crfm-helm 0.5.4__py3-none-any.whl → 0.5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- crfm_helm-0.5.5.dist-info/METADATA +413 -0
- crfm_helm-0.5.5.dist-info/RECORD +894 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info}/WHEEL +1 -1
- helm/benchmark/adaptation/adapter_spec.py +13 -1
- helm/benchmark/adaptation/adapters/adapter_factory.py +15 -1
- helm/benchmark/adaptation/adapters/binary_ranking_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/chat_adapter.py +49 -0
- helm/benchmark/adaptation/adapters/ehr_instruction_adapter.py +108 -0
- helm/benchmark/adaptation/adapters/generation_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/language_modeling_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/generation_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/test_multimodal_prompt.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_calibrated_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/multiple_choice_joint_chain_of_thought_adapter.py +87 -0
- helm/benchmark/adaptation/adapters/multiple_choice_separate_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/test_generation_adapter.py +3 -3
- helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/common_adapter_specs.py +69 -4
- helm/benchmark/adaptation/prompt.py +1 -1
- helm/benchmark/annotation/aci_bench_annotator.py +95 -0
- helm/benchmark/annotation/air_bench_annotator.py +20 -5
- helm/benchmark/annotation/annotator.py +5 -0
- helm/benchmark/annotation/annotator_factory.py +3 -20
- helm/benchmark/annotation/autobencher_capabilities_annotator.py +107 -0
- helm/benchmark/annotation/autobencher_safety_annotator.py +98 -0
- helm/benchmark/annotation/bigcodebench_annotator.py +108 -0
- helm/benchmark/annotation/bird_sql_annotator.py +58 -0
- helm/benchmark/annotation/chw_care_plan_annotator.py +98 -0
- helm/benchmark/annotation/czech_bank_qa_annotator.py +78 -0
- helm/benchmark/annotation/dischargeme_annotator.py +107 -0
- helm/benchmark/annotation/ehr_sql_annotator.py +87 -0
- helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +131 -0
- helm/benchmark/annotation/image2struct/image_compiler_annotator.py +6 -1
- helm/benchmark/annotation/live_qa_annotator.py +1 -1
- helm/benchmark/annotation/med_dialog_annotator.py +99 -0
- helm/benchmark/annotation/medalign_annotator.py +100 -0
- helm/benchmark/annotation/medi_qa_annotator.py +98 -0
- helm/benchmark/annotation/medication_qa_annotator.py +87 -63
- helm/benchmark/annotation/mental_health_annotator.py +98 -0
- helm/benchmark/annotation/mimic_rrs_annotator.py +100 -0
- helm/benchmark/annotation/model_as_judge.py +218 -6
- helm/benchmark/annotation/mtsamples_procedures_annotator.py +98 -0
- helm/benchmark/annotation/mtsamples_replicate_annotator.py +101 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_template.txt +152 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_zero_shot_template.txt +36 -0
- helm/benchmark/annotation/omni_math_annotator.py +132 -0
- helm/benchmark/annotation/spider_annotator.py +18 -0
- helm/benchmark/annotation/starr_patient_instructions_annotator.py +98 -0
- helm/benchmark/annotation/wildbench/eval_template.pairwise.v2.md +75 -0
- helm/benchmark/annotation/wildbench/eval_template.score.v2.md +66 -0
- helm/benchmark/annotation/wildbench_annotator.py +119 -0
- helm/benchmark/annotation_executor.py +35 -15
- helm/benchmark/augmentations/cleva_perturbation.py +9 -8
- helm/benchmark/augmentations/contraction_expansion_perturbation.py +2 -2
- helm/benchmark/augmentations/contrast_sets_perturbation.py +2 -2
- helm/benchmark/augmentations/dialect_perturbation.py +4 -5
- helm/benchmark/augmentations/extra_space_perturbation.py +2 -2
- helm/benchmark/augmentations/filler_words_perturbation.py +2 -2
- helm/benchmark/augmentations/gender_perturbation.py +2 -2
- helm/benchmark/augmentations/lowercase_perturbation.py +2 -2
- helm/benchmark/augmentations/mild_mix_perturbation.py +6 -6
- helm/benchmark/augmentations/misspelling_perturbation.py +2 -2
- helm/benchmark/augmentations/person_name_perturbation.py +4 -5
- helm/benchmark/augmentations/perturbation.py +1 -1
- helm/benchmark/augmentations/space_perturbation.py +2 -2
- helm/benchmark/augmentations/suffix_perturbation.py +2 -2
- helm/benchmark/augmentations/synonym_perturbation.py +4 -3
- helm/benchmark/augmentations/test_perturbation.py +16 -13
- helm/benchmark/augmentations/translate_perturbation.py +2 -2
- helm/benchmark/augmentations/typos_perturbation.py +2 -2
- helm/benchmark/data_preprocessor.py +2 -2
- helm/benchmark/huggingface_registration.py +2 -7
- helm/benchmark/metrics/aci_bench_metrics.py +34 -0
- helm/benchmark/metrics/basic_metrics.py +6 -6
- helm/benchmark/metrics/bbq_metrics.py +2 -2
- helm/benchmark/metrics/bias_metrics.py +12 -3
- helm/benchmark/metrics/bigcodebench_metrics.py +25 -0
- helm/benchmark/metrics/bird_sql_metrics.py +28 -0
- helm/benchmark/metrics/chw_care_plan_metrics.py +34 -0
- helm/benchmark/metrics/classification_metrics.py +76 -12
- helm/benchmark/metrics/cleva_harms_metrics.py +8 -7
- helm/benchmark/metrics/code_metrics.py +5 -5
- helm/benchmark/metrics/comet_metric.py +125 -0
- helm/benchmark/metrics/common_metric_specs.py +9 -2
- helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +72 -0
- helm/benchmark/metrics/copyright_metrics.py +4 -4
- helm/benchmark/metrics/czech_bank_qa_metrics.py +29 -0
- helm/benchmark/metrics/decodingtrust_fairness_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_privacy_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +2 -2
- helm/benchmark/metrics/dischargeme_metrics.py +34 -0
- helm/benchmark/metrics/disinformation_metrics.py +4 -4
- helm/benchmark/metrics/dry_run_metrics.py +5 -5
- helm/benchmark/metrics/efficiency_metrics.py +3 -3
- helm/benchmark/metrics/ehr_sql_metrics.py +103 -0
- helm/benchmark/metrics/evaluate_instances_metric.py +3 -3
- helm/benchmark/metrics/evaluate_reference_metrics.py +144 -16
- helm/benchmark/metrics/gpqa_chain_of_thought_metric.py +103 -0
- helm/benchmark/metrics/gpt4_audio_critique_metrics.py +167 -0
- helm/benchmark/metrics/helpdesk_call_summarization_metrics.py +36 -0
- helm/benchmark/metrics/ifeval/__init__.py +0 -0
- helm/benchmark/metrics/ifeval/instructions.py +1574 -0
- helm/benchmark/metrics/ifeval/instructions_registry.py +182 -0
- helm/benchmark/metrics/ifeval/instructions_registry.pyi +3 -0
- helm/benchmark/metrics/ifeval/instructions_util.py +153 -0
- helm/benchmark/metrics/ifeval_metrics.py +55 -0
- helm/benchmark/metrics/image_generation/aesthetics_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detection_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detectors/vitdet.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +1 -1
- helm/benchmark/metrics/image_generation/nsfw_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/q16/test_q16.py +3 -1
- helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/skin_tone_metrics.py +2 -2
- helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +1 -1
- helm/benchmark/metrics/image_generation/watermark_metrics.py +1 -1
- helm/benchmark/metrics/instruction_following_critique_metrics.py +4 -4
- helm/benchmark/metrics/language_modeling_metrics.py +4 -4
- helm/benchmark/metrics/machine_translation_metrics.py +2 -2
- helm/benchmark/metrics/med_dialog_metrics.py +34 -0
- helm/benchmark/metrics/medalign_metrics.py +34 -0
- helm/benchmark/metrics/medcalc_bench_metrics.py +124 -0
- helm/benchmark/metrics/medec_metrics.py +101 -0
- helm/benchmark/metrics/medi_qa_metrics.py +34 -0
- helm/benchmark/metrics/medication_qa_metrics.py +15 -4
- helm/benchmark/metrics/mental_health_metrics.py +34 -0
- helm/benchmark/metrics/metric.py +3 -3
- helm/benchmark/metrics/mimic_rrs_metrics.py +34 -0
- helm/benchmark/metrics/mimiciv_billing_code_metrics.py +96 -0
- helm/benchmark/metrics/mtsamples_procedures_metrics.py +34 -0
- helm/benchmark/metrics/mtsamples_replicate_metrics.py +34 -0
- helm/benchmark/metrics/nltk_helper.py +32 -0
- helm/benchmark/metrics/numeracy_metrics.py +4 -4
- helm/benchmark/metrics/omni_math_metrics.py +32 -0
- helm/benchmark/metrics/output_processing_metric.py +60 -0
- helm/benchmark/metrics/output_processors.py +15 -0
- helm/benchmark/metrics/paraphrase_generation_metrics.py +2 -2
- helm/benchmark/metrics/ranking_metrics.py +3 -3
- helm/benchmark/metrics/reference_metric.py +3 -3
- helm/benchmark/metrics/{bhasa_metrics.py → seahelm_metrics.py} +3 -3
- helm/benchmark/metrics/seahelm_metrics_specs.py +10 -0
- helm/benchmark/metrics/spider_metrics.py +7 -0
- helm/benchmark/metrics/starr_patient_instructions_metrics.py +34 -0
- helm/benchmark/metrics/statistic.py +1 -1
- helm/benchmark/metrics/summac/model_summac.py +1 -1
- helm/benchmark/metrics/summarization_critique_metrics.py +4 -4
- helm/benchmark/metrics/summarization_metrics.py +19 -9
- helm/benchmark/metrics/test_bias_metrics.py +5 -1
- helm/benchmark/metrics/test_classification_metrics.py +140 -68
- helm/benchmark/metrics/test_evaluate_reference_metrics.py +15 -0
- helm/benchmark/metrics/test_metric.py +1 -1
- helm/benchmark/metrics/test_statistic.py +2 -2
- helm/benchmark/metrics/tokens/ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/auto_token_cost_estimator.py +6 -6
- helm/benchmark/metrics/tokens/cohere_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/free_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/toxicity_metrics.py +4 -4
- helm/benchmark/metrics/unitxt_metrics.py +4 -1
- helm/benchmark/metrics/vision_language/image_metrics.py +1 -1
- helm/benchmark/metrics/wildbench_metrics.py +34 -0
- helm/benchmark/model_metadata_registry.py +16 -0
- helm/benchmark/presentation/summarize.py +23 -10
- helm/benchmark/presentation/torr_robustness_summarizer.py +178 -0
- helm/benchmark/reeval_run.py +203 -0
- helm/benchmark/reeval_runner.py +355 -0
- helm/benchmark/run.py +8 -17
- helm/benchmark/run_expander.py +78 -8
- helm/benchmark/run_spec_factory.py +12 -0
- helm/benchmark/run_specs/air_bench_run_specs.py +21 -3
- helm/benchmark/run_specs/audio_run_specs.py +613 -0
- helm/benchmark/run_specs/call_center_run_specs.py +49 -0
- helm/benchmark/run_specs/capabilities_run_specs.py +308 -0
- helm/benchmark/run_specs/classic_run_specs.py +1 -69
- helm/benchmark/run_specs/enem_challenge_specs.py +31 -0
- helm/benchmark/run_specs/enterprise_run_specs.py +260 -0
- helm/benchmark/run_specs/experimental_run_specs.py +112 -3
- helm/benchmark/run_specs/imdb_ptbr_run_specs.py +30 -0
- helm/benchmark/run_specs/lite_run_specs.py +2 -2
- helm/benchmark/run_specs/long_context_run_specs.py +89 -0
- helm/benchmark/run_specs/medhelm_run_specs.py +1155 -0
- helm/benchmark/run_specs/mmlu_clinical_afr_run_specs.py +49 -0
- helm/benchmark/run_specs/oab_exams_specs.py +32 -0
- helm/benchmark/run_specs/safety_run_specs.py +37 -0
- helm/benchmark/run_specs/{bhasa_run_specs.py → seahelm_run_specs.py} +44 -44
- helm/benchmark/run_specs/sql_run_specs.py +54 -0
- helm/benchmark/run_specs/tweetsentbr_run_specs.py +32 -0
- helm/benchmark/run_specs/unitxt_run_specs.py +14 -5
- helm/benchmark/run_specs/vlm_run_specs.py +75 -2
- helm/benchmark/run_specs/winogrande_afr_run_specs.py +47 -0
- helm/benchmark/scenarios/aci_bench_scenario.py +120 -0
- helm/benchmark/scenarios/air_bench_scenario.py +6 -1
- helm/benchmark/scenarios/anthropic_hh_rlhf_scenario.py +5 -3
- helm/benchmark/scenarios/anthropic_red_team_scenario.py +1 -1
- helm/benchmark/scenarios/audio_language/__init__.py +0 -0
- helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +128 -0
- helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +154 -0
- helm/benchmark/scenarios/audio_language/ami_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/audio_mnist_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audio_pairs_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audiocaps_scenario.py +59 -0
- helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +152 -0
- helm/benchmark/scenarios/audio_language/common_voice_15_scenario.py +99 -0
- helm/benchmark/scenarios/audio_language/covost2_scenario.py +163 -0
- helm/benchmark/scenarios/audio_language/fleurs_fairness_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/fleurs_scenario.py +312 -0
- helm/benchmark/scenarios/audio_language/iemocap_audio_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/librispeech_fairness_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/meld_audio_scenario.py +113 -0
- helm/benchmark/scenarios/audio_language/multilingual_librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/mustard_scenario.py +142 -0
- helm/benchmark/scenarios/audio_language/mutox_scenario.py +254 -0
- helm/benchmark/scenarios/audio_language/parade_scenario.py +97 -0
- helm/benchmark/scenarios/audio_language/speech_robust_bench_scenario.py +124 -0
- helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +69 -0
- helm/benchmark/scenarios/audio_language/voice_jailbreak_attacks_scenario.py +87 -0
- helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +106 -0
- helm/benchmark/scenarios/autobencher_capabilities_scenario.py +68 -0
- helm/benchmark/scenarios/autobencher_safety_scenario.py +51 -0
- helm/benchmark/scenarios/babi_qa_scenario.py +1 -1
- helm/benchmark/scenarios/banking77_scenario.py +6 -1
- helm/benchmark/scenarios/bbq_scenario.py +1 -1
- helm/benchmark/scenarios/big_bench_scenario.py +11 -1
- helm/benchmark/scenarios/bigcodebench_scenario.py +58 -0
- helm/benchmark/scenarios/bird_sql_scenario.py +94 -0
- helm/benchmark/scenarios/bird_sql_scenario_helper.py +118 -0
- helm/benchmark/scenarios/blimp_scenario.py +1 -1
- helm/benchmark/scenarios/bold_scenario.py +1 -1
- helm/benchmark/scenarios/boolq_scenario.py +1 -1
- helm/benchmark/scenarios/casehold_scenario.py +79 -0
- helm/benchmark/scenarios/chw_care_plan_scenario.py +105 -0
- helm/benchmark/scenarios/civil_comments_scenario.py +1 -1
- helm/benchmark/scenarios/clear_scenario.py +153 -0
- helm/benchmark/scenarios/cleva_scenario.py +2 -2
- helm/benchmark/scenarios/code_scenario.py +17 -4
- helm/benchmark/scenarios/commonsense_scenario.py +1 -1
- helm/benchmark/scenarios/conv_fin_qa_calc_scenario.py +97 -0
- helm/benchmark/scenarios/copyright_scenario.py +1 -1
- helm/benchmark/scenarios/covid_dialog_scenario.py +10 -1
- helm/benchmark/scenarios/cti_to_mitre_scenario.py +240 -0
- helm/benchmark/scenarios/custom_mcqa_scenario.py +1 -1
- helm/benchmark/scenarios/czech_bank_qa_scenario.py +130 -0
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/dialogue_scenarios.py +13 -2
- helm/benchmark/scenarios/dischargeme_scenario.py +157 -0
- helm/benchmark/scenarios/disinformation_scenario.py +10 -1
- helm/benchmark/scenarios/dyck_language_scenario.py +10 -1
- helm/benchmark/scenarios/echr_judgment_classification_scenario.py +113 -0
- helm/benchmark/scenarios/ehr_sql_scenario.py +131 -0
- helm/benchmark/scenarios/ehrshot_scenario.py +1546 -0
- helm/benchmark/scenarios/enem_challenge_scenario.py +58 -0
- helm/benchmark/scenarios/entity_data_imputation_scenario.py +11 -1
- helm/benchmark/scenarios/entity_matching_scenario.py +12 -2
- helm/benchmark/scenarios/financial_phrasebank_scenario.py +94 -0
- helm/benchmark/scenarios/gold_commodity_news_scenario.py +124 -0
- helm/benchmark/scenarios/gpqa_scenario.py +80 -0
- helm/benchmark/scenarios/grammar_scenario.py +2 -2
- helm/benchmark/scenarios/gsm_scenario.py +10 -1
- helm/benchmark/scenarios/harm_bench_gcg_transfer_scenario.py +50 -0
- helm/benchmark/scenarios/harm_bench_scenario.py +1 -1
- helm/benchmark/scenarios/headqa_scenario.py +131 -0
- helm/benchmark/scenarios/helpdesk_call_summarization_scenario.py +37 -0
- helm/benchmark/scenarios/ice_scenario.py +8 -4
- helm/benchmark/scenarios/ifeval_scenario.py +53 -0
- helm/benchmark/scenarios/imdb_ptbr_scenario.py +60 -0
- helm/benchmark/scenarios/imdb_scenario.py +11 -2
- helm/benchmark/scenarios/infinite_bench_sum_scenario.py +82 -0
- helm/benchmark/scenarios/interactive_qa_mmlu_scenario.py +2 -2
- helm/benchmark/scenarios/koala_scenario.py +1 -1
- helm/benchmark/scenarios/legal_contract_summarization_scenario.py +129 -0
- helm/benchmark/scenarios/legal_opinion_sentiment_classification_scenario.py +77 -0
- helm/benchmark/scenarios/legal_summarization_scenario.py +11 -1
- helm/benchmark/scenarios/legal_support_scenario.py +11 -1
- helm/benchmark/scenarios/legalbench_scenario.py +22 -3
- helm/benchmark/scenarios/lex_glue_scenario.py +12 -2
- helm/benchmark/scenarios/lextreme_scenario.py +11 -1
- helm/benchmark/scenarios/live_qa_scenario.py +1 -1
- helm/benchmark/scenarios/lm_entry_scenario.py +1 -1
- helm/benchmark/scenarios/lsat_qa_scenario.py +1 -1
- helm/benchmark/scenarios/math_scenario.py +9 -1
- helm/benchmark/scenarios/me_q_sum_scenario.py +10 -1
- helm/benchmark/scenarios/med_dialog_scenario.py +22 -24
- helm/benchmark/scenarios/med_mcqa_scenario.py +10 -1
- helm/benchmark/scenarios/med_paragraph_simplification_scenario.py +10 -1
- helm/benchmark/scenarios/med_qa_scenario.py +10 -1
- helm/benchmark/scenarios/medalign_scenario.py +88 -0
- helm/benchmark/scenarios/medalign_scenario_helper.py +429 -0
- helm/benchmark/scenarios/medbullets_scenario.py +140 -0
- helm/benchmark/scenarios/medcalc_bench_scenario.py +125 -0
- helm/benchmark/scenarios/medec_scenario.py +120 -0
- helm/benchmark/scenarios/medhallu_scenario.py +66 -0
- helm/benchmark/scenarios/medi_qa_scenario.py +105 -0
- helm/benchmark/scenarios/medication_qa_scenario.py +2 -2
- helm/benchmark/scenarios/mental_health_scenario.py +112 -0
- helm/benchmark/scenarios/mimic_bhc_scenario.py +98 -0
- helm/benchmark/scenarios/mimic_rrs_scenario.py +89 -0
- helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +71 -0
- helm/benchmark/scenarios/mmlu_clinical_afr_scenario.py +74 -0
- helm/benchmark/scenarios/mmlu_pro_scenario.py +95 -0
- helm/benchmark/scenarios/mmlu_scenario.py +11 -1
- helm/benchmark/scenarios/msmarco_scenario.py +1 -1
- helm/benchmark/scenarios/mtsamples_procedures_scenario.py +141 -0
- helm/benchmark/scenarios/mtsamples_replicate_scenario.py +141 -0
- helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +271 -0
- helm/benchmark/scenarios/narrativeqa_scenario.py +1 -1
- helm/benchmark/scenarios/natural_qa_scenario.py +1 -1
- helm/benchmark/scenarios/newsqa_scenario.py +1 -1
- helm/benchmark/scenarios/numeracy_scenario.py +10 -1
- helm/benchmark/scenarios/oab_exams_scenario.py +57 -0
- helm/benchmark/scenarios/omni_math_scenario.py +53 -0
- helm/benchmark/scenarios/open_assistant_scenario.py +11 -2
- helm/benchmark/scenarios/opinions_qa_scenario.py +1 -1
- helm/benchmark/scenarios/pubmed_qa_scenario.py +54 -43
- helm/benchmark/scenarios/quac_scenario.py +10 -1
- helm/benchmark/scenarios/race_based_med_scenario.py +142 -0
- helm/benchmark/scenarios/raft_scenario.py +17 -2
- helm/benchmark/scenarios/real_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/ruler_qa_scenario_helper.py +171 -0
- helm/benchmark/scenarios/ruler_qa_scenarios.py +88 -0
- helm/benchmark/scenarios/scenario.py +9 -1
- helm/benchmark/scenarios/{bhasa_scenario.py → seahelm_scenario.py} +7 -2
- helm/benchmark/scenarios/self_instruct_scenario.py +1 -1
- helm/benchmark/scenarios/shc_bmt_scenario.py +69 -0
- helm/benchmark/scenarios/shc_cdi_scenario.py +70 -0
- helm/benchmark/scenarios/shc_conf_scenario.py +70 -0
- helm/benchmark/scenarios/shc_ent_scenario.py +72 -0
- helm/benchmark/scenarios/shc_gip_scenario.py +66 -0
- helm/benchmark/scenarios/shc_ptbm_scenario.py +76 -0
- helm/benchmark/scenarios/shc_sei_scenario.py +89 -0
- helm/benchmark/scenarios/shc_sequoia_scenario.py +69 -0
- helm/benchmark/scenarios/simple_safety_tests_scenario.py +1 -1
- helm/benchmark/scenarios/spider_scenario.py +91 -0
- helm/benchmark/scenarios/starr_patient_instructions_scenario.py +90 -0
- helm/benchmark/scenarios/summarization_scenario.py +11 -1
- helm/benchmark/scenarios/sumosum_scenario.py +157 -0
- helm/benchmark/scenarios/synthetic_efficiency_scenario.py +1 -1
- helm/benchmark/scenarios/synthetic_reasoning_natural_scenario.py +11 -1
- helm/benchmark/scenarios/synthetic_reasoning_scenario.py +11 -1
- helm/benchmark/scenarios/test_bigcodebench_scenario.py +26 -0
- helm/benchmark/scenarios/test_czech_bank_qa_scenario.py +18 -0
- helm/benchmark/scenarios/test_enem_challenge_scenario.py +53 -0
- helm/benchmark/scenarios/test_ewok_scenario.py +6 -2
- helm/benchmark/scenarios/test_gold_commodity_news_scenario.py +18 -0
- helm/benchmark/scenarios/test_gpqa_scenario.py +44 -0
- helm/benchmark/scenarios/test_ifeval_scenario.py +36 -0
- helm/benchmark/scenarios/test_imdb_ptbr_scenario.py +27 -0
- helm/benchmark/scenarios/test_infinite_bench_sum_scenario.py +46 -0
- helm/benchmark/scenarios/test_math_scenario.py +1 -0
- helm/benchmark/scenarios/test_mmlu_clinical_afr_scenario.py +21 -0
- helm/benchmark/scenarios/test_mmlu_pro_scenario.py +53 -0
- helm/benchmark/scenarios/test_oab_exams_scenario.py +51 -0
- helm/benchmark/scenarios/test_omni_math_scenario.py +27 -0
- helm/benchmark/scenarios/test_tweetsentbr_scenario.py +24 -0
- helm/benchmark/scenarios/test_wildbench_scenario.py +15 -0
- helm/benchmark/scenarios/test_winogrande_afr_scenario.py +19 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +10 -1
- helm/benchmark/scenarios/the_pile_scenario.py +1 -1
- helm/benchmark/scenarios/truthful_qa_scenario.py +10 -1
- helm/benchmark/scenarios/tweetsentbr_scenario.py +66 -0
- helm/benchmark/scenarios/twitter_aae_scenario.py +1 -1
- helm/benchmark/scenarios/unitxt_scenario.py +8 -2
- helm/benchmark/scenarios/verifiability_judgment_scenario.py +1 -1
- helm/benchmark/scenarios/vicuna_scenario.py +1 -1
- helm/benchmark/scenarios/vision_language/blink_scenario.py +140 -0
- helm/benchmark/scenarios/vision_language/mm_star_scenario.py +95 -0
- helm/benchmark/scenarios/vision_language/vqa_rad_scenario.py +88 -0
- helm/benchmark/scenarios/wikifact_scenario.py +11 -1
- helm/benchmark/scenarios/wikitext_103_scenario.py +1 -1
- helm/benchmark/scenarios/wildbench_scenario.py +83 -0
- helm/benchmark/scenarios/winogrande_afr_scenario.py +78 -0
- helm/benchmark/scenarios/wmt_14_scenario.py +14 -2
- helm/benchmark/scenarios/xstest_scenario.py +1 -1
- helm/benchmark/server.py +11 -0
- helm/benchmark/slurm_runner.py +1 -1
- helm/benchmark/static/schema_audio.yaml +752 -0
- helm/benchmark/static/schema_autobencher.yaml +150 -0
- helm/benchmark/static/schema_call_center.yaml +97 -60
- helm/benchmark/static/schema_capabilities.yaml +254 -0
- helm/benchmark/static/schema_czech_bank.yaml +148 -0
- helm/benchmark/static/schema_enem_challenge.yaml +146 -0
- helm/benchmark/static/schema_enterprise.yaml +298 -0
- helm/benchmark/static/schema_finance.yaml +14 -12
- helm/benchmark/static/schema_heim.yaml +1389 -0
- helm/benchmark/static/{schema_medical.yaml → schema_long_context.yaml} +67 -82
- helm/benchmark/static/schema_medhelm.yaml +1081 -0
- helm/benchmark/static/schema_mmlu_winogrande_afr.yaml +1045 -0
- helm/benchmark/static/schema_safety.yaml +18 -1
- helm/benchmark/static/{schema_bhasa.yaml → schema_seahelm.yaml} +30 -16
- helm/benchmark/static/schema_social_audio.yaml +224 -0
- helm/benchmark/static/schema_sql.yaml +171 -0
- helm/benchmark/static/{schema_tables.yaml → schema_torr.yaml} +169 -36
- helm/benchmark/static/schema_tweetsentbr.yaml +146 -0
- helm/benchmark/static/schema_vhelm.yaml +109 -36
- helm/benchmark/static_build/assets/helm-safety-2907a7b6.png +0 -0
- helm/benchmark/static_build/assets/index-262903c1.js +10 -0
- helm/benchmark/static_build/assets/index-42060d71.css +1 -0
- helm/benchmark/static_build/assets/medhelm-overview-3ddfcd65.png +0 -0
- helm/benchmark/static_build/assets/{react-d4a0b69b.js → react-f82877fd.js} +1 -1
- helm/benchmark/static_build/assets/{recharts-6d337683.js → recharts-4037aff0.js} +1 -1
- helm/benchmark/static_build/assets/{tremor-54a99cc4.js → tremor-9cefc3c5.js} +1 -1
- helm/benchmark/static_build/config.js +1 -1
- helm/benchmark/static_build/index.html +5 -5
- helm/benchmark/window_services/default_window_service.py +1 -1
- helm/benchmark/window_services/encoder_decoder_window_service.py +1 -1
- helm/benchmark/window_services/ice_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/lexica_search_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +1 -1
- helm/benchmark/window_services/local_window_service.py +2 -2
- helm/benchmark/window_services/test_anthropic_window_service.py +3 -3
- helm/benchmark/window_services/test_bloom_window_service.py +3 -3
- helm/benchmark/window_services/test_gpt2_window_service.py +7 -2
- helm/benchmark/window_services/test_gpt4_window_service.py +8 -3
- helm/benchmark/window_services/test_gptj_window_service.py +8 -3
- helm/benchmark/window_services/test_gptneox_window_service.py +3 -3
- helm/benchmark/window_services/test_openai_window_service.py +8 -3
- helm/benchmark/window_services/test_opt_window_service.py +3 -3
- helm/benchmark/window_services/test_palmyra_window_service.py +3 -3
- helm/benchmark/window_services/test_t0pp_window_service.py +3 -3
- helm/benchmark/window_services/test_t511b_window_service.py +3 -3
- helm/benchmark/window_services/test_ul2_window_service.py +3 -3
- helm/benchmark/window_services/test_utils.py +1 -1
- helm/benchmark/window_services/test_yalm_window_service.py +3 -3
- helm/benchmark/window_services/yalm_window_service.py +1 -1
- helm/clients/ai21_client.py +3 -3
- helm/clients/aleph_alpha_client.py +1 -1
- helm/clients/audio_language/__init__.py +0 -0
- helm/clients/audio_language/diva_llama_client.py +118 -0
- helm/clients/audio_language/llama_omni_client.py +198 -0
- helm/clients/audio_language/qwen2_audiolm_client.py +188 -0
- helm/clients/audio_language/qwen_audiolm_client.py +150 -0
- helm/clients/auto_client.py +4 -2
- helm/clients/azure_openai_client.py +55 -0
- helm/clients/bedrock_client.py +201 -7
- helm/clients/bedrock_utils.py +33 -0
- helm/clients/clip_scorers/clip_scorer.py +1 -1
- helm/clients/clip_scorers/multilingual_clip_scorer.py +1 -1
- helm/clients/cohere_client.py +3 -3
- helm/clients/google_client.py +1 -1
- helm/clients/http_model_client.py +1 -1
- helm/clients/huggingface_client.py +10 -18
- helm/clients/ibm_client.py +267 -0
- helm/clients/image_generation/adobe_vision_client.py +1 -1
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +1 -1
- helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +3 -3
- helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +2 -2
- helm/clients/image_generation/cogview2_client.py +1 -1
- helm/clients/image_generation/dalle2_client.py +1 -1
- helm/clients/image_generation/dalle3_client.py +2 -2
- helm/clients/image_generation/dalle_mini/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/data.py +1 -1
- helm/clients/image_generation/dalle_mini/model/__init__.py +5 -5
- helm/clients/image_generation/dalle_mini/model/configuration.py +1 -1
- helm/clients/image_generation/dalle_mini/model/modeling.py +2 -2
- helm/clients/image_generation/dalle_mini/model/processor.py +4 -4
- helm/clients/image_generation/dalle_mini/model/tokenizer.py +1 -1
- helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +2 -2
- helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +1 -1
- helm/clients/image_generation/dalle_mini_client.py +1 -1
- helm/clients/image_generation/deep_floyd_client.py +1 -1
- helm/clients/image_generation/huggingface_diffusers_client.py +1 -1
- helm/clients/image_generation/lexica_client.py +1 -1
- helm/clients/image_generation/mindalle/models/__init__.py +6 -6
- helm/clients/image_generation/mindalle/models/stage1/vqgan.py +1 -1
- helm/clients/image_generation/mindalle/models/stage2/transformer.py +1 -1
- helm/clients/image_generation/mindalle/utils/__init__.py +3 -3
- helm/clients/image_generation/mindalle_client.py +1 -1
- helm/clients/image_generation/together_image_generation_client.py +1 -1
- helm/clients/lit_gpt_client.py +2 -2
- helm/clients/mistral_client.py +62 -18
- helm/clients/nvidia_nim_client.py +0 -3
- helm/clients/openai_client.py +241 -22
- helm/clients/palmyra_client.py +1 -4
- helm/clients/reka_client.py +1 -1
- helm/clients/stanfordhealthcare_azure_openai_client.py +58 -0
- helm/clients/stanfordhealthcare_claude_client.py +31 -0
- helm/clients/stanfordhealthcare_google_client.py +43 -0
- helm/clients/stanfordhealthcare_http_model_client.py +93 -0
- helm/clients/stanfordhealthcare_openai_client.py +62 -0
- helm/clients/stanfordhealthcare_shc_openai_client.py +42 -0
- helm/clients/test_client.py +1 -1
- helm/clients/test_together_client.py +6 -1
- helm/clients/together_client.py +47 -7
- helm/clients/upstage_client.py +23 -0
- helm/clients/vertexai_client.py +39 -13
- helm/clients/vision_language/open_flamingo/__init__.py +2 -2
- helm/clients/vision_language/open_flamingo/src/factory.py +3 -3
- helm/clients/vision_language/open_flamingo/src/flamingo.py +2 -2
- helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +2 -2
- helm/clients/vision_language/qwen2_vlm_client.py +175 -0
- helm/clients/vllm_client.py +4 -6
- helm/clients/yi_client.py +0 -3
- helm/common/audio_utils.py +111 -0
- helm/common/file_caches/local_file_cache.py +1 -1
- helm/common/file_caches/test_local_file_cache.py +1 -1
- helm/common/images_utils.py +2 -2
- helm/common/media_object.py +2 -2
- helm/common/multimodal_request_utils.py +26 -0
- helm/common/reeval_parameters.py +12 -0
- helm/common/request.py +6 -2
- helm/common/response_format.py +18 -0
- helm/common/test_media_object.py +1 -1
- helm/config/model_deployments.yaml +1112 -19
- helm/config/model_metadata.yaml +985 -44
- helm/config/tokenizer_configs.yaml +379 -3
- helm/proxy/cli.py +2 -2
- helm/proxy/example_queries.py +1 -1
- helm/proxy/server.py +11 -4
- helm/proxy/services/remote_service.py +1 -1
- helm/proxy/services/server_service.py +1 -1
- helm/proxy/services/test_remote_service.py +2 -2
- helm/proxy/services/test_service.py +1 -1
- helm/proxy/static/general.js +122 -0
- helm/proxy/static/help.html +99 -0
- helm/proxy/static/index.css +57 -0
- helm/proxy/static/index.html +40 -0
- helm/proxy/static/index.js +456 -0
- helm/proxy/static/info-icon.png +0 -0
- helm/proxy/test_retry.py +1 -1
- helm/proxy/token_counters/auto_token_counter.py +1 -1
- helm/tokenizers/aleph_alpha_tokenizer.py +1 -1
- helm/tokenizers/caching_tokenizer.py +2 -30
- helm/tokenizers/http_model_tokenizer.py +1 -1
- helm/tokenizers/huggingface_tokenizer.py +2 -2
- helm/tokenizers/lit_gpt_tokenizer.py +1 -1
- helm/tokenizers/test_anthropic_tokenizer.py +6 -2
- helm/tokenizers/test_huggingface_tokenizer.py +1 -1
- helm/tokenizers/test_yalm_tokenizer.py +1 -1
- helm/tokenizers/tiktoken_tokenizer.py +1 -1
- helm/tokenizers/tokenizer.py +3 -1
- helm/tokenizers/yalm_tokenizer.py +3 -3
- helm/tokenizers/yalm_tokenizer_data/test_yalm_tokenizer.py +1 -1
- crfm_helm-0.5.4.dist-info/METADATA +0 -350
- crfm_helm-0.5.4.dist-info/RECORD +0 -697
- helm/benchmark/metrics/bhasa_metrics_specs.py +0 -10
- helm/benchmark/static_build/assets/01-694cb9b7.png +0 -0
- helm/benchmark/static_build/assets/accenture-6f97eeda.png +0 -0
- helm/benchmark/static_build/assets/ai21-0eb91ec3.png +0 -0
- helm/benchmark/static_build/assets/aisingapore-6dfc9acf.png +0 -0
- helm/benchmark/static_build/assets/aleph-alpha-7ce10034.png +0 -0
- helm/benchmark/static_build/assets/anthropic-70d8bc39.png +0 -0
- helm/benchmark/static_build/assets/bigscience-7f0400c0.png +0 -0
- helm/benchmark/static_build/assets/cohere-3550c6cb.png +0 -0
- helm/benchmark/static_build/assets/cresta-9e22b983.png +0 -0
- helm/benchmark/static_build/assets/cuhk-8c5631e9.png +0 -0
- helm/benchmark/static_build/assets/eleutherai-b9451114.png +0 -0
- helm/benchmark/static_build/assets/google-06d997ad.png +0 -0
- helm/benchmark/static_build/assets/index-05c76bb1.css +0 -1
- helm/benchmark/static_build/assets/index-3ee38b3d.js +0 -10
- helm/benchmark/static_build/assets/meta-5580e9f1.png +0 -0
- helm/benchmark/static_build/assets/microsoft-f5ee5016.png +0 -0
- helm/benchmark/static_build/assets/mistral-18e1be23.png +0 -0
- helm/benchmark/static_build/assets/nvidia-86fa75c1.png +0 -0
- helm/benchmark/static_build/assets/openai-3f8653e4.png +0 -0
- helm/benchmark/static_build/assets/scb10x-204bd786.png +0 -0
- helm/benchmark/static_build/assets/tii-24de195c.png +0 -0
- helm/benchmark/static_build/assets/together-a665a35b.png +0 -0
- helm/benchmark/static_build/assets/tsinghua-keg-97d4b395.png +0 -0
- helm/benchmark/static_build/assets/wellsfargo-a86a6c4a.png +0 -0
- helm/benchmark/static_build/assets/yandex-38e09d70.png +0 -0
- helm/tokenizers/anthropic_tokenizer.py +0 -52
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info/licenses}/LICENSE +0 -0
- {crfm_helm-0.5.4.dist-info → crfm_helm-0.5.5.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,140 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import csv
|
|
3
|
+
import sys
|
|
4
|
+
from typing import List
|
|
5
|
+
|
|
6
|
+
from helm.benchmark.scenarios.scenario import (
|
|
7
|
+
CORRECT_TAG,
|
|
8
|
+
TEST_SPLIT,
|
|
9
|
+
Input,
|
|
10
|
+
Instance,
|
|
11
|
+
Output,
|
|
12
|
+
Reference,
|
|
13
|
+
Scenario,
|
|
14
|
+
)
|
|
15
|
+
from helm.common.general import ensure_file_downloaded
|
|
16
|
+
|
|
17
|
+
csv.field_size_limit(sys.maxsize)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class MedBulletsScenario(Scenario):
|
|
21
|
+
"""
|
|
22
|
+
From "Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions"
|
|
23
|
+
(Chen et al.), MedBullet is a dataset comprising USMLE Step 2&3 style clinical questions. The dataset
|
|
24
|
+
is designed to evaluate the performance of LLMs in answering and explaining challenging medical questions,
|
|
25
|
+
emphasizing the need for explainable AI in medical QA.
|
|
26
|
+
|
|
27
|
+
Example from the dataset:
|
|
28
|
+
|
|
29
|
+
Question:
|
|
30
|
+
A 42-year-old woman is enrolled in a randomized controlled trial to study cardiac function in the setting of
|
|
31
|
+
several different drugs. She is started on verapamil and instructed to exercise at 50% of her VO2 max while
|
|
32
|
+
several cardiac parameters are being measured. During this experiment, which of the following represents
|
|
33
|
+
the relative conduction speed through the heart from fastest to slowest?
|
|
34
|
+
|
|
35
|
+
A) AV node > ventricles > atria > Purkinje fibers
|
|
36
|
+
B) Purkinje fibers > ventricles > atria > AV node
|
|
37
|
+
C) Purkinje fibers > atria > ventricles > AV node
|
|
38
|
+
D) Purkinje fibers > AV node > ventricles > atria
|
|
39
|
+
|
|
40
|
+
Answer:
|
|
41
|
+
The answer is C. Explanation: The conduction velocity of the structures of the heart is in the following order:
|
|
42
|
+
Purkinje fibers > atria > ventricles > AV node. A calcium channel blocker such as verapamil would only slow
|
|
43
|
+
conduction in the AV node.
|
|
44
|
+
|
|
45
|
+
@Article{MedBullet,
|
|
46
|
+
author = {Hanjie Chen and Zhouxiang Fang and Yash Singla and Mark Dredze},
|
|
47
|
+
title = {Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions},
|
|
48
|
+
year = {2023},
|
|
49
|
+
abstract = {LLMs have demonstrated impressive performance in answering medical questions, such as passing scores
|
|
50
|
+
on medical licensing examinations. However, medical board exam questions or general clinical questions do not
|
|
51
|
+
capture the complexity of realistic clinical cases. Moreover, the lack of reference explanations means we cannot
|
|
52
|
+
easily evaluate the reasoning of model decisions, a crucial component of supporting doctors in making complex
|
|
53
|
+
medical decisions. To address these challenges, we construct two new datasets: JAMA Clinical Challenge and
|
|
54
|
+
Medbullets. JAMA Clinical Challenge consists of questions based on challenging clinical cases, while Medbullets
|
|
55
|
+
comprises USMLE Step 2&3 style clinical questions. Both datasets are structured as multiple-choice
|
|
56
|
+
question-answering tasks, where each question is accompanied by an expert-written explanation. We evaluate four
|
|
57
|
+
LLMs on the two datasets using various prompts. Experiments demonstrate that our datasets are harder than
|
|
58
|
+
previous benchmarks. The inconsistency between automatic and human evaluations of model-generated explanations
|
|
59
|
+
highlights the need to develop new metrics to support future research on explainable medical QA.}}
|
|
60
|
+
|
|
61
|
+
Task:
|
|
62
|
+
Given a clinical question with multiple-choice options, models must identify the correct answer and generate a
|
|
63
|
+
response that includes the reasoning, as described in the expert-written explanation.
|
|
64
|
+
"""
|
|
65
|
+
|
|
66
|
+
DATASET_DOWNLOAD_BASE_URL = (
|
|
67
|
+
"https://raw.githubusercontent.com/HanjieChen/ChallengeClinicalQA/refs/heads/main/medbullets/"
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
name = "medbullet"
|
|
71
|
+
description = "A USMLE-style medical question dataset with multiple-choice answers and explanations."
|
|
72
|
+
tags = ["reasoning", "biomedical"]
|
|
73
|
+
|
|
74
|
+
# Define the possible answer choices
|
|
75
|
+
POSSIBLE_ANSWER_CHOICES: List[str] = ["A", "B", "C", "D", "E"]
|
|
76
|
+
|
|
77
|
+
def __init__(self):
|
|
78
|
+
super().__init__()
|
|
79
|
+
# self.splits = {"_op4": TRAIN_SPLIT, "_op5": TEST_SPLIT}
|
|
80
|
+
# limit to zero shot setting for now
|
|
81
|
+
self.splits = {"_op5": TEST_SPLIT}
|
|
82
|
+
|
|
83
|
+
def download_csv(self, output_path: str, split: str):
|
|
84
|
+
"""Download CSV files for the given split."""
|
|
85
|
+
csv_path = os.path.join(output_path, f"medbullets{split}.csv")
|
|
86
|
+
ensure_file_downloaded(
|
|
87
|
+
source_url=f"{self.DATASET_DOWNLOAD_BASE_URL}/medbullets{split}.csv",
|
|
88
|
+
target_path=csv_path,
|
|
89
|
+
unpack=False,
|
|
90
|
+
)
|
|
91
|
+
return csv_path
|
|
92
|
+
|
|
93
|
+
def process_csv(self, csv_path: str, split: str) -> List[Instance]:
|
|
94
|
+
"""Read and process a CSV file to generate instances."""
|
|
95
|
+
instances: List[Instance] = []
|
|
96
|
+
with open(csv_path, "r", encoding="utf-8") as f:
|
|
97
|
+
reader = csv.DictReader(f)
|
|
98
|
+
for row in reader:
|
|
99
|
+
# Validate required fields
|
|
100
|
+
if not row.get("question") or not row.get("answer_idx") or not row.get("opa"):
|
|
101
|
+
print(f"Skipping invalid row: {row}")
|
|
102
|
+
continue
|
|
103
|
+
|
|
104
|
+
# Map answers to indices
|
|
105
|
+
option_map = {
|
|
106
|
+
"A": row.get("opa", "Not applicable"),
|
|
107
|
+
"B": row.get("opb", "Not applicable"),
|
|
108
|
+
"C": row.get("opc", "Not applicable"),
|
|
109
|
+
"D": row.get("opd", "Not applicable"),
|
|
110
|
+
"E": row.get("ope", "Not applicable"),
|
|
111
|
+
}
|
|
112
|
+
|
|
113
|
+
# Correct answer text
|
|
114
|
+
correct_option = row["answer_idx"]
|
|
115
|
+
|
|
116
|
+
# Build references using POSSIBLE_ANSWER_CHOICES
|
|
117
|
+
references = [
|
|
118
|
+
Reference(
|
|
119
|
+
Output(text=option_map.get(option, "Not applicable")),
|
|
120
|
+
tags=[CORRECT_TAG] if option == correct_option else [],
|
|
121
|
+
)
|
|
122
|
+
for option in self.POSSIBLE_ANSWER_CHOICES
|
|
123
|
+
]
|
|
124
|
+
|
|
125
|
+
# Create instance
|
|
126
|
+
instance = Instance(
|
|
127
|
+
input=Input(text=row["question"]),
|
|
128
|
+
references=references,
|
|
129
|
+
split=split,
|
|
130
|
+
)
|
|
131
|
+
instances.append(instance)
|
|
132
|
+
return instances
|
|
133
|
+
|
|
134
|
+
def get_instances(self, output_path: str) -> List[Instance]:
|
|
135
|
+
"""Download and process dataset to generate instances."""
|
|
136
|
+
instances: List[Instance] = []
|
|
137
|
+
for split_suffix, split in self.splits.items():
|
|
138
|
+
csv_path = self.download_csv(output_path, split_suffix)
|
|
139
|
+
instances.extend(self.process_csv(csv_path, split))
|
|
140
|
+
return instances
|
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
from typing import Dict, List
|
|
2
|
+
from datasets import load_dataset
|
|
3
|
+
|
|
4
|
+
from helm.common.hierarchical_logger import hlog
|
|
5
|
+
from helm.benchmark.scenarios.scenario import (
|
|
6
|
+
Scenario,
|
|
7
|
+
Instance,
|
|
8
|
+
Reference,
|
|
9
|
+
TEST_SPLIT,
|
|
10
|
+
CORRECT_TAG,
|
|
11
|
+
PassageQuestionInput,
|
|
12
|
+
Output,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class MedCalcBenchScenario(Scenario):
|
|
17
|
+
"""
|
|
18
|
+
MedCalc-Bench is the first medical calculation dataset used to benchmark
|
|
19
|
+
LLMs ability to serve as clinical calculators.
|
|
20
|
+
Each instance in the dataset consists of a patient note, a question asking
|
|
21
|
+
to compute a specific clinical value, a final answer value, and a step-by-step
|
|
22
|
+
solution explaining how the final answer was obtained. Our dataset covers 55
|
|
23
|
+
different calculation tasks. We hope this dataset serves as a call to improve
|
|
24
|
+
the verbal and computational reasoning skills of LLMs in medical settings.
|
|
25
|
+
|
|
26
|
+
This dataset contains a training dataset of 10,053 instances and a testing
|
|
27
|
+
dataset of 1,047 instances.
|
|
28
|
+
|
|
29
|
+
Dataset: https://huggingface.co/datasets/ncbi/MedCalc-Bench-v1.0
|
|
30
|
+
Paper: https://arxiv.org/abs/2406.12036
|
|
31
|
+
|
|
32
|
+
Sample Prompt:
|
|
33
|
+
Given a patient note and a clinical question, compute the requested medical value.
|
|
34
|
+
Be as concise as possible.
|
|
35
|
+
|
|
36
|
+
Patient note: A 70-year-old female was rushed into the ICU due to respiratory distress,
|
|
37
|
+
following which she was promptly put on mechanical ventilation. Her delivered oxygen fell
|
|
38
|
+
to 51 % FiO₂; meanwhile, her partial pressure of oxygen (PaO₂) registered at 74 mm Hg.
|
|
39
|
+
She was conscious but visibly disoriented with a functional Glasgow Coma Score of 12.
|
|
40
|
+
She was hypotensive with blood pressure of 91/70 mm Hg. Multiple vasopressors are being administered
|
|
41
|
+
simultaneously including DOPamine at 4 mcg/kg/min, norEPINEPHrine at 0.06 mcg/kg/min,
|
|
42
|
+
DOBUTamine at 3 mcg/kg/min, and EPINEPHrine at 0.03 mcg/kg/min. Laboratory evaluations
|
|
43
|
+
revealed mild renal impairment with creatinine levels slightly elevated at 1.6 mg/dL
|
|
44
|
+
and a bilirubin level of 1.9 mg/dL. Her platelet count was found to be 165,000/µL.
|
|
45
|
+
Her daily urine output of 950 mL.
|
|
46
|
+
Question: What is the patient's Sequential Organ Failure Assessment (SOFA) Score?
|
|
47
|
+
|
|
48
|
+
Answer:
|
|
49
|
+
|
|
50
|
+
@misc{khandekar2024medcalcbench,
|
|
51
|
+
title={MedCalc-Bench: Evaluating Large Language Models for Medical Calculations},
|
|
52
|
+
author={
|
|
53
|
+
Nikhil Khandekar and Qiao Jin and Guangzhi Xiong and Soren Dunn and Serina S Applebaum and
|
|
54
|
+
Zain Anwar and Maame Sarfo-Gyamfi and Conrad W Safranek and Abid A Anwar and Andrew Zhang and
|
|
55
|
+
Aidan Gilson and Maxwell B Singer and Amisha Dave and Andrew Taylor and Aidong Zhang and
|
|
56
|
+
Qingyu Chen and Zhiyong Lu
|
|
57
|
+
},
|
|
58
|
+
year={2024},
|
|
59
|
+
eprint={2406.12036},
|
|
60
|
+
archivePrefix={arXiv},
|
|
61
|
+
primaryClass={
|
|
62
|
+
id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg'
|
|
63
|
+
in_archive='cs' is_general=False description='Covers natural language processing.
|
|
64
|
+
Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial
|
|
65
|
+
languages (programming languages, logics, formal systems) that does not explicitly
|
|
66
|
+
address natural-language issues broadly construed (natural-language processing, computational
|
|
67
|
+
linguistics, speech, text retrieval, etc.) is not appropriate for this area.'
|
|
68
|
+
}
|
|
69
|
+
}
|
|
70
|
+
"""
|
|
71
|
+
|
|
72
|
+
name = "medcalc_bench"
|
|
73
|
+
description = (
|
|
74
|
+
"A dataset which consists of a patient note, a question "
|
|
75
|
+
"requesting to compute a specific medical value, and a ground truth answer."
|
|
76
|
+
)
|
|
77
|
+
tags = ["knowledge", "reasoning", "biomedical"]
|
|
78
|
+
|
|
79
|
+
def __init__(self):
|
|
80
|
+
super().__init__()
|
|
81
|
+
|
|
82
|
+
def process_csv(self, data, split: str) -> List[Instance]:
|
|
83
|
+
instances: List[Instance] = []
|
|
84
|
+
hlog(f"Processing data for {split} split")
|
|
85
|
+
for row in data:
|
|
86
|
+
question = row["Question"]
|
|
87
|
+
ground_truth_answer = row["Ground Truth Answer"]
|
|
88
|
+
patient_note = row["Patient Note"]
|
|
89
|
+
id = row["Row Number"]
|
|
90
|
+
|
|
91
|
+
prompt = PassageQuestionInput(
|
|
92
|
+
passage=patient_note + "\n", question=question + "\n", passage_prefix="Patient note: "
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
extra_data = {
|
|
96
|
+
"category": row["Category"],
|
|
97
|
+
"upper_limit": row["Upper Limit"],
|
|
98
|
+
"lower_limit": row["Lower Limit"],
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
instance = Instance(
|
|
102
|
+
input=prompt,
|
|
103
|
+
references=[Reference(Output(text=ground_truth_answer), tags=[CORRECT_TAG])],
|
|
104
|
+
extra_data=extra_data,
|
|
105
|
+
split=split,
|
|
106
|
+
id=id,
|
|
107
|
+
)
|
|
108
|
+
instances.append(instance)
|
|
109
|
+
return instances
|
|
110
|
+
|
|
111
|
+
def get_instances(self, output_path: str) -> List[Instance]:
|
|
112
|
+
# Load the MedCalc-Bench dataset from Hugging Face
|
|
113
|
+
dataset = load_dataset("ncbi/MedCalc-Bench-v1.0")
|
|
114
|
+
|
|
115
|
+
# Process all the instances - limit to zero shot setting
|
|
116
|
+
instances: List[Instance] = []
|
|
117
|
+
splits: Dict[str, str] = {
|
|
118
|
+
# "train": TRAIN_SPLIT,
|
|
119
|
+
"test": TEST_SPLIT,
|
|
120
|
+
}
|
|
121
|
+
for hf_split, split in splits.items():
|
|
122
|
+
data = dataset[hf_split]
|
|
123
|
+
instances.extend(self.process_csv(data, split))
|
|
124
|
+
|
|
125
|
+
return instances
|
|
@@ -0,0 +1,120 @@
|
|
|
1
|
+
import csv
|
|
2
|
+
import os
|
|
3
|
+
from typing import List
|
|
4
|
+
from helm.benchmark.scenarios.scenario import (
|
|
5
|
+
Scenario,
|
|
6
|
+
Instance,
|
|
7
|
+
Reference,
|
|
8
|
+
CORRECT_TAG,
|
|
9
|
+
TEST_SPLIT,
|
|
10
|
+
Input,
|
|
11
|
+
Output,
|
|
12
|
+
)
|
|
13
|
+
from helm.common.general import ensure_file_downloaded
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class MedecScenario(Scenario):
|
|
17
|
+
"""
|
|
18
|
+
Processes the MEDEC dataset for medical error detection and correction tasks.
|
|
19
|
+
|
|
20
|
+
MEDEC is the first publicly available benchmark for medical error detection and correction in clinical notes,
|
|
21
|
+
introduced in "Ben Abacha et al., 2024." The dataset includes 3,848 clinical texts from the MS and UW collections,
|
|
22
|
+
covering five types of errors:
|
|
23
|
+
- Diagnosis
|
|
24
|
+
- Management
|
|
25
|
+
- Treatment
|
|
26
|
+
- Pharmacotherapy
|
|
27
|
+
- Causal Organism
|
|
28
|
+
|
|
29
|
+
The dataset consists of:
|
|
30
|
+
- Training Set: 2,189 MS texts
|
|
31
|
+
- Validation Set: 574 MS texts and 160 UW texts
|
|
32
|
+
- Test Set: 597 MS texts and 328 UW texts
|
|
33
|
+
|
|
34
|
+
Each clinical text is labeled as either correct or containing one error. The task involves:
|
|
35
|
+
(A) Predicting the error flag (1: the text contains an error, 0: the text has no errors).
|
|
36
|
+
(B) For flagged texts, extracting the sentence that contains the error.
|
|
37
|
+
(C) Generating a corrected sentence.
|
|
38
|
+
|
|
39
|
+
The MEDEC dataset was used for the MEDIQA-CORR shared task to evaluate seventeen participating systems.
|
|
40
|
+
Recent LLMs (e.g., GPT-4, Claude 3.5 Sonnet, Gemini 2.0 Flash) have been evaluated on this dataset, showing good
|
|
41
|
+
performance but still lagging behind medical doctors in error detection and correction tasks.
|
|
42
|
+
|
|
43
|
+
Task:
|
|
44
|
+
Given a clinical text, models must identify errors and correct them while demonstrating medical knowledge
|
|
45
|
+
and reasoning capabilities.
|
|
46
|
+
"""
|
|
47
|
+
|
|
48
|
+
GIT_HASH = "49c59dcba43a7af8717590a405b11a57f42b04df"
|
|
49
|
+
TRAIN_URL = f"https://raw.githubusercontent.com/abachaa/MEDEC/{GIT_HASH}/MEDEC-MS/MEDEC-Full-TrainingSet-with-ErrorType.csv" # noqa: E501
|
|
50
|
+
TEST_URL = f"https://raw.githubusercontent.com/abachaa/MEDEC/{GIT_HASH}/MEDEC-MS/MEDEC-MS-TestSet-with-GroundTruth-and-ErrorType.csv" # noqa: E501
|
|
51
|
+
|
|
52
|
+
name = "medec"
|
|
53
|
+
description = "A dataset containing medical narratives with error detection and correction pairs."
|
|
54
|
+
tags = ["error_detection", "error_correction", "biomedical"]
|
|
55
|
+
|
|
56
|
+
def download_csv(self, url: str, output_path: str, file_name: str) -> str:
|
|
57
|
+
"""Download the CSV file and return its path."""
|
|
58
|
+
csv_path = os.path.join(output_path, file_name)
|
|
59
|
+
ensure_file_downloaded(source_url=url, target_path=csv_path, unpack=False)
|
|
60
|
+
return csv_path
|
|
61
|
+
|
|
62
|
+
def process_csv(self, csv_path: str, split: str) -> List[Instance]:
|
|
63
|
+
"""Read and process a CSV file to generate instances."""
|
|
64
|
+
instances: List[Instance] = []
|
|
65
|
+
with open(csv_path, "r", encoding="utf-8") as f:
|
|
66
|
+
reader = csv.DictReader(f)
|
|
67
|
+
|
|
68
|
+
for row in reader:
|
|
69
|
+
# Ensure required fields exist
|
|
70
|
+
if not row.get("Sentences"):
|
|
71
|
+
continue
|
|
72
|
+
|
|
73
|
+
# Extract text content
|
|
74
|
+
input_text = row["Sentences"].strip()
|
|
75
|
+
|
|
76
|
+
# Extract metadata
|
|
77
|
+
error_flag = int(row.get("Error Flag", 0))
|
|
78
|
+
error_sentence_id = row.get("Error Sentence ID", "-1").strip()
|
|
79
|
+
corrected_sentence = row.get("Corrected Sentence", "").strip()
|
|
80
|
+
|
|
81
|
+
references = []
|
|
82
|
+
if error_flag == 1 and corrected_sentence != "NA" and error_sentence_id != "-1":
|
|
83
|
+
# If there is an error, store the corrected sentence
|
|
84
|
+
references.append(
|
|
85
|
+
Reference(
|
|
86
|
+
Output(text=f"{error_sentence_id} {corrected_sentence}"),
|
|
87
|
+
tags=[CORRECT_TAG],
|
|
88
|
+
)
|
|
89
|
+
)
|
|
90
|
+
else:
|
|
91
|
+
# If no error exists, expect "CORRECT" as the output
|
|
92
|
+
references.append(
|
|
93
|
+
Reference(
|
|
94
|
+
Output(text="CORRECT"),
|
|
95
|
+
tags=[CORRECT_TAG],
|
|
96
|
+
)
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
instance = Instance(
|
|
100
|
+
input=Input(text=input_text),
|
|
101
|
+
references=references,
|
|
102
|
+
split=split,
|
|
103
|
+
)
|
|
104
|
+
instances.append(instance)
|
|
105
|
+
|
|
106
|
+
return instances
|
|
107
|
+
|
|
108
|
+
def get_instances(self, output_path: str) -> List[Instance]:
|
|
109
|
+
"""Download and process the dataset to generate instances."""
|
|
110
|
+
instances: List[Instance] = []
|
|
111
|
+
|
|
112
|
+
# Download and process the training set - limit to zero shot setting for now
|
|
113
|
+
# train_csv = self.download_csv(self.TRAIN_URL, output_path, "medec_train.csv")
|
|
114
|
+
# instances.extend(self.process_csv(train_csv, TRAIN_SPLIT))
|
|
115
|
+
|
|
116
|
+
# Download and process the test set
|
|
117
|
+
test_csv = self.download_csv(self.TEST_URL, output_path, "medec_test.csv")
|
|
118
|
+
instances.extend(self.process_csv(test_csv, TEST_SPLIT))
|
|
119
|
+
|
|
120
|
+
return instances
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from datasets import load_dataset
|
|
3
|
+
|
|
4
|
+
from helm.benchmark.scenarios.scenario import (
|
|
5
|
+
Scenario,
|
|
6
|
+
Instance,
|
|
7
|
+
Reference,
|
|
8
|
+
TEST_SPLIT,
|
|
9
|
+
CORRECT_TAG,
|
|
10
|
+
Output,
|
|
11
|
+
Input,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class MedHalluScenario(Scenario):
|
|
16
|
+
"""
|
|
17
|
+
MedHallu is a medical hallucination dataset that consists of PubMed articles and associated questions,
|
|
18
|
+
with the objective being to classify whether the answer is factual or hallucinated.
|
|
19
|
+
MedHallu: https://medhallu.github.io/
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
name = "medhallu"
|
|
23
|
+
description = "A dataset of PubMed articles and associated questions, with the objective being to classify whether the answer is factual or hallucinated." # noqa: E501
|
|
24
|
+
tags = ["knowledge", "reasoning", "biomedical"]
|
|
25
|
+
|
|
26
|
+
def create_instance(self, question, knowledge, answer, label, split):
|
|
27
|
+
prompt_text = f"""World Knowledge: {knowledge}
|
|
28
|
+
|
|
29
|
+
Question: {question}
|
|
30
|
+
|
|
31
|
+
Answer: {answer}
|
|
32
|
+
"""
|
|
33
|
+
return Instance(
|
|
34
|
+
input=Input(
|
|
35
|
+
text=prompt_text,
|
|
36
|
+
),
|
|
37
|
+
references=[Reference(Output(text=label), tags=[CORRECT_TAG])],
|
|
38
|
+
split=split,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
def get_instances(self, output_path: str) -> List[Instance]:
|
|
42
|
+
# Load the MedCalc-Bench dataset from Hugging Face
|
|
43
|
+
dataset = load_dataset(
|
|
44
|
+
"UTAustin-AIHealth/MedHallu",
|
|
45
|
+
"pqa_labeled",
|
|
46
|
+
split="train",
|
|
47
|
+
revision="515060458a945c633debc6fd5baac7764416b724",
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
# Process all the instances - limit to zero shot setting
|
|
51
|
+
instances: List[Instance] = []
|
|
52
|
+
for row in dataset:
|
|
53
|
+
# print("printing row", row)
|
|
54
|
+
question = row["Question"]
|
|
55
|
+
ground_truth_answer = row["Ground Truth"]
|
|
56
|
+
knowledge = row["Knowledge"]
|
|
57
|
+
hallucinated_answer = row["Hallucinated Answer"]
|
|
58
|
+
|
|
59
|
+
gt_instance = self.create_instance(question, knowledge, ground_truth_answer, label="0", split=TEST_SPLIT)
|
|
60
|
+
instances.append(gt_instance)
|
|
61
|
+
|
|
62
|
+
hallucinated_instance = self.create_instance(
|
|
63
|
+
question, knowledge, hallucinated_answer, label="1", split=TEST_SPLIT
|
|
64
|
+
)
|
|
65
|
+
instances.append(hallucinated_instance)
|
|
66
|
+
return instances
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
from typing import Dict, List
|
|
2
|
+
from datasets import load_dataset
|
|
3
|
+
|
|
4
|
+
from helm.common.hierarchical_logger import hlog
|
|
5
|
+
from helm.benchmark.scenarios.scenario import (
|
|
6
|
+
Scenario,
|
|
7
|
+
Instance,
|
|
8
|
+
Reference,
|
|
9
|
+
TEST_SPLIT,
|
|
10
|
+
CORRECT_TAG,
|
|
11
|
+
Input,
|
|
12
|
+
Output,
|
|
13
|
+
)
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class MediQAScenario(Scenario):
|
|
17
|
+
"""
|
|
18
|
+
MEDIQA-QA is a dataset designed to benchmark large language models (LLMs) on medical
|
|
19
|
+
question answering (QA) tasks.
|
|
20
|
+
Each instance in the dataset includes a medical question, a set of candidate answers,
|
|
21
|
+
relevance annotations for ranking, and additional context to evaluate understanding
|
|
22
|
+
and retrieval capabilities in a healthcare setting.
|
|
23
|
+
|
|
24
|
+
The dataset encompasses diverse question types, including consumer health queries
|
|
25
|
+
and clinical questions, making it suitable for assessing LLMs' ability to answer
|
|
26
|
+
consumer healthcare questions.
|
|
27
|
+
|
|
28
|
+
This dataset comprises two training sets of 104 instances each, a validation set
|
|
29
|
+
of 25 instances, and a testing set of 150 instances.
|
|
30
|
+
|
|
31
|
+
Dataset: https://huggingface.co/datasets/bigbio/mediqa_qa
|
|
32
|
+
Paper: https://aclanthology.org/W19-5039/
|
|
33
|
+
|
|
34
|
+
Sample Prompt:
|
|
35
|
+
Answer the following consumer health question.
|
|
36
|
+
|
|
37
|
+
Question: Noonan syndrome. What are the references with noonan syndrome
|
|
38
|
+
and polycystic renal disease?
|
|
39
|
+
Answer:
|
|
40
|
+
|
|
41
|
+
@inproceedings{MEDIQA2019,
|
|
42
|
+
author = {Asma {Ben Abacha} and Chaitanya Shivade and Dina Demner{-}Fushman},
|
|
43
|
+
title = {Overview of the MEDIQA 2019 Shared Task on Textual Inference,
|
|
44
|
+
Question Entailment and Question Answering},
|
|
45
|
+
booktitle = {ACL-BioNLP 2019},
|
|
46
|
+
year = {2019}
|
|
47
|
+
}
|
|
48
|
+
"""
|
|
49
|
+
|
|
50
|
+
name = "medi_qa"
|
|
51
|
+
description = (
|
|
52
|
+
"A dataset including a medical question, a set of candidate answers,"
|
|
53
|
+
"relevance annotations for ranking, and additional context to evaluate understanding"
|
|
54
|
+
"and retrieval capabilities in a healthcare setting."
|
|
55
|
+
)
|
|
56
|
+
tags = ["knowledge", "biomedical"]
|
|
57
|
+
|
|
58
|
+
def _get_highest_ranked_answer(self, answers: List[Dict[str, Dict[str, str]]]) -> str:
|
|
59
|
+
best_answer: str = ""
|
|
60
|
+
for answer in answers:
|
|
61
|
+
if answer["Answer"]["ReferenceRank"] != 1:
|
|
62
|
+
continue
|
|
63
|
+
best_answer = answer["Answer"]["AnswerText"]
|
|
64
|
+
break
|
|
65
|
+
return best_answer
|
|
66
|
+
|
|
67
|
+
def process_csv(self, data, split: str) -> List[Instance]:
|
|
68
|
+
instances: List[Instance] = []
|
|
69
|
+
hlog(f"Processing data for {split} split")
|
|
70
|
+
total_tokens: int = 0
|
|
71
|
+
counter = 0
|
|
72
|
+
for row in data:
|
|
73
|
+
row = row["QUESTION"]
|
|
74
|
+
question = row["QuestionText"]
|
|
75
|
+
ground_truth_answer = self._get_highest_ranked_answer(row["AnswerList"])
|
|
76
|
+
id = row["QID"]
|
|
77
|
+
counter += 1
|
|
78
|
+
total_tokens += len(ground_truth_answer.split())
|
|
79
|
+
instances.append(
|
|
80
|
+
Instance(
|
|
81
|
+
input=Input(question),
|
|
82
|
+
references=[Reference(Output(ground_truth_answer), tags=[CORRECT_TAG])],
|
|
83
|
+
split=split,
|
|
84
|
+
id=id,
|
|
85
|
+
)
|
|
86
|
+
)
|
|
87
|
+
return instances
|
|
88
|
+
|
|
89
|
+
def get_instances(self, output_path: str) -> List[Instance]:
|
|
90
|
+
# Load the MEDIQA dataset from Hugging Face
|
|
91
|
+
dataset = load_dataset("bigbio/mediqa_qa")
|
|
92
|
+
|
|
93
|
+
# Process all the instances
|
|
94
|
+
instances: List[Instance] = []
|
|
95
|
+
# Limit to zero shot setting
|
|
96
|
+
splits: Dict[str, str] = {
|
|
97
|
+
# "train_live_qa_med": TRAIN_SPLIT,
|
|
98
|
+
# "validation": VALID_SPLIT,
|
|
99
|
+
"test": TEST_SPLIT,
|
|
100
|
+
}
|
|
101
|
+
for hf_split, split in splits.items():
|
|
102
|
+
data = dataset[hf_split]
|
|
103
|
+
instances.extend(self.process_csv(data, split))
|
|
104
|
+
|
|
105
|
+
return instances
|
|
@@ -5,7 +5,7 @@ import pandas as pd
|
|
|
5
5
|
|
|
6
6
|
from helm.common.general import ensure_file_downloaded
|
|
7
7
|
|
|
8
|
-
from .scenario import CORRECT_TAG, TEST_SPLIT, Input, Instance, Output, Reference, Scenario
|
|
8
|
+
from helm.benchmark.scenarios.scenario import CORRECT_TAG, TEST_SPLIT, Input, Instance, Output, Reference, Scenario
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class MedicationQAScenario(Scenario):
|
|
@@ -31,7 +31,7 @@ class MedicationQAScenario(Scenario):
|
|
|
31
31
|
FILENAME = "MedInfo2019-QA-Medications.xlsx"
|
|
32
32
|
|
|
33
33
|
name = "medication_qa"
|
|
34
|
-
description = "
|
|
34
|
+
description = "Open text question-answer pairs regarding consumer health questions about medication."
|
|
35
35
|
tags = ["knowledge", "generation", "question_answering", "biomedical"]
|
|
36
36
|
|
|
37
37
|
def download_medication_qa(self, path: str):
|