 2025-02-05
|
|
1147
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1148
|
+
|
|
1149
|
+
- name: google/gemini-2.0-flash-thinking-exp-01-21
|
|
1150
|
+
display_name: Gemini 2.0 Flash Thinking (01-21 preview)
|
|
1151
|
+
description: Gemini 2.0 Flash Thinking (01-21 preview) ([documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/thinking))
|
|
1152
|
+
creator_organization_name: Google
|
|
1153
|
+
access: limited
|
|
1154
|
+
release_date: 2025-01-21
|
|
1155
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1156
|
+
|
|
1157
|
+
- name: google/gemini-2.0-pro-exp-02-05
|
|
1158
|
+
display_name: Gemini 2.0 Pro (02-05 preview)
|
|
1159
|
+
description: Gemini 2.0 Pro (02-05 preview) ([documentation](https://ai.google.dev/gemini-api/docs/models/gemini))
|
|
1160
|
+
creator_organization_name: Google
|
|
1161
|
+
access: limited
|
|
1162
|
+
release_date: 2025-02-05
|
|
1163
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, AUDIO_LANGUAGE_MODEL_TAG, GOOGLE_GEMINI_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1164
|
+
|
|
888
1165
|
- name: google/gemma-2b
|
|
889
1166
|
display_name: Gemma (2B)
|
|
890
1167
|
description: Gemma is a family of lightweight, open models built from the research and technology that Google used to create the Gemini models. ([model card](https://www.kaggle.com/models/google/gemma), [blog post](https://blog.google/technology/developers/gemma-open-models/))
|
|
@@ -1304,7 +1581,7 @@ models:
|
|
|
1304
1581
|
access: open
|
|
1305
1582
|
num_parameters: 175000000000
|
|
1306
1583
|
release_date: 2022-12-22
|
|
1307
|
-
tags: []
|
|
1584
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
1308
1585
|
|
|
1309
1586
|
- name: meta/opt-iml-30b # NOT SUPPORTED
|
|
1310
1587
|
display_name: OPT-IML (30B)
|
|
@@ -1313,7 +1590,7 @@ models:
|
|
|
1313
1590
|
access: open
|
|
1314
1591
|
num_parameters: 30000000000
|
|
1315
1592
|
release_date: 2022-12-22
|
|
1316
|
-
tags: []
|
|
1593
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
1317
1594
|
|
|
1318
1595
|
- name: meta/opt-175b
|
|
1319
1596
|
display_name: OPT (175B)
|
|
@@ -1360,7 +1637,7 @@ models:
|
|
|
1360
1637
|
access: open
|
|
1361
1638
|
num_parameters: 120000000000
|
|
1362
1639
|
release_date: 2022-11-15
|
|
1363
|
-
tags: []
|
|
1640
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
1364
1641
|
|
|
1365
1642
|
- name: meta/galactica-30b # NOT SUPPORTED
|
|
1366
1643
|
display_name: Galactica (30B)
|
|
@@ -1369,7 +1646,7 @@ models:
|
|
|
1369
1646
|
access: open
|
|
1370
1647
|
num_parameters: 30000000000
|
|
1371
1648
|
release_date: 2022-11-15
|
|
1372
|
-
tags: []
|
|
1649
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
1373
1650
|
|
|
1374
1651
|
- name: meta/llama-7b
|
|
1375
1652
|
display_name: LLaMA (7B)
|
|
@@ -1490,6 +1767,33 @@ models:
|
|
|
1490
1767
|
release_date: 2024-07-18
|
|
1491
1768
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1492
1769
|
|
|
1770
|
+
- name: meta/llama-3.1-8b-instruct
|
|
1771
|
+
display_name: Llama 3.1 Instruct (8B)
|
|
1772
|
+
description: Llama 3.1 (8B) is part of the Llama 3 family of dense Transformer models that that natively support multilinguality, coding, reasoning, and tool usage. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/))
|
|
1773
|
+
creator_organization_name: Meta
|
|
1774
|
+
access: open
|
|
1775
|
+
num_parameters: 8000000000
|
|
1776
|
+
release_date: 2024-07-23
|
|
1777
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1778
|
+
|
|
1779
|
+
- name: meta/llama-3.1-70b-instruct
|
|
1780
|
+
display_name: Llama 3.1 Instruct (70B)
|
|
1781
|
+
description: Llama 3.1 (70B) is part of the Llama 3 family of dense Transformer models that that natively support multilinguality, coding, reasoning, and tool usage. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/))
|
|
1782
|
+
creator_organization_name: Meta
|
|
1783
|
+
access: open
|
|
1784
|
+
num_parameters: 70000000000
|
|
1785
|
+
release_date: 2024-07-23
|
|
1786
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1787
|
+
|
|
1788
|
+
- name: meta/llama-3.1-405b-instruct
|
|
1789
|
+
display_name: Llama 3.1 Instruct (405B)
|
|
1790
|
+
description: Llama 3.1 (405B) is part of the Llama 3 family of dense Transformer models that that natively support multilinguality, coding, reasoning, and tool usage. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/))
|
|
1791
|
+
creator_organization_name: Meta
|
|
1792
|
+
access: open
|
|
1793
|
+
num_parameters: 405000000000
|
|
1794
|
+
release_date: 2024-07-23
|
|
1795
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1796
|
+
|
|
1493
1797
|
- name: meta/llama-3.1-8b-instruct-turbo
|
|
1494
1798
|
display_name: Llama 3.1 Instruct Turbo (8B)
|
|
1495
1799
|
description: Llama 3.1 (8B) is part of the Llama 3 family of dense Transformer models that that natively support multilinguality, coding, reasoning, and tool usage. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/), [blog](https://ai.meta.com/blog/meta-llama-3-1/)) Turbo is Together's implementation, providing a near negligible difference in quality from the reference implementation with faster performance and lower cost, currently using FP8 quantization. ([blog](https://www.together.ai/blog/llama-31-quality))
|
|
@@ -1517,6 +1821,15 @@ models:
|
|
|
1517
1821
|
release_date: 2024-07-23
|
|
1518
1822
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1519
1823
|
|
|
1824
|
+
- name: meta/llama-3.2-1b-instruct
|
|
1825
|
+
display_name: Llama 3.2 Instruct (1.23B)
|
|
1826
|
+
description: The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned text-only generative models in 1B and 3B sizes. ([blog](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/))
|
|
1827
|
+
creator_organization_name: Meta
|
|
1828
|
+
access: open
|
|
1829
|
+
num_parameters: 1230000000
|
|
1830
|
+
release_date: 2024-09-25
|
|
1831
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1832
|
+
|
|
1520
1833
|
- name: meta/llama-3.2-3b-instruct-turbo
|
|
1521
1834
|
display_name: Llama 3.2 Instruct Turbo (3B)
|
|
1522
1835
|
description: The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned text-only generative models in 1B and 3B sizes. ([blog](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/)) Turbo is Together's implementation, providing a near negligible difference in quality from the reference implementation with faster performance and lower cost, currently using FP8 quantization. ([blog](https://www.together.ai/blog/llama-31-quality))
|
|
@@ -1533,7 +1846,7 @@ models:
|
|
|
1533
1846
|
access: open
|
|
1534
1847
|
num_parameters: 10700000000
|
|
1535
1848
|
release_date: 2024-09-25
|
|
1536
|
-
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG
|
|
1849
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1537
1850
|
|
|
1538
1851
|
- name: meta/llama-3.2-90b-vision-instruct-turbo
|
|
1539
1852
|
display_name: Llama 3.2 Vision Instruct Turbo (90B)
|
|
@@ -1542,7 +1855,25 @@ models:
|
|
|
1542
1855
|
access: open
|
|
1543
1856
|
num_parameters: 88600000000
|
|
1544
1857
|
release_date: 2024-09-25
|
|
1545
|
-
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG
|
|
1858
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1859
|
+
|
|
1860
|
+
- name: meta/llama-3.3-70b-instruct-turbo
|
|
1861
|
+
display_name: Llama 3.3 Instruct Turbo (70B)
|
|
1862
|
+
description: Llama 3.3 (70B) is part of the Llama 3 family of dense Transformer models that that natively support multilinguality, coding, reasoning, and tool usage. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/)) Turbo is Together's implementation, providing a near negligible difference in quality from the reference implementation with faster performance and lower cost, currently using FP8 quantization. ([blog](https://www.together.ai/blog/llama-31-quality))
|
|
1863
|
+
creator_organization_name: Meta
|
|
1864
|
+
access: open
|
|
1865
|
+
num_parameters: 70000000000
|
|
1866
|
+
release_date: 2024-12-06
|
|
1867
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1868
|
+
|
|
1869
|
+
- name: meta/llama-3.3-70b-instruct
|
|
1870
|
+
display_name: Llama 3.3 Instruct (70B)
|
|
1871
|
+
description: Llama 3.3 (70B) is part of the Llama 3 family of dense Transformer models that that natively support multilinguality, coding, reasoning, and tool usage. ([paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/))
|
|
1872
|
+
creator_organization_name: Meta
|
|
1873
|
+
access: open
|
|
1874
|
+
num_parameters: 70000000000
|
|
1875
|
+
release_date: 2024-12-06
|
|
1876
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1546
1877
|
|
|
1547
1878
|
- name: meta/llama-3-8b-chat
|
|
1548
1879
|
display_name: Llama 3 Instruct (8B)
|
|
@@ -1698,6 +2029,24 @@ models:
|
|
|
1698
2029
|
num_parameters: 14000000000
|
|
1699
2030
|
release_date: 2024-05-21
|
|
1700
2031
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2032
|
+
|
|
2033
|
+
- name: microsoft/phi-3.5-mini-instruct
|
|
2034
|
+
display_name: Phi-3.5-mini-instruct (3.8B)
|
|
2035
|
+
description: Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites. ([paper](https://arxiv.org/abs/2404.14219), [blog](https://techcommunity.microsoft.com/blog/azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/4225280))
|
|
2036
|
+
creator_organization_name: Microsoft
|
|
2037
|
+
access: open
|
|
2038
|
+
num_parameters: 3800000000
|
|
2039
|
+
release_date: 2024-08-22
|
|
2040
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2041
|
+
|
|
2042
|
+
- name: microsoft/phi-3.5-moe-instruct
|
|
2043
|
+
display_name: Phi-3.5 MoE
|
|
2044
|
+
description: Phi-3.5 MoE is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available documents - with a focus on very high-quality, reasoning dense data. ([paper](https://arxiv.org/abs/2404.14219), [blog](https://techcommunity.microsoft.com/blog/azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/4225280))
|
|
2045
|
+
creator_organization_name: Microsoft
|
|
2046
|
+
access: open
|
|
2047
|
+
num_parameters: 41900000000
|
|
2048
|
+
release_date: 2024-08-22
|
|
2049
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1701
2050
|
|
|
1702
2051
|
# KAIST AI
|
|
1703
2052
|
- name: kaistai/prometheus-vision-13b-v1.0-hf
|
|
@@ -1837,6 +2186,15 @@ models:
|
|
|
1837
2186
|
num_parameters: 7300000000
|
|
1838
2187
|
release_date: 2024-05-22
|
|
1839
2188
|
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2189
|
+
|
|
2190
|
+
- name: mistralai/mistral-7b-instruct-v0.3-hf
|
|
2191
|
+
display_name: Mistral Instruct v0.3 (7B)
|
|
2192
|
+
description: Mistral v0.3 Instruct 7B is a 7.3B parameter transformer model that uses Grouped-Query Attention (GQA). Compared to v0.1, v0.2 has a 32k context window and no Sliding-Window Attention (SWA). ([blog post](https://mistral.ai/news/la-plateforme/))
|
|
2193
|
+
creator_organization_name: Mistral AI
|
|
2194
|
+
access: open
|
|
2195
|
+
num_parameters: 7300000000
|
|
2196
|
+
release_date: 2024-05-22
|
|
2197
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1840
2198
|
|
|
1841
2199
|
- name: mistralai/mixtral-8x7b-32kseqlen
|
|
1842
2200
|
display_name: Mixtral (8x7B 32K seqlen)
|
|
@@ -1884,6 +2242,22 @@ models:
|
|
|
1884
2242
|
release_date: 2023-10-16
|
|
1885
2243
|
tags: [VISION_LANGUAGE_MODEL_TAG, LLAVA_MODEL_TAG, LIMITED_FUNCTIONALITY_VLM_TAG]
|
|
1886
2244
|
|
|
2245
|
+
- name: mistralai/ministral-3b-2410
|
|
2246
|
+
display_name: Ministral 3B (2402)
|
|
2247
|
+
description: Ministral 3B (2402) is a model for on-device computing and at-the-edge use cases ([blog](https://mistral.ai/news/ministraux/)).
|
|
2248
|
+
creator_organization_name: Mistral AI
|
|
2249
|
+
access: limited
|
|
2250
|
+
release_date: 2024-10-16
|
|
2251
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2252
|
+
|
|
2253
|
+
- name: mistralai/ministral-8b-2410
|
|
2254
|
+
display_name: Ministral 8B (2402)
|
|
2255
|
+
description: Ministral 8B (2402) is a model for on-device computing and at-the-edge use cases a special interleaved sliding-window attention pattern for faster and memory-efficient inference ([blog](https://mistral.ai/news/ministraux/)).
|
|
2256
|
+
creator_organization_name: Mistral AI
|
|
2257
|
+
access: open
|
|
2258
|
+
release_date: 2024-10-16
|
|
2259
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2260
|
+
|
|
1887
2261
|
- name: mistralai/mistral-small-2402
|
|
1888
2262
|
display_name: Mistral Small (2402)
|
|
1889
2263
|
description: Mistral Small is a multilingual model with a 32K tokens context window and function-calling capabilities. ([blog](https://mistral.ai/news/mistral-large/))
|
|
@@ -1892,6 +2266,32 @@ models:
|
|
|
1892
2266
|
release_date: 2023-02-26
|
|
1893
2267
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1894
2268
|
|
|
2269
|
+
- name: mistralai/mistral-small-2409
|
|
2270
|
+
display_name: Mistral Small (2409)
|
|
2271
|
+
description: Mistral Small is a multilingual model with a 32K tokens context window and function-calling capabilities. ([blog](https://mistral.ai/news/mistral-large/))
|
|
2272
|
+
creator_organization_name: Mistral AI
|
|
2273
|
+
access: limited
|
|
2274
|
+
release_date: 2024-09-18
|
|
2275
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2276
|
+
|
|
2277
|
+
- name: mistralai/mistral-small-2501
|
|
2278
|
+
display_name: Mistral Small 3 (2501)
|
|
2279
|
+
description: Mistral Small 3 (2501) is a pre-trained and instructed model catered to the '80%' of generative AI tasks—those that require robust language and instruction following performance, with very low latency. ([blog](https://mistral.ai/news/mistral-small-3/))
|
|
2280
|
+
creator_organization_name: Mistral AI
|
|
2281
|
+
access: open
|
|
2282
|
+
num_parameters: 23600000000
|
|
2283
|
+
release_date: 2025-01-30
|
|
2284
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2285
|
+
|
|
2286
|
+
- name: mistralai/mistral-small-2503
|
|
2287
|
+
display_name: Mistral Small 3.1 (2503)
|
|
2288
|
+
description: Mistral Small 3.1 (2503) is a model with improved text performance, multimodal understanding, and an expanded context window of up to 128k tokens. ([blog](https://mistral.ai/news/mistral-small-3-1))
|
|
2289
|
+
creator_organization_name: Mistral AI
|
|
2290
|
+
access: open
|
|
2291
|
+
num_parameters: 23600000000
|
|
2292
|
+
release_date: 2025-03-17
|
|
2293
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2294
|
+
|
|
1895
2295
|
- name: mistralai/mistral-medium-2312
|
|
1896
2296
|
display_name: Mistral Medium (2312)
|
|
1897
2297
|
description: Mistral is a transformer model that uses Grouped-Query Attention (GQA) and Sliding-Window Attention (SWA).
|
|
@@ -1917,6 +2317,15 @@ models:
|
|
|
1917
2317
|
release_date: 2023-07-24
|
|
1918
2318
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1919
2319
|
|
|
2320
|
+
- name: mistralai/mistral-large-2411
|
|
2321
|
+
display_name: Mistral Large (2411)
|
|
2322
|
+
description: Mistral Large (2411) is a 123B parameter model that has a 128k context window. ([blog](https://mistral.ai/news/pixtral-large/))
|
|
2323
|
+
creator_organization_name: Mistral AI
|
|
2324
|
+
access: open
|
|
2325
|
+
num_parameters: 123000000000
|
|
2326
|
+
release_date: 2024-11-18
|
|
2327
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2328
|
+
|
|
1920
2329
|
- name: mistralai/open-mistral-nemo-2407
|
|
1921
2330
|
display_name: Mistral NeMo (2402)
|
|
1922
2331
|
description: Mistral NeMo is a multilingual 12B model with a large context window of 128K tokens. ([blog](https://mistral.ai/news/mistral-nemo/))
|
|
@@ -1925,6 +2334,24 @@ models:
|
|
|
1925
2334
|
release_date: 2024-07-18
|
|
1926
2335
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
1927
2336
|
|
|
2337
|
+
- name: mistralai/pixtral-12b-2409
|
|
2338
|
+
display_name: Mistral Pixtral (2409)
|
|
2339
|
+
description: Mistral Pixtral 12B is the first multimodal Mistral model for image understanding. ([blog](https://mistral.ai/news/pixtral-12b/))
|
|
2340
|
+
creator_organization_name: Mistral AI
|
|
2341
|
+
access: open
|
|
2342
|
+
release_date: 2024-09-17
|
|
2343
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2344
|
+
|
|
2345
|
+
- name: mistralai/pixtral-large-2411
|
|
2346
|
+
display_name: Mistral Pixtral Large (2411)
|
|
2347
|
+
description: Mistral Pixtral Large is a 124B open-weights multimodal model built on top of Mistral Large 2 (2407). ([blog](https://mistral.ai/news/pixtral-large/))
|
|
2348
|
+
creator_organization_name: Mistral AI
|
|
2349
|
+
access: open
|
|
2350
|
+
num_parameters: 124000000000
|
|
2351
|
+
release_date: 2024-11-18
|
|
2352
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2353
|
+
|
|
2354
|
+
|
|
1928
2355
|
# MosaicML
|
|
1929
2356
|
- name: mosaicml/mpt-7b
|
|
1930
2357
|
display_name: MPT (7B)
|
|
@@ -1942,7 +2369,7 @@ models:
|
|
|
1942
2369
|
access: open
|
|
1943
2370
|
num_parameters: 6700000000
|
|
1944
2371
|
release_date: 2023-05-05
|
|
1945
|
-
tags: []
|
|
2372
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
1946
2373
|
|
|
1947
2374
|
- name: mosaicml/mpt-instruct-7b
|
|
1948
2375
|
display_name: MPT-Instruct (7B)
|
|
@@ -1969,7 +2396,7 @@ models:
|
|
|
1969
2396
|
access: open
|
|
1970
2397
|
num_parameters: 30000000000
|
|
1971
2398
|
release_date: 2023-06-22
|
|
1972
|
-
tags: []
|
|
2399
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
1973
2400
|
|
|
1974
2401
|
- name: mosaicml/mpt-instruct-30b
|
|
1975
2402
|
display_name: MPT-Instruct (30B)
|
|
@@ -1981,6 +2408,27 @@ models:
|
|
|
1981
2408
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
1982
2409
|
|
|
1983
2410
|
|
|
2411
|
+
|
|
2412
|
+
# NECTEC
|
|
2413
|
+
- name: nectec/Pathumma-llm-text-1.0.0
|
|
2414
|
+
display_name: Pathumma-llm-text-1.0.0 (7B)
|
|
2415
|
+
description: Pathumma-llm-text-1.0.0 (7B) is a instruction model from OpenThaiLLM-Prebuilt-7B ([blog](https://medium.com/nectec/pathummallm-v-1-0-0-release-6a098ddfe276))
|
|
2416
|
+
creator_organization_name: nectec
|
|
2417
|
+
access: open
|
|
2418
|
+
num_parameters: 7620000000
|
|
2419
|
+
release_date: 2024-10-28
|
|
2420
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2421
|
+
|
|
2422
|
+
- name: nectec/OpenThaiLLM-Prebuilt-7B
|
|
2423
|
+
display_name: OpenThaiLLM-Prebuilt-7B (7B)
|
|
2424
|
+
description: OpenThaiLLM-Prebuilt-7B (7B) is a pretrained Thai large language model with 7 billion parameters based on Qwen2.5-7B.
|
|
2425
|
+
creator_organization_name: nectec
|
|
2426
|
+
access: open
|
|
2427
|
+
num_parameters: 7620000000
|
|
2428
|
+
release_date: 2024-10-28
|
|
2429
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2430
|
+
|
|
2431
|
+
|
|
1984
2432
|
|
|
1985
2433
|
# Neurips
|
|
1986
2434
|
- name: neurips/local
|
|
@@ -2010,6 +2458,16 @@ models:
|
|
|
2010
2458
|
release_date: 2024-06-17
|
|
2011
2459
|
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2012
2460
|
|
|
2461
|
+
- name: nvidia/llama-3.1-nemotron-70b-instruct
|
|
2462
|
+
display_name: Llama 3.1 Nemotron Instruct (70B)
|
|
2463
|
+
description: Llama-3.1-Nemotron-70B-Instruct is a large language model customized by NVIDIA to improve the helpfulness of LLM generated responses to user queries. It was trained using RLHF (specifically, REINFORCE), Llama-3.1-Nemotron-70B-Reward and HelpSteer2-Preference prompts on a Llama-3.1-70B-Instruct model. ([paper](https://arxiv.org/abs/2410.01257))
|
|
2464
|
+
creator_organization_name: NVIDIA
|
|
2465
|
+
access: open
|
|
2466
|
+
num_parameters: 70000000000
|
|
2467
|
+
release_date: 2024-10-02
|
|
2468
|
+
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2469
|
+
|
|
2470
|
+
|
|
2013
2471
|
# OpenAI
|
|
2014
2472
|
|
|
2015
2473
|
## GPT 2 Models
|
|
@@ -2194,7 +2652,7 @@ models:
|
|
|
2194
2652
|
tags: [TEXT_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2195
2653
|
|
|
2196
2654
|
|
|
2197
|
-
## GPT 4
|
|
2655
|
+
## GPT-4 and GPT-4 Turbo
|
|
2198
2656
|
|
|
2199
2657
|
- name: openai/gpt-4-1106-preview
|
|
2200
2658
|
display_name: GPT-4 Turbo (1106 preview)
|
|
@@ -2246,6 +2704,8 @@ models:
|
|
|
2246
2704
|
release_date: 2024-01-25
|
|
2247
2705
|
tags: [TEXT_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2248
2706
|
|
|
2707
|
+
## GPT-4o
|
|
2708
|
+
|
|
2249
2709
|
- name: openai/gpt-4-turbo-2024-04-09
|
|
2250
2710
|
display_name: GPT-4 Turbo (2024-04-09)
|
|
2251
2711
|
description: GPT-4 Turbo (2024-04-09) is a large multimodal model that is optimized for chat but works well for traditional completions tasks. The model is cheaper and faster than the original GPT-4 model. Snapshot from 2024-04-09.
|
|
@@ -2270,6 +2730,14 @@ models:
|
|
|
2270
2730
|
release_date: 2024-08-06
|
|
2271
2731
|
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2272
2732
|
|
|
2733
|
+
- name: openai/gpt-4o-2024-11-20
|
|
2734
|
+
display_name: GPT-4o (2024-11-20)
|
|
2735
|
+
description: GPT-4o (2024-11-20) is a large multimodal model that accepts as input any combination of text, audio, and image and generates any combination of text, audio, and image outputs. ([blog](https://openai.com/index/introducing-structured-outputs-in-the-api/))
|
|
2736
|
+
creator_organization_name: OpenAI
|
|
2737
|
+
access: limited
|
|
2738
|
+
release_date: 2024-11-20
|
|
2739
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2740
|
+
|
|
2273
2741
|
- name: openai/gpt-4o-mini-2024-07-18
|
|
2274
2742
|
display_name: GPT-4o mini (2024-07-18)
|
|
2275
2743
|
description: GPT-4o mini (2024-07-18) is a multimodal model with a context window of 128K tokens and improved handling of non-English text. ([blog](https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/))
|
|
@@ -2278,6 +2746,40 @@ models:
|
|
|
2278
2746
|
release_date: 2024-07-18
|
|
2279
2747
|
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2280
2748
|
|
|
2749
|
+
- name: openai/whisper-1_gpt-4o-2024-11-20
|
|
2750
|
+
display_name: Whisper-1 + GPT-4o (2024-11-20)
|
|
2751
|
+
description: Transcribes the text with Whisper-1 and then uses GPT-4o to generate a response.
|
|
2752
|
+
creator_organization_name: OpenAI
|
|
2753
|
+
access: limited
|
|
2754
|
+
release_date: 2024-11-20
|
|
2755
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG]
|
|
2756
|
+
|
|
2757
|
+
- name: openai/gpt-4o-audio-preview-2024-10-01
|
|
2758
|
+
display_name: GPT-4o Audio (Preview 2024-10-01)
|
|
2759
|
+
description: GPT-4o Audio (Preview 2024-10-01) is a preview model that allows using use audio inputs to prompt the model ([documentation](https://platform.openai.com/docs/guides/audio)).
|
|
2760
|
+
creator_organization_name: OpenAI
|
|
2761
|
+
access: limited
|
|
2762
|
+
release_date: 2024-10-01
|
|
2763
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2764
|
+
|
|
2765
|
+
- name: openai/gpt-4o-audio-preview-2024-12-17
|
|
2766
|
+
display_name: GPT-4o Audio (Preview 2024-12-17)
|
|
2767
|
+
description: GPT-4o Audio (Preview 2024-12-17) is a preview model that allows using use audio inputs to prompt the model ([documentation](https://platform.openai.com/docs/guides/audio)).
|
|
2768
|
+
creator_organization_name: OpenAI
|
|
2769
|
+
access: limited
|
|
2770
|
+
release_date: 2024-12-17
|
|
2771
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2772
|
+
|
|
2773
|
+
- name: openai/gpt-4o-mini-audio-preview-2024-12-17
|
|
2774
|
+
display_name: GPT-4o mini Audio (Preview 2024-12-17)
|
|
2775
|
+
description: GPT-4o mini Audio (Preview 2024-12-17) is a preview model that allows using use audio inputs to prompt the model ([documentation](https://platform.openai.com/docs/guides/audio)).
|
|
2776
|
+
creator_organization_name: OpenAI
|
|
2777
|
+
access: limited
|
|
2778
|
+
release_date: 2024-12-17
|
|
2779
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2780
|
+
|
|
2781
|
+
# GPT-4V
|
|
2782
|
+
|
|
2281
2783
|
- name: openai/gpt-4-vision-preview
|
|
2282
2784
|
# According to https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4, this model has pointed gpt-4-1106-vision-preview.
|
|
2283
2785
|
display_name: GPT-4V (1106 preview)
|
|
@@ -2295,7 +2797,40 @@ models:
|
|
|
2295
2797
|
release_date: 2023-11-06
|
|
2296
2798
|
tags: [VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
|
|
2297
2799
|
|
|
2800
|
+
## GPT-4.5
|
|
2801
|
+
- name: openai/gpt-4.5-preview-2025-02-27
|
|
2802
|
+
display_name: GPT-4.5 (2025-02-27 preview)
|
|
2803
|
+
description: GPT-4.5 (2025-02-27 preview) is a large multimodal model that is designed to be more general-purpose than OpenAI's STEM-focused reasoning models. It was trained using new supervision techniques combined with traditional methods like supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF). ([blog](https://openai.com/index/introducing-gpt-4-5/), [system card](https://openai.com/index/gpt-4-5-system-card/))
|
|
2804
|
+
creator_organization_name: OpenAI
|
|
2805
|
+
access: limited
|
|
2806
|
+
release_date: 2025-02-27
|
|
2807
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, OPENAI_CHATGPT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2808
|
+
|
|
2298
2809
|
## o1 Models
|
|
2810
|
+
- name: openai/o1-2024-12-17
|
|
2811
|
+
display_name: o1 (2024-12-17)
|
|
2812
|
+
description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/))
|
|
2813
|
+
creator_organization_name: OpenAI
|
|
2814
|
+
access: limited
|
|
2815
|
+
release_date: 2024-12-17
|
|
2816
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2817
|
+
|
|
2818
|
+
- name: openai/o1-2024-12-17-low-reasoning-effort
|
|
2819
|
+
display_name: o1 (2024-12-17, low reasoning effort)
|
|
2820
|
+
description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/)) The requests' reasoning effort parameter in is set to low.
|
|
2821
|
+
creator_organization_name: OpenAI
|
|
2822
|
+
access: limited
|
|
2823
|
+
release_date: 2024-12-17
|
|
2824
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2825
|
+
|
|
2826
|
+
- name: openai/o1-2024-12-17-high-reasoning-effort
|
|
2827
|
+
display_name: o1 (2024-12-17, high reasoning effort)
|
|
2828
|
+
description: o1 is a new large language model trained with reinforcement learning to perform complex reasoning. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/)) The requests' reasoning effort parameter in is set to high.
|
|
2829
|
+
creator_organization_name: OpenAI
|
|
2830
|
+
access: limited
|
|
2831
|
+
release_date: 2024-12-17
|
|
2832
|
+
tags: [TEXT_MODEL_TAG, VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2833
|
+
|
|
2299
2834
|
- name: openai/o1-preview-2024-09-12
|
|
2300
2835
|
display_name: o1-preview (2024-09-12)
|
|
2301
2836
|
description: o1-preview is a language model trained with reinforcement learning to perform complex reasoning that can produce a long internal chain of thought before responding to the user. ([model card](https://openai.com/index/openai-o1-system-card/), [blog post](https://openai.com/index/learning-to-reason-with-llms/))
|
|
@@ -2312,6 +2847,30 @@ models:
|
|
|
2312
2847
|
release_date: 2024-09-12
|
|
2313
2848
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2314
2849
|
|
|
2850
|
+
- name: openai/o3-mini-2025-01-31
|
|
2851
|
+
display_name: o3-mini (2025-01-31)
|
|
2852
|
+
description: o3-mini is a small reasoning model form OpenAI that aims to deliver STEM capabilities while maintaining the low cost and reduced latency of OpenAI o1-mini. ([blog post](https://openai.com/index/openai-o3-mini/))
|
|
2853
|
+
creator_organization_name: OpenAI
|
|
2854
|
+
access: limited
|
|
2855
|
+
release_date: 2025-01-31
|
|
2856
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2857
|
+
|
|
2858
|
+
- name: openai/o3-mini-2025-01-31-low-reasoning-effort
|
|
2859
|
+
display_name: o3-mini (2025-01-31, low reasoning effort)
|
|
2860
|
+
description: o3-mini is a small reasoning model form OpenAI that aims to deliver STEM capabilities while maintaining the low cost and reduced latency of OpenAI o1-mini. ([blog post](https://openai.com/index/openai-o3-mini/)) The requests' reasoning effort parameter in is set to low.
|
|
2861
|
+
creator_organization_name: OpenAI
|
|
2862
|
+
access: limited
|
|
2863
|
+
release_date: 2025-01-31
|
|
2864
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2865
|
+
|
|
2866
|
+
- name: openai/o3-mini-2025-01-31-high-reasoning-effort
|
|
2867
|
+
display_name: o3-mini (2025-01-31, high reasoning effort)
|
|
2868
|
+
description: o3-mini is a small reasoning model form OpenAI that aims to deliver STEM capabilities while maintaining the low cost and reduced latency of OpenAI o1-mini. ([blog post](https://openai.com/index/openai-o3-mini/)) The requests' reasoning effort parameter in is set to high.
|
|
2869
|
+
creator_organization_name: OpenAI
|
|
2870
|
+
access: limited
|
|
2871
|
+
release_date: 2025-01-31
|
|
2872
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2873
|
+
|
|
2315
2874
|
## Codex Models
|
|
2316
2875
|
# DEPRECATED: Codex models have been shut down on March 23 2023.
|
|
2317
2876
|
|
|
@@ -2556,6 +3115,39 @@ models:
|
|
|
2556
3115
|
release_date: 2024-06-07
|
|
2557
3116
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
2558
3117
|
|
|
3118
|
+
- name: qwen/qwen2.5-7b-instruct-turbo
|
|
3119
|
+
display_name: Qwen2.5 Instruct Turbo (7B)
|
|
3120
|
+
description: Qwen2.5 Instruct Turbo (7B) was trained on 18 trillion tokens and supports 29 languages, and shows improvements over Qwen2 in knowledge, coding, mathematics, instruction following, generating long texts, and processing structure data. ([blog](https://qwenlm.github.io/blog/qwen2.5/)) Turbo is Together's cost-efficient implementation, providing fast FP8 performance while maintaining quality, closely matching FP16 reference models. ([blog](https://www.together.ai/blog/together-inference-engine-2))
|
|
3121
|
+
creator_organization_name: Qwen
|
|
3122
|
+
access: open
|
|
3123
|
+
release_date: 2024-09-19
|
|
3124
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3125
|
+
|
|
3126
|
+
- name: qwen/qwen2.5-7b-instruct
|
|
3127
|
+
display_name: Qwen2.5 Instruct (7B)
|
|
3128
|
+
description: Qwen2.5 Instruct (7B) was trained on 18 trillion tokens and supports 29 languages, and shows improvements over Qwen2 in knowledge, coding, mathematics, instruction following, generating long texts, and processing structure data. ([blog](https://qwenlm.github.io/blog/qwen2.5/)) Turbo is Together's cost-efficient implementation, providing fast FP8 performance while maintaining quality, closely matching FP16 reference models. ([blog](https://www.together.ai/blog/together-inference-engine-2))
|
|
3129
|
+
creator_organization_name: Qwen
|
|
3130
|
+
access: open
|
|
3131
|
+
release_date: 2024-09-19
|
|
3132
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3133
|
+
|
|
3134
|
+
- name: qwen/qwen2.5-72b-instruct-turbo
|
|
3135
|
+
display_name: Qwen2.5 Instruct Turbo (72B)
|
|
3136
|
+
description: Qwen2.5 Instruct Turbo (72B) was trained on 18 trillion tokens and supports 29 languages, and shows improvements over Qwen2 in knowledge, coding, mathematics, instruction following, generating long texts, and processing structure data. ([blog](https://qwenlm.github.io/blog/qwen2.5/)) Turbo is Together's cost-efficient implementation, providing fast FP8 performance while maintaining quality, closely matching FP16 reference models. ([blog](https://www.together.ai/blog/together-inference-engine-2))
|
|
3137
|
+
creator_organization_name: Qwen
|
|
3138
|
+
access: open
|
|
3139
|
+
release_date: 2024-09-19
|
|
3140
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3141
|
+
|
|
3142
|
+
- name: qwen/qwq-32b-preview
|
|
3143
|
+
display_name: QwQ (32B Preview)
|
|
3144
|
+
description: QwQ-32B-Preview is an experimental research model developed by the Qwen Team, focused on advancing AI reasoning capabilities. ([blog post](https://qwenlm.github.io/blog/qwq-32b-preview/)).
|
|
3145
|
+
creator_organization_name: Alibaba Cloud
|
|
3146
|
+
access: open
|
|
3147
|
+
num_parameters: 32800000000
|
|
3148
|
+
release_date: 2024-11-28
|
|
3149
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3150
|
+
|
|
2559
3151
|
- name: qwen/qwen-vl
|
|
2560
3152
|
display_name: Qwen-VL
|
|
2561
3153
|
description: Visual multimodal version of the Qwen large language model series ([paper](https://arxiv.org/abs/2308.12966)).
|
|
@@ -2572,6 +3164,38 @@ models:
|
|
|
2572
3164
|
release_date: 2023-08-24
|
|
2573
3165
|
tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
|
|
2574
3166
|
|
|
3167
|
+
- name: qwen/qwen2-vl-7b-instruct
|
|
3168
|
+
display_name: Qwen2-VL Instruct (7B)
|
|
3169
|
+
description: The second generation of Qwen2-VL models ([paper](https://arxiv.org/abs/2409.12191)).
|
|
3170
|
+
creator_organization_name: Alibaba Group
|
|
3171
|
+
access: open
|
|
3172
|
+
release_date: 2024-08-29
|
|
3173
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
|
|
3174
|
+
|
|
3175
|
+
- name: qwen/qwen2-vl-72b-instruct
|
|
3176
|
+
display_name: Qwen2-VL Instruct (72B)
|
|
3177
|
+
description: The second generation of Qwen2-VL models ([paper](https://arxiv.org/abs/2409.12191)).
|
|
3178
|
+
creator_organization_name: Alibaba Group
|
|
3179
|
+
access: open
|
|
3180
|
+
release_date: 2024-08-29
|
|
3181
|
+
tags: [VISION_LANGUAGE_MODEL_TAG, FULL_FUNCTIONALITY_VLM_TAG]
|
|
3182
|
+
|
|
3183
|
+
- name: qwen/qwen-audio-chat
|
|
3184
|
+
display_name: Qwen-Audio Chat
|
|
3185
|
+
description: Auditory multimodal version of the Qwen large language model series ([paper](https://arxiv.org/abs/2311.07919)).
|
|
3186
|
+
creator_organization_name: Alibaba Cloud
|
|
3187
|
+
access: open
|
|
3188
|
+
release_date: 2023-11-14
|
|
3189
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG]
|
|
3190
|
+
|
|
3191
|
+
- name: qwen/qwen2-audio-7b-instruct
|
|
3192
|
+
display_name: Qwen2-Audio Instruct (7B)
|
|
3193
|
+
description: The second version of auditory multimodal version of the Qwen large language model series ([paper](https://arxiv.org/abs/2407.10759)).
|
|
3194
|
+
creator_organization_name: Alibaba Cloud
|
|
3195
|
+
access: open
|
|
3196
|
+
release_date: 2024-07-15
|
|
3197
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG]
|
|
3198
|
+
|
|
2575
3199
|
# SAIL (Sea AI Lab)
|
|
2576
3200
|
- name: sail/sailor-7b
|
|
2577
3201
|
display_name: Sailor (7B)
|
|
@@ -2617,7 +3241,7 @@ models:
|
|
|
2617
3241
|
access: open
|
|
2618
3242
|
num_parameters: 16000000000
|
|
2619
3243
|
release_date: 2022-03-25
|
|
2620
|
-
tags: []
|
|
3244
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
2621
3245
|
|
|
2622
3246
|
# SambaNova
|
|
2623
3247
|
- name: sambanova/sambalingo-thai-base
|
|
@@ -2769,8 +3393,6 @@ models:
|
|
|
2769
3393
|
release_date: 2023-04-20
|
|
2770
3394
|
tags: [TEXT_MODEL_TAG, FULL_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2771
3395
|
|
|
2772
|
-
|
|
2773
|
-
|
|
2774
3396
|
# Stanford
|
|
2775
3397
|
- name: stanford/alpaca-7b
|
|
2776
3398
|
display_name: Alpaca (7B)
|
|
@@ -2866,7 +3488,7 @@ models:
|
|
|
2866
3488
|
access: open
|
|
2867
3489
|
num_parameters: 3000000000
|
|
2868
3490
|
release_date: 2023-05-05
|
|
2869
|
-
|
|
3491
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
2870
3492
|
|
|
2871
3493
|
- name: together/redpajama-incite-base-7b
|
|
2872
3494
|
display_name: RedPajama-INCITE-Base (7B)
|
|
@@ -2917,9 +3539,27 @@ models:
|
|
|
2917
3539
|
access: open
|
|
2918
3540
|
num_parameters: 13000000000
|
|
2919
3541
|
release_date: 2022-09-19
|
|
2920
|
-
tags: []
|
|
3542
|
+
tags: [UNSUPPORTED_MODEL_TAG]
|
|
2921
3543
|
|
|
3544
|
+
# Upstage
|
|
3545
|
+
- name: upstage/solar-pro-preview-instruct
|
|
3546
|
+
display_name: Solar Pro Preview (22B)
|
|
3547
|
+
description: Solar Pro Preview (22B) is open-weights model for single GPU inference that is a preview of the upcoming Solar Pro model ([blog](https://www.upstage.ai/products/solar-pro-preview)).
|
|
3548
|
+
creator_organization_name: Upstage
|
|
3549
|
+
access: open
|
|
3550
|
+
num_parameters: 22000000000
|
|
3551
|
+
release_date: 2024-09-11
|
|
3552
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2922
3553
|
|
|
3554
|
+
- name: upstage/solar-pro-241126
|
|
3555
|
+
display_name: Solar Pro
|
|
3556
|
+
display_name: Solar Pro
|
|
3557
|
+
description: Solar Pro is a LLM designed for instruction-following and processing structured formats like HTML and Markdown. It supports English, Korean, and Japanese and has domain expertise in Finance, Healthcare, and Legal. ([blog](https://www.upstage.ai/blog/press/solar-pro-aws)).
|
|
3558
|
+
creator_organization_name: Upstage
|
|
3559
|
+
access: limited
|
|
3560
|
+
num_parameters: 22000000000
|
|
3561
|
+
release_date: 2024-11-26
|
|
3562
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
2923
3563
|
|
|
2924
3564
|
# Writer
|
|
2925
3565
|
- name: writer/palmyra-base
|
|
@@ -3057,6 +3697,24 @@ models:
|
|
|
3057
3697
|
release_date: 2024-07-31
|
|
3058
3698
|
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3059
3699
|
|
|
3700
|
+
- name: writer/palmyra-fin
|
|
3701
|
+
display_name: Palmyra Fin
|
|
3702
|
+
description: Palmyra Fin is a financial LLM built using combining a well-curated set of financial training data with custom fine-tuning instruction data([blog](https://writer.com/blog/palmyra-med-fin-models/)).
|
|
3703
|
+
creator_organization_name: Writer
|
|
3704
|
+
access: limited
|
|
3705
|
+
release_date: 2024-07-31
|
|
3706
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3707
|
+
|
|
3708
|
+
# xAI
|
|
3709
|
+
|
|
3710
|
+
- name: xai/grok-beta
|
|
3711
|
+
display_name: Grok Beta
|
|
3712
|
+
description: Grok Beta is a model from xAI.
|
|
3713
|
+
creator_organization_name: xAI
|
|
3714
|
+
access: closed
|
|
3715
|
+
release_date: 2024-08-13
|
|
3716
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3717
|
+
|
|
3060
3718
|
# Yandex
|
|
3061
3719
|
- name: yandex/yalm
|
|
3062
3720
|
display_name: YaLM (100B)
|
|
@@ -3128,3 +3786,286 @@ models:
|
|
|
3128
3786
|
release_date: 2024-04-18
|
|
3129
3787
|
tags: [VISION_LANGUAGE_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG]
|
|
3130
3788
|
|
|
3789
|
+
# Diva Llama
|
|
3790
|
+
- name: stanford/diva-llama
|
|
3791
|
+
display_name: Diva Llama 3 (8B)
|
|
3792
|
+
description: Diva Llama 3 is an end-to-end Voice Assistant Model which can handle speech and text as inputs. It was trained using distillation loss. ([paper](https://arxiv.org/abs/2410.02678))
|
|
3793
|
+
creator_organization_name: Stanford
|
|
3794
|
+
access: open
|
|
3795
|
+
num_parameters: 8000000000
|
|
3796
|
+
release_date: 2024-10-03
|
|
3797
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG]
|
|
3798
|
+
|
|
3799
|
+
|
|
3800
|
+
# LLaMA-Omni
|
|
3801
|
+
- name: ictnlp/llama-3.1-8b-omni
|
|
3802
|
+
display_name: LLaMA-Omni (8B)
|
|
3803
|
+
description: The audio-visual multimodal version of the LLaMA 3.1 model ([paper](https://arxiv.org/abs/2409.06666)).
|
|
3804
|
+
creator_organization_name: ICTNLP
|
|
3805
|
+
access: open
|
|
3806
|
+
num_parameters: 8000000000
|
|
3807
|
+
release_date: 2024-09-10
|
|
3808
|
+
tags: [AUDIO_LANGUAGE_MODEL_TAG]
|
|
3809
|
+
|
|
3810
|
+
# Granite - IBM
|
|
3811
|
+
# https://www.ibm.com/granite
|
|
3812
|
+
# https://github.com/ibm-granite/granite-3.0-language-models
|
|
3813
|
+
|
|
3814
|
+
- name: ibm-granite/granite-3.0-2b-base
|
|
3815
|
+
display_name: Granite 3.0 base (2B)
|
|
3816
|
+
description: Granite-3.0-2B-Base is a decoder-only language model to support a variety of text-to-text generation tasks.
|
|
3817
|
+
creator_organization_name: IBM
|
|
3818
|
+
access: open
|
|
3819
|
+
num_parameters: 2530000000
|
|
3820
|
+
release: 2024-10-21
|
|
3821
|
+
tags: [TEXT_MODEL_TAG]
|
|
3822
|
+
|
|
3823
|
+
- name: ibm-granite/granite-3.0-2b-instruct
|
|
3824
|
+
display_name: Granite 3.0 Instruct (2B)
|
|
3825
|
+
description: Granite-3.0-2B-Instruct is a 2B parameter model finetuned from Granite-3.0-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets.
|
|
3826
|
+
creator_organization_name: IBM
|
|
3827
|
+
access: open
|
|
3828
|
+
num_parameters: 2630000000
|
|
3829
|
+
release: 2024-10-21
|
|
3830
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3831
|
+
|
|
3832
|
+
- name: ibm-granite/granite-3.0-8b-instruct
|
|
3833
|
+
display_name: Granite 3.0 instruct (8B)
|
|
3834
|
+
description: Granite-3.0-8B-Instruct is a 8B parameter model finetuned from Granite-3.0-8B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets.
|
|
3835
|
+
creator_organization_name: IBM
|
|
3836
|
+
access: open
|
|
3837
|
+
num_parameters: 8170000000
|
|
3838
|
+
release: 2024-10-21
|
|
3839
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3840
|
+
|
|
3841
|
+
- name: ibm-granite/granite-3.0-8b-base
|
|
3842
|
+
display_name: Granite 3.0 base (8B)
|
|
3843
|
+
description: Granite-3.0-8B-Base is a decoder-only language model to support a variety of text-to-text generation tasks.
|
|
3844
|
+
creator_organization_name: IBM
|
|
3845
|
+
access: open
|
|
3846
|
+
num_parameters: 8170000000
|
|
3847
|
+
release: 2024-10-21
|
|
3848
|
+
tags: [TEXT_MODEL_TAG]
|
|
3849
|
+
|
|
3850
|
+
- name: ibm-granite/granite-3.0-3b-a800m-instruct
|
|
3851
|
+
display_name: Granite 3.0 A800M instruct (3B)
|
|
3852
|
+
description: Granite-3.0-3B-A800M-Instruct is a 3B parameter model finetuned from Granite-3.0-3B-A800M-Base-4K using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets.
|
|
3853
|
+
creator_organization_name: IBM
|
|
3854
|
+
access: open
|
|
3855
|
+
num_parameters: 3370000000
|
|
3856
|
+
release: 2024-10-21
|
|
3857
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3858
|
+
|
|
3859
|
+
- name: ibm-granite/granite-3.0-3b-a800m-base
|
|
3860
|
+
display_name: Granite 3.0 A800M base (3B)
|
|
3861
|
+
description: Granite-3.0-3B-A800M-Base is a decoder-only language model to support a variety of text-to-text generation tasks.
|
|
3862
|
+
creator_organization_name: IBM
|
|
3863
|
+
access: open
|
|
3864
|
+
num_parameters: 3370000000
|
|
3865
|
+
release: 2024-10-21
|
|
3866
|
+
tags: [TEXT_MODEL_TAG]
|
|
3867
|
+
|
|
3868
|
+
- name: ibm-granite/granite-3.0-1b-a400m-instruct
|
|
3869
|
+
display_name: Granite 3.0 A400M instruct (1B)
|
|
3870
|
+
description: Granite-3.0-1B-A400M-Instruct is an 1B parameter model finetuned from Granite-3.0-1B-A400M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets.
|
|
3871
|
+
creator_organization_name: IBM
|
|
3872
|
+
access: open
|
|
3873
|
+
num_parameters: 1330000000
|
|
3874
|
+
release: 2024-10-21
|
|
3875
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3876
|
+
|
|
3877
|
+
- name: ibm-granite/granite-3.0-1b-a400m-base
|
|
3878
|
+
display_name: Granite 3.0 A400M base (1B)
|
|
3879
|
+
description: Granite-3.0-1B-A400M-Base is a decoder-only language model to support a variety of text-to-text generation tasks. It is trained from scratch following a two-stage training strategy.
|
|
3880
|
+
creator_organization_name: IBM
|
|
3881
|
+
access: open
|
|
3882
|
+
num_parameters: 1380000000
|
|
3883
|
+
release: 2024-10-21
|
|
3884
|
+
tags: [TEXT_MODEL_TAG]
|
|
3885
|
+
|
|
3886
|
+
- name: maritaca-ai/sabia-7b
|
|
3887
|
+
display_name: Sabia 7B
|
|
3888
|
+
description: Sabia 7B
|
|
3889
|
+
creator_organization_name: MARITACA-AI
|
|
3890
|
+
access: open
|
|
3891
|
+
num_parameters: 6740000000
|
|
3892
|
+
release_date: 2023-11-08
|
|
3893
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3894
|
+
|
|
3895
|
+
# Granite-3.1-8b-base
|
|
3896
|
+
- name: ibm-granite/granite-3.1-8b-base
|
|
3897
|
+
display_name: Granite 3.1 - 8B - Base
|
|
3898
|
+
description: Granite-3.1-8B-Base extends the context length of Granite-3.0-8B-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
|
|
3899
|
+
creator_organization_name: IBM-GRANITE
|
|
3900
|
+
access: open
|
|
3901
|
+
num_parameters: 8170000000
|
|
3902
|
+
release_date: 2024-12-18
|
|
3903
|
+
tags: [TEXT_MODEL_TAG]
|
|
3904
|
+
|
|
3905
|
+
# Granite-3.1-8b-instruct
|
|
3906
|
+
- name: ibm-granite/granite-3.1-8b-instruct
|
|
3907
|
+
display_name: Granite 3.1 - 8B - Instruct
|
|
3908
|
+
description: Granite-3.1-8B-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-8B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
|
|
3909
|
+
creator_organization_name: IBM
|
|
3910
|
+
access: open
|
|
3911
|
+
num_parameters: 8170000000
|
|
3912
|
+
release_date: 2024-12-18
|
|
3913
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3914
|
+
|
|
3915
|
+
# Granite-3.1-2b-instruct
|
|
3916
|
+
- name: ibm-granite/granite-3.1-2b-instruct
|
|
3917
|
+
display_name: Granite 3.1 - 2B - Instruct
|
|
3918
|
+
description: Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
|
|
3919
|
+
creator_organization_name: IBM
|
|
3920
|
+
access: open
|
|
3921
|
+
num_parameters: 2530000000
|
|
3922
|
+
release_date: 2024-12-18
|
|
3923
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3924
|
+
|
|
3925
|
+
# Granite-3.1-2b-base
|
|
3926
|
+
- name: ibm-granite/granite-3.1-2b-base
|
|
3927
|
+
display_name: Granite 3.1 - 2B - Base
|
|
3928
|
+
description: Granite-3.1-2B-Base extends the context length of Granite-3.0-2B-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
|
|
3929
|
+
creator_organization_name: IBM-GRANITE
|
|
3930
|
+
access: open
|
|
3931
|
+
num_parameters: 2530000000
|
|
3932
|
+
release_date: 2024-12-18
|
|
3933
|
+
tags: [TEXT_MODEL_TAG]
|
|
3934
|
+
|
|
3935
|
+
# Granite-3.1-3b-a800m-instruct
|
|
3936
|
+
- name: ibm-granite/granite-3.1-3b-a800m-instruct
|
|
3937
|
+
display_name: Granite 3.1 - 3B - A800M - Instruct
|
|
3938
|
+
description: Granite-3.1-3B-A800M-Instruct is a 3B parameter long-context instruct model finetuned from Granite-3.1-3B-A800M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
|
|
3939
|
+
creator_organization_name: IBM-GRANITE
|
|
3940
|
+
access: open
|
|
3941
|
+
num_parameters: 3300000000
|
|
3942
|
+
release_date: 2024-12-18
|
|
3943
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3944
|
+
|
|
3945
|
+
# Granite-3.1-3b-a800m-base
|
|
3946
|
+
- name: ibm-granite/granite-3.1-3b-a800m-base
|
|
3947
|
+
display_name: Granite 3.1 - 3B - A800M - Base
|
|
3948
|
+
description: Granite-3.1-3B-A800M-Base extends the context length of Granite-3.0-3B-A800M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
|
|
3949
|
+
creator_organization_name: IBM-GRANITE
|
|
3950
|
+
access: open
|
|
3951
|
+
num_parameters: 3300000000
|
|
3952
|
+
release_date: 2024-12-18
|
|
3953
|
+
tags: [TEXT_MODEL_TAG]
|
|
3954
|
+
|
|
3955
|
+
# Granite-3.1-1b-a400m-instruct
|
|
3956
|
+
- name: ibm-granite/granite-3.1-1b-a400m-instruct
|
|
3957
|
+
display_name: Granite 3.1 - 1B - A400M - Instruct
|
|
3958
|
+
description: Granite-3.1-1B-A400M-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-1B-A400M-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
|
|
3959
|
+
creator_organization_name: IBM-GRANITE
|
|
3960
|
+
access: open
|
|
3961
|
+
num_parameters: 1330000000
|
|
3962
|
+
release_date: 2024-12-18
|
|
3963
|
+
tags: [TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3964
|
+
|
|
3965
|
+
# Granite-3.1-1b-a400m-base
|
|
3966
|
+
- name: ibm-granite/granite-3.1-1b-a400m-base
|
|
3967
|
+
display_name: Granite 3.1 - 1B - A400M - Base
|
|
3968
|
+
description: Granite-3.1-1B-A400M-Base extends the context length of Granite-3.0-1B-A400M-Base from 4K to 128K using a progressive training strategy by increasing the supported context length in increments while adjusting RoPE theta until the model has successfully adapted to desired length of 128K.
|
|
3969
|
+
creator_organization_name: IBM-GRANITE
|
|
3970
|
+
access: open
|
|
3971
|
+
num_parameters: 1330000000
|
|
3972
|
+
release_date: 2024-12-18
|
|
3973
|
+
tags: [TEXT_MODEL_TAG]
|
|
3974
|
+
|
|
3975
|
+
# DeepSeek-R1-Distill-Llama-3.1-8b
|
|
3976
|
+
- name: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
|
|
3977
|
+
display_name: DeepSeek-R1-Distill-Llama-8b
|
|
3978
|
+
description: DeepSeek-R1-Distill-Llama-8b is a model that is distilled from LLaMA 8B model for the DeepSeek-R1 task.
|
|
3979
|
+
creator_organization_name: DeepSeek
|
|
3980
|
+
access: open
|
|
3981
|
+
num_parameters: 8000000000
|
|
3982
|
+
release_date: 2025-01-20
|
|
3983
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3984
|
+
|
|
3985
|
+
# deepseek-ai/deepseek-coder-6.7b-instruct
|
|
3986
|
+
- name: deepseek-ai/deepseek-coder-6.7b-instruct
|
|
3987
|
+
display_name: DeepSeek-Coder-6.7b-Instruct
|
|
3988
|
+
description: DeepSeek-Coder-6.7b-Instruct is a model that is fine-tuned from the LLaMA 6.7B model for the DeepSeek-Coder task.
|
|
3989
|
+
creator_organization_name: DeepSeek
|
|
3990
|
+
access: open
|
|
3991
|
+
num_parameters: 6740000000
|
|
3992
|
+
release_date: 2025-01-20
|
|
3993
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|
|
3994
|
+
|
|
3995
|
+
# WatsonX - IBM
|
|
3996
|
+
- name: ibm/granite-13b-instruct-v2
|
|
3997
|
+
display_name: Granite 13b instruct v2
|
|
3998
|
+
description: Granite Base (13B) Instruct V2.0 is a large decoder-only transformer model.The following features were used in the design of the model Decoder-only model
|
|
3999
|
+
creator_organization_name: IBM
|
|
4000
|
+
access: limited
|
|
4001
|
+
num_parameters: 13000000000
|
|
4002
|
+
release: 2023-11-30
|
|
4003
|
+
tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
|
|
4004
|
+
|
|
4005
|
+
- name: ibm/granite-20b-code-instruct-8k
|
|
4006
|
+
display_name: Granite 20b code instruct (8K)
|
|
4007
|
+
description: Granite-20B-Code-Base-8K is a decoder-only code model designed for code generative tasks (e.g., code generation, code explanation, code fixing, etc.). It is trained from scratch with a two-phase training strategy. In phase 1, our model is trained on 3 trillion tokens sourced from 116 programming languages, ensuring a comprehensive understanding of programming languages and syntax. In phase 2, our model is trained on 500 billion tokens with a carefully designed mixture of high-quality data from code and natural language domains to improve the models’ ability to reason and follow instructions.
|
|
4008
|
+
creator_organization_name: IBM
|
|
4009
|
+
access: limited
|
|
4010
|
+
num_parameters: 20000000000
|
|
4011
|
+
release: 2024-18-4
|
|
4012
|
+
tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
|
|
4013
|
+
|
|
4014
|
+
- name: ibm/granite-34b-code-instruct
|
|
4015
|
+
display_name: Granite 34b code instruct
|
|
4016
|
+
description: Granite Base (34B) Code Instruct is a 34B parameter model fine tuned from Granite-34B-Code-Base on a combination of permissively licensed instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
|
|
4017
|
+
creator_organization_name: IBM
|
|
4018
|
+
access: open
|
|
4019
|
+
num_parameters: 34000000000
|
|
4020
|
+
release: 2024-6-5
|
|
4021
|
+
tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
|
|
4022
|
+
|
|
4023
|
+
|
|
4024
|
+
- name: ibm/granite-3b-code-instruct
|
|
4025
|
+
display_name: Granite 3b code instruct
|
|
4026
|
+
description: Granite-3B-Code-Instruct-128K is a 3B parameter long-context instruct model fine tuned from Granite-3B-Code-Base-128K on a combination of permissively licensed data used in training the original Granite code instruct models, in addition to synthetically generated code instruction datasets tailored for solving long context problems. By exposing the model to both short and long context data, we aim to enhance its long-context capability without sacrificing code generation performance at short input context.
|
|
4027
|
+
creator_organization_name: IBM
|
|
4028
|
+
access: open
|
|
4029
|
+
num_parameters: 3000000000
|
|
4030
|
+
release: 2024-6-18
|
|
4031
|
+
tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
|
|
4032
|
+
|
|
4033
|
+
- name: ibm/granite-8b-code-instruct
|
|
4034
|
+
display_name: Granite 8b code instruct
|
|
4035
|
+
description: Granite-8B-Code-Instruct-128K is a 8B parameter long-context instruct model fine tuned from Granite-8B-Code-Base-128K on a combination of permissively licensed data used in training the original Granite code instruct models, in addition to synthetically generated code instruction datasets tailored for solving long context problems. By exposing the model to both short and long context data, we aim to enhance its long-context capability without sacrificing code generation performance at short input context.
|
|
4036
|
+
creator_organization_name: IBM
|
|
4037
|
+
access: open
|
|
4038
|
+
num_parameters: 8000000000
|
|
4039
|
+
release: 2024-6-18
|
|
4040
|
+
tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
|
|
4041
|
+
|
|
4042
|
+
|
|
4043
|
+
|
|
4044
|
+
|
|
4045
|
+
|
|
4046
|
+
|
|
4047
|
+
- name: ibm/granite-3.1-8b-instruct
|
|
4048
|
+
display_name: Granite 3.1 - 8B - Instruct
|
|
4049
|
+
description: Granite-3.1-8B-Instruct is a 8B parameter long-context instruct model finetuned from Granite-3.1-8B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
|
|
4050
|
+
creator_organization_name: IBM
|
|
4051
|
+
access: open
|
|
4052
|
+
num_parameters: 8170000000
|
|
4053
|
+
release_date: 2024-12-18
|
|
4054
|
+
tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
|
|
4055
|
+
|
|
4056
|
+
- name: ibm/granite-3.1-2b-instruct
|
|
4057
|
+
display_name: Granite 3.1 - 2B - Instruct
|
|
4058
|
+
description: Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems.
|
|
4059
|
+
creator_organization_name: IBM
|
|
4060
|
+
access: open
|
|
4061
|
+
num_parameters: 2530000000
|
|
4062
|
+
release_date: 2024-12-18
|
|
4063
|
+
tags: [ TEXT_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG ]
|
|
4064
|
+
|
|
4065
|
+
- name: mistralai/mixtral-8x7b-instruct-v0:1
|
|
4066
|
+
display_name: Mixtral 8x7B Instruct on IBM WatsonX
|
|
4067
|
+
description: A 7B sparse Mixture-of-Experts model with stronger capabilities than Mistral 7B. Uses 12B active parameters out of 45B total. Supports multiple languages, code and 32k context window.
|
|
4068
|
+
creator_organization_name: Mistral
|
|
4069
|
+
access: limited
|
|
4070
|
+
release_date: 2023-12-11
|
|
4071
|
+
tags: [TEXT_MODEL_TAG, LIMITED_FUNCTIONALITY_TEXT_MODEL_TAG, ABLATION_MODEL_TAG, INSTRUCTION_FOLLOWING_MODEL_TAG]
|