crfm-helm 0.5.3__py3-none-any.whl → 0.5.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of crfm-helm might be problematic. Click here for more details.

Files changed (606) hide show
  1. crfm_helm-0.5.5.dist-info/METADATA +413 -0
  2. crfm_helm-0.5.5.dist-info/RECORD +894 -0
  3. {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info}/WHEEL +1 -1
  4. helm/benchmark/adaptation/adapter_spec.py +13 -1
  5. helm/benchmark/adaptation/adapters/adapter_factory.py +15 -1
  6. helm/benchmark/adaptation/adapters/binary_ranking_adapter.py +1 -1
  7. helm/benchmark/adaptation/adapters/chat_adapter.py +49 -0
  8. helm/benchmark/adaptation/adapters/ehr_instruction_adapter.py +108 -0
  9. helm/benchmark/adaptation/adapters/generation_adapter.py +1 -1
  10. helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +1 -1
  11. helm/benchmark/adaptation/adapters/language_modeling_adapter.py +1 -1
  12. helm/benchmark/adaptation/adapters/multimodal/generation_multimodal_adapter.py +4 -2
  13. helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +1 -1
  14. helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +1 -1
  15. helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +4 -2
  16. helm/benchmark/adaptation/adapters/multimodal/test_multimodal_prompt.py +1 -1
  17. helm/benchmark/adaptation/adapters/multiple_choice_calibrated_adapter.py +1 -1
  18. helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +2 -2
  19. helm/benchmark/adaptation/adapters/multiple_choice_joint_chain_of_thought_adapter.py +87 -0
  20. helm/benchmark/adaptation/adapters/multiple_choice_separate_adapter.py +1 -1
  21. helm/benchmark/adaptation/adapters/test_generation_adapter.py +3 -3
  22. helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +2 -2
  23. helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +2 -2
  24. helm/benchmark/adaptation/common_adapter_specs.py +69 -4
  25. helm/benchmark/adaptation/prompt.py +1 -1
  26. helm/benchmark/annotation/aci_bench_annotator.py +95 -0
  27. helm/benchmark/annotation/air_bench_annotator.py +20 -5
  28. helm/benchmark/annotation/annotator.py +5 -0
  29. helm/benchmark/annotation/annotator_factory.py +3 -20
  30. helm/benchmark/annotation/anthropic_red_team_annotator.py +11 -24
  31. helm/benchmark/annotation/autobencher_capabilities_annotator.py +107 -0
  32. helm/benchmark/annotation/autobencher_safety_annotator.py +98 -0
  33. helm/benchmark/annotation/bigcodebench_annotator.py +108 -0
  34. helm/benchmark/annotation/bird_sql_annotator.py +58 -0
  35. helm/benchmark/annotation/call_center_annotator.py +22 -11
  36. helm/benchmark/annotation/chw_care_plan_annotator.py +98 -0
  37. helm/benchmark/annotation/czech_bank_qa_annotator.py +78 -0
  38. helm/benchmark/annotation/dischargeme_annotator.py +107 -0
  39. helm/benchmark/annotation/ehr_sql_annotator.py +87 -0
  40. helm/benchmark/annotation/harm_bench_annotator.py +11 -24
  41. helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +131 -0
  42. helm/benchmark/annotation/image2struct/image_compiler_annotator.py +6 -1
  43. helm/benchmark/annotation/live_qa_annotator.py +10 -5
  44. helm/benchmark/annotation/med_dialog_annotator.py +99 -0
  45. helm/benchmark/annotation/medalign_annotator.py +100 -0
  46. helm/benchmark/annotation/medi_qa_annotator.py +98 -0
  47. helm/benchmark/annotation/medication_qa_annotator.py +90 -61
  48. helm/benchmark/annotation/mental_health_annotator.py +98 -0
  49. helm/benchmark/annotation/mimic_rrs_annotator.py +100 -0
  50. helm/benchmark/annotation/model_as_judge.py +281 -18
  51. helm/benchmark/annotation/mtsamples_procedures_annotator.py +98 -0
  52. helm/benchmark/annotation/mtsamples_replicate_annotator.py +101 -0
  53. helm/benchmark/annotation/omni_math/gpt_evaluation_template.txt +152 -0
  54. helm/benchmark/annotation/omni_math/gpt_evaluation_zero_shot_template.txt +36 -0
  55. helm/benchmark/annotation/omni_math_annotator.py +132 -0
  56. helm/benchmark/annotation/simple_safety_tests_annotator.py +11 -25
  57. helm/benchmark/annotation/spider_annotator.py +18 -0
  58. helm/benchmark/annotation/starr_patient_instructions_annotator.py +98 -0
  59. helm/benchmark/annotation/wildbench/eval_template.pairwise.v2.md +75 -0
  60. helm/benchmark/annotation/wildbench/eval_template.score.v2.md +66 -0
  61. helm/benchmark/annotation/wildbench_annotator.py +119 -0
  62. helm/benchmark/annotation/xstest_annotator.py +20 -30
  63. helm/benchmark/annotation_executor.py +35 -15
  64. helm/benchmark/augmentations/cleva_perturbation.py +9 -8
  65. helm/benchmark/augmentations/contraction_expansion_perturbation.py +2 -2
  66. helm/benchmark/augmentations/contrast_sets_perturbation.py +2 -2
  67. helm/benchmark/augmentations/dialect_perturbation.py +4 -5
  68. helm/benchmark/augmentations/extra_space_perturbation.py +2 -2
  69. helm/benchmark/augmentations/filler_words_perturbation.py +2 -2
  70. helm/benchmark/augmentations/gender_perturbation.py +2 -2
  71. helm/benchmark/augmentations/lowercase_perturbation.py +2 -2
  72. helm/benchmark/augmentations/mild_mix_perturbation.py +6 -6
  73. helm/benchmark/augmentations/misspelling_perturbation.py +2 -2
  74. helm/benchmark/augmentations/person_name_perturbation.py +4 -5
  75. helm/benchmark/augmentations/perturbation.py +1 -1
  76. helm/benchmark/augmentations/space_perturbation.py +2 -2
  77. helm/benchmark/augmentations/suffix_perturbation.py +2 -2
  78. helm/benchmark/augmentations/synonym_perturbation.py +4 -3
  79. helm/benchmark/augmentations/test_perturbation.py +16 -13
  80. helm/benchmark/augmentations/translate_perturbation.py +2 -2
  81. helm/benchmark/augmentations/typos_perturbation.py +2 -2
  82. helm/benchmark/data_preprocessor.py +2 -2
  83. helm/benchmark/huggingface_registration.py +2 -7
  84. helm/benchmark/metrics/aci_bench_metrics.py +34 -0
  85. helm/benchmark/metrics/basic_metrics.py +6 -6
  86. helm/benchmark/metrics/bbq_metrics.py +2 -2
  87. helm/benchmark/metrics/bias_metrics.py +12 -3
  88. helm/benchmark/metrics/bigcodebench_metrics.py +25 -0
  89. helm/benchmark/metrics/bird_sql_metrics.py +28 -0
  90. helm/benchmark/metrics/chw_care_plan_metrics.py +34 -0
  91. helm/benchmark/metrics/classification_metrics.py +76 -12
  92. helm/benchmark/metrics/cleva_harms_metrics.py +8 -7
  93. helm/benchmark/metrics/code_metrics.py +5 -5
  94. helm/benchmark/metrics/comet_metric.py +125 -0
  95. helm/benchmark/metrics/common_metric_specs.py +9 -2
  96. helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +72 -0
  97. helm/benchmark/metrics/copyright_metrics.py +4 -4
  98. helm/benchmark/metrics/czech_bank_qa_metrics.py +29 -0
  99. helm/benchmark/metrics/decodingtrust_fairness_metrics.py +2 -2
  100. helm/benchmark/metrics/decodingtrust_privacy_metrics.py +2 -2
  101. helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +2 -2
  102. helm/benchmark/metrics/dischargeme_metrics.py +34 -0
  103. helm/benchmark/metrics/disinformation_metrics.py +4 -4
  104. helm/benchmark/metrics/dry_run_metrics.py +5 -5
  105. helm/benchmark/metrics/efficiency_metrics.py +3 -3
  106. helm/benchmark/metrics/ehr_sql_metrics.py +103 -0
  107. helm/benchmark/metrics/evaluate_instances_metric.py +3 -3
  108. helm/benchmark/metrics/evaluate_reference_metrics.py +144 -16
  109. helm/benchmark/metrics/gpqa_chain_of_thought_metric.py +103 -0
  110. helm/benchmark/metrics/gpt4_audio_critique_metrics.py +167 -0
  111. helm/benchmark/metrics/helpdesk_call_summarization_metrics.py +36 -0
  112. helm/benchmark/metrics/ifeval/instructions.py +1574 -0
  113. helm/benchmark/metrics/ifeval/instructions_registry.py +182 -0
  114. helm/benchmark/metrics/ifeval/instructions_registry.pyi +3 -0
  115. helm/benchmark/metrics/ifeval/instructions_util.py +153 -0
  116. helm/benchmark/metrics/ifeval_metrics.py +55 -0
  117. helm/benchmark/metrics/image_generation/aesthetics_metrics.py +1 -1
  118. helm/benchmark/metrics/image_generation/detection_metrics.py +1 -1
  119. helm/benchmark/metrics/image_generation/detectors/vitdet.py +1 -1
  120. helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +1 -1
  121. helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +1 -1
  122. helm/benchmark/metrics/image_generation/nsfw_metrics.py +1 -1
  123. helm/benchmark/metrics/image_generation/q16/test_q16.py +3 -1
  124. helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +1 -1
  125. helm/benchmark/metrics/image_generation/skin_tone_metrics.py +2 -2
  126. helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +1 -1
  127. helm/benchmark/metrics/image_generation/watermark_metrics.py +1 -1
  128. helm/benchmark/metrics/instruction_following_critique_metrics.py +4 -4
  129. helm/benchmark/metrics/language_modeling_metrics.py +4 -4
  130. helm/benchmark/metrics/machine_translation_metrics.py +2 -2
  131. helm/benchmark/metrics/med_dialog_metrics.py +34 -0
  132. helm/benchmark/metrics/medalign_metrics.py +34 -0
  133. helm/benchmark/metrics/medcalc_bench_metrics.py +124 -0
  134. helm/benchmark/metrics/medec_metrics.py +101 -0
  135. helm/benchmark/metrics/medi_qa_metrics.py +34 -0
  136. helm/benchmark/metrics/medication_qa_metrics.py +15 -4
  137. helm/benchmark/metrics/mental_health_metrics.py +34 -0
  138. helm/benchmark/metrics/metric.py +3 -3
  139. helm/benchmark/metrics/mimic_rrs_metrics.py +34 -0
  140. helm/benchmark/metrics/mimiciv_billing_code_metrics.py +96 -0
  141. helm/benchmark/metrics/mtsamples_procedures_metrics.py +34 -0
  142. helm/benchmark/metrics/mtsamples_replicate_metrics.py +34 -0
  143. helm/benchmark/metrics/nltk_helper.py +32 -0
  144. helm/benchmark/metrics/numeracy_metrics.py +4 -4
  145. helm/benchmark/metrics/omni_math_metrics.py +32 -0
  146. helm/benchmark/metrics/output_processing_metric.py +60 -0
  147. helm/benchmark/metrics/output_processors.py +15 -0
  148. helm/benchmark/metrics/paraphrase_generation_metrics.py +2 -2
  149. helm/benchmark/metrics/ranking_metrics.py +3 -3
  150. helm/benchmark/metrics/reference_metric.py +3 -3
  151. helm/benchmark/metrics/safety_metrics.py +39 -17
  152. helm/benchmark/metrics/{bhasa_metrics.py → seahelm_metrics.py} +3 -3
  153. helm/benchmark/metrics/seahelm_metrics_specs.py +10 -0
  154. helm/benchmark/metrics/spider_metrics.py +7 -0
  155. helm/benchmark/metrics/starr_patient_instructions_metrics.py +34 -0
  156. helm/benchmark/metrics/statistic.py +1 -1
  157. helm/benchmark/metrics/summac/model_summac.py +1 -1
  158. helm/benchmark/metrics/summarization_critique_metrics.py +4 -4
  159. helm/benchmark/metrics/summarization_metrics.py +19 -9
  160. helm/benchmark/metrics/test_bias_metrics.py +5 -1
  161. helm/benchmark/metrics/test_classification_metrics.py +140 -68
  162. helm/benchmark/metrics/test_evaluate_reference_metrics.py +15 -0
  163. helm/benchmark/metrics/test_metric.py +1 -1
  164. helm/benchmark/metrics/test_statistic.py +2 -2
  165. helm/benchmark/metrics/tokens/ai21_token_cost_estimator.py +1 -1
  166. helm/benchmark/metrics/tokens/auto_token_cost_estimator.py +6 -6
  167. helm/benchmark/metrics/tokens/cohere_token_cost_estimator.py +1 -1
  168. helm/benchmark/metrics/tokens/free_token_cost_estimator.py +1 -1
  169. helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +1 -1
  170. helm/benchmark/metrics/tokens/openai_token_cost_estimator.py +1 -1
  171. helm/benchmark/metrics/tokens/test_ai21_token_cost_estimator.py +1 -1
  172. helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +1 -1
  173. helm/benchmark/metrics/toxicity_metrics.py +4 -4
  174. helm/benchmark/metrics/unitxt_metrics.py +21 -4
  175. helm/benchmark/metrics/vision_language/image_metrics.py +7 -3
  176. helm/benchmark/metrics/wildbench_metrics.py +34 -0
  177. helm/benchmark/model_metadata_registry.py +16 -0
  178. helm/benchmark/presentation/create_plots.py +1 -1
  179. helm/benchmark/presentation/schema.py +3 -0
  180. helm/benchmark/presentation/summarize.py +119 -256
  181. helm/benchmark/presentation/test_summarize.py +145 -3
  182. helm/benchmark/presentation/torr_robustness_summarizer.py +178 -0
  183. helm/benchmark/reeval_run.py +203 -0
  184. helm/benchmark/reeval_runner.py +355 -0
  185. helm/benchmark/run.py +8 -17
  186. helm/benchmark/run_expander.py +105 -8
  187. helm/benchmark/run_spec_factory.py +12 -0
  188. helm/benchmark/run_specs/air_bench_run_specs.py +21 -3
  189. helm/benchmark/run_specs/audio_run_specs.py +613 -0
  190. helm/benchmark/run_specs/call_center_run_specs.py +49 -0
  191. helm/benchmark/run_specs/capabilities_run_specs.py +308 -0
  192. helm/benchmark/run_specs/classic_run_specs.py +1 -69
  193. helm/benchmark/run_specs/enem_challenge_specs.py +31 -0
  194. helm/benchmark/run_specs/enterprise_run_specs.py +260 -0
  195. helm/benchmark/run_specs/experimental_run_specs.py +112 -3
  196. helm/benchmark/run_specs/finance_run_specs.py +6 -2
  197. helm/benchmark/run_specs/imdb_ptbr_run_specs.py +30 -0
  198. helm/benchmark/run_specs/lite_run_specs.py +2 -2
  199. helm/benchmark/run_specs/long_context_run_specs.py +89 -0
  200. helm/benchmark/run_specs/medhelm_run_specs.py +1155 -0
  201. helm/benchmark/run_specs/mmlu_clinical_afr_run_specs.py +49 -0
  202. helm/benchmark/run_specs/oab_exams_specs.py +32 -0
  203. helm/benchmark/run_specs/safety_run_specs.py +37 -0
  204. helm/benchmark/run_specs/{bhasa_run_specs.py → seahelm_run_specs.py} +66 -52
  205. helm/benchmark/run_specs/sql_run_specs.py +54 -0
  206. helm/benchmark/run_specs/tweetsentbr_run_specs.py +32 -0
  207. helm/benchmark/run_specs/unitxt_run_specs.py +14 -5
  208. helm/benchmark/run_specs/vlm_run_specs.py +83 -5
  209. helm/benchmark/run_specs/winogrande_afr_run_specs.py +47 -0
  210. helm/benchmark/scenarios/aci_bench_scenario.py +120 -0
  211. helm/benchmark/scenarios/air_bench_scenario.py +6 -1
  212. helm/benchmark/scenarios/anthropic_hh_rlhf_scenario.py +5 -3
  213. helm/benchmark/scenarios/anthropic_red_team_scenario.py +1 -1
  214. helm/benchmark/scenarios/audio_language/__init__.py +0 -0
  215. helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +128 -0
  216. helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +154 -0
  217. helm/benchmark/scenarios/audio_language/ami_scenario.py +96 -0
  218. helm/benchmark/scenarios/audio_language/audio_mnist_scenario.py +62 -0
  219. helm/benchmark/scenarios/audio_language/audio_pairs_scenario.py +62 -0
  220. helm/benchmark/scenarios/audio_language/audiocaps_scenario.py +59 -0
  221. helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +152 -0
  222. helm/benchmark/scenarios/audio_language/common_voice_15_scenario.py +99 -0
  223. helm/benchmark/scenarios/audio_language/covost2_scenario.py +163 -0
  224. helm/benchmark/scenarios/audio_language/fleurs_fairness_scenario.py +83 -0
  225. helm/benchmark/scenarios/audio_language/fleurs_scenario.py +312 -0
  226. helm/benchmark/scenarios/audio_language/iemocap_audio_scenario.py +83 -0
  227. helm/benchmark/scenarios/audio_language/librispeech_fairness_scenario.py +96 -0
  228. helm/benchmark/scenarios/audio_language/librispeech_scenario.py +80 -0
  229. helm/benchmark/scenarios/audio_language/meld_audio_scenario.py +113 -0
  230. helm/benchmark/scenarios/audio_language/multilingual_librispeech_scenario.py +80 -0
  231. helm/benchmark/scenarios/audio_language/mustard_scenario.py +142 -0
  232. helm/benchmark/scenarios/audio_language/mutox_scenario.py +254 -0
  233. helm/benchmark/scenarios/audio_language/parade_scenario.py +97 -0
  234. helm/benchmark/scenarios/audio_language/speech_robust_bench_scenario.py +124 -0
  235. helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +69 -0
  236. helm/benchmark/scenarios/audio_language/voice_jailbreak_attacks_scenario.py +87 -0
  237. helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +106 -0
  238. helm/benchmark/scenarios/autobencher_capabilities_scenario.py +68 -0
  239. helm/benchmark/scenarios/autobencher_safety_scenario.py +51 -0
  240. helm/benchmark/scenarios/babi_qa_scenario.py +1 -1
  241. helm/benchmark/scenarios/banking77_scenario.py +6 -1
  242. helm/benchmark/scenarios/bbq_scenario.py +1 -1
  243. helm/benchmark/scenarios/big_bench_scenario.py +11 -1
  244. helm/benchmark/scenarios/bigcodebench_scenario.py +58 -0
  245. helm/benchmark/scenarios/bird_sql_scenario.py +94 -0
  246. helm/benchmark/scenarios/bird_sql_scenario_helper.py +118 -0
  247. helm/benchmark/scenarios/blimp_scenario.py +1 -1
  248. helm/benchmark/scenarios/bold_scenario.py +1 -1
  249. helm/benchmark/scenarios/boolq_scenario.py +1 -1
  250. helm/benchmark/scenarios/casehold_scenario.py +79 -0
  251. helm/benchmark/scenarios/chw_care_plan_scenario.py +105 -0
  252. helm/benchmark/scenarios/civil_comments_scenario.py +1 -1
  253. helm/benchmark/scenarios/clear_scenario.py +153 -0
  254. helm/benchmark/scenarios/cleva_scenario.py +2 -2
  255. helm/benchmark/scenarios/code_scenario.py +17 -4
  256. helm/benchmark/scenarios/commonsense_scenario.py +1 -1
  257. helm/benchmark/scenarios/conv_fin_qa_calc_scenario.py +97 -0
  258. helm/benchmark/scenarios/copyright_scenario.py +1 -1
  259. helm/benchmark/scenarios/covid_dialog_scenario.py +10 -1
  260. helm/benchmark/scenarios/cti_to_mitre_scenario.py +240 -0
  261. helm/benchmark/scenarios/custom_mcqa_scenario.py +1 -1
  262. helm/benchmark/scenarios/czech_bank_qa_scenario.py +130 -0
  263. helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +1 -1
  264. helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +1 -1
  265. helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +1 -1
  266. helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +1 -1
  267. helm/benchmark/scenarios/dialogue_scenarios.py +13 -2
  268. helm/benchmark/scenarios/dischargeme_scenario.py +157 -0
  269. helm/benchmark/scenarios/disinformation_scenario.py +10 -1
  270. helm/benchmark/scenarios/dyck_language_scenario.py +10 -1
  271. helm/benchmark/scenarios/echr_judgment_classification_scenario.py +113 -0
  272. helm/benchmark/scenarios/ehr_sql_scenario.py +131 -0
  273. helm/benchmark/scenarios/ehrshot_scenario.py +1546 -0
  274. helm/benchmark/scenarios/enem_challenge_scenario.py +58 -0
  275. helm/benchmark/scenarios/entity_data_imputation_scenario.py +11 -1
  276. helm/benchmark/scenarios/entity_matching_scenario.py +12 -2
  277. helm/benchmark/scenarios/financial_phrasebank_scenario.py +94 -0
  278. helm/benchmark/scenarios/gold_commodity_news_scenario.py +124 -0
  279. helm/benchmark/scenarios/gpqa_scenario.py +80 -0
  280. helm/benchmark/scenarios/grammar_scenario.py +2 -2
  281. helm/benchmark/scenarios/gsm_scenario.py +10 -1
  282. helm/benchmark/scenarios/harm_bench_gcg_transfer_scenario.py +50 -0
  283. helm/benchmark/scenarios/harm_bench_scenario.py +1 -1
  284. helm/benchmark/scenarios/headqa_scenario.py +131 -0
  285. helm/benchmark/scenarios/helpdesk_call_summarization_scenario.py +37 -0
  286. helm/benchmark/scenarios/ice_scenario.py +8 -4
  287. helm/benchmark/scenarios/ifeval_scenario.py +53 -0
  288. helm/benchmark/scenarios/imdb_ptbr_scenario.py +60 -0
  289. helm/benchmark/scenarios/imdb_scenario.py +11 -2
  290. helm/benchmark/scenarios/infinite_bench_sum_scenario.py +82 -0
  291. helm/benchmark/scenarios/interactive_qa_mmlu_scenario.py +2 -2
  292. helm/benchmark/scenarios/koala_scenario.py +1 -1
  293. helm/benchmark/scenarios/legal_contract_summarization_scenario.py +129 -0
  294. helm/benchmark/scenarios/legal_opinion_sentiment_classification_scenario.py +77 -0
  295. helm/benchmark/scenarios/legal_summarization_scenario.py +11 -1
  296. helm/benchmark/scenarios/legal_support_scenario.py +11 -1
  297. helm/benchmark/scenarios/legalbench_scenario.py +22 -3
  298. helm/benchmark/scenarios/lex_glue_scenario.py +12 -2
  299. helm/benchmark/scenarios/lextreme_scenario.py +11 -1
  300. helm/benchmark/scenarios/live_qa_scenario.py +1 -1
  301. helm/benchmark/scenarios/lm_entry_scenario.py +1 -1
  302. helm/benchmark/scenarios/lsat_qa_scenario.py +1 -1
  303. helm/benchmark/scenarios/math_scenario.py +9 -1
  304. helm/benchmark/scenarios/me_q_sum_scenario.py +10 -1
  305. helm/benchmark/scenarios/med_dialog_scenario.py +22 -24
  306. helm/benchmark/scenarios/med_mcqa_scenario.py +10 -1
  307. helm/benchmark/scenarios/med_paragraph_simplification_scenario.py +10 -1
  308. helm/benchmark/scenarios/med_qa_scenario.py +10 -1
  309. helm/benchmark/scenarios/medalign_scenario.py +88 -0
  310. helm/benchmark/scenarios/medalign_scenario_helper.py +429 -0
  311. helm/benchmark/scenarios/medbullets_scenario.py +140 -0
  312. helm/benchmark/scenarios/medcalc_bench_scenario.py +125 -0
  313. helm/benchmark/scenarios/medec_scenario.py +120 -0
  314. helm/benchmark/scenarios/medhallu_scenario.py +66 -0
  315. helm/benchmark/scenarios/medi_qa_scenario.py +105 -0
  316. helm/benchmark/scenarios/medication_qa_scenario.py +2 -2
  317. helm/benchmark/scenarios/mental_health_scenario.py +112 -0
  318. helm/benchmark/scenarios/mimic_bhc_scenario.py +98 -0
  319. helm/benchmark/scenarios/mimic_rrs_scenario.py +89 -0
  320. helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +71 -0
  321. helm/benchmark/scenarios/mmlu_clinical_afr_scenario.py +74 -0
  322. helm/benchmark/scenarios/mmlu_pro_scenario.py +95 -0
  323. helm/benchmark/scenarios/mmlu_scenario.py +11 -1
  324. helm/benchmark/scenarios/msmarco_scenario.py +1 -1
  325. helm/benchmark/scenarios/mtsamples_procedures_scenario.py +141 -0
  326. helm/benchmark/scenarios/mtsamples_replicate_scenario.py +141 -0
  327. helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +271 -0
  328. helm/benchmark/scenarios/narrativeqa_scenario.py +1 -1
  329. helm/benchmark/scenarios/natural_qa_scenario.py +1 -1
  330. helm/benchmark/scenarios/newsqa_scenario.py +1 -1
  331. helm/benchmark/scenarios/numeracy_scenario.py +10 -1
  332. helm/benchmark/scenarios/oab_exams_scenario.py +57 -0
  333. helm/benchmark/scenarios/omni_math_scenario.py +53 -0
  334. helm/benchmark/scenarios/open_assistant_scenario.py +11 -2
  335. helm/benchmark/scenarios/opinions_qa_scenario.py +1 -1
  336. helm/benchmark/scenarios/pubmed_qa_scenario.py +54 -43
  337. helm/benchmark/scenarios/quac_scenario.py +10 -1
  338. helm/benchmark/scenarios/race_based_med_scenario.py +142 -0
  339. helm/benchmark/scenarios/raft_scenario.py +18 -3
  340. helm/benchmark/scenarios/real_toxicity_prompts_scenario.py +1 -1
  341. helm/benchmark/scenarios/ruler_qa_scenario_helper.py +171 -0
  342. helm/benchmark/scenarios/ruler_qa_scenarios.py +88 -0
  343. helm/benchmark/scenarios/scenario.py +9 -1
  344. helm/benchmark/scenarios/{bhasa_scenario.py → seahelm_scenario.py} +233 -84
  345. helm/benchmark/scenarios/self_instruct_scenario.py +1 -1
  346. helm/benchmark/scenarios/shc_bmt_scenario.py +69 -0
  347. helm/benchmark/scenarios/shc_cdi_scenario.py +70 -0
  348. helm/benchmark/scenarios/shc_conf_scenario.py +70 -0
  349. helm/benchmark/scenarios/shc_ent_scenario.py +72 -0
  350. helm/benchmark/scenarios/shc_gip_scenario.py +66 -0
  351. helm/benchmark/scenarios/shc_ptbm_scenario.py +76 -0
  352. helm/benchmark/scenarios/shc_sei_scenario.py +89 -0
  353. helm/benchmark/scenarios/shc_sequoia_scenario.py +69 -0
  354. helm/benchmark/scenarios/simple_safety_tests_scenario.py +1 -1
  355. helm/benchmark/scenarios/spider_scenario.py +91 -0
  356. helm/benchmark/scenarios/starr_patient_instructions_scenario.py +90 -0
  357. helm/benchmark/scenarios/summarization_scenario.py +11 -1
  358. helm/benchmark/scenarios/sumosum_scenario.py +157 -0
  359. helm/benchmark/scenarios/synthetic_efficiency_scenario.py +1 -1
  360. helm/benchmark/scenarios/synthetic_reasoning_natural_scenario.py +11 -1
  361. helm/benchmark/scenarios/synthetic_reasoning_scenario.py +11 -1
  362. helm/benchmark/scenarios/test_bigcodebench_scenario.py +26 -0
  363. helm/benchmark/scenarios/test_czech_bank_qa_scenario.py +18 -0
  364. helm/benchmark/scenarios/test_enem_challenge_scenario.py +53 -0
  365. helm/benchmark/scenarios/test_ewok_scenario.py +6 -2
  366. helm/benchmark/scenarios/test_gold_commodity_news_scenario.py +18 -0
  367. helm/benchmark/scenarios/test_gpqa_scenario.py +44 -0
  368. helm/benchmark/scenarios/test_ifeval_scenario.py +36 -0
  369. helm/benchmark/scenarios/test_imdb_ptbr_scenario.py +27 -0
  370. helm/benchmark/scenarios/test_infinite_bench_sum_scenario.py +46 -0
  371. helm/benchmark/scenarios/test_math_scenario.py +1 -0
  372. helm/benchmark/scenarios/test_mmlu_clinical_afr_scenario.py +21 -0
  373. helm/benchmark/scenarios/test_mmlu_pro_scenario.py +53 -0
  374. helm/benchmark/scenarios/test_oab_exams_scenario.py +51 -0
  375. helm/benchmark/scenarios/test_omni_math_scenario.py +27 -0
  376. helm/benchmark/scenarios/test_tweetsentbr_scenario.py +24 -0
  377. helm/benchmark/scenarios/test_wildbench_scenario.py +15 -0
  378. helm/benchmark/scenarios/test_winogrande_afr_scenario.py +19 -0
  379. helm/benchmark/scenarios/thai_exam_scenario.py +10 -1
  380. helm/benchmark/scenarios/the_pile_scenario.py +1 -1
  381. helm/benchmark/scenarios/truthful_qa_scenario.py +10 -1
  382. helm/benchmark/scenarios/tweetsentbr_scenario.py +66 -0
  383. helm/benchmark/scenarios/twitter_aae_scenario.py +1 -1
  384. helm/benchmark/scenarios/unitxt_scenario.py +8 -2
  385. helm/benchmark/scenarios/verifiability_judgment_scenario.py +1 -1
  386. helm/benchmark/scenarios/vicuna_scenario.py +1 -1
  387. helm/benchmark/scenarios/vision_language/blink_scenario.py +140 -0
  388. helm/benchmark/scenarios/vision_language/mm_star_scenario.py +95 -0
  389. helm/benchmark/scenarios/vision_language/vqa_rad_scenario.py +88 -0
  390. helm/benchmark/scenarios/wikifact_scenario.py +11 -1
  391. helm/benchmark/scenarios/wikitext_103_scenario.py +1 -1
  392. helm/benchmark/scenarios/wildbench_scenario.py +83 -0
  393. helm/benchmark/scenarios/winogrande_afr_scenario.py +78 -0
  394. helm/benchmark/scenarios/wmt_14_scenario.py +14 -2
  395. helm/benchmark/scenarios/xstest_scenario.py +1 -1
  396. helm/benchmark/server.py +11 -0
  397. helm/benchmark/slurm_runner.py +1 -1
  398. helm/benchmark/static/schema_audio.yaml +752 -0
  399. helm/benchmark/static/schema_autobencher.yaml +150 -0
  400. helm/benchmark/static/schema_call_center.yaml +97 -60
  401. helm/benchmark/static/schema_capabilities.yaml +254 -0
  402. helm/benchmark/static/schema_czech_bank.yaml +148 -0
  403. helm/benchmark/static/schema_enem_challenge.yaml +146 -0
  404. helm/benchmark/static/schema_enterprise.yaml +298 -0
  405. helm/benchmark/static/schema_finance.yaml +14 -12
  406. helm/benchmark/static/schema_heim.yaml +1389 -0
  407. helm/benchmark/static/schema_legal.yaml +566 -0
  408. helm/benchmark/static/{schema_medical.yaml → schema_long_context.yaml} +67 -82
  409. helm/benchmark/static/schema_medhelm.yaml +1081 -0
  410. helm/benchmark/static/schema_mmlu_winogrande_afr.yaml +1045 -0
  411. helm/benchmark/static/schema_safety.yaml +42 -6
  412. helm/benchmark/static/{schema_bhasa.yaml → schema_seahelm.yaml} +40 -26
  413. helm/benchmark/static/schema_social_audio.yaml +224 -0
  414. helm/benchmark/static/schema_sql.yaml +171 -0
  415. helm/benchmark/static/{schema_tables.yaml → schema_torr.yaml} +187 -30
  416. helm/benchmark/static/schema_tweetsentbr.yaml +146 -0
  417. helm/benchmark/static/schema_vhelm.yaml +151 -47
  418. helm/benchmark/static_build/assets/helm-safety-2907a7b6.png +0 -0
  419. helm/benchmark/static_build/assets/index-262903c1.js +10 -0
  420. helm/benchmark/static_build/assets/index-42060d71.css +1 -0
  421. helm/benchmark/static_build/assets/medhelm-overview-3ddfcd65.png +0 -0
  422. helm/benchmark/static_build/assets/{react-d4a0b69b.js → react-f82877fd.js} +1 -1
  423. helm/benchmark/static_build/assets/{recharts-6d337683.js → recharts-4037aff0.js} +1 -1
  424. helm/benchmark/static_build/assets/{tremor-54a99cc4.js → tremor-9cefc3c5.js} +1 -1
  425. helm/benchmark/static_build/assets/vhelm-aspects-1437d673.png +0 -0
  426. helm/benchmark/static_build/assets/vhelm-framework-a1ca3f3f.png +0 -0
  427. helm/benchmark/static_build/assets/vhelm-model-8afb7616.png +0 -0
  428. helm/benchmark/static_build/config.js +1 -1
  429. helm/benchmark/static_build/index.html +5 -5
  430. helm/benchmark/window_services/default_window_service.py +1 -1
  431. helm/benchmark/window_services/encoder_decoder_window_service.py +1 -1
  432. helm/benchmark/window_services/ice_window_service.py +1 -1
  433. helm/benchmark/window_services/image_generation/lexica_search_window_service.py +1 -1
  434. helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +1 -1
  435. helm/benchmark/window_services/local_window_service.py +2 -2
  436. helm/benchmark/window_services/test_anthropic_window_service.py +3 -3
  437. helm/benchmark/window_services/test_bloom_window_service.py +3 -3
  438. helm/benchmark/window_services/test_gpt2_window_service.py +7 -2
  439. helm/benchmark/window_services/test_gpt4_window_service.py +8 -3
  440. helm/benchmark/window_services/test_gptj_window_service.py +8 -3
  441. helm/benchmark/window_services/test_gptneox_window_service.py +3 -3
  442. helm/benchmark/window_services/test_openai_window_service.py +8 -3
  443. helm/benchmark/window_services/test_opt_window_service.py +3 -3
  444. helm/benchmark/window_services/test_palmyra_window_service.py +3 -3
  445. helm/benchmark/window_services/test_t0pp_window_service.py +3 -3
  446. helm/benchmark/window_services/test_t511b_window_service.py +3 -3
  447. helm/benchmark/window_services/test_ul2_window_service.py +3 -3
  448. helm/benchmark/window_services/test_utils.py +1 -1
  449. helm/benchmark/window_services/test_yalm_window_service.py +3 -3
  450. helm/benchmark/window_services/tokenizer_service.py +0 -5
  451. helm/benchmark/window_services/yalm_window_service.py +1 -1
  452. helm/clients/ai21_client.py +3 -3
  453. helm/clients/aleph_alpha_client.py +1 -1
  454. helm/clients/audio_language/__init__.py +0 -0
  455. helm/clients/audio_language/diva_llama_client.py +118 -0
  456. helm/clients/audio_language/llama_omni_client.py +198 -0
  457. helm/clients/audio_language/qwen2_audiolm_client.py +188 -0
  458. helm/clients/audio_language/qwen_audiolm_client.py +150 -0
  459. helm/clients/auto_client.py +4 -2
  460. helm/clients/azure_openai_client.py +55 -0
  461. helm/clients/bedrock_client.py +201 -7
  462. helm/clients/bedrock_utils.py +33 -0
  463. helm/clients/clip_scorers/clip_scorer.py +1 -1
  464. helm/clients/clip_scorers/multilingual_clip_scorer.py +1 -1
  465. helm/clients/cohere_client.py +3 -3
  466. helm/clients/google_client.py +1 -1
  467. helm/clients/http_model_client.py +1 -1
  468. helm/clients/huggingface_client.py +10 -18
  469. helm/clients/ibm_client.py +267 -0
  470. helm/clients/image_generation/adobe_vision_client.py +1 -1
  471. helm/clients/image_generation/aleph_alpha_image_generation_client.py +1 -1
  472. helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +3 -3
  473. helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +5 -2
  474. helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +5 -2
  475. helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +2 -2
  476. helm/clients/image_generation/cogview2_client.py +1 -1
  477. helm/clients/image_generation/dalle2_client.py +1 -1
  478. helm/clients/image_generation/dalle3_client.py +2 -2
  479. helm/clients/image_generation/dalle_mini/__init__.py +1 -1
  480. helm/clients/image_generation/dalle_mini/data.py +1 -1
  481. helm/clients/image_generation/dalle_mini/model/__init__.py +5 -5
  482. helm/clients/image_generation/dalle_mini/model/configuration.py +1 -1
  483. helm/clients/image_generation/dalle_mini/model/modeling.py +2 -2
  484. helm/clients/image_generation/dalle_mini/model/processor.py +4 -4
  485. helm/clients/image_generation/dalle_mini/model/tokenizer.py +1 -1
  486. helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -1
  487. helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +2 -2
  488. helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +1 -1
  489. helm/clients/image_generation/dalle_mini_client.py +1 -1
  490. helm/clients/image_generation/deep_floyd_client.py +1 -1
  491. helm/clients/image_generation/huggingface_diffusers_client.py +1 -1
  492. helm/clients/image_generation/lexica_client.py +1 -1
  493. helm/clients/image_generation/mindalle/models/__init__.py +6 -6
  494. helm/clients/image_generation/mindalle/models/stage1/vqgan.py +1 -1
  495. helm/clients/image_generation/mindalle/models/stage2/transformer.py +1 -1
  496. helm/clients/image_generation/mindalle/utils/__init__.py +3 -3
  497. helm/clients/image_generation/mindalle_client.py +1 -1
  498. helm/clients/image_generation/together_image_generation_client.py +1 -1
  499. helm/clients/lit_gpt_client.py +2 -2
  500. helm/clients/mistral_client.py +62 -18
  501. helm/clients/nvidia_nim_client.py +0 -3
  502. helm/clients/openai_client.py +255 -21
  503. helm/clients/palmyra_client.py +2 -6
  504. helm/clients/reka_client.py +1 -1
  505. helm/clients/stanfordhealthcare_azure_openai_client.py +58 -0
  506. helm/clients/stanfordhealthcare_claude_client.py +31 -0
  507. helm/clients/stanfordhealthcare_google_client.py +43 -0
  508. helm/clients/stanfordhealthcare_http_model_client.py +93 -0
  509. helm/clients/stanfordhealthcare_openai_client.py +62 -0
  510. helm/clients/stanfordhealthcare_shc_openai_client.py +42 -0
  511. helm/clients/test_client.py +1 -1
  512. helm/clients/test_together_client.py +6 -1
  513. helm/clients/together_client.py +69 -7
  514. helm/clients/upstage_client.py +23 -0
  515. helm/clients/vertexai_client.py +39 -13
  516. helm/clients/vision_language/open_flamingo/__init__.py +2 -2
  517. helm/clients/vision_language/open_flamingo/src/factory.py +3 -3
  518. helm/clients/vision_language/open_flamingo/src/flamingo.py +2 -2
  519. helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +2 -2
  520. helm/clients/vision_language/qwen2_vlm_client.py +175 -0
  521. helm/clients/vllm_client.py +4 -6
  522. helm/clients/yi_client.py +0 -3
  523. helm/common/audio_utils.py +111 -0
  524. helm/common/cache.py +8 -30
  525. helm/common/file_caches/local_file_cache.py +1 -1
  526. helm/common/file_caches/test_local_file_cache.py +1 -1
  527. helm/common/images_utils.py +2 -2
  528. helm/common/key_value_store.py +9 -9
  529. helm/common/media_object.py +2 -2
  530. helm/common/mongo_key_value_store.py +3 -3
  531. helm/common/multimodal_request_utils.py +26 -0
  532. helm/common/reeval_parameters.py +12 -0
  533. helm/common/request.py +6 -2
  534. helm/common/response_format.py +18 -0
  535. helm/common/test_cache.py +1 -48
  536. helm/common/test_media_object.py +1 -1
  537. helm/common/tokenization_request.py +0 -9
  538. helm/config/model_deployments.yaml +1258 -33
  539. helm/config/model_metadata.yaml +1110 -41
  540. helm/config/tokenizer_configs.yaml +403 -3
  541. helm/proxy/cli.py +2 -2
  542. helm/proxy/example_queries.py +1 -1
  543. helm/proxy/server.py +11 -13
  544. helm/proxy/services/remote_service.py +1 -7
  545. helm/proxy/services/server_service.py +6 -19
  546. helm/proxy/services/service.py +0 -6
  547. helm/proxy/services/test_remote_service.py +2 -2
  548. helm/proxy/services/test_service.py +1 -1
  549. helm/proxy/static/general.js +122 -0
  550. helm/proxy/static/help.html +99 -0
  551. helm/proxy/static/index.css +57 -0
  552. helm/proxy/static/index.html +40 -0
  553. helm/proxy/static/index.js +456 -0
  554. helm/proxy/static/info-icon.png +0 -0
  555. helm/proxy/test_retry.py +1 -1
  556. helm/proxy/token_counters/auto_token_counter.py +1 -1
  557. helm/tokenizers/aleph_alpha_tokenizer.py +1 -1
  558. helm/tokenizers/caching_tokenizer.py +2 -30
  559. helm/tokenizers/http_model_tokenizer.py +1 -1
  560. helm/tokenizers/huggingface_tokenizer.py +2 -2
  561. helm/tokenizers/lit_gpt_tokenizer.py +1 -1
  562. helm/tokenizers/test_anthropic_tokenizer.py +6 -2
  563. helm/tokenizers/test_huggingface_tokenizer.py +1 -1
  564. helm/tokenizers/test_yalm_tokenizer.py +1 -1
  565. helm/tokenizers/tiktoken_tokenizer.py +1 -1
  566. helm/tokenizers/tokenizer.py +3 -1
  567. helm/tokenizers/yalm_tokenizer.py +3 -3
  568. helm/tokenizers/yalm_tokenizer_data/test_yalm_tokenizer.py +1 -1
  569. crfm_helm-0.5.3.dist-info/METADATA +0 -355
  570. crfm_helm-0.5.3.dist-info/RECORD +0 -699
  571. helm/benchmark/data_overlap/data_overlap_spec.py +0 -86
  572. helm/benchmark/data_overlap/export_scenario_text.py +0 -119
  573. helm/benchmark/data_overlap/light_scenario.py +0 -60
  574. helm/benchmark/metrics/bhasa_metrics_specs.py +0 -10
  575. helm/benchmark/static_build/assets/01-694cb9b7.png +0 -0
  576. helm/benchmark/static_build/assets/accenture-6f97eeda.png +0 -0
  577. helm/benchmark/static_build/assets/ai21-0eb91ec3.png +0 -0
  578. helm/benchmark/static_build/assets/aisingapore-6dfc9acf.png +0 -0
  579. helm/benchmark/static_build/assets/aleph-alpha-7ce10034.png +0 -0
  580. helm/benchmark/static_build/assets/anthropic-70d8bc39.png +0 -0
  581. helm/benchmark/static_build/assets/bigscience-7f0400c0.png +0 -0
  582. helm/benchmark/static_build/assets/cohere-3550c6cb.png +0 -0
  583. helm/benchmark/static_build/assets/cresta-9e22b983.png +0 -0
  584. helm/benchmark/static_build/assets/cuhk-8c5631e9.png +0 -0
  585. helm/benchmark/static_build/assets/eleutherai-b9451114.png +0 -0
  586. helm/benchmark/static_build/assets/google-06d997ad.png +0 -0
  587. helm/benchmark/static_build/assets/index-05c76bb1.css +0 -1
  588. helm/benchmark/static_build/assets/index-58f97dcd.js +0 -10
  589. helm/benchmark/static_build/assets/meta-5580e9f1.png +0 -0
  590. helm/benchmark/static_build/assets/microsoft-f5ee5016.png +0 -0
  591. helm/benchmark/static_build/assets/mistral-18e1be23.png +0 -0
  592. helm/benchmark/static_build/assets/nvidia-86fa75c1.png +0 -0
  593. helm/benchmark/static_build/assets/openai-3f8653e4.png +0 -0
  594. helm/benchmark/static_build/assets/scb10x-204bd786.png +0 -0
  595. helm/benchmark/static_build/assets/tii-24de195c.png +0 -0
  596. helm/benchmark/static_build/assets/together-a665a35b.png +0 -0
  597. helm/benchmark/static_build/assets/tsinghua-keg-97d4b395.png +0 -0
  598. helm/benchmark/static_build/assets/vhelm-framework-cde7618a.png +0 -0
  599. helm/benchmark/static_build/assets/vhelm-model-6d812526.png +0 -0
  600. helm/benchmark/static_build/assets/wellsfargo-a86a6c4a.png +0 -0
  601. helm/benchmark/static_build/assets/yandex-38e09d70.png +0 -0
  602. helm/tokenizers/anthropic_tokenizer.py +0 -52
  603. {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info}/entry_points.txt +0 -0
  604. {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info/licenses}/LICENSE +0 -0
  605. {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info}/top_level.txt +0 -0
  606. /helm/benchmark/{data_overlap → metrics/ifeval}/__init__.py +0 -0
@@ -122,6 +122,11 @@ metrics:
122
122
  short_display_name: EM
123
123
  description: Fraction of instances that the predicted output matches a correct reference up to light processing.
124
124
  lower_is_better: false
125
+ - name: quasi_leave_articles_exact_match
126
+ display_name: Quasi-exact match
127
+ short_display_name: EM
128
+ description: Fraction of instances that the predicted output matches a correct reference up to light processing.
129
+ lower_is_better: false
125
130
  - name: prefix_exact_match
126
131
  display_name: Prefix exact match
127
132
  short_display_name: PEM
@@ -282,6 +287,7 @@ run_groups:
282
287
  - knowledge
283
288
  - bias
284
289
  - fairness
290
+ - safety
285
291
  - toxicity
286
292
  - robustness
287
293
  - multilinguality
@@ -293,6 +299,9 @@ run_groups:
293
299
  - vqa_base
294
300
  - viz_wiz
295
301
  - flickr30k
302
+ - pope
303
+ - mm_star_perception
304
+ - blink_perception
296
305
  - name: reasoning
297
306
  display_name: Reasoning
298
307
  description: Does the model understand objects, counts and spatial relations? Can the model reason about both the text and image input?
@@ -301,15 +310,10 @@ run_groups:
301
310
  - gqa
302
311
  - math_vista
303
312
  - seed_bench
304
- - name: real_world_reasoning
305
- display_name: Real-world Reasoning
306
- description: Reasoning in the real-world
307
- category: Core scenarios
308
- subgroups:
309
- - gqa
310
- - seed_bench
311
313
  - mementos
312
314
  - real_world_qa
315
+ - mm_star_reasoning
316
+ - blink_reasoning
313
317
  - name: knowledge
314
318
  display_name: Knowledge
315
319
  description: Does the model have knowledge about the world and common sense?
@@ -319,7 +323,8 @@ run_groups:
319
323
  - mmmu
320
324
  - mme
321
325
  - vibe_eval
322
- - real_world_qa
326
+ - mm_star_knowledge
327
+ - blink_knowledge
323
328
  - name: bias
324
329
  display_name: Bias
325
330
  description: Are the generations biased in demographic representation? We focus on gender and skin tone bias.
@@ -335,23 +340,26 @@ run_groups:
335
340
  - a_okvqa_dialect
336
341
  - crossmodal_3600
337
342
  - fair_face
343
+ - bingo_fairness
338
344
  - name: toxicity
339
345
  display_name: Toxicity
340
346
  description: Does the model generate toxic or inappropriate content? Can the model identify toxic or inappropriate content?
341
347
  category: Core scenarios
342
348
  subgroups:
343
- - mm_safety_bench
344
349
  - hateful_memes
350
+ - name: safety
351
+ display_name: Safety
352
+ description: Refusing to produce answers that cause harm to humans
353
+ category: Core scenarios
354
+ subgroups:
355
+ - mm_safety_bench
345
356
  - name: robustness
346
357
  display_name: Robustness
347
358
  description: Is the model robust to perturbations? We focus on both text and image perturbations.
348
359
  category: Core scenarios
349
360
  subgroups:
350
- - vqa_robustness
351
- - a_okvqa_robustness
352
361
  - unicorn
353
362
  - bingo
354
- - pope
355
363
  - name: multilinguality
356
364
  display_name: Multilinguality
357
365
  description: Do the model support non-English languages?
@@ -362,7 +370,7 @@ run_groups:
362
370
  - a_okvqa_spanish
363
371
  - a_okvqa_swahili
364
372
  - exams_v
365
-
373
+ - bingo_multilinguality
366
374
  - name: a_okvqa_base
367
375
  display_name: A-OKVQA
368
376
  description: A crowdsourced dataset composed of a diverse set of about 25K questions requiring a broad base of commonsense and world knowledge to answer ([Schwenk et al., 2022](https://arxiv.org/abs/2206.01718)).
@@ -395,22 +403,6 @@ run_groups:
395
403
  when: "2023"
396
404
  language: English
397
405
 
398
- - name: a_okvqa_robustness
399
- display_name: A-OKVQA (robustness)
400
- description: Robustness Typos Perturbation + A-OKVQA ([Schwenk et al., 2022](https://arxiv.org/abs/2206.01718)).
401
- metric_groups:
402
- - robustness
403
- - general_information
404
- environment:
405
- main_name: exact_match
406
- main_split: valid
407
- taxonomy:
408
- task: multiple-choice question answering
409
- what: Real-world images
410
- who: Human experts
411
- when: "2023"
412
- language: English
413
-
414
406
  - name: a_okvqa_chinese
415
407
  display_name: A-OKVQA (chinese)
416
408
  description: Chinese Translation Perturbation + A-OKVQA ([Schwenk et al., 2022](https://arxiv.org/abs/2206.01718)).
@@ -475,6 +467,102 @@ run_groups:
475
467
  when: "2023"
476
468
  language: Swahili
477
469
 
470
+ - name: mm_star_perception
471
+ display_name: MM-Star (Perception subsets)
472
+ description: MM-STAR is an elite vision-indispensable multi-modal benchmark comprising 1,500 challenge samples meticulously selected by humans. ([Chen et al., 2024](https://arxiv.org/abs/2403.20330)).
473
+ metric_groups:
474
+ - accuracy
475
+ - general_information
476
+ environment:
477
+ main_name: exact_match
478
+ main_split: valid
479
+ taxonomy:
480
+ task: multiple-choice question answering
481
+ what: Real-world images
482
+ who: Human experts
483
+ when: "2024"
484
+ language: English
485
+
486
+ - name: mm_star_reasoning
487
+ display_name: MM-Star (Reasoning subsets)
488
+ description: MM-STAR is an elite vision-indispensable multi-modal benchmark comprising 1,500 challenge samples meticulously selected by humans. ([Chen et al., 2024](https://arxiv.org/abs/2403.20330)).
489
+ metric_groups:
490
+ - accuracy
491
+ - general_information
492
+ environment:
493
+ main_name: exact_match
494
+ main_split: valid
495
+ taxonomy:
496
+ task: multiple-choice question answering
497
+ what: Real-world images
498
+ who: Human experts
499
+ when: "2024"
500
+ language: English
501
+
502
+ - name: mm_star_knowledge
503
+ display_name: MM-Star (Knowledge subsets)
504
+ description: MM-STAR is an elite vision-indispensable multi-modal benchmark comprising 1,500 challenge samples meticulously selected by humans. ([Chen et al., 2024](https://arxiv.org/abs/2403.20330)).
505
+ metric_groups:
506
+ - accuracy
507
+ - general_information
508
+ environment:
509
+ main_name: exact_match
510
+ main_split: valid
511
+ taxonomy:
512
+ task: multiple-choice question answering
513
+ what: Real-world images
514
+ who: Human experts
515
+ when: "2024"
516
+ language: English
517
+
518
+ - name: blink_perception
519
+ display_name: BLINK (Perception subsets)
520
+ description: BLINK is a benchmark containing 14 visual perception tasks that can be solved by humans within a blink, but difficulty for VLMs. ([Fu, 2024](https://arxiv.org/abs/2404.12390)).
521
+ metric_groups:
522
+ - accuracy
523
+ - general_information
524
+ environment:
525
+ main_name: exact_match
526
+ main_split: valid
527
+ taxonomy:
528
+ task: multiple-choice question answering
529
+ what: Real-world images
530
+ who: Human experts
531
+ when: "2024"
532
+ language: English
533
+
534
+ - name: blink_knowledge
535
+ display_name: BLINK (Knowledge subsets)
536
+ description: BLINK is a benchmark containing 14 visual perception tasks that can be solved by humans within a blink, but difficulty for VLMs. ([Fu, 2024](https://arxiv.org/abs/2404.12390)).
537
+ metric_groups:
538
+ - accuracy
539
+ - general_information
540
+ environment:
541
+ main_name: exact_match
542
+ main_split: valid
543
+ taxonomy:
544
+ task: multiple-choice question answering
545
+ what: Real-world images
546
+ who: Human experts
547
+ when: "2024"
548
+ language: English
549
+
550
+ - name: blink_reasoning
551
+ display_name: BLINK (Reasoning subsets)
552
+ description: BLINK is a benchmark containing 14 visual perception tasks that can be solved by humans within a blink, but difficulty for VLMs. ([Fu, 2024](https://arxiv.org/abs/2404.12390)).
553
+ metric_groups:
554
+ - accuracy
555
+ - general_information
556
+ environment:
557
+ main_name: exact_match
558
+ main_split: valid
559
+ taxonomy:
560
+ task: multiple-choice question answering
561
+ what: Real-world images
562
+ who: Human experts
563
+ when: "2024"
564
+ language: English
565
+
478
566
  - name: crossmodal_3600
479
567
  display_name: Crossmodal 3600
480
568
  description: Crossmodal-3600 dataset (XM3600 in short), a geographically-diverse set of 3600 images annotated with human-generated reference captions in 36 languages. ([Thapliyal et al., 2022](https://arxiv.org/abs/2205.12522))
@@ -604,22 +692,6 @@ run_groups:
604
692
  when: "2017"
605
693
  language: English
606
694
 
607
- - name: vqa_robustness
608
- display_name: VQAv2 (robustness)
609
- description: Robustness Typos Perturbation + Open-ended questions about real-world images ([Goyal et al., 2017](https://arxiv.org/abs/1612.00837)).
610
- metric_groups:
611
- - robustness
612
- - general_information
613
- environment:
614
- main_name: quasi_exact_match
615
- main_split: valid
616
- taxonomy:
617
- task: short-answer question answering
618
- what: Real-world images
619
- who: Human experts
620
- when: "2017"
621
- language: English
622
-
623
695
  - name: math_vista
624
696
  display_name: MathVista
625
697
  description: A benchmark designed to combine challenges from diverse mathematical and visual tasks ([Lu et al., 2024](https://arxiv.org/abs/2310.02255)).
@@ -659,7 +731,7 @@ run_groups:
659
731
  - accuracy
660
732
  - general_information
661
733
  environment:
662
- main_name: exact_match
734
+ main_name: quasi_prefix_exact_match
663
735
  main_split: test
664
736
  taxonomy:
665
737
  task: short-answer question answering
@@ -684,6 +756,38 @@ run_groups:
684
756
  when: "2023"
685
757
  language: English, Chinese, Japanese, etc.
686
758
 
759
+ - name: bingo_fairness
760
+ display_name: Bingo (fairness)
761
+ description: Open-ended questions about biased images and hallucinations-inducing images ([Cui et al., 2023](https://arxiv.org/abs/2311.03287)).
762
+ metric_groups:
763
+ - accuracy
764
+ - general_information
765
+ environment:
766
+ main_name: prometheus_vision
767
+ main_split: test
768
+ taxonomy:
769
+ task: short-answer question answering
770
+ what: Biased images about Region, OCR, Factual, Text-to-Image and Image-to-Image inference challenges
771
+ who: Human experts
772
+ when: "2023"
773
+ language: English, Chinese, Japanese, etc.
774
+
775
+ - name: bingo_multilinguality
776
+ display_name: Bingo (multilinguality)
777
+ description: Open-ended questions about biased images and hallucinations-inducing images ([Cui et al., 2023](https://arxiv.org/abs/2311.03287)).
778
+ metric_groups:
779
+ - accuracy
780
+ - general_information
781
+ environment:
782
+ main_name: prometheus_vision
783
+ main_split: test
784
+ taxonomy:
785
+ task: short-answer question answering
786
+ what: Biased images about Region, OCR, Factual, Text-to-Image and Image-to-Image inference challenges
787
+ who: Human experts
788
+ when: "2023"
789
+ language: English, Chinese, Japanese, etc.
790
+
687
791
  - name: pope
688
792
  display_name: POPE
689
793
  description: Open-ended questions about object appearance in real-world images for evaluating hallucination behaviour ([Li et al., 2023](https://aclanthology.org/2023.emnlp-main.20)).
@@ -803,7 +907,7 @@ run_groups:
803
907
  - accuracy
804
908
  - general_information
805
909
  environment:
806
- main_name: exact_match
910
+ main_name: quasi_leave_articles_exact_match
807
911
  main_split: test
808
912
  taxonomy:
809
913
  task: short-answer question answering
@@ -0,0 +1,10 @@
1
+ import{r as i,a as $e,L as b,O as He,d as De,u as se,f as pe,h as Oe,H as Fe,i as Be,j as T,R as Ue}from"./react-f82877fd.js";import{g as O,b as W,m as Y,s as ge,a as We,d as oe,y as ze,c as ce,e as te,l as ne}from"./tremor-9cefc3c5.js";import"./recharts-4037aff0.js";(function(){const t=document.createElement("link").relList;if(t&&t.supports&&t.supports("modulepreload"))return;for(const r of document.querySelectorAll('link[rel="modulepreload"]'))a(r);new MutationObserver(r=>{for(const l of r)if(l.type==="childList")for(const o of l.addedNodes)o.tagName==="LINK"&&o.rel==="modulepreload"&&a(o)}).observe(document,{childList:!0,subtree:!0});function n(r){const l={};return r.integrity&&(l.integrity=r.integrity),r.referrerPolicy&&(l.referrerPolicy=r.referrerPolicy),r.crossOrigin==="use-credentials"?l.credentials="include":r.crossOrigin==="anonymous"?l.credentials="omit":l.credentials="same-origin",l}function a(r){if(r.ep)return;r.ep=!0;const l=n(r);fetch(r.href,l)}})();var je={exports:{}},K={};/**
2
+ * @license React
3
+ * react-jsx-runtime.production.min.js
4
+ *
5
+ * Copyright (c) Facebook, Inc. and its affiliates.
6
+ *
7
+ * This source code is licensed under the MIT license found in the
8
+ * LICENSE file in the root directory of this source tree.
9
+ */var qe=i,Ge=Symbol.for("react.element"),Ve=Symbol.for("react.fragment"),Je=Object.prototype.hasOwnProperty,Ke=qe.__SECRET_INTERNALS_DO_NOT_USE_OR_YOU_WILL_BE_FIRED.ReactCurrentOwner,Ze={key:!0,ref:!0,__self:!0,__source:!0};function be(s,t,n){var a,r={},l=null,o=null;n!==void 0&&(l=""+n),t.key!==void 0&&(l=""+t.key),t.ref!==void 0&&(o=t.ref);for(a in t)Je.call(t,a)&&!Ze.hasOwnProperty(a)&&(r[a]=t[a]);if(s&&s.defaultProps)for(a in t=s.defaultProps,t)r[a]===void 0&&(r[a]=t[a]);return{$$typeof:Ge,type:s,key:l,ref:o,props:r,_owner:Ke.current}}K.Fragment=Ve;K.jsx=be;K.jsxs=be;je.exports=K;var e=je.exports,ee={},de=$e;ee.createRoot=de.createRoot,ee.hydrateRoot=de.hydrateRoot;function Xe({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",fill:"none",viewBox:"0 0 24 24",strokeWidth:1.5,stroke:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{strokeLinecap:"round",strokeLinejoin:"round",d:"M3.75 6.75h16.5M3.75 12h16.5m-16.5 5.25h16.5"}))}const Qe=i.forwardRef(Xe),ve=Qe;function Ye({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",fill:"none",viewBox:"0 0 24 24",strokeWidth:1.5,stroke:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{strokeLinecap:"round",strokeLinejoin:"round",d:"M9 12.75L11.25 15 15 9.75M21 12a9 9 0 11-18 0 9 9 0 0118 0z"}))}const es=i.forwardRef(Ye),ss=es;function ts({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",fill:"none",viewBox:"0 0 24 24",strokeWidth:1.5,stroke:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{strokeLinecap:"round",strokeLinejoin:"round",d:"M9.75 9.75l4.5 4.5m0-4.5l-4.5 4.5M21 12a9 9 0 11-18 0 9 9 0 0118 0z"}))}const ns=i.forwardRef(ts),as=ns,we=""+new URL("crfm-logo-74391ab8.png",import.meta.url).href,ye=""+new URL("helm-logo-simple-2ed5400b.png",import.meta.url).href;function rs({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",fill:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{fillRule:"evenodd",d:"M12 2.25a.75.75 0 01.75.75v11.69l3.22-3.22a.75.75 0 111.06 1.06l-4.5 4.5a.75.75 0 01-1.06 0l-4.5-4.5a.75.75 0 111.06-1.06l3.22 3.22V3a.75.75 0 01.75-.75zm-9 13.5a.75.75 0 01.75.75v2.25a1.5 1.5 0 001.5 1.5h13.5a1.5 1.5 0 001.5-1.5V16.5a.75.75 0 011.5 0v2.25a3 3 0 01-3 3H5.25a3 3 0 01-3-3V16.5a.75.75 0 01.75-.75z",clipRule:"evenodd"}))}const ls=i.forwardRef(rs),is=ls;function os({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",fill:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{fillRule:"evenodd",d:"M15.75 2.25H21a.75.75 0 01.75.75v5.25a.75.75 0 01-1.5 0V4.81L8.03 17.03a.75.75 0 01-1.06-1.06L19.19 3.75h-3.44a.75.75 0 010-1.5zm-10.5 4.5a1.5 1.5 0 00-1.5 1.5v10.5a1.5 1.5 0 001.5 1.5h10.5a1.5 1.5 0 001.5-1.5V10.5a.75.75 0 011.5 0v8.25a3 3 0 01-3 3H5.25a3 3 0 01-3-3V8.25a3 3 0 013-3h8.25a.75.75 0 010 1.5H5.25z",clipRule:"evenodd"}))}const cs=i.forwardRef(os),ds=cs;function ms({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",fill:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{fillRule:"evenodd",d:"M15 3.75a.75.75 0 01.75-.75h4.5a.75.75 0 01.75.75v4.5a.75.75 0 01-1.5 0V5.56l-3.97 3.97a.75.75 0 11-1.06-1.06l3.97-3.97h-2.69a.75.75 0 01-.75-.75zm-12 0A.75.75 0 013.75 3h4.5a.75.75 0 010 1.5H5.56l3.97 3.97a.75.75 0 01-1.06 1.06L4.5 5.56v2.69a.75.75 0 01-1.5 0v-4.5zm11.47 11.78a.75.75 0 111.06-1.06l3.97 3.97v-2.69a.75.75 0 011.5 0v4.5a.75.75 0 01-.75.75h-4.5a.75.75 0 010-1.5h2.69l-3.97-3.97zm-4.94-1.06a.75.75 0 010 1.06L5.56 19.5h2.69a.75.75 0 010 1.5h-4.5a.75.75 0 01-.75-.75v-4.5a.75.75 0 011.5 0v2.69l3.97-3.97a.75.75 0 011.06 0z",clipRule:"evenodd"}))}const hs=i.forwardRef(ms),us=hs;function xs({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",fill:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{fillRule:"evenodd",d:"M12.53 16.28a.75.75 0 01-1.06 0l-7.5-7.5a.75.75 0 011.06-1.06L12 14.69l6.97-6.97a.75.75 0 111.06 1.06l-7.5 7.5z",clipRule:"evenodd"}))}const fs=i.forwardRef(xs),Ne=fs;function ps({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",fill:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{fillRule:"evenodd",d:"M11.47 4.72a.75.75 0 011.06 0l3.75 3.75a.75.75 0 01-1.06 1.06L12 6.31 8.78 9.53a.75.75 0 01-1.06-1.06l3.75-3.75zm-3.75 9.75a.75.75 0 011.06 0L12 17.69l3.22-3.22a.75.75 0 111.06 1.06l-3.75 3.75a.75.75 0 01-1.06 0l-3.75-3.75a.75.75 0 010-1.06z",clipRule:"evenodd"}))}const gs=i.forwardRef(ps),js=gs;function bs({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 24 24",fill:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{fillRule:"evenodd",d:"M10.5 3.75a6.75 6.75 0 100 13.5 6.75 6.75 0 000-13.5zM2.25 10.5a8.25 8.25 0 1114.59 5.28l4.69 4.69a.75.75 0 11-1.06 1.06l-4.69-4.69A8.25 8.25 0 012.25 10.5z",clipRule:"evenodd"}))}const vs=i.forwardRef(bs),ws=vs;function ae(s,t){return t?t==="home"?"https://crfm.stanford.edu/helm/":s?`https://crfm.stanford.edu/helm/${t}/${s}/`:`https://crfm.stanford.edu/helm/${t}/latest/`:"#"}function Ee(){const[s,t]=i.useState([]),[n,a]=i.useState();return i.useEffect(()=>{if(n&&n.title&&n.title!=="All Leaderboards"){const r=n.title==="Lite"||n.title==="Classic"?"HELM "+n.title:n.title;document.title=r+" - Holistic Evaluation of Language Models (HELM)"}},[n]),i.useEffect(()=>{fetch("https://raw.githubusercontent.com/stanford-crfm/helm/main/helm-frontend/project_metadata.json").then(r=>r.json()).then(r=>{if(t(r),window.PROJECT_ID){const l=r.find(o=>o.id===window.PROJECT_ID);a(l)}else{const l=r.find(o=>o.id==="lite");a(l)}}).catch(r=>{console.error("Error fetching JSON:",r)})},[]),n===void 0||n.title===void 0?null:e.jsxs("div",{className:"dropdown z-50",children:[e.jsxs("div",{tabIndex:0,role:"button",className:"btn normal-case bg-white font-bold p-2 border-0 text-lg block whitespace-nowrap z-40","aria-haspopup":"true","aria-controls":"menu",children:[n.title," ",e.jsx(Ne,{fill:"black",color:"black",className:"text w-4 h-4 inline"})]}),e.jsx("ul",{tabIndex:0,className:"-translate-x-36 dropdown-content z-[1] menu p-1 shadow-lg bg-base-100 rounded-box w-max text-base",role:"menu",children:s.map((r,l)=>e.jsx("li",{className:"z-40",children:e.jsxs("a",{href:ae(void 0,r.id),className:"block",role:"menuitem",children:[e.jsx("strong",{className:n.title===r.title?"underline":"",children:r.title}),": ",r.description]})},l))})]})}function S(s){return s.startsWith("http://")||s.startsWith("https://")?s:`${window.BENCHMARK_OUTPUT_BASE_URL.replace(/\/$/,"")}/${s.replace(/^\//,"")}`}function z(){return window.RELEASE?`/releases/${window.RELEASE}`:`/runs/${window.SUITE}`}async function ys(s){try{return await(await fetch(S(`${z()}/summary.json`),{signal:s})).json()}catch(t){return console.log(t),{release:void 0,suites:void 0,suite:void 0,date:""}}}function Ns(){const[s,t]=i.useState({release:void 0,suites:void 0,suite:void 0,date:""}),[n,a]=i.useState();i.useEffect(()=>{fetch("https://raw.githubusercontent.com/stanford-crfm/helm/main/helm-frontend/project_metadata.json").then(h=>h.json()).then(h=>{if(window.PROJECT_ID){const u=h.find(g=>g.id===window.PROJECT_ID);a(u)}else{const u=h.find(g=>g.id==="lite");a(u)}}).catch(h=>{console.error("Error fetching JSON:",h)})},[]),i.useEffect(()=>{const h=new AbortController;async function u(){const g=await ys(h.signal);t(g)}return u(),()=>h.abort()},[]);const r=n!==void 0&&n.releases!==void 0?n.releases:["v1.0.0"],l=s.release||s.suite||null;if(!l)return null;const o=`Release ${l} (${s.date})`;if(r.length<=1)return e.jsx("div",{children:o});const d=r.indexOf(l),c=d<0?e.jsx(O,{color:"blue",children:"preview"}):d===0?e.jsx(O,{color:"blue",children:"latest"}):e.jsx(O,{color:"yellow",children:"stale"});return e.jsxs("div",{className:"dropdown",children:[e.jsxs("div",{tabIndex:0,role:"button",className:"normal-case bg-white border-0 block whitespace-nowrap","aria-haspopup":"true","aria-controls":"menu",children:[o," ",c," ",e.jsx(Ne,{fill:"black",color:"black",className:"inline text w-4 h-4"})]}),e.jsx("ul",{tabIndex:0,className:"dropdown-content z-[50] menu p-1 shadow-lg bg-base-100 rounded-box w-max text-base",role:"menu",children:["latest"].concat(r).map(h=>e.jsx("li",{children:e.jsx("a",{href:ae(h,n?n.id:"lite"),className:"block",role:"menuitem",children:h})},h))})]})}function Es(){return e.jsxs("nav",{className:"navbar h-24 px-8 md:px-12 bg-base-100 max-w[1500]px",children:[e.jsx("div",{children:e.jsxs("div",{className:"dropdown md:hidden mr-4",children:[e.jsx("label",{tabIndex:0,className:"btn btn-ghost hover:bg-transparent btn-lg px-0",children:e.jsx(ve,{className:"w-16 h-16"})}),e.jsxs("ul",{tabIndex:0,className:"menu menu-lg dropdown-content mt-3 z-[1] p-2 bg-base-100 shadow",children:[e.jsx("li",{children:e.jsx(b,{to:"leaderboard",children:"Leaderboard"})}),e.jsx("li",{children:e.jsx(b,{to:"models",children:"Models"})}),e.jsx("li",{children:e.jsx(b,{to:"scenarios",children:"Scenarios"})}),e.jsx("li",{children:e.jsx(b,{to:"runs",className:"whitespace-nowrap",children:"Predictions"})}),e.jsx("li",{children:e.jsx(b,{to:"https://github.com/stanford-crfm/helm",children:"GitHub"})})]})]})}),e.jsxs("div",{className:"flex-1 items-center",children:[e.jsx("a",{href:"https://crfm.stanford.edu/",className:"w-24",children:e.jsx("img",{src:we,className:"object-contain"})}),e.jsx(b,{to:"/",className:"mx-2 w-32",children:e.jsx("img",{src:ye,className:"object-contain"})}),e.jsx(Ee,{})]}),e.jsx("div",{className:"flex-none hidden md:block",children:e.jsxs("ul",{className:"flex flex-row gap-6 px-1",children:[e.jsx("li",{children:e.jsx(b,{to:"leaderboard",children:"Leaderboard"})}),e.jsx("li",{children:e.jsx(b,{to:"models",children:"Models"})}),e.jsx("li",{children:e.jsx(b,{to:"scenarios",children:"Scenarios"})}),e.jsx("li",{children:e.jsx(b,{to:"runs",children:"Predictions"})}),e.jsx("li",{children:e.jsx(b,{to:"https://github.com/stanford-crfm/helm",children:"GitHub"})}),e.jsx("li",{className:"hidden lg:flex",children:e.jsx(Ns,{})})]})})]})}function Ms(){return e.jsxs("nav",{className:"navbar h-24 px-8 md:px-12 bg-base-100 max-w[1500]px",children:[e.jsx("div",{children:e.jsx("div",{className:"dropdown md:hidden mr-4",children:e.jsx("label",{tabIndex:0,className:"btn btn-ghost hover:bg-transparent btn-lg px-0",children:e.jsx(ve,{className:"w-16 h-16"})})})}),e.jsxs("div",{className:"flex-1 items-center",children:[e.jsx(b,{to:"https://crfm.stanford.edu/",className:"w-24",children:e.jsx("img",{src:we,className:"object-contain"})}),e.jsx(b,{to:"/",className:"mx-2 w-32",children:e.jsx("img",{src:ye,className:"object-contain"})}),e.jsx(Ee,{})]})]})}function Ss(){return e.jsxs(e.Fragment,{children:[window.PROJECT_ID==="home"?e.jsx(Ms,{}):e.jsx(Es,{}),e.jsx("main",{className:"p-8 pt-0",children:e.jsx("div",{className:"mx-auto max-w-[1500]px",children:e.jsx(He,{})})})]})}async function D(s){try{return await(await fetch(S(`${z()}/schema.json`),{signal:s})).json()}catch(t){return t instanceof Error&&t.name!=="AbortError"&&console.log(t),{adapter:[],metric_groups:[],metrics:[],models:[],perturbations:[],run_groups:[]}}}function Ls({href:s,children:t}){return e.jsx("a",{href:s,className:"link link-primary link-hover",target:"_blank",rel:"noreferrer",children:t})}function B({value:s}){return e.jsx("span",{children:e.jsx(De,{components:{a:Ls},children:s})})}function $({title:s,subtitle:t,markdown:n=!1}){return e.jsxs("header",{className:"m-4 ml-0",children:[e.jsx("h1",{className:"text-4xl",children:s}),n&&t!==void 0?e.jsx("h2",{className:"mt-2 text-neutral",children:e.jsx(B,{value:t})}):t!==void 0&&e.jsx("h2",{className:"mt-2 text-neutral",children:t})]})}const ks={open:"green",limited:"yellow",closed:"red"},Rs={open:"Open",limited:"Limited",closed:"Closed"};function _s({level:s}){return e.jsx(O,{color:ks[s],children:Rs[s]})}function P(){return e.jsx("div",{className:"w-full",children:e.jsx("div",{className:"block mx-auto my-24 loading loading-spinner loading-lg"})})}function Cs(){const[s,t]=i.useState([]);i.useEffect(()=>{const o=new AbortController;async function d(){const c=await D(o.signal);t(c.models)}return d(),()=>o.abort()},[]);const[n,a,r]=s.reduce((o,d)=>{switch(d.access){case"open":o[0]+=1;break;case"limited":o[1]+=1;break;case"closed":o[2]+=1;break}return o},[0,0,0]),l=Object.values(s.reduce((o,d)=>{const c=d.creator_organization;return o[c]===void 0?(o[c]={name:c,models:1},o):(o[c].models+=1,o)},{}));return s.length===0?e.jsx(P,{}):e.jsxs(e.Fragment,{children:[e.jsx($,{title:"Models"}),e.jsxs("div",{className:"overflow-x-auto mt-12",children:[e.jsxs("table",{className:"table",children:[e.jsx("thead",{children:e.jsxs("tr",{children:[e.jsx("th",{children:"Creator"}),e.jsx("th",{children:"Model"}),e.jsx("th",{children:"Description"}),e.jsx("th",{children:"Access"})]})}),e.jsx("tbody",{children:s.map(o=>e.jsxs("tr",{children:[e.jsx("td",{className:"text-lg",children:o.creator_organization}),e.jsxs("td",{children:[e.jsx("span",{className:"text-xl",children:o.display_name}),e.jsx("br",{}),e.jsx("span",{children:o.name})]}),e.jsx("td",{children:e.jsx(B,{value:o.description})}),e.jsx("td",{children:e.jsx(_s,{level:o.access})})]}))})]}),e.jsx($,{title:"Analysis"}),e.jsxs("div",{className:"grid md:grid-cols-3 grid-cols-1 gap-8",children:[e.jsxs(W,{className:"flex flex-col justify-between",children:[e.jsx(Y,{children:"Models"}),e.jsx(ge,{className:"text-6xl md:!text-[96px]",children:s.length}),e.jsx(We,{values:[n,a,r],colors:["green","yellow","red"]}),e.jsx(oe,{categories:["Open","Limited","Closed"],colors:["green","yellow","red"]})]}),e.jsxs(W,{className:"md:col-span-2",children:[e.jsx(Y,{children:"Creator Organizations"}),e.jsxs("div",{className:"flex justify-between mt-4",children:[e.jsx(ze,{data:l,category:"models",index:"name",variant:"pie",className:"basis-5/12"}),e.jsx(oe,{categories:l.map(o=>o.name),className:"basis-7/12"})]})]})]})]})]})}function V({to:s,children:t,inTable:n=!1,title:a=""}){return n?e.jsx(b,{className:"link link-hover",to:s,title:a,children:t}):e.jsx(b,{className:"link link-primary link-hover",to:s,children:t})}function As(){const[s,t]=i.useState([]);i.useEffect(()=>{const a=new AbortController;async function r(){const l=await D(a.signal);t(l.run_groups.filter(o=>!o.todo&&o.taxonomy&&!o.display_name.includes("CLEVA")))}return r(),()=>a.abort()},[]);const n=Object.values(s.reduce((a,r)=>{var o;const l=((o=r.taxonomy)==null?void 0:o.task)||"Unknown";return a[l]===void 0?(a[l]={name:l,value:1},a):(a[l].value+=1,a)},{}));return s.length===0?e.jsx(P,{}):(console.log(s),e.jsxs(e.Fragment,{children:[e.jsx($,{title:"Scenarios",subtitle:"A scenario represents a use case and consists of a dataset of instances."}),e.jsxs("div",{className:"overflow-x-auto mt-12",children:[e.jsxs("table",{className:"table",children:[e.jsx("thead",{children:e.jsxs("tr",{children:[e.jsx("th",{children:"Scenario"}),e.jsx("th",{children:"Task"}),e.jsx("th",{children:"What"}),e.jsx("th",{children:"Who"}),e.jsx("th",{children:"When"}),e.jsx("th",{children:"Language"}),e.jsx("th",{children:"Description"})]})}),e.jsx("tbody",{children:s.map(a=>{var r,l,o,d,c;return e.jsxs("tr",{children:[e.jsxs("td",{children:[e.jsx(V,{to:`/leaderboard/${a.name}`,children:e.jsx("span",{className:"text-lg",children:a.display_name})}),e.jsx("span",{className:"block",children:a.name})]}),e.jsx("td",{children:((r=a.taxonomy)==null?void 0:r.task)||""}),e.jsx("td",{children:((l=a.taxonomy)==null?void 0:l.what)||""}),e.jsx("td",{children:((o=a.taxonomy)==null?void 0:o.who)||""}),e.jsx("td",{children:((d=a.taxonomy)==null?void 0:d.when)||""}),e.jsx("td",{children:((c=a.taxonomy)==null?void 0:c.language)||""}),e.jsx("td",{children:e.jsx(B,{value:a.description})})]})})})]}),e.jsx($,{title:"Analysis"}),e.jsxs("div",{className:"grid md:grid-cols-4 gap-8",children:[e.jsxs(W,{className:"flex flex-col",children:[e.jsx(Y,{children:"Total scenarios"}),e.jsx(ge,{className:"mx-auto my-6 md:mt-16 !text-[72px] md:!text-[96px]",children:s.length})]}),e.jsx(W,{className:"col-span-3",children:e.jsxs("div",{className:"grid md:grid-cols-2 gap-x-12",children:[e.jsx(ce,{data:n.slice(0,Math.floor(n.length/2))}),e.jsx(ce,{data:n.slice(Math.ceil(n.length/2))})]})})]})]})]}))}function Ts(){return S(`${z()}/groups.json`)}async function Me(s){try{return await(await fetch(Ts(),{signal:s})).json()}catch(t){return t instanceof Error&&t.name!=="AbortError"&&console.log(t),[]}}function re({children:s}){return e.jsx("div",{role:"navigation",className:"tabs flex-nowrap border-b-2 border-gray-2 overflow-x-auto overflow-y-hidden",children:s})}function J({active:s=!1,onClick:t=()=>{},size:n="md",children:a}){return e.jsx("div",{onClick:t,className:`whitespace-nowrap text-${n} mb-[-2px] text-md tab tab-bordered${s?" border-2 border-grey-500 rounded":" border-none"}`,children:a})}function Is({title:s,titleId:t,...n},a){return i.createElement("svg",Object.assign({xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 20 20",fill:"currentColor","aria-hidden":"true",ref:a,"aria-labelledby":t},n),s?i.createElement("title",{id:t},s):null,i.createElement("path",{fillRule:"evenodd",d:"M4.25 5.5a.75.75 0 00-.75.75v8.5c0 .414.336.75.75.75h8.5a.75.75 0 00.75-.75v-4a.75.75 0 011.5 0v4A2.25 2.25 0 0112.75 17h-8.5A2.25 2.25 0 012 14.75v-8.5A2.25 2.25 0 014.25 4h5a.75.75 0 010 1.5h-5z",clipRule:"evenodd"}),i.createElement("path",{fillRule:"evenodd",d:"M6.194 12.753a.75.75 0 001.06.053L16.5 4.44v2.81a.75.75 0 001.5 0v-4.5a.75.75 0 00-.75-.75h-4.5a.75.75 0 000 1.5h2.553l-9.056 8.194a.75.75 0 00-.053 1.06z",clipRule:"evenodd"}))}const Ps=i.forwardRef(Is),me=Ps;function F(s){return Number.isNaN(Number(s))?String(s):String(Math.round(Number(s)*1e3)/1e3)}function he({value:s,title:t,hideIcon:n}){if(typeof s.value=="string"&&s.value.includes("⚠")&&(s.value=s.value.replace("⚠","")),s.value===void 0)return"-";if(s.run_spec_names){const a=(()=>{if(s.run_spec_names.length==1)return"/runs/"+s.run_spec_names[0];if(s.run_spec_names.length>1){const r="/runs/?q="+s.run_spec_names.map(o=>`^${o}$`).join("|");return encodeURI(r)}})();return a?e.jsx(V,{to:a,inTable:!0,title:t,children:e.jsxs("div",{className:"flex items-center ",children:[F(s.value),!n&&e.jsx(me,{className:"w-3 h-3 ml-1",stroke:"#cbcbcb",fill:"#cbcbcb"})]})}):t?e.jsx("a",{title:t,children:F(s.value)}):e.jsx(e.Fragment,{children:F(s.value)})}return s.href?e.jsx(V,{to:s.href,inTable:!0,title:t,children:e.jsxs("div",{className:"flex items-center",children:[F(s.value),!n&&e.jsx(me,{className:"w-3 h-3 ml-1",stroke:"#cbcbcb",fill:"#cbcbcb"})]})}):s.markdown?e.jsx(B,{value:String(s.value)}):t?e.jsx("a",{title:t,children:F(s.value)}):e.jsx(e.Fragment,{children:F(s.value)})}function le({schema:s,groupTable:t,numRowsToDisplay:n,sortColumnIndex:a=1,sortable:r=!0,displayColumnIndexes:l=void 0,miniStyle:o=!1}){const[d,c]=i.useState(1),[h,u]=i.useState(a);function g(m){return m.length>30?m.substring(0,27)+"...":m}const w=m=>{const j=["AIRBench 2024 -","-book"];if(m.value==="Model/adapter")return"Model";if(j.some(f=>m.value.includes(f))){let f=m.value;return j.forEach(M=>{f=f.replace(M,"")}),g(f)}else return g(m.value)},v=m=>{if(s){const j=s.models.find(f=>f.display_name===m);if(j){let f=j.description;return f.includes("/")&&(f=f.replace("/","_")),f}}return""},E=m=>{c(m===h?d*-1:m===0?-1:1),u(m)},p=m=>{if(s){const j=s.models.find(f=>f.display_name===m);if(j){let f=j.name;return f.includes("/")&&(f=f.replace("/","_")),f}}return""},R=()=>{const m=t.header[h].lower_is_better,j=d*(m?1:-1),f=t.rows.slice();return f.sort((M,k)=>{var C,A;const y=(C=M[h])==null?void 0:C.value,N=(A=k[h])==null?void 0:A.value;return y!==void 0&&N===void 0?-1:N!==void 0&&y===void 0?1:typeof y=="number"&&typeof N=="number"?(y-N)*j:typeof y=="string"&&typeof N=="string"?j===1?y.localeCompare(N):N.localeCompare(y):0}),n>0?f.slice(0,n):f};function x(m){const j=m.lastIndexOf(" - ");return j===-1?m:m.substring(0,j)+"*"+m.substring(j+1)}const _=m=>{const f=x(m).split("*")[0].trim();if(s){const M=s.run_groups.find(k=>k.display_name===f||k.short_display_name===f);if(M)return M.name}return""};return e.jsxs("table",{className:o?"table w-full":"rounded-lg shadow-md table",children:[e.jsx("thead",{children:e.jsx("tr",{children:t.header.filter((m,j)=>l===void 0||l.includes(j)).map((m,j)=>e.jsx("th",{className:`${j===h?"bg-gray-100":"bg-white"} ${j===0?"left-0 z-40":""} ${m.description?"underline decoration-dashed decoration-gray-300 ":""} whitespace-nowrap px-4 sticky top-0`,title:m.description?m.description:"",children:e.jsxs("div",{className:o?"flex gap-2 items-center":"z-20 flex justify-between items-center min-w-48 w-48 max-w-48 text-wrap",children:[e.jsx("span",{className:"inline-block w-full break-words",children:w(m)}),r?e.jsx("button",{className:"link",onClick:()=>E(j),children:e.jsx(js,{className:"w-6 h-6"})}):null]})},`$${j}`))})}),e.jsx("tbody",{children:R().map((m,j)=>e.jsx("tr",{children:m.filter((f,M)=>l===void 0||l.includes(M)).map((f,M)=>e.jsx("td",{className:`${M===0?"z-20 text-lg sticky left-0":"z-0"} ${j%2===0?"bg-gray-50":"bg-white"}`,children:M==1?e.jsx("div",{className:`${f&&f.style&&f.style["font-weight"]&&f.style["font-weight"]==="bold"?"font-bold":""}`,children:e.jsx(he,{value:{...f,href:"/runs/?q="+p(String(m[0].value))},title:`Click value to see all predictions for: ${p(String(m[0].value))}`})}):e.jsx("div",{className:`${f&&f.style&&f.style["font-weight"]&&f.style["font-weight"]==="bold"?"font-bold":""} ${M===0?"underline decoration-dashed decoration-gray-300 z-10":"z-0"}`,children:e.jsx(he,{value:{...f},title:String(m[0].value)===f.value?v(String(m[0].value)):`Click value to see predictions for ${String(m[0].value)} for ${_(w(t.header[M]))}: ${p(String(m[0].value))}`})})},`${M}`))},`$${m[0].value}`))})]})}function $s(){const[s,t]=i.useState(0),[n,a]=i.useState(),[r,l]=i.useState();return i.useEffect(()=>{const o=new AbortController;async function d(){const c=D(o.signal),h=Me(o.signal),u=await c;l(u);const g=await h;a(g)}return d(),()=>o.abort()},[]),n===void 0||r===void 0?e.jsx(P,{}):n.length===0?e.jsxs("div",{children:[e.jsx($,{title:"Results",subtitle:"Groupings of the processes, methods, and metrics involved in evaluating models, particularly in the context of natural language understanding and question answering.",className:"mb-16"}),e.jsx("div",{children:"No groups found."})]}):e.jsxs("div",{children:[e.jsx($,{title:"Results",subtitle:"Groupings of the processes, methods, and metrics involved in evaluating models, particularly in the context of natural language understanding and question answering.",className:"mb-16"}),e.jsxs("div",{children:[n.length>1?e.jsx(re,{children:n.map((o,d)=>e.jsx(J,{active:d===s,onClick:()=>t(d),children:o.title},d))}):null,e.jsx(le,{schema:r,groupTable:n[s],numRowsToDisplay:-1,sortColumnIndex:1,sortable:!0},`${s}`)]})]})}async function Hs(s){try{return await(await fetch(S(`${z()}/run_specs.json`),{signal:s})).json()}catch(t){return t instanceof Error&&t.name!=="AbortError"&&console.log(t),[]}}function ie({currentPage:s,totalPages:t,onNextPage:n,onPrevPage:a,className:r}){let l="join";return r!==void 0&&(l=`join ${r}`),e.jsxs("div",{className:l,children:[e.jsx("button",{onClick:a,className:"join-item btn",children:"«"}),e.jsxs("button",{className:"join-item btn",children:["Page ",s," of ",t]}),e.jsx("button",{onClick:n,className:"join-item btn",children:"»"})]})}const X=100;function Ds(){const[s,t]=se(),[n,a]=i.useState(),[r,l]=i.useState(Number(s.get("page")||1)),[o,d]=i.useState(!0),[c,h]=i.useState(s.get("q")||"");i.useEffect(()=>{const p=new AbortController;async function R(){const x=await Hs(p.signal);a(x)}return R(),()=>p.abort()},[]);const u=p=>{p.preventDefault();const x=p.target.q.value;h(x),t({q:x,page:"1"})};if(n===void 0)return e.jsx(P,{});const g=o?new RegExp(c):null,w=n.filter(p=>g?g.test(p.name):p.name.includes(c)),v=w.slice((r-1)*X,r*X),E=Math.ceil(w.length/X);return e.jsxs(e.Fragment,{children:[e.jsx($,{title:"Predictions",subtitle:"All benchmark predictions"}),e.jsxs("form",{className:"flex mb-8",onSubmit:u,children:[e.jsxs("div",{className:"form-control",children:[e.jsx("input",{type:"text",name:"q",placeholder:"Search",className:"input input-bordered",value:c,onChange:p=>h(p.target.value)}),e.jsxs("label",{className:"label",children:[e.jsxs("span",{className:"label-text-alt flex item-center",children:[e.jsx("input",{type:"checkbox",className:"toggle toggle-xs",checked:o,onChange:()=>d(!o)}),e.jsx("span",{className:"ml-2",children:"Regex"})]}),e.jsx("span",{className:"label-text-alt",children:`${w.length} results`})]})]}),e.jsx("div",{className:"form-control ml-4",children:e.jsx("button",{className:"btn",children:e.jsx(ws,{className:"w-6 h-6"})})})]}),e.jsx("div",{className:"overflow-x-auto",children:e.jsxs("table",{className:"table",children:[e.jsx("thead",{children:e.jsxs("tr",{children:[e.jsx("th",{children:"Run"}),e.jsx("th",{children:"Model"}),e.jsx("th",{children:"Groups"}),e.jsx("th",{children:"Adapter method"}),e.jsx("th",{children:"Subject / Task"})]})}),e.jsx("tbody",{children:v.map((p,R)=>e.jsxs("tr",{children:[e.jsx("td",{children:e.jsx(V,{to:`/runs/${p.name}`,children:p.name})}),e.jsx("td",{children:p.adapter_spec.model}),e.jsx("td",{children:p.groups.join(", ")}),e.jsx("td",{children:p.adapter_spec.method}),e.jsx("td",{children:p.scenario_spec.args.subject||p.scenario_spec.args.task||"-"})]},`${p.name}-${R}`))})]})}),E>0?e.jsx(ie,{className:"flex justify-center my-8",onNextPage:()=>{const p=Math.min(r+1,E);l(p),s.set("page",String(p)),t(s)},onPrevPage:()=>{const p=Math.max(r-1,1);l(p),s.set("page",String(p)),t(s)},currentPage:r,totalPages:E}):e.jsx("div",{className:"my-8 text-center",children:"No results"})]})}function I(){return window.SUITE!==void 0?window.SUITE:void 0}async function Os(s,t,n){try{return await(await fetch(S(`/runs/${n||I()}/${s}/scenario.json`),{signal:t})).json()}catch(a){a instanceof Error&&a.name!=="AbortError"&&console.log(a);return}}function Se(s,t){return S(`/runs/${t||I()}/${s}/run_spec.json`)}async function Fs(s,t,n){try{return await(await fetch(Se(s,n),{signal:t})).json()}catch(a){a instanceof Error&&a.name!=="AbortError"&&console.log(a);return}}function Bs(s,t){return S(`/runs/${t||I()}/${s}/scenario_state.json`)}function Le(){return window.RELEASE!==void 0?window.RELEASE:void 0}async function Us(s){try{return await(await fetch(S(`/releases/${Le()}/runs_to_run_suites.json`),{signal:s})).json()}catch(t){return t instanceof Error&&t.name!=="AbortError"&&console.log(t),{}}}function Ws(s,t){return Le()?s[t]:window.SUITE}function zs(s){const n={quasi_exact_match:!1,toxic_frac:!0,safety_score:!1,exact_match:!1},a=Object.keys(s);for(const r of a)if(s[r]!==void 0&&n[r]!==void 0)return n[r]?s[r]<.5?[r,!0]:[r,!1]:s[r]>=.5?[r,!0]:[r,!1];return["",!1]}function qs(s){const[t,n]=zs(s.stats);return t===""?null:n?e.jsx(Gs,{value:`${t.replace(/_/g," ")}: ${s.stats[t]}`}):e.jsx(Vs,{value:`${t.replace(/_/g," ")}: ${s.stats[t]}`})}function Gs({value:s}){return e.jsx(O,{icon:ss,color:"green",children:s})}function Vs({value:s}){return e.jsx(O,{icon:as,color:"red",children:s})}function H({value:s}){const[t,n]=i.useState(!1),[a,r]=i.useState(!1);return e.jsxs(e.Fragment,{children:[e.jsxs("div",{onMouseOver:()=>n(!0),onMouseOut:()=>n(!1),className:"relative",children:[e.jsx("div",{className:"bg-base-200 p-2 block overflow-auto w-full max-h-[36rem] mb-2 whitespace-pre-wrap",children:s}),t?e.jsx("button",{className:"bg-white absolute p-2 leading-none height-fit min-h-none right-1 bottom-1 shadow",onClick:()=>r(!0),children:e.jsx(us,{fill:"black",color:"black",className:"text w-4 h-4"})}):null]}),e.jsx("dialog",{open:a,className:"modal p-16 bg-opacity-80 bg-white",onClick:()=>r(!1),children:e.jsx("div",{className:"modal-box max-w-none p-4 whitespace-pre-wrap bg-base-200",children:s})})]})}function ke({messages:s}){return e.jsx("div",{children:s.map((t,n)=>e.jsxs("div",{children:[e.jsx("div",{children:t.role}),e.jsx(H,{value:t.content})]},n))})}function Re({mediaObject:s}){if(s.content_type.includes("image")){if(s.location===void 0)return null;const t=S(s.location.replace("benchmark_output/","").replace("prod_env/","../"));return e.jsxs("div",{children:[e.jsx("img",{src:t}),e.jsx("br",{})]})}else if(s.content_type.includes("audio")){if(s.location===void 0)return null;const t=S(s.location.replace("benchmark_output/","").replace("prod_env/","../"));return e.jsx("div",{children:e.jsx("audio",{controls:!0,src:t})})}else return s.text&&s.content_type&&s.content_type==="text/plain"&&s.text.length>1?e.jsxs("div",{children:[s.text,e.jsx("br",{}),e.jsx("br",{})]}):e.jsx("div",{})}function _e({multimediaObject:s}){return e.jsx("div",{children:s.media_objects.map(t=>e.jsx(Re,{mediaObject:t}))})}function Js(s){return Array.isArray(s)?s.length==0?"[]":`[${s.map(t=>String(t).replace(/\n/,"\\n")).join(", ")}]`:String(s)}function Ks({request:s}){return e.jsxs("div",{children:[s.request.prompt.length>0?e.jsxs("div",{children:[e.jsxs("h3",{className:"block text text-gray-400",children:["Prompt (",s.request.prompt.length," Chars)"]}),e.jsx(H,{value:s.request.prompt})]}):s.request.multimodal_prompt?e.jsxs("div",{children:[e.jsx("h3",{className:"block text text-gray-400",children:"Prompt"}),e.jsx(_e,{multimediaObject:s.request.multimodal_prompt})]}):s.request.messages&&s.request.messages.length?e.jsxs("div",{children:[e.jsx("h3",{className:"block text text-gray-400",children:"Prompt"}),e.jsx(ke,{messages:s.request.messages})]}):e.jsx("h3",{className:"block text text-gray-400",children:"Empty Prompt"}),e.jsx(te,{children:Object.keys(s.request).filter(t=>t!=="prompt").map((t,n)=>e.jsxs(ne,{children:[e.jsxs("span",{children:[t,":"]}),s.request&&s.request[t]?e.jsx("span",{children:Js(s.request[t])}):"null"]},n+1))})]})}function Zs(s){return e.jsx("div",{children:s.map((t,n)=>e.jsxs("div",{children:[t.error&&e.jsxs("div",{children:[e.jsx("h3",{className:"ml-1",children:"Error"}),e.jsx(H,{value:t.error})," "]}),t.text&&e.jsxs("div",{children:[e.jsx("h3",{className:"ml-1",children:"Text"}),e.jsx(H,{value:t.text})," "]}),t.media_object&&e.jsx(Re,{mediaObject:t.media_object})]},n))})}function Xs(s){return e.jsx("div",{children:Object.entries(s).map(([t,n])=>e.jsxs("div",{children:[e.jsx("h3",{className:"ml-1",children:t}),e.jsx(H,{value:n===null?"null":n.toString()})]}))})}function Qs({predictionAnnotations:s}){return e.jsx("div",{children:s&&s!==void 0?Object.entries(s).map(([t,n])=>e.jsxs("details",{className:"collapse collapse-arrow border rounded-md bg-white my-2",children:[e.jsx("summary",{className:"collapse-title",children:e.jsx(e.Fragment,{children:"View "+t+" annotations"})}),e.jsx("div",{className:"collapse-content",children:Array.isArray(n)?Zs(n):Xs(n)})]},t)):null})}function Ys({predictions:s,requests:t,metricFieldMap:n}){return s.length<1?null:e.jsx("div",{children:e.jsx("div",{className:"flex flex-wrap justify-start items-start",children:s.map((a,r)=>e.jsxs("div",{className:"w-full",children:[s.length>1?e.jsxs("h2",{children:["Trial ",a.train_trial_index]}):null,e.jsx("div",{className:"mt-2 w-full",children:a.base64_images&&a.base64_images.length>0?e.jsxs(e.Fragment,{children:[e.jsx("h3",{className:"mr-4",children:"Prediction image"}),a.base64_images.map(l=>e.jsx("img",{src:"data:image;base64,"+l,alt:"Base64 Image"}))]}):e.jsxs(e.Fragment,{children:[e.jsxs("h3",{children:[e.jsx("span",{className:"mr-4",children:"Prediction raw text"}),e.jsx(qs,{stats:a.stats})]}),e.jsx(H,{value:a.predicted_text}),a.mapped_output?e.jsxs(e.Fragment,{children:[e.jsx("h3",{children:"Prediction mapped output"}),e.jsx(H,{value:String(a.mapped_output)})]}):null]})}),e.jsx(Qs,{predictionAnnotations:a.annotations}),e.jsxs("div",{className:"mx-1",children:[e.jsx("h3",{children:"Metrics"}),e.jsx(te,{children:Object.keys(a.stats).map((l,o)=>e.jsxs(ne,{children:[n[l]?e.jsx("span",{title:n[l].description,children:n[l].display_name}):e.jsx("span",{children:l}),e.jsx("span",{children:String(a.stats[l])})]},o))})]}),e.jsxs("details",{className:"collapse collapse-arrow border rounded-md bg-white",children:[e.jsx("summary",{className:"collapse-title",children:"Request details"}),e.jsx("div",{className:"collapse-content",children:e.jsx(Ks,{request:t[r]})})]})]},r))})})}const et="correct";function st({references:s}){return e.jsxs("span",{children:[e.jsx("h3",{children:"References"}),e.jsx("ul",{children:s.map((t,n)=>e.jsxs("li",{className:"bg-base-200 p-2 block overflow-auto w-full max-h-72 mb-2 whitespace-pre-wrap",children:[t.output.text,t.tags.map(a=>e.jsx(O,{className:"mx-2",color:a===et?"green":void 0,children:a}))]},n))})]})}function Ce(s){return e.jsx(H,{value:s===null?"null":typeof s=="object"?JSON.stringify(s):s.toString()})}function tt(s){return e.jsx("div",{children:s.map(t=>Ce(t))})}function nt({extraData:s}){return e.jsxs("details",{className:"collapse collapse-arrow border rounded-md bg-white my-2",children:[e.jsx("summary",{className:"collapse-title",children:"View instance extra data"}),e.jsx("div",{className:"collapse-content",children:Object.entries(s).map(([t,n])=>e.jsxs("div",{children:[e.jsx("h3",{className:"ml-1",children:t}),Array.isArray(n)?tt(n):Ce(n)]}))})]})}function at({instance:s,requests:t,predictions:n,metricFieldMap:a}){return e.jsxs("div",{children:[e.jsx("h3",{children:"Input"}),s.input.multimedia_content!==void 0?e.jsx(_e,{multimediaObject:s.input.multimedia_content}):s.input.text.includes('<br><img src="data:image;base64')?e.jsx("div",{dangerouslySetInnerHTML:{__html:s.input.text}}):s.input.messages!==void 0&&s.input.messages.length?e.jsx(ke,{messages:s.input.messages}):e.jsx(H,{value:s.input.text}),e.jsx("div",{children:s.references&&s.references.length>0?e.jsx(st,{references:s.references}):null}),s.extra_data&&s.extra_data.length?e.jsx(nt,{extraData:s.extra_data}):null,e.jsx("div",{children:n&&t?e.jsx(Ys,{predictions:n,requests:t,metricFieldMap:a}):null})]})}function Z(s){return s.includes("gpqa")||s.includes("ewok")}async function ue(s,t,n,a){const r=h=>Uint8Array.from(atob(h),u=>u.charCodeAt(0)),l=await window.crypto.subtle.importKey("raw",r(t),"AES-GCM",!0,["decrypt"]),o=new Uint8Array([...r(s),...r(a)]),d=r(n),c=await window.crypto.subtle.decrypt({name:"AES-GCM",iv:d},l,o);return new TextDecoder().decode(c)}async function rt(s,t,n,a){try{const l=await(await fetch(S(`/runs/${n||I()}/${s}/instances.json`),{signal:t})).json();if(Z(s)&&a){const d=await(await fetch(S(`/runs/${n||I()}/${s}/encryption_data.json`),{signal:t})).json();for(const c of l){const h=d[c.input.text];h&&(c.input.text="encrypted",c.input.text=await ue(h.ciphertext,h.key,h.iv,h.tag));for(const u of c.references){const g=d[u.output.text];g&&(u.output.text=await ue(g.ciphertext,g.key,g.iv,g.tag))}}}return l}catch(r){return r instanceof Error&&r.name!=="AbortError"&&console.log(r),[]}}async function lt(s,t,n,a){const r=h=>Uint8Array.from(atob(h),u=>u.charCodeAt(0)),l=await window.crypto.subtle.importKey("raw",r(t),"AES-GCM",!0,["decrypt"]),o=new Uint8Array([...r(s),...r(a)]),d=r(n),c=await window.crypto.subtle.decrypt({name:"AES-GCM",iv:d},l,o);return new TextDecoder().decode(c)}async function it(s,t,n,a){try{const l=await(await fetch(S(`/runs/${n||I()}/${s}/display_predictions.json`),{signal:t})).json();if(Z(s)&&a){const d=await(await fetch(S(`/runs/${n||I()}/${s}/encryption_data.json`),{signal:t})).json();for(const c of l){const h=c.predicted_text,u=d[h];if(u)try{c.predicted_text=await lt(u.ciphertext,u.key,u.iv,u.tag)}catch(g){console.error(`Failed to decrypt predicted_text for instance_id: ${c.instance_id}`,g)}}}return l}catch(r){return r instanceof Error&&r.name==="AbortError"&&console.log(r),[]}}async function ot(s,t,n,a){const r=h=>Uint8Array.from(atob(h),u=>u.charCodeAt(0)),l=await window.crypto.subtle.importKey("raw",r(t),"AES-GCM",!0,["decrypt"]),o=new Uint8Array([...r(s),...r(a)]),d=r(n),c=await window.crypto.subtle.decrypt({name:"AES-GCM",iv:d},l,o);return new TextDecoder().decode(c)}async function ct(s,t,n,a){try{const l=await(await fetch(S(`/runs/${n||I()}/${s}/display_requests.json`),{signal:t})).json();if(Z(s)&&a){const d=await(await fetch(S(`/runs/${n||I()}/${s}/encryption_data.json`),{signal:t})).json();for(const c of l){const h=c.request.prompt,u=d[h];if(u)try{c.request.prompt=await ot(u.ciphertext,u.key,u.iv,u.tag)}catch(g){console.error(`Failed to decrypt prompt for instance_id: ${c.instance_id}`,g)}}}return l}catch(r){return r instanceof Error&&r.name!=="AbortError"&&console.log(r),[]}}const q=10;function dt({runName:s,suite:t,metricFieldMap:n,userAgreed:a}){const[r,l]=se(),[o,d]=i.useState([]),[c,h]=i.useState(),[u,g]=i.useState(),[w,v]=i.useState(1);i.useEffect(()=>{const x=new AbortController;async function _(){const m=x.signal,[j,f,M]=await Promise.all([rt(s,m,t,a),it(s,m,t,a),ct(s,m,t,a)]);d(j);const k={};M.forEach(N=>{var U;const C=N.instance_id,A=((U=N.perturbation)==null?void 0:U.name)||"";k[C]===void 0&&(k[C]={}),k[C][A]===void 0&&(k[C][A]=[]),k[C][A].push(N)}),g(k);const y={};f.forEach(N=>{var U;const C=N.instance_id,A=((U=N.perturbation)==null?void 0:U.name)||"";y[C]===void 0&&(y[C]={}),y[C][A]===void 0&&(y[C][A]=[]),y[C][A].push(N)}),h(y)}return _(),()=>x.abort()},[s,t,a]);const E=o.slice((w-1)*q,(w-1)*q+q),p=Math.ceil(o.length/q);i.useEffect(()=>{const x=r.get("instance");if(x&&!window.helmHasScrolledToInstance&&E.length>0){if(E.findIndex(m=>m.id===x)===-1)return;requestAnimationFrame(()=>{const m=document.getElementById(`instance-${x}`);m&&m.scrollIntoView({behavior:"smooth"})}),window.helmHasScrolledToInstance=!0}},[r,w,l,E]);const R=x=>x.perturbation===void 0?`Instance id: ${x.id} [split: ${x.split}]`:`Instance id: ${x.id} [split: ${x.split}][perturbation: ${x.perturbation.name}]`;return c===void 0||u===void 0?e.jsx(P,{}):e.jsxs(e.Fragment,{children:[e.jsx("div",{className:"grid gap-8",children:E.map((x,_)=>{var m,j;return e.jsxs("div",{id:"instance-"+x.id,className:"border p-4",children:[e.jsxs("div",{className:"flex items-center justify-between",children:[e.jsx("h3",{className:"text-xl mb-4",children:R(x)}),e.jsx("button",{className:"btn btn-sm normal-case px-2 py-1",onClick:()=>{const f=window.location.href+(window.location.href.includes("?")?"&instance=":"?instance=")+x.id;navigator.clipboard.writeText(f)},children:"Copy Link"})]}),e.jsx(at,{instance:x,requests:u[x.id][((m=x.perturbation)==null?void 0:m.name)||""],predictions:c[x.id][((j=x.perturbation)==null?void 0:j.name)||""],metricFieldMap:n},`${x.id}-${_}`)]})})}),e.jsx(ie,{className:"flex justify-center my-8",onNextPage:()=>{const x=Math.min(w+1,p);v(x),r.set("instancesPage",String(x)),l(r)},onPrevPage:()=>{const x=Math.max(w-1,1);v(x),r.set("instancesPage",String(x)),l(r)},currentPage:w,totalPages:p})]})}async function mt(s,t,n){try{return await(await fetch(S(`/runs/${n||I()}/${s}/stats.json`),{signal:t})).json()}catch(a){return a instanceof Error&&a.name!=="AbortError"&&console.log(a),[]}}function ht({stat:s,metricFieldMap:t}){const n=`${s.name.split!==void 0?` on ${s.name.split}`:""}${s.name.sub_split!==void 0?`/${s.name.sub_split}`:""}${s.name.perturbation!==void 0?` with ${s.name.perturbation.name}`:" original"}`;return t[s.name.name]?e.jsxs("span",{title:t[s.name.name].description,children:[e.jsx("strong",{children:t[s.name.name].display_name||s.name.name}),n]}):e.jsxs("span",{children:[e.jsx("strong",{children:s.name.name}),n]})}const G=50,xe=["name","mean","min","max","sum","sum_squared","variance","stddev"];function ut({runName:s,suite:t,metricFieldMap:n}){const[a,r]=se(),[l,o]=i.useState(),[d,c]=i.useState(1),[h,u]=i.useState("");if(i.useEffect(()=>{const v=new AbortController;async function E(){const p=v.signal,R=await mt(s,p,t);o(R)}return E(),()=>v.abort()},[s,t]),l===void 0||l.length===0)return e.jsx(P,{});const g=Math.floor(l.length/G),w=l.slice((d-1)*G,(d-1)*G+G);return e.jsxs("div",{children:[e.jsx("div",{className:"flex justify-start my-4",children:e.jsx("input",{type:"text",className:"input input-bordered w-full max-w-xs",placeholder:"Search for a metric",onChange:v=>u(v.target.value)})}),e.jsx("div",{className:"overflow-x-auto",children:e.jsxs("table",{className:"table",children:[e.jsx("thead",{children:e.jsx("tr",{children:xe.map(v=>e.jsx("th",{children:v},v))})}),e.jsx("tbody",{children:w.filter(v=>!h||v.name.name.toLowerCase().includes(h.toLowerCase())).map(v=>e.jsx("tr",{children:xe.map(E=>{const p=v[E];return typeof p=="number"?e.jsx("td",{children:p}):e.jsx("td",{children:e.jsx(ht,{stat:v,metricFieldMap:n})},E)})}))})]})}),e.jsx(ie,{className:"flex justify-center my-8",onNextPage:()=>{const v=Math.min(d+1,g);c(v),a.set("metricsPage",String(v)),r(a)},onPrevPage:()=>{const v=Math.max(d-1,1);c(v),a.set("metricsPage",String(v)),r(a)},currentPage:d,totalPages:g})]})}function xt({runName:s,onAgree:t}){const n=i.useRef(null),a=()=>{n.current!==null&&n.current.value.trim()==="Yes, I agree"?t():alert("Please type 'Yes, I agree' exactly.")},r=s.includes("gpqa")?e.jsx(ft,{}):s.includes("ewok")?e.jsx(pt,{}):null;return e.jsxs("div",{className:"mb-8",children:[r,e.jsxs("p",{className:"mb-4",children:["If you agree to this condition, please type"," ",e.jsx("strong",{children:'"Yes, I agree"'})," in the box below and then click"," ",e.jsx("strong",{children:"Decrypt"}),"."]}),e.jsxs("div",{className:"flex gap-2 mt-2",children:[e.jsx("input",{type:"text",ref:n,className:"input input-bordered",placeholder:'Type "Yes, I agree"'}),e.jsx("button",{onClick:a,className:"btn btn-primary",children:"Decrypt"})]}),e.jsx("hr",{className:"my-4"})]})}function ft(){return e.jsxs("div",{children:[e.jsx("p",{className:"mb-4",children:"The GPQA dataset instances are encrypted by default to comply with the following request:"}),e.jsx("blockquote",{className:"italic border-l-4 border-gray-300 pl-4 text-gray-700 mb-4",children:"“We ask that you do not reveal examples from this dataset in plain text or images online, to minimize the risk of these instances being included in foundation model training corpora.”"})]})}function pt(){return e.jsxs("div",{children:[e.jsx("p",{className:"mb-4",children:"The EWoK dataset instances are encrypted by default to comply with the following request:"}),e.jsx("blockquote",{className:"italic border-l-4 border-gray-300 pl-4 text-gray-700 mb-4",children:"“PLEASE DO NOT distribute any of the EWoK materials or derivatives publicly in plain-text! Any materials should appear in password-protected ZIP files or behind gated authentication mechanisms such as Huggingface datasets.”"})]})}function gt(){const{runName:s}=pe(),[t,n]=i.useState(0),[a,r]=i.useState(),[l,o]=i.useState(),[d,c]=i.useState(),[h,u]=i.useState(),[g,w]=i.useState({}),[v,E]=i.useState({}),[p,R]=i.useState(!1);return i.useEffect(()=>{const x=new AbortController;async function _(){const m=x.signal;if(s===void 0)return()=>x.abort();const j=window.SUITE?window.SUITE:Ws(await Us(m),s);o(j);const[f,M,k]=await Promise.all([Fs(s,m,j),Os(s,m,j),D(m)]);r(f),u(M),E(k.metrics.reduce((y,N)=>(y[N.name]=N,y),{})),w(k.adapter.reduce((y,N)=>(y[N.name]=N,y),{})),c(k.models.find(y=>y.name===(f==null?void 0:f.adapter_spec.model)))}return _(),()=>x.abort()},[s]),a===void 0||h===void 0||s===void 0||l===void 0||v===void 0?e.jsx(P,{}):e.jsxs(e.Fragment,{children:[e.jsx("div",{className:"flex justify-between gap-8 mb-12",children:e.jsxs("div",{children:[e.jsxs("h1",{className:"text-3xl flex items-center",children:[h.name,e.jsx("a",{href:"/#/groups/"+h.name,children:e.jsx(ds,{className:"w-6 h-6 ml-2"})})]}),e.jsx("h3",{className:"text-xl",children:e.jsx(B,{value:h.description})}),e.jsx("h1",{className:"text-3xl mt-2",children:a.adapter_spec.model}),e.jsx("h3",{className:"text-xl",children:e.jsx(B,{value:(d==null?void 0:d.description)||""})}),e.jsx("div",{className:"mt-2 flex gap-2",children:h.tags.map(x=>e.jsx(O,{size:"xs",color:"gray",children:e.jsx("span",{className:"text text-md",children:x})}))})]})}),e.jsxs(W,{children:[e.jsxs("div",{className:"flex justify-between",children:[e.jsx("h3",{className:"text-lg mb-1",children:"Adapter Specification"}),e.jsxs("div",{className:"flex gap-2",children:[e.jsx(is,{className:"w-6 h-6 mr-1 text text-primary"}),e.jsx("a",{className:"link link-primary link-hover",href:Se(a.name,l),download:"true",target:"_blank",children:"Spec JSON"}),e.jsx("a",{className:"link link-primary link-hover",href:Bs(a.name,l),download:"true",target:"_blank",children:"Full JSON"})]})]}),e.jsx("div",{children:e.jsx(te,{className:"grid md:grid-cols-2 lg:grid-cols-3 gap-x-8",children:Object.entries(a.adapter_spec).map(([x,_],m)=>e.jsxs(ne,{className:m<3?"!border-0":"",children:[e.jsx("strong",{className:"mr-1",title:g[x]?g[x].description:void 0,children:`${x}: `}),e.jsx("span",{className:"overflow-x-auto",children:_})]}))})})]}),e.jsx("div",{className:"mt-16 mb-8",children:e.jsxs(re,{children:[e.jsx(J,{size:"lg",active:t===0,onClick:()=>n(0),children:"Instances + Predictions"}),e.jsx(J,{size:"lg",active:t===1,onClick:()=>n(1),children:"All metrics"})]})}),t===0&&Z(s)&&!p&&e.jsx(xt,{runName:s,onAgree:()=>R(!0)}),t===0?e.jsx(dt,{runName:s,suite:l,metricFieldMap:v,userAgreed:p},p?"instances-agreed":"instances-not-agreed"):e.jsx(ut,{runName:s,suite:l,metricFieldMap:v})]})}async function Ae(s,t){try{return await(await fetch(S(`${z()}/groups/${s}.json`),{signal:t})).json()}catch(n){return n instanceof Error&&n.name!=="AbortError"&&console.log(n),[]}}function jt({schema:s,runGroupName:t,numRowsToDisplay:n=-1}){const[a,r]=i.useState(),[l,o]=i.useState(0);return i.useEffect(()=>{const d=new AbortController;async function c(){const h=await Ae(t,d.signal);r(h)}return c(),()=>d.abort()},[s,t]),a===void 0||a.length===0?e.jsx(P,{}):a.length===0?e.jsx("div",{children:"Group currently has no tables."}):e.jsxs("div",{children:[a.length>1?e.jsx(re,{children:a.map((d,c)=>e.jsx(J,{active:c===l,onClick:()=>o(c),children:d.title},c))}):null,e.jsx(le,{schema:s,groupTable:a[l],numRowsToDisplay:n,sortColumnIndex:1},`${t}-${l}`)]})}function Q(){const{groupName:s}=pe(),t=Oe(),[n,a]=i.useState(void 0),[r,l]=i.useState(),[o,d]=i.useState();i.useEffect(()=>{const u=new AbortController;async function g(){const w=D(u.signal),v=Me(u.signal),E=await w;a(E);let p;const R=await v,x={};R.forEach(_=>{x[_.title]=[],_.rows.forEach(m=>{const j=m[0].href.replace("?group=","");p===void 0&&(p=j),x[_.title].push({title:String(m[0].value),name:j})})}),l(x),d(p)}return g(),()=>u.abort()},[]);const c=s||o;if(n===void 0||r===void 0||c===void 0)return e.jsx(P,{});let h;for(const u of n.run_groups)u.name===c&&(h=u);return e.jsxs(e.Fragment,{children:[e.jsxs("div",{className:"flex flex-row",children:[e.jsx("div",{className:"w-3/4",children:h?e.jsx($,{title:"Leaderboard: "+h.display_name,subtitle:h.description,markdown:!0}):e.jsx($,{title:"Leaderboard",subtitle:"The HELM leaderboard shows how the various models perform across different scenarios and metrics.",markdown:!0})}),e.jsx("div",{className:"w-1/4 pt-8",children:e.jsxs("label",{htmlFor:"group",className:"block text-sm font-medium text-gray-700",children:["Select a group:",e.jsx("select",{id:"group",name:"group",onChange:u=>t("/leaderboard/"+u.target.value),className:"mt-1 block w-full pl-3 pr-10 py-2 text-base border-gray-300 focus:outline-none focus:ring focus:border-blue-300 rounded-md",value:c,children:Object.entries(r).map(([u,g])=>e.jsx("optgroup",{label:u,children:g.map(w=>e.jsx("option",{value:w.name,children:w.title},w.name))},u))})]})})]}),e.jsx(jt,{schema:n,runGroupName:c},c)]})}const bt=""+new URL("instruct-flowchart-48854f7c.svg",import.meta.url).href,vt=""+new URL("instruct-graph-0a57d7d2.svg",import.meta.url).href;function wt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl mt-16 font-bold text-center",children:"HELM Instruct: A Multidimensional Instruction Following Evaluation Framework with Absolute Ratings"}),e.jsxs("div",{className:"flex flex-col sm:flex-row justify-center gap-2 sm:gap-8 md:gap-32 my-8",children:[e.jsx("a",{className:"px-10 btn rounded-md",href:"https://crfm.stanford.edu/2024/02/18/helm-instruct.html",children:"Blog Post"}),e.jsx("a",{className:"px-10 btn rounded-md",href:"https://github.com/stanford-crfm/helm",children:"Github"})]}),e.jsxs("p",{children:["We introduce ",e.jsx("em",{children:"HELM Instruct"}),", a multidimensional evaluation framework for instruction-following LLMs with absolute ratings. The framework takes an instruction, a model, an evaluator, and a criterion to generate a score. In our study, we use HELM Instruct to compare 4 instruction-following models on 7 scenarios based on 4 Human/LM evaluators and 5 criteria. Check out the blog post for more details."]}),e.jsxs("div",{className:"grid my-16 grid-cols-1 md:mx-32 md:grid-cols-2 md:gap-2",children:[e.jsx("img",{src:bt,alt:"Evaluation flowchart",className:"mx-auto block",sizes:"100vw"}),e.jsx("img",{src:vt,alt:"7 scenarios, 4 models, 4 evaluators and 5 criteria",className:"mx-auto block",sizes:"100vw"})]}),e.jsxs("table",{className:"rounded-lg shadow-md table",children:[e.jsx("thead",{children:e.jsxs("tr",{children:[e.jsx("th",{children:"Model"}),e.jsx("th",{children:"Average"}),e.jsx("th",{children:"Helpfulness"}),e.jsx("th",{children:"Understandability"}),e.jsx("th",{children:"Completeness"}),e.jsx("th",{children:"Conciseness"}),e.jsx("th",{children:"Harmlessness"})]})}),e.jsxs("tbody",{children:[e.jsxs("tr",{children:[e.jsx("td",{children:"openai_gpt-4-0314"}),e.jsx("td",{children:"4.63"}),e.jsx("td",{children:"4.42"}),e.jsx("td",{children:"4.85"}),e.jsx("td",{children:"4.50"}),e.jsx("td",{children:"4.42"}),e.jsx("td",{children:"4.95"})]}),e.jsxs("tr",{children:[e.jsx("td",{children:"openai_gpt-3.5-turbo-0613"}),e.jsx("td",{children:"4.60"}),e.jsx("td",{children:"4.34"}),e.jsx("td",{children:"4.86"}),e.jsx("td",{children:"4.42"}),e.jsx("td",{children:"4.41"}),e.jsx("td",{children:"4.97"})]}),e.jsxs("tr",{children:[e.jsx("td",{children:"anthropic_claude-v1.3"}),e.jsx("td",{children:"4.56"}),e.jsx("td",{children:"4.25"}),e.jsx("td",{children:"4.87"}),e.jsx("td",{children:"4.32"}),e.jsx("td",{children:"4.40"}),e.jsx("td",{children:"4.97"})]}),e.jsxs("tr",{children:[e.jsx("td",{children:"cohere_command-xlarge-beta"}),e.jsx("td",{children:"4.31"}),e.jsx("td",{children:"3.90"}),e.jsx("td",{children:"4.73"}),e.jsx("td",{children:"3.88"}),e.jsx("td",{children:"4.31"}),e.jsx("td",{children:"4.72"})]})]})]})]})}function Te({models:s}){return e.jsxs("section",{children:[e.jsxs("h3",{className:"text-3xl",children:[s.length," models"]}),e.jsx("ul",{children:s.map((t,n)=>t.todo?e.jsxs("li",{className:"text-slate-300 mt-1",children:[t.creator_organization," / ",t.display_name]},n):e.jsx(b,{to:"models",children:e.jsxs("li",{className:"text-black mt-1",children:[t.creator_organization," / ",t.display_name]},n)}))})]})}function Ie({runGroups:s}){const t=new Map(s.filter(r=>r.metric_groups!==void 0&&(r.subgroups===void 0||r.subgroups.length===0)).map(r=>[r.name,r])),n=new Set,a=[];return s.forEach(r=>{const l=r.subgroups?r.subgroups:[],o=[];l.forEach(d=>{const c=t.get(d);c&&(o.push(c),n.add(c.name))}),o.length>0&&a.push([r,o])}),e.jsxs("section",{children:[e.jsxs("h3",{className:"text-3xl",children:[n.size," scenarios"]}),e.jsx("ul",{children:a.map(([r,l])=>e.jsxs("li",{className:"my-3",children:[e.jsx(b,{className:"text-black",to:"groups/"+r.name,children:e.jsx("h2",{children:r.display_name})}),e.jsx("ul",{className:"list-disc list-inside",children:l.map(o=>o.todo?e.jsx("li",{className:`${o.todo?"ml-4 text-slate-300":"ml-4"}`,children:o.display_name},o.name):e.jsx(b,{className:"text-black",to:"groups/"+o.name,children:e.jsx("li",{className:`${o.todo?"ml-4 text-slate-300":"ml-4"}`,children:o.display_name},o.name)}))})]},r.name))})]})}const Pe=""+new URL("helmhero-28e90f4d.png",import.meta.url).href;function L({runGroupName:s=void 0,tableIndexToDisplay:t=0,numRowsToDisplay:n=10,sortColumnIndex:a=1}){const[r,l]=i.useState(void 0),[o,d]=i.useState(void 0);return i.useEffect(()=>{const c=new AbortController;async function h(){const u=await D(c.signal);l(u);const g=u.run_groups;if(g.length===0)return;const w=s||g[0].name,v=await Ae(w,c.signal);d(v[t])}return h(),()=>c.abort()},[s,t]),r===void 0||o===void 0?e.jsx(P,{}):e.jsx("div",{className:"rounded-2xl overflow-hidden border-2 bg-white p-1 mx-2 my-0 overflow-x-auto",style:{overflow:"auto",justifyContent:"space-between"},children:e.jsx(le,{schema:r,groupTable:o,numRowsToDisplay:n,sortColumnIndex:a,displayColumnIndexes:[0,1],sortable:!1,miniStyle:!0})})}function yt(){return e.jsxs("div",{className:"flex flex-col px-4 sm:px-6 py-100 sm:py-10 sm:mb-96 md:mb-96 lg:mb-0 xl:mb-0 2xl:mb-0",children:[e.jsx("div",{className:"flex flex-col text-center mb-10 justify-start",children:e.jsx("h1",{className:"text-3xl sm:text-4xl mb-3 sm:mb-4 mx-2 mt-2",children:e.jsx("strong",{children:"A holistic framework for evaluating foundation models."})})}),e.jsxs("div",{className:"flex flex-col md:flex-col lg:flex-row lg:justify-center",children:[e.jsx("div",{className:"w-full lg:w-1/2 flex justify-center mb-4 lg:mb-0 h-full py-10",children:e.jsx("img",{src:Pe,alt:"HELM Hero",className:"object-contain w-96"})}),e.jsxs("div",{className:"py-2 rounded-xl bg-gray-100 h-full",children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-2 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function fe(){const[s,t]=i.useState(void 0);return i.useEffect(()=>{const n=new AbortController;async function a(){const r=await D(n.signal);t(r)}return a(),()=>n.abort()},[]),s?e.jsxs(e.Fragment,{children:[e.jsx(yt,{}),e.jsx("div",{className:"mx-auto text-lg px-16",children:e.jsx("div",{className:"container mx-auto",children:e.jsxs("div",{className:"grid grid-cols-1 sm:grid-cols-2 gap-8",children:[e.jsx(Te,{models:s.models}),e.jsx(Ie,{runGroups:s.run_groups})]})})})]}):null}function Nt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl mt-16 my-8 font-bold text-center",children:"Massive Multitask Language Understanding (MMLU) on HELM"}),e.jsxs("div",{className:"flex flex-col lg:flex-row items-center gap-8",children:[e.jsxs("div",{className:"flex-1 text-xl",children:[e.jsxs("p",{children:[e.jsx("strong",{children:"Massive Multitask Language Understanding (MMLU)"})," ",e.jsx("a",{href:"https://arxiv.org/pdf/2009.03300.pdf",className:"link",children:"(Hendrycks et al, 2020)"})," ","is a multiple-choice question answering test that covers 57 tasks including elementary mathematics, US history, computer science, law, and more. We publish evaluation results from evaluating various models on MMLU using HELM. Our evaluation results include the following:"]}),e.jsxs("ul",{className:"my-2 list-disc list-inside",children:[e.jsx("li",{children:"Simple, standardized prompts"}),e.jsx("li",{children:"Accuracy breakdown for each of the 57 subjects"}),e.jsx("li",{children:"Full transparency of all raw prompts and predictions"})]}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://crfm.stanford.edu/2024/05/01/helm-mmlu.html",children:"Blog Post"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsx("div",{className:"flex-1",children:e.jsx(L,{})})]})]})}const Et=""+new URL("air-overview-d2e6c49f.png",import.meta.url).href;function Mt(){const s={fontVariant:"small-caps",fontWeight:"bold"},t=e.jsx("span",{style:s,children:"AIR-Bench 2024"});return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl mt-16 my-8 font-bold text-center",children:t}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsx("img",{src:Et,alt:"AIR 2024 Categories",className:"mx-auto my-4 block w-3/4",sizes:"100vw"}),e.jsxs("p",{children:["We introduce ",t,", the first AI safety benchmark aligned with emerging government regulations and company policies, following the regulation-based safety categories grounded in our AI Risks study, AIR 2024. AIR 2024 decomposes 8 government regulations and 16 company policies into a four-tiered safety taxonomy with 314 granular risk categories in the lowest tier. ",t," contains 5,694 diverse prompts spanning these categories, with manual curation and human auditing to ensure quality. We evaluate leading language models on ",t,", uncovering insights into their alignment with specified safety concerns. By bridging the gap between public benchmarks and practical AI risks, ",t," ","provides a foundation for assessing model safety across jurisdictions, fostering the development of safer and more responsible AI systems."]}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://arxiv.org/abs/2407.17436",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function St(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"ThaiExam"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{children:["In collaboration with"," ",e.jsx("a",{href:"https://www.scbx.com/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"SCBX"})," ","and"," ",e.jsx("a",{href:"https://www.scb10x.com/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"SCB 10X"}),", we introduce the ThaiExam HELM leaderboard. ThaiExam is a Thai language benchmark based on examinations for high school students and investment professionals in Thailand. The ThaiExam leaderboard is the first public leaderboard for large language models on Thai language scenarios, and features evaluations of leading language models. Like all other HELM leaderboards, the ThaiExam leaderboard provides full prompt-level transparency, and the results can be fully reproduced using the HELM framework. We hope that this leaderboard will encourage further work in multilingual language model evaluation."]}),e.jsx("div",{className:"flex flex-row justify-center my-4",children:e.jsx(b,{to:"leaderboard",className:"px-10 btn rounded-md mx-4",children:"Full Leaderboard"})})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function Lt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"HELM Finance"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{children:["In collaboration with"," ",e.jsx("a",{href:"https://www.wellsfargo.com/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"Wells Fargo"}),", we introduce the ",e.jsx("span",{className:"font-bold",children:"HELM Finance"})," ","leaderboard for ecologically-valid evaluations of leading language models in the financial domain. The leaderboard evaluates the ability of language models to perform tasks from financial professions on publicly financial documents across a range of scenarios."]}),e.jsx("div",{className:"flex flex-row justify-center my-4",children:e.jsx(b,{to:"leaderboard",className:"px-10 btn rounded-md mx-4",children:"Full Leaderboard"})})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}const kt=""+new URL("heim-logo-3e5e3aa4.png",import.meta.url).href;function Rt({metricFieldMap:s,metricGroups:t}){const n=new Set,a=[];return t.forEach(r=>{const l=[];r.metrics.forEach(o=>{const d=s[o.name];d&&(l.push(d),n.add(d.name))}),l.length>0&&a.push([r,l])}),e.jsxs("section",{children:[e.jsxs("h3",{className:"text-3xl",children:[n.size," metrics"]}),e.jsx("ul",{children:a.map(([r,l])=>e.jsxs("li",{className:"my-3",children:[e.jsx("h4",{children:r.display_name}),e.jsx("ul",{className:"list-disc list-inside",children:l.map(o=>e.jsx("li",{className:"ml-4",children:o.display_name},o.name))})]},r.name))})]})}function _t(){const[s,t]=i.useState(void 0);i.useEffect(()=>{const a=new AbortController;async function r(){const l=await D(a.signal);t(l)}return r(),()=>a.abort()},[]);const n=s?s.metrics.reduce((a,r)=>(a[r.name]=r,a),{}):void 0;return e.jsxs("div",{className:"container mx-auto px-16 text-base",children:[e.jsx("div",{className:"container max-w-screen-lg mx-auto",children:e.jsx("img",{className:"mx-auto w-96",src:kt,alt:"HEIM Logo"})}),e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"Holistic Evaluation of Text-To-Image Models"}),e.jsxs("div",{className:"flex flex-col sm:flex-row justify-center gap-2 sm:gap-8 md:gap-32 my-8",children:[e.jsx("a",{className:"px-10 btn rounded-md",href:"https://arxiv.org/abs/2311.04287",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md",href:"https://github.com/stanford-crfm/helm",children:"Github"})]}),e.jsxs("p",{className:"my-2",children:["Significant effort has recently been made in developing text-to-image generation models, which take textual prompts as input and generate images. As these models are widely used in real-world applications, there is an urgent need to comprehensively understand their capabilities and risks. However, existing evaluations primarily focus on image-text alignment and image quality. To address this limitation, we introduce a new benchmark,"," ",e.jsx("strong",{children:"Holistic Evaluation of Text-To-Image Models (HEIM)"}),"."]}),e.jsx("p",{className:"my-2",children:"We identify 12 different aspects that are important in real-world model deployment, including:"}),e.jsxs("ul",{className:"my-2 list-disc list-inside unreset",children:[e.jsx("li",{children:"image-text alignment"}),e.jsx("li",{children:"image quality"}),e.jsx("li",{children:"aesthetics"}),e.jsx("li",{children:"originality"}),e.jsx("li",{children:"reasoning"}),e.jsx("li",{children:"knowledge"}),e.jsx("li",{children:"bias"}),e.jsx("li",{children:"toxicity"}),e.jsx("li",{children:"fairness"}),e.jsx("li",{children:"robustness"}),e.jsx("li",{children:"multilinguality"}),e.jsx("li",{children:"efficiency"})]}),e.jsx("p",{className:"my-2",children:"By curating scenarios encompassing these aspects, we evaluate state-of-the-art text-to-image models using this benchmark. Unlike previous evaluations that focused on alignment and quality, HEIM significantly improves coverage by evaluating all models across all aspects. Our results reveal that no single model excels in all aspects, with different models demonstrating strengths in different aspects."}),e.jsx("p",{className:"my-2",children:"For full transparency, this website contains all the prompts, generated images and the results for the automated and human evaluation metrics."}),e.jsx("p",{className:"my-2",children:"Inspired by HELM, we decompose the model evaluation into four key components: aspect, scenario, adaptation, and metric:"}),e.jsx("div",{className:"container max-w-screen-lg mx-auto my-8",children:e.jsx("img",{src:"https://crfm.stanford.edu/heim/latest/images/heim-main.png",alt:"HEIM scenarios, prompts, images and metrics"})}),s&&n?e.jsxs("div",{className:"grid grid-cols-1 md:grid-cols-3 gap-8",children:[e.jsx(Te,{models:s.models}),e.jsx(Ie,{runGroups:s.run_groups}),e.jsx(Rt,{metricFieldMap:n,metricGroups:s.metric_groups})]}):null]})}const Ct=""+new URL("vhelm-framework-a1ca3f3f.png",import.meta.url).href,At=""+new URL("vhelm-model-8afb7616.png",import.meta.url).href,Tt=""+new URL("vhelm-aspects-1437d673.png",import.meta.url).href;function It(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl mt-16 my-8 font-bold text-center",children:"Holistic Evaluation of Vision-Language Models"}),e.jsxs("div",{className:"flex flex-col sm:flex-row justify-center gap-2 sm:gap-8 md:gap-32 my-8",children:[e.jsx("a",{className:"px-10 btn rounded-md",href:"https://arxiv.org/abs/2410.07112",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md",href:"#/leaderboard",children:"Leaderboard"}),e.jsx("a",{className:"px-10 btn rounded-md",href:"https://github.com/stanford-crfm/helm",children:"Github"})]}),e.jsxs("p",{className:"my-4",children:["Current benchmarks for assessing vision-language models (VLMs) often focus on their perception or problem-solving capabilities and neglect other critical aspects such as fairness, multilinguality, or toxicity. Furthermore, they differ in their evaluation procedures and the scope of the evaluation, making it difficult to compare models. To address these issues, we extend the HELM framework to VLMs to present the Holistic Evaluation of Vision Language Models (VHELM). To address these issues, we introduce VHELM, built on HELM for language models. VHELM aggregates various datasets to cover one or more of the 9 aspects:"," ",e.jsx("b",{children:"visual perception"}),", ",e.jsx("b",{children:"bias"}),", ",e.jsx("b",{children:"fairness"}),", ",e.jsx("b",{children:"knowledge"}),", ",e.jsx("b",{children:"multilinguality"}),", ",e.jsx("b",{children:"reasoning"}),", ",e.jsx("b",{children:"robustness"}),","," ",e.jsx("b",{children:"safety"}),", and ",e.jsx("b",{children:"toxicity"}),". In doing so, we produce a comprehensive, multi-dimensional view of the capabilities of the VLMs across these important factors. In addition, we standardize the standard inference parameters, methods of prompting, and evaluation metrics to enable fair comparisons across models. Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast. For transparency, we release the raw model generations and complete results on this website."]}),e.jsx("p",{className:"my-4 font-bold",children:"VHELM is intended to be a living benchmark. We hope to continue adding new datasets, models and metrics over time, so please stay tuned!"}),e.jsxs("div",{className:"my-16 flex flex-col lg:flex-row items-center gap-8",children:[e.jsxs("div",{className:"flex-1 text-xl",children:[e.jsx("img",{src:At,alt:"A vision-lanuage model (VLM) takes in an image and a text prompt and generates text.",className:""}),e.jsx("img",{src:Ct,alt:"An example of an evaluation for an Aspect (Knowledge) - a Scenario (MMMU) undergoes Adaptation (multimodal multiple choice) for a Model (GPT-4 Omni), then Metrics (Exact match) are computed",className:""})]}),e.jsxs("div",{className:"flex-1",children:[e.jsx(L,{}),e.jsx(b,{to:"leaderboard",className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})]})]}),e.jsx("div",{className:"container max-w-screen-lg mx-auto my-8",children:e.jsx("img",{src:Tt,alt:"An example of each aspect in VHELM: Visual Perception, Bias, Fairness, Knowledge, Multilinguality, Reasoning, Robustness, Toxicity Mitigation and Safety. ",className:""})})]})}function Pt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"HELM Call Center Leaderboard"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{className:"my-4",children:["LLMs show great potential for applications for the call center, yet there is a lack of domain-specific and ecologically-valid evaluations in this domain. To address this, we introduce the"," ",e.jsx("strong",{className:"font-bold",children:"HELM Call Center leaderboard"}),". The HELM Call Center leaderboard evaluates leading LLMs on a summarization task over a dataset of real helpdesk call transcripts provided by Accenture. The quality of the summaries is evaluated using LLM-as-judge with an ensemble of 3 models. We hope that this leaderboard provides some initial insights into the potential of LLMs in this domain."]}),e.jsxs("p",{className:"my-4",children:["This leaderboard was produced through research collaboration with"," ",e.jsx("a",{className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",href:"https://www.accenture.com/",children:"Accenture"}),", and was funded by the"," ",e.jsx("a",{className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",href:"https://hai.stanford.edu/corporate-affiliate-program",children:"HAI Corporate Affiliate Program"}),"."]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function $t(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"Chinese Language Models EVAluation Platform (CLEVA)"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{children:["In collaboration with the"," ",e.jsx("a",{href:"https://lwwangcse.github.io/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"LaVi Lab"})," ","team from"," ",e.jsx("a",{href:"https://www.cuhk.edu.hk/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"The Chinese University of Hong Kong (CUHK)"}),", we introduce the"," ",e.jsx("strong",{className:"font-bold",children:"Chinese Language Models EVAluation Platform (CLEVA)"})," ","leaderboard on HELM. CLEVA is a comprehensive Chinese-language benchmark for holistic evaluation of Chinese-language LLMs, and employs a standardized workflow to assess LLMs' performance across various dimensions."]}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://arxiv.org/abs/2308.04813",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function Ht(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"The Mighty ToRR: A Benchmark for Table Reasoning and Robustness"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{className:"mb-4 italic",children:["This leaderboard is a collaboration with"," ",e.jsx("a",{href:"https://research.ibm.com/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"IBM Research"}),"."]}),e.jsxs("p",{className:"my-4",children:["Despite its real-world significance, model performance on tabular data remains underexplored, leaving uncertainty about which model to rely on and which prompt configuration to adopt. To address this gap, we create ",e.jsx("strong",{className:"font-bold",children:"ToRR"}),", a benchmark for Table Reasoning and Robustness, a varied benchmark that measures model performance and robustness on table-related tasks. The benchmark includes 10 datasets that cover different types of table reasoning capabilities across varied domains. ToRR goes beyond model performance rankings, and is designed to reflect whether models can handle tabular data consistently and robustly, across a variety of common table representation formats. We present a leaderboard as well as comprehensive analyses of the results of leading models over ToRR. Our results reveal a striking pattern of brittle model behavior, where even strong models are unable to perform robustly on tabular data tasks. Although no specific table format leads to consistently better performance, we show that testing over multiple formats is crucial for reliably estimating model capabilities. Moreover, we show that the reliability boost from testing multiple prompts can be equivalent to adding more test examples. Overall, our findings show that reasoning over table tasks remains a significant challenge."]}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4 hidden",href:"#",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}const Dt=({id:s,title:t,text:n})=>((t==="Classic"||t==="Lite"||t==="Instruct")&&(t="HELM "+t),e.jsx("div",{className:"max-w-sm rounded overflow-hidden bg-gray-100 hover:scale-105 transition-transform duration-300",children:e.jsx("a",{href:ae(void 0,s),children:e.jsxs("div",{className:"px-6 py-4",children:[e.jsxs("div",{className:"font-bold text-xl mb-2",children:[e.jsx("div",{className:"py-3",children:e.jsx("svg",{fill:"#000000",width:"20px",height:"20px",viewBox:"0 0 24 24",xmlns:"http://www.w3.org/2000/svg",children:e.jsx("path",{d:"M22,7H16.333V4a1,1,0,0,0-1-1H8.667a1,1,0,0,0-1,1v7H2a1,1,0,0,0-1,1v8a1,1,0,0,0,1,1H22a1,1,0,0,0,1-1V8A1,1,0,0,0,22,7ZM7.667,19H3V13H7.667Zm6.666,0H9.667V5h4.666ZM21,19H16.333V9H21Z"})})}),t+" →"]}),e.jsx("p",{className:"text-gray-700 text-base",children:n})]})})}));function Ot(){const[s,t]=i.useState();return i.useEffect(()=>{fetch("https://raw.githubusercontent.com/stanford-crfm/helm/main/helm-frontend/project_metadata.json").then(n=>n.json()).then(n=>{t(n)}).catch(n=>{console.error("Error fetching JSON:",n)})},[]),e.jsx("div",{className:"p-10 mb-20",children:e.jsx("div",{className:"grid grid-cols-2 lg:grid-cols-3 gap-4",children:s&&s.map((n,a)=>n.id==="home"?null:e.jsx(Dt,{id:n.id,title:n.title,text:n.description},a))})})}function Ft(){return e.jsxs("div",{className:"flex flex-col md:flex-row px-6 py-32",children:[e.jsxs("div",{className:"flex-1 p-4 flex flex-col justify-center",children:[e.jsx("div",{className:"flex justify-start",children:e.jsxs("div",{children:[e.jsx("h1",{className:"text-4xl mb-4 mx-4 mt-2",children:e.jsx("strong",{children:"A reproducible and transparent framework for evaluating foundation models."})}),e.jsx("h3",{className:`text-xl
10
+ mb-4 mx-4 mt-2`,children:"Find leaderboards with many scenarios, metrics, and models with support for multimodality and model-graded evaluation."})]})}),e.jsxs("div",{className:"flex flex-col md:flex-row justify-start mt-6 ml-4",children:[e.jsx("button",{className:"px-6 btn btn-grey rounded-md mb-4 md:mb-0",onClick:()=>window.scrollTo({top:760,behavior:"smooth"}),children:e.jsx("div",{children:"Leaderboards ↓"})}),e.jsx("button",{className:"px-6 btn btn-grey rounded-md md:ml-4",children:e.jsx("a",{href:"https://github.com/stanford-crfm/helm",children:"Github"})})]})]}),e.jsx("div",{className:"mx-4 mt-6 md:mt-0 md:w-1/3",children:e.jsx("img",{src:Pe,alt:"HELM Hero",className:"object-cover w-full h-full"})})]})}function Bt(){const[s,t]=i.useState(void 0);return i.useEffect(()=>{const n=new AbortController;async function a(){const r=await D(n.signal);t(r)}return a(),()=>n.abort()},[]),s?e.jsxs(e.Fragment,{children:[e.jsx(Ft,{}),e.jsx("div",{className:"container py-5 mx-auto text-lg",children:e.jsx("div",{className:"flex flex-col sm:flex-row justify-center mb-10 flex sm:gap-8 md:gap-32",children:e.jsx("h1",{className:"text-4xl mx-4 ",children:e.jsx("strong",{children:"HELM Leaderboards"})})})}),e.jsx(Ot,{})]}):null}const Ut=""+new URL("overview-74aea3d8.png",import.meta.url).href,Wt=""+new URL("process-flow-bd2eba96.png",import.meta.url).href;function zt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl mt-16 my-8 font-bold text-center",children:"Image2Struct: A Benchmark for Evaluating Vision-Language Models in Extracting Structured Information from Images"}),e.jsxs("div",{className:"flex flex-col sm:flex-row justify-center gap-2 sm:gap-2 md:gap-8 my-8",children:[e.jsx("a",{className:"px-10 btn rounded-md",href:"https://arxiv.org/abs/2410.22456",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md",href:"https://github.com/stanford-crfm/helm",children:"Github"}),e.jsx("a",{className:"px-10 btn rounded-md",href:"https://huggingface.co/datasets/stanford-crfm/i2s-latex",children:"Latex dataset"}),e.jsx("a",{className:"px-5 btn rounded-md",href:"https://huggingface.co/datasets/stanford-crfm/i2s-webpage",children:"Webpage dataset"}),e.jsx("a",{className:"px-10 btn rounded-md",href:"https://huggingface.co/datasets/stanford-crfm/i2s-musicsheet",children:"Music sheet dataset"})]}),e.jsxs("div",{className:"flex flex-col lg:flex-row items-center gap-8",children:[e.jsxs("div",{className:"flex-1 text-xl",children:[e.jsxs("p",{children:[e.jsx("strong",{children:"Image2Struct"})," is a benchmark for evaluating vision-language models in practical tasks of extracting structured information from images."]}),e.jsx("br",{}),e.jsx("p",{children:"In our tasks, VLMs are prompted to generate the underlying structured information (i.e., code) from an input image. The code can be compiled, and the output image is evaluated against the input image to produce a score. This round-trip evaluation allows us to quantitatively evaluate VLMs on complex tasks with multiple correct answers. We create a pipeline that downloads fresh, user-submitted data from active online communities upon execution, evaluates the VLMs shortly, and produces a leaderboard."}),e.jsx("br",{}),e.jsx("img",{src:Ut,alt:"Evaluation flowchart",className:"mx-auto block w-full",sizes:"100vw"}),e.jsx("br",{}),e.jsx("p",{children:"We introduce 3 tasks:"}),e.jsxs("ul",{className:"my-2 list-disc list-inside",children:[e.jsx("li",{children:"LaTex: equations, tables, plots and algorithms from ArXiV papers."}),e.jsx("li",{children:"Webpages: pages from GitHub written in HTML, CSS and Javascript. ..."}),e.jsx("li",{children:"Music sheets: crops of measures from IMSLP music sheets."})]}),e.jsx("div",{className:"flex flex-row justify-center mt-8",children:e.jsx("a",{className:"px-10 btn rounded-md",href:"#/leaderboard",children:"Full Leaderboard"})})]}),e.jsx("div",{className:"flex-1",children:e.jsx(L,{numRowsToDisplay:12})})]}),e.jsx("br",{}),e.jsxs("div",{className:"flex flex-col lg:flex-row items-center gap-8",children:[e.jsxs("div",{className:"flex-1 text-xl",children:[e.jsx("p",{children:"We provide an automated process for collecting new fresh data from online communities, evaluating the models and producing a leaderboard. The pipeline is designed to be executed on a regular basis to keep the leaderboard up-to-date."}),e.jsx("br",{}),e.jsxs("p",{children:["In addition to the automated data collection, we also provide a"," ",e.jsx("i",{children:"wild"})," subset for the LaTeX and webpage tasks that are collected from Wikipedia and various popular websites. These instances do not have a corresponding code, and the evaluation is done by our proposed metric: block EMD (Earth Mover Distance)."]})]}),e.jsx("div",{className:"flex-1",children:e.jsx("img",{src:Wt,alt:"7 scenarios, 4 models, 4 evaluators and 5 criteria",className:"mx-auto block w-full",sizes:"200vw"})})]})]})}function qt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"Elements of World Knowledge (EWoK)"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{children:["We present the"," ",e.jsx("a",{className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",href:"https://arxiv.org/abs/2405.09605",children:"Elements of World Knowledge (EWoK)"})," ","leaderboard in collaboration with the EWoK team. EWoK is a benchmark for evaluating world modeling in language models by testing their ability to use knowledge of a concept to match a target text with a plausible/implausible context. EWoK targets specific concepts from multiple knowledge domains known to be vital for world modeling in humans, including social interactions and spatial relations."]}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://arxiv.org/abs/2405.09605",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}const Gt=""+new URL("medhelm-overview-3ddfcd65.png",import.meta.url).href;function Vt(){const s=e.jsx("strong",{className:"font-bold",children:"MedHELM"});return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-4 font-bold text-center",children:"MedHELM"}),e.jsx("p",{className:"text-xl my-4 italic text-center",children:"Medical and AI experts build a benchmark for evaluation of LLMs grounded in real-world healthcare needs."}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{className:"my-4",children:["We introduce ",s,", a comprehensive healthcare benchmark to evaluate language models on real-world clinical tasks using real electronic health records. Building on the HELM framework,"," ",s," comprises a structured taxonomy with 5 categories, 22 subcategories, and 121 distinct clinical tasks as well as 31 diverse datasets (12 private, 6 gated-access, and 13 public). The datasets represent a spectrum of healthcare scenarios, from diagnostic decision-making to patient communication, providing a more nuanced and clinically relevant assessment of AI capabilities in healthcare settings."]}),e.jsx("img",{src:Gt,alt:"MedHELM Task Categories",className:"mx-auto my-4 block w-7/8",sizes:"100vw"}),e.jsxs("p",{className:"my-4",children:[s," establishes a foundation for testing and evaluation of the real-world applicability of language models in healthcare. It is made possible by a unique collaboration between the Center for Research on Foundation Models, Technology and Digital Solutions at Stanford Healthcare, and Microsoft Healthcare and Life Sciences in partnership with faculty in the Departments of Medicine, Computer Science, Anesthesiology, Dermatology, Pediatrics and Biomedical Data Science as well as trainees from the MCiM program at the Clinical Excellence Research Center. The effort is coordinated by the Center for Biomedical Informatics Research."]}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://hai.stanford.edu/news/holistic-evaluation-of-large-language-models-for-medical-applications",children:"Blog Post"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}const Jt=""+new URL("helm-safety-2907a7b6.png",import.meta.url).href;function Kt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl mt-16 my-8 font-bold text-center",children:"HELM Safety"}),e.jsxs("div",{className:"flex flex-col lg:flex-row items-center gap-8",children:[e.jsxs("div",{className:"flex-1 text-xl",children:[e.jsx("img",{src:Jt,alt:"Logo",className:"mx-auto p-0 block",style:{width:"300px"}}),e.jsx("p",{children:"Language models demonstrate powerful capabilities and pose significant risks. Given their widespread deployment, standardized public benchmarking of such models is vital. While language models are routinely evaluated on standard capability benchmarks, comparable standardization for benchmarking safety risks lags behind. To address this gap, we introduce HELM-Safety as a collection of 5 safety benchmarks that span 6 risk categories (e.g. violence, fraud, discrimination, sexual, harassment, deception). We present evaluation results for recent leading open weights and closed models."}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://crfm.stanford.edu/2024/11/08/helm-safety.html",children:"Blog Post"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsx("div",{className:"flex-1",children:e.jsx(L,{})})]})]})}function Zt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"HELM Capabilities"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsx("p",{children:"HELM Capabilities is a new leaderboard for benchmarking the capabilities of foundation models, featuring 6 challenging scenarios."}),e.jsxs("div",{className:"flex flex-row justify-center my-4",children:[e.jsx(b,{to:"#",className:"px-10 btn rounded-md mx-4",children:"Blog Post"}),e.jsx(b,{to:"leaderboard",className:"px-10 btn rounded-md mx-4",children:"Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function Xt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"MMLU-Winogrande-Afr: Clinical MMLU and Winogrande in 11 low-resource African languages"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{className:"mb-4 italic",children:["This leaderboard is a collaboration with"," ",e.jsx("a",{href:"https://ghamut.com/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"Ghamut Corporation"})," ","and the"," ",e.jsx("a",{href:"https://www.gatesfoundation.org/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"Gates Foundation"}),"."]}),e.jsx("p",{className:"my-4",children:"Large Language Models (LLMs) have shown remarkable performance across various tasks, yet significant disparities remain for non-English languages, and especially native African languages. This paper addresses these disparities by creating approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages, covering a population of over 160 million speakers of: Amharic, Bambara, Igbo, Sepedi (Northern Sotho), Shona, Sesotho (Southern Sotho), Setswana, and Tsonga. Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology. Using the translated benchmarks, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages. The publicly available benchmarks, translations, and code from this study support further research and development aimed at creating more inclusive and effective language technologies."}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://arxiv.org/abs/2412.12417",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function Qt(){return e.jsxs("div",{className:"container mx-auto px-16",children:[e.jsx("h1",{className:"text-3xl my-8 font-bold text-center",children:"SEA-HELM: Southeast Asian Holistic Evaluation of Language Models"}),e.jsxs("div",{className:"flex flex-col lg:flex-row gap-8",children:[e.jsxs("div",{className:"flex-1 text-l",children:[e.jsxs("p",{className:"mb-4 italic",children:["This leaderboard is a collaboration with"," ",e.jsx("a",{href:"https://aisingapore.org/",className:"font-bold underline text-blue-600 hover:text-blue-800 visited:text-purple-600",children:"AI Singapore"}),"."]}),e.jsxs("p",{className:"my-4",children:["With the rapid emergence of novel capabilities in Large Language Models (LLMs), the need for rigorous multilingual and multicultural benchmarks that are integrated has become more pronounced. Though existing LLM benchmarks are capable of evaluating specific capabilities of LLMs in English as well as in various mid- to low-resource languages, including those in the Southeast Asian (SEA) region, a comprehensive and authentic evaluation suite for the SEA languages has not been developed thus far. Here, we present"," ",e.jsx("strong",{className:"font-bold",children:"SEA-HELM"}),", a holistic linguistic and cultural LLM evaluation suite that emphasizes SEA languages, comprising five core pillars: (1) NLP Classics, (2) LLM-specifics, (3) SEA Linguistics, (4) SEA Culture, (5) Safety. SEA-HELM currently supports Filipino, Indonesian, Tamil, Thai, and Vietnamese. We also introduce the SEA-HELM leaderboard, which allows users to understand models' multilingual and multicultural performance in a systematic and user-friendly manner."]}),e.jsxs("div",{className:"flex flex-row justify-center mt-4",children:[e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"https://arxiv.org/abs/2502.14301",children:"Paper"}),e.jsx("a",{className:"px-10 btn rounded-md mx-4",href:"#/leaderboard",children:"Full Leaderboard"})]})]}),e.jsxs("div",{className:"py-2 pb-6 rounded-3xl bg-gray-100 h-full",style:{maxWidth:"100%"},children:[e.jsx(L,{}),e.jsx("div",{className:"flex justify-end",children:e.jsx(b,{to:"leaderboard",children:e.jsx("button",{className:"px-4 mx-3 mt-1 btn bg-white rounded-md",children:e.jsx("span",{children:"See More"})})})})]})]})]})}function Yt(){return window.PROJECT_ID==="lite"?e.jsx(fe,{}):window.PROJECT_ID==="instruct"?e.jsx(wt,{}):window.PROJECT_ID==="image2struct"?e.jsx(zt,{}):window.PROJECT_ID==="heim"?e.jsx(_t,{}):window.PROJECT_ID==="mmlu"?e.jsx(Nt,{}):window.PROJECT_ID==="vhelm"?e.jsx(It,{}):window.PROJECT_ID==="air-bench"?e.jsx(Mt,{}):window.PROJECT_ID==="thaiexam"?e.jsx(St,{}):window.PROJECT_ID==="finance"?e.jsx(Lt,{}):window.PROJECT_ID==="call-center"?e.jsx(Pt,{}):window.PROJECT_ID==="cleva"?e.jsx($t,{}):window.PROJECT_ID==="torr"?e.jsx(Ht,{}):window.PROJECT_ID==="ewok"?e.jsx(qt,{}):window.PROJECT_ID==="medhelm"?e.jsx(Vt,{}):window.PROJECT_ID==="safety"?e.jsx(Kt,{}):window.PROJECT_ID==="capabilities"?e.jsx(Zt,{}):window.PROJECT_ID==="mmlu-winogrande-afr"?e.jsx(Xt,{}):window.PROJECT_ID==="sea-helm"?e.jsx(Qt,{}):window.PROJECT_ID==="home"?e.jsx(Bt,{}):e.jsx(fe,{})}function en(){return e.jsx(Fe,{children:e.jsx(Be,{children:e.jsxs(T,{path:"/",element:e.jsx(Ss,{}),children:[e.jsx(T,{index:!0,element:e.jsx(Yt,{})}),e.jsx(T,{path:"leaderboard",element:e.jsx(Q,{})}),e.jsx(T,{path:"leaderboard/:groupName",element:e.jsx(Q,{})}),e.jsx(T,{path:"models",element:e.jsx(Cs,{})}),e.jsx(T,{path:"scenarios",element:e.jsx(As,{})}),e.jsx(T,{path:"groups",element:e.jsx($s,{})}),e.jsx(T,{path:"groups/:groupName",element:e.jsx(Q,{})}),e.jsx(T,{path:"runs",element:e.jsx(Ds,{})}),e.jsx(T,{path:"runs/:runName",element:e.jsx(gt,{})})]})})})}ee.createRoot(document.getElementById("root")).render(e.jsx(Ue.StrictMode,{children:e.jsx(en,{})}));