crfm-helm 0.5.3__py3-none-any.whl → 0.5.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- crfm_helm-0.5.5.dist-info/METADATA +413 -0
- crfm_helm-0.5.5.dist-info/RECORD +894 -0
- {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info}/WHEEL +1 -1
- helm/benchmark/adaptation/adapter_spec.py +13 -1
- helm/benchmark/adaptation/adapters/adapter_factory.py +15 -1
- helm/benchmark/adaptation/adapters/binary_ranking_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/chat_adapter.py +49 -0
- helm/benchmark/adaptation/adapters/ehr_instruction_adapter.py +108 -0
- helm/benchmark/adaptation/adapters/generation_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/language_modeling_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/generation_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/test_multimodal_prompt.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_calibrated_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/multiple_choice_joint_chain_of_thought_adapter.py +87 -0
- helm/benchmark/adaptation/adapters/multiple_choice_separate_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/test_generation_adapter.py +3 -3
- helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +2 -2
- helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +2 -2
- helm/benchmark/adaptation/common_adapter_specs.py +69 -4
- helm/benchmark/adaptation/prompt.py +1 -1
- helm/benchmark/annotation/aci_bench_annotator.py +95 -0
- helm/benchmark/annotation/air_bench_annotator.py +20 -5
- helm/benchmark/annotation/annotator.py +5 -0
- helm/benchmark/annotation/annotator_factory.py +3 -20
- helm/benchmark/annotation/anthropic_red_team_annotator.py +11 -24
- helm/benchmark/annotation/autobencher_capabilities_annotator.py +107 -0
- helm/benchmark/annotation/autobencher_safety_annotator.py +98 -0
- helm/benchmark/annotation/bigcodebench_annotator.py +108 -0
- helm/benchmark/annotation/bird_sql_annotator.py +58 -0
- helm/benchmark/annotation/call_center_annotator.py +22 -11
- helm/benchmark/annotation/chw_care_plan_annotator.py +98 -0
- helm/benchmark/annotation/czech_bank_qa_annotator.py +78 -0
- helm/benchmark/annotation/dischargeme_annotator.py +107 -0
- helm/benchmark/annotation/ehr_sql_annotator.py +87 -0
- helm/benchmark/annotation/harm_bench_annotator.py +11 -24
- helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +131 -0
- helm/benchmark/annotation/image2struct/image_compiler_annotator.py +6 -1
- helm/benchmark/annotation/live_qa_annotator.py +10 -5
- helm/benchmark/annotation/med_dialog_annotator.py +99 -0
- helm/benchmark/annotation/medalign_annotator.py +100 -0
- helm/benchmark/annotation/medi_qa_annotator.py +98 -0
- helm/benchmark/annotation/medication_qa_annotator.py +90 -61
- helm/benchmark/annotation/mental_health_annotator.py +98 -0
- helm/benchmark/annotation/mimic_rrs_annotator.py +100 -0
- helm/benchmark/annotation/model_as_judge.py +281 -18
- helm/benchmark/annotation/mtsamples_procedures_annotator.py +98 -0
- helm/benchmark/annotation/mtsamples_replicate_annotator.py +101 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_template.txt +152 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_zero_shot_template.txt +36 -0
- helm/benchmark/annotation/omni_math_annotator.py +132 -0
- helm/benchmark/annotation/simple_safety_tests_annotator.py +11 -25
- helm/benchmark/annotation/spider_annotator.py +18 -0
- helm/benchmark/annotation/starr_patient_instructions_annotator.py +98 -0
- helm/benchmark/annotation/wildbench/eval_template.pairwise.v2.md +75 -0
- helm/benchmark/annotation/wildbench/eval_template.score.v2.md +66 -0
- helm/benchmark/annotation/wildbench_annotator.py +119 -0
- helm/benchmark/annotation/xstest_annotator.py +20 -30
- helm/benchmark/annotation_executor.py +35 -15
- helm/benchmark/augmentations/cleva_perturbation.py +9 -8
- helm/benchmark/augmentations/contraction_expansion_perturbation.py +2 -2
- helm/benchmark/augmentations/contrast_sets_perturbation.py +2 -2
- helm/benchmark/augmentations/dialect_perturbation.py +4 -5
- helm/benchmark/augmentations/extra_space_perturbation.py +2 -2
- helm/benchmark/augmentations/filler_words_perturbation.py +2 -2
- helm/benchmark/augmentations/gender_perturbation.py +2 -2
- helm/benchmark/augmentations/lowercase_perturbation.py +2 -2
- helm/benchmark/augmentations/mild_mix_perturbation.py +6 -6
- helm/benchmark/augmentations/misspelling_perturbation.py +2 -2
- helm/benchmark/augmentations/person_name_perturbation.py +4 -5
- helm/benchmark/augmentations/perturbation.py +1 -1
- helm/benchmark/augmentations/space_perturbation.py +2 -2
- helm/benchmark/augmentations/suffix_perturbation.py +2 -2
- helm/benchmark/augmentations/synonym_perturbation.py +4 -3
- helm/benchmark/augmentations/test_perturbation.py +16 -13
- helm/benchmark/augmentations/translate_perturbation.py +2 -2
- helm/benchmark/augmentations/typos_perturbation.py +2 -2
- helm/benchmark/data_preprocessor.py +2 -2
- helm/benchmark/huggingface_registration.py +2 -7
- helm/benchmark/metrics/aci_bench_metrics.py +34 -0
- helm/benchmark/metrics/basic_metrics.py +6 -6
- helm/benchmark/metrics/bbq_metrics.py +2 -2
- helm/benchmark/metrics/bias_metrics.py +12 -3
- helm/benchmark/metrics/bigcodebench_metrics.py +25 -0
- helm/benchmark/metrics/bird_sql_metrics.py +28 -0
- helm/benchmark/metrics/chw_care_plan_metrics.py +34 -0
- helm/benchmark/metrics/classification_metrics.py +76 -12
- helm/benchmark/metrics/cleva_harms_metrics.py +8 -7
- helm/benchmark/metrics/code_metrics.py +5 -5
- helm/benchmark/metrics/comet_metric.py +125 -0
- helm/benchmark/metrics/common_metric_specs.py +9 -2
- helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +72 -0
- helm/benchmark/metrics/copyright_metrics.py +4 -4
- helm/benchmark/metrics/czech_bank_qa_metrics.py +29 -0
- helm/benchmark/metrics/decodingtrust_fairness_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_privacy_metrics.py +2 -2
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +2 -2
- helm/benchmark/metrics/dischargeme_metrics.py +34 -0
- helm/benchmark/metrics/disinformation_metrics.py +4 -4
- helm/benchmark/metrics/dry_run_metrics.py +5 -5
- helm/benchmark/metrics/efficiency_metrics.py +3 -3
- helm/benchmark/metrics/ehr_sql_metrics.py +103 -0
- helm/benchmark/metrics/evaluate_instances_metric.py +3 -3
- helm/benchmark/metrics/evaluate_reference_metrics.py +144 -16
- helm/benchmark/metrics/gpqa_chain_of_thought_metric.py +103 -0
- helm/benchmark/metrics/gpt4_audio_critique_metrics.py +167 -0
- helm/benchmark/metrics/helpdesk_call_summarization_metrics.py +36 -0
- helm/benchmark/metrics/ifeval/instructions.py +1574 -0
- helm/benchmark/metrics/ifeval/instructions_registry.py +182 -0
- helm/benchmark/metrics/ifeval/instructions_registry.pyi +3 -0
- helm/benchmark/metrics/ifeval/instructions_util.py +153 -0
- helm/benchmark/metrics/ifeval_metrics.py +55 -0
- helm/benchmark/metrics/image_generation/aesthetics_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detection_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/detectors/vitdet.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +1 -1
- helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +1 -1
- helm/benchmark/metrics/image_generation/nsfw_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/q16/test_q16.py +3 -1
- helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +1 -1
- helm/benchmark/metrics/image_generation/skin_tone_metrics.py +2 -2
- helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +1 -1
- helm/benchmark/metrics/image_generation/watermark_metrics.py +1 -1
- helm/benchmark/metrics/instruction_following_critique_metrics.py +4 -4
- helm/benchmark/metrics/language_modeling_metrics.py +4 -4
- helm/benchmark/metrics/machine_translation_metrics.py +2 -2
- helm/benchmark/metrics/med_dialog_metrics.py +34 -0
- helm/benchmark/metrics/medalign_metrics.py +34 -0
- helm/benchmark/metrics/medcalc_bench_metrics.py +124 -0
- helm/benchmark/metrics/medec_metrics.py +101 -0
- helm/benchmark/metrics/medi_qa_metrics.py +34 -0
- helm/benchmark/metrics/medication_qa_metrics.py +15 -4
- helm/benchmark/metrics/mental_health_metrics.py +34 -0
- helm/benchmark/metrics/metric.py +3 -3
- helm/benchmark/metrics/mimic_rrs_metrics.py +34 -0
- helm/benchmark/metrics/mimiciv_billing_code_metrics.py +96 -0
- helm/benchmark/metrics/mtsamples_procedures_metrics.py +34 -0
- helm/benchmark/metrics/mtsamples_replicate_metrics.py +34 -0
- helm/benchmark/metrics/nltk_helper.py +32 -0
- helm/benchmark/metrics/numeracy_metrics.py +4 -4
- helm/benchmark/metrics/omni_math_metrics.py +32 -0
- helm/benchmark/metrics/output_processing_metric.py +60 -0
- helm/benchmark/metrics/output_processors.py +15 -0
- helm/benchmark/metrics/paraphrase_generation_metrics.py +2 -2
- helm/benchmark/metrics/ranking_metrics.py +3 -3
- helm/benchmark/metrics/reference_metric.py +3 -3
- helm/benchmark/metrics/safety_metrics.py +39 -17
- helm/benchmark/metrics/{bhasa_metrics.py → seahelm_metrics.py} +3 -3
- helm/benchmark/metrics/seahelm_metrics_specs.py +10 -0
- helm/benchmark/metrics/spider_metrics.py +7 -0
- helm/benchmark/metrics/starr_patient_instructions_metrics.py +34 -0
- helm/benchmark/metrics/statistic.py +1 -1
- helm/benchmark/metrics/summac/model_summac.py +1 -1
- helm/benchmark/metrics/summarization_critique_metrics.py +4 -4
- helm/benchmark/metrics/summarization_metrics.py +19 -9
- helm/benchmark/metrics/test_bias_metrics.py +5 -1
- helm/benchmark/metrics/test_classification_metrics.py +140 -68
- helm/benchmark/metrics/test_evaluate_reference_metrics.py +15 -0
- helm/benchmark/metrics/test_metric.py +1 -1
- helm/benchmark/metrics/test_statistic.py +2 -2
- helm/benchmark/metrics/tokens/ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/auto_token_cost_estimator.py +6 -6
- helm/benchmark/metrics/tokens/cohere_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/free_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/toxicity_metrics.py +4 -4
- helm/benchmark/metrics/unitxt_metrics.py +21 -4
- helm/benchmark/metrics/vision_language/image_metrics.py +7 -3
- helm/benchmark/metrics/wildbench_metrics.py +34 -0
- helm/benchmark/model_metadata_registry.py +16 -0
- helm/benchmark/presentation/create_plots.py +1 -1
- helm/benchmark/presentation/schema.py +3 -0
- helm/benchmark/presentation/summarize.py +119 -256
- helm/benchmark/presentation/test_summarize.py +145 -3
- helm/benchmark/presentation/torr_robustness_summarizer.py +178 -0
- helm/benchmark/reeval_run.py +203 -0
- helm/benchmark/reeval_runner.py +355 -0
- helm/benchmark/run.py +8 -17
- helm/benchmark/run_expander.py +105 -8
- helm/benchmark/run_spec_factory.py +12 -0
- helm/benchmark/run_specs/air_bench_run_specs.py +21 -3
- helm/benchmark/run_specs/audio_run_specs.py +613 -0
- helm/benchmark/run_specs/call_center_run_specs.py +49 -0
- helm/benchmark/run_specs/capabilities_run_specs.py +308 -0
- helm/benchmark/run_specs/classic_run_specs.py +1 -69
- helm/benchmark/run_specs/enem_challenge_specs.py +31 -0
- helm/benchmark/run_specs/enterprise_run_specs.py +260 -0
- helm/benchmark/run_specs/experimental_run_specs.py +112 -3
- helm/benchmark/run_specs/finance_run_specs.py +6 -2
- helm/benchmark/run_specs/imdb_ptbr_run_specs.py +30 -0
- helm/benchmark/run_specs/lite_run_specs.py +2 -2
- helm/benchmark/run_specs/long_context_run_specs.py +89 -0
- helm/benchmark/run_specs/medhelm_run_specs.py +1155 -0
- helm/benchmark/run_specs/mmlu_clinical_afr_run_specs.py +49 -0
- helm/benchmark/run_specs/oab_exams_specs.py +32 -0
- helm/benchmark/run_specs/safety_run_specs.py +37 -0
- helm/benchmark/run_specs/{bhasa_run_specs.py → seahelm_run_specs.py} +66 -52
- helm/benchmark/run_specs/sql_run_specs.py +54 -0
- helm/benchmark/run_specs/tweetsentbr_run_specs.py +32 -0
- helm/benchmark/run_specs/unitxt_run_specs.py +14 -5
- helm/benchmark/run_specs/vlm_run_specs.py +83 -5
- helm/benchmark/run_specs/winogrande_afr_run_specs.py +47 -0
- helm/benchmark/scenarios/aci_bench_scenario.py +120 -0
- helm/benchmark/scenarios/air_bench_scenario.py +6 -1
- helm/benchmark/scenarios/anthropic_hh_rlhf_scenario.py +5 -3
- helm/benchmark/scenarios/anthropic_red_team_scenario.py +1 -1
- helm/benchmark/scenarios/audio_language/__init__.py +0 -0
- helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +128 -0
- helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +154 -0
- helm/benchmark/scenarios/audio_language/ami_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/audio_mnist_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audio_pairs_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audiocaps_scenario.py +59 -0
- helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +152 -0
- helm/benchmark/scenarios/audio_language/common_voice_15_scenario.py +99 -0
- helm/benchmark/scenarios/audio_language/covost2_scenario.py +163 -0
- helm/benchmark/scenarios/audio_language/fleurs_fairness_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/fleurs_scenario.py +312 -0
- helm/benchmark/scenarios/audio_language/iemocap_audio_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/librispeech_fairness_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/meld_audio_scenario.py +113 -0
- helm/benchmark/scenarios/audio_language/multilingual_librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/mustard_scenario.py +142 -0
- helm/benchmark/scenarios/audio_language/mutox_scenario.py +254 -0
- helm/benchmark/scenarios/audio_language/parade_scenario.py +97 -0
- helm/benchmark/scenarios/audio_language/speech_robust_bench_scenario.py +124 -0
- helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +69 -0
- helm/benchmark/scenarios/audio_language/voice_jailbreak_attacks_scenario.py +87 -0
- helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +106 -0
- helm/benchmark/scenarios/autobencher_capabilities_scenario.py +68 -0
- helm/benchmark/scenarios/autobencher_safety_scenario.py +51 -0
- helm/benchmark/scenarios/babi_qa_scenario.py +1 -1
- helm/benchmark/scenarios/banking77_scenario.py +6 -1
- helm/benchmark/scenarios/bbq_scenario.py +1 -1
- helm/benchmark/scenarios/big_bench_scenario.py +11 -1
- helm/benchmark/scenarios/bigcodebench_scenario.py +58 -0
- helm/benchmark/scenarios/bird_sql_scenario.py +94 -0
- helm/benchmark/scenarios/bird_sql_scenario_helper.py +118 -0
- helm/benchmark/scenarios/blimp_scenario.py +1 -1
- helm/benchmark/scenarios/bold_scenario.py +1 -1
- helm/benchmark/scenarios/boolq_scenario.py +1 -1
- helm/benchmark/scenarios/casehold_scenario.py +79 -0
- helm/benchmark/scenarios/chw_care_plan_scenario.py +105 -0
- helm/benchmark/scenarios/civil_comments_scenario.py +1 -1
- helm/benchmark/scenarios/clear_scenario.py +153 -0
- helm/benchmark/scenarios/cleva_scenario.py +2 -2
- helm/benchmark/scenarios/code_scenario.py +17 -4
- helm/benchmark/scenarios/commonsense_scenario.py +1 -1
- helm/benchmark/scenarios/conv_fin_qa_calc_scenario.py +97 -0
- helm/benchmark/scenarios/copyright_scenario.py +1 -1
- helm/benchmark/scenarios/covid_dialog_scenario.py +10 -1
- helm/benchmark/scenarios/cti_to_mitre_scenario.py +240 -0
- helm/benchmark/scenarios/custom_mcqa_scenario.py +1 -1
- helm/benchmark/scenarios/czech_bank_qa_scenario.py +130 -0
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +1 -1
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/dialogue_scenarios.py +13 -2
- helm/benchmark/scenarios/dischargeme_scenario.py +157 -0
- helm/benchmark/scenarios/disinformation_scenario.py +10 -1
- helm/benchmark/scenarios/dyck_language_scenario.py +10 -1
- helm/benchmark/scenarios/echr_judgment_classification_scenario.py +113 -0
- helm/benchmark/scenarios/ehr_sql_scenario.py +131 -0
- helm/benchmark/scenarios/ehrshot_scenario.py +1546 -0
- helm/benchmark/scenarios/enem_challenge_scenario.py +58 -0
- helm/benchmark/scenarios/entity_data_imputation_scenario.py +11 -1
- helm/benchmark/scenarios/entity_matching_scenario.py +12 -2
- helm/benchmark/scenarios/financial_phrasebank_scenario.py +94 -0
- helm/benchmark/scenarios/gold_commodity_news_scenario.py +124 -0
- helm/benchmark/scenarios/gpqa_scenario.py +80 -0
- helm/benchmark/scenarios/grammar_scenario.py +2 -2
- helm/benchmark/scenarios/gsm_scenario.py +10 -1
- helm/benchmark/scenarios/harm_bench_gcg_transfer_scenario.py +50 -0
- helm/benchmark/scenarios/harm_bench_scenario.py +1 -1
- helm/benchmark/scenarios/headqa_scenario.py +131 -0
- helm/benchmark/scenarios/helpdesk_call_summarization_scenario.py +37 -0
- helm/benchmark/scenarios/ice_scenario.py +8 -4
- helm/benchmark/scenarios/ifeval_scenario.py +53 -0
- helm/benchmark/scenarios/imdb_ptbr_scenario.py +60 -0
- helm/benchmark/scenarios/imdb_scenario.py +11 -2
- helm/benchmark/scenarios/infinite_bench_sum_scenario.py +82 -0
- helm/benchmark/scenarios/interactive_qa_mmlu_scenario.py +2 -2
- helm/benchmark/scenarios/koala_scenario.py +1 -1
- helm/benchmark/scenarios/legal_contract_summarization_scenario.py +129 -0
- helm/benchmark/scenarios/legal_opinion_sentiment_classification_scenario.py +77 -0
- helm/benchmark/scenarios/legal_summarization_scenario.py +11 -1
- helm/benchmark/scenarios/legal_support_scenario.py +11 -1
- helm/benchmark/scenarios/legalbench_scenario.py +22 -3
- helm/benchmark/scenarios/lex_glue_scenario.py +12 -2
- helm/benchmark/scenarios/lextreme_scenario.py +11 -1
- helm/benchmark/scenarios/live_qa_scenario.py +1 -1
- helm/benchmark/scenarios/lm_entry_scenario.py +1 -1
- helm/benchmark/scenarios/lsat_qa_scenario.py +1 -1
- helm/benchmark/scenarios/math_scenario.py +9 -1
- helm/benchmark/scenarios/me_q_sum_scenario.py +10 -1
- helm/benchmark/scenarios/med_dialog_scenario.py +22 -24
- helm/benchmark/scenarios/med_mcqa_scenario.py +10 -1
- helm/benchmark/scenarios/med_paragraph_simplification_scenario.py +10 -1
- helm/benchmark/scenarios/med_qa_scenario.py +10 -1
- helm/benchmark/scenarios/medalign_scenario.py +88 -0
- helm/benchmark/scenarios/medalign_scenario_helper.py +429 -0
- helm/benchmark/scenarios/medbullets_scenario.py +140 -0
- helm/benchmark/scenarios/medcalc_bench_scenario.py +125 -0
- helm/benchmark/scenarios/medec_scenario.py +120 -0
- helm/benchmark/scenarios/medhallu_scenario.py +66 -0
- helm/benchmark/scenarios/medi_qa_scenario.py +105 -0
- helm/benchmark/scenarios/medication_qa_scenario.py +2 -2
- helm/benchmark/scenarios/mental_health_scenario.py +112 -0
- helm/benchmark/scenarios/mimic_bhc_scenario.py +98 -0
- helm/benchmark/scenarios/mimic_rrs_scenario.py +89 -0
- helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +71 -0
- helm/benchmark/scenarios/mmlu_clinical_afr_scenario.py +74 -0
- helm/benchmark/scenarios/mmlu_pro_scenario.py +95 -0
- helm/benchmark/scenarios/mmlu_scenario.py +11 -1
- helm/benchmark/scenarios/msmarco_scenario.py +1 -1
- helm/benchmark/scenarios/mtsamples_procedures_scenario.py +141 -0
- helm/benchmark/scenarios/mtsamples_replicate_scenario.py +141 -0
- helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +271 -0
- helm/benchmark/scenarios/narrativeqa_scenario.py +1 -1
- helm/benchmark/scenarios/natural_qa_scenario.py +1 -1
- helm/benchmark/scenarios/newsqa_scenario.py +1 -1
- helm/benchmark/scenarios/numeracy_scenario.py +10 -1
- helm/benchmark/scenarios/oab_exams_scenario.py +57 -0
- helm/benchmark/scenarios/omni_math_scenario.py +53 -0
- helm/benchmark/scenarios/open_assistant_scenario.py +11 -2
- helm/benchmark/scenarios/opinions_qa_scenario.py +1 -1
- helm/benchmark/scenarios/pubmed_qa_scenario.py +54 -43
- helm/benchmark/scenarios/quac_scenario.py +10 -1
- helm/benchmark/scenarios/race_based_med_scenario.py +142 -0
- helm/benchmark/scenarios/raft_scenario.py +18 -3
- helm/benchmark/scenarios/real_toxicity_prompts_scenario.py +1 -1
- helm/benchmark/scenarios/ruler_qa_scenario_helper.py +171 -0
- helm/benchmark/scenarios/ruler_qa_scenarios.py +88 -0
- helm/benchmark/scenarios/scenario.py +9 -1
- helm/benchmark/scenarios/{bhasa_scenario.py → seahelm_scenario.py} +233 -84
- helm/benchmark/scenarios/self_instruct_scenario.py +1 -1
- helm/benchmark/scenarios/shc_bmt_scenario.py +69 -0
- helm/benchmark/scenarios/shc_cdi_scenario.py +70 -0
- helm/benchmark/scenarios/shc_conf_scenario.py +70 -0
- helm/benchmark/scenarios/shc_ent_scenario.py +72 -0
- helm/benchmark/scenarios/shc_gip_scenario.py +66 -0
- helm/benchmark/scenarios/shc_ptbm_scenario.py +76 -0
- helm/benchmark/scenarios/shc_sei_scenario.py +89 -0
- helm/benchmark/scenarios/shc_sequoia_scenario.py +69 -0
- helm/benchmark/scenarios/simple_safety_tests_scenario.py +1 -1
- helm/benchmark/scenarios/spider_scenario.py +91 -0
- helm/benchmark/scenarios/starr_patient_instructions_scenario.py +90 -0
- helm/benchmark/scenarios/summarization_scenario.py +11 -1
- helm/benchmark/scenarios/sumosum_scenario.py +157 -0
- helm/benchmark/scenarios/synthetic_efficiency_scenario.py +1 -1
- helm/benchmark/scenarios/synthetic_reasoning_natural_scenario.py +11 -1
- helm/benchmark/scenarios/synthetic_reasoning_scenario.py +11 -1
- helm/benchmark/scenarios/test_bigcodebench_scenario.py +26 -0
- helm/benchmark/scenarios/test_czech_bank_qa_scenario.py +18 -0
- helm/benchmark/scenarios/test_enem_challenge_scenario.py +53 -0
- helm/benchmark/scenarios/test_ewok_scenario.py +6 -2
- helm/benchmark/scenarios/test_gold_commodity_news_scenario.py +18 -0
- helm/benchmark/scenarios/test_gpqa_scenario.py +44 -0
- helm/benchmark/scenarios/test_ifeval_scenario.py +36 -0
- helm/benchmark/scenarios/test_imdb_ptbr_scenario.py +27 -0
- helm/benchmark/scenarios/test_infinite_bench_sum_scenario.py +46 -0
- helm/benchmark/scenarios/test_math_scenario.py +1 -0
- helm/benchmark/scenarios/test_mmlu_clinical_afr_scenario.py +21 -0
- helm/benchmark/scenarios/test_mmlu_pro_scenario.py +53 -0
- helm/benchmark/scenarios/test_oab_exams_scenario.py +51 -0
- helm/benchmark/scenarios/test_omni_math_scenario.py +27 -0
- helm/benchmark/scenarios/test_tweetsentbr_scenario.py +24 -0
- helm/benchmark/scenarios/test_wildbench_scenario.py +15 -0
- helm/benchmark/scenarios/test_winogrande_afr_scenario.py +19 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +10 -1
- helm/benchmark/scenarios/the_pile_scenario.py +1 -1
- helm/benchmark/scenarios/truthful_qa_scenario.py +10 -1
- helm/benchmark/scenarios/tweetsentbr_scenario.py +66 -0
- helm/benchmark/scenarios/twitter_aae_scenario.py +1 -1
- helm/benchmark/scenarios/unitxt_scenario.py +8 -2
- helm/benchmark/scenarios/verifiability_judgment_scenario.py +1 -1
- helm/benchmark/scenarios/vicuna_scenario.py +1 -1
- helm/benchmark/scenarios/vision_language/blink_scenario.py +140 -0
- helm/benchmark/scenarios/vision_language/mm_star_scenario.py +95 -0
- helm/benchmark/scenarios/vision_language/vqa_rad_scenario.py +88 -0
- helm/benchmark/scenarios/wikifact_scenario.py +11 -1
- helm/benchmark/scenarios/wikitext_103_scenario.py +1 -1
- helm/benchmark/scenarios/wildbench_scenario.py +83 -0
- helm/benchmark/scenarios/winogrande_afr_scenario.py +78 -0
- helm/benchmark/scenarios/wmt_14_scenario.py +14 -2
- helm/benchmark/scenarios/xstest_scenario.py +1 -1
- helm/benchmark/server.py +11 -0
- helm/benchmark/slurm_runner.py +1 -1
- helm/benchmark/static/schema_audio.yaml +752 -0
- helm/benchmark/static/schema_autobencher.yaml +150 -0
- helm/benchmark/static/schema_call_center.yaml +97 -60
- helm/benchmark/static/schema_capabilities.yaml +254 -0
- helm/benchmark/static/schema_czech_bank.yaml +148 -0
- helm/benchmark/static/schema_enem_challenge.yaml +146 -0
- helm/benchmark/static/schema_enterprise.yaml +298 -0
- helm/benchmark/static/schema_finance.yaml +14 -12
- helm/benchmark/static/schema_heim.yaml +1389 -0
- helm/benchmark/static/schema_legal.yaml +566 -0
- helm/benchmark/static/{schema_medical.yaml → schema_long_context.yaml} +67 -82
- helm/benchmark/static/schema_medhelm.yaml +1081 -0
- helm/benchmark/static/schema_mmlu_winogrande_afr.yaml +1045 -0
- helm/benchmark/static/schema_safety.yaml +42 -6
- helm/benchmark/static/{schema_bhasa.yaml → schema_seahelm.yaml} +40 -26
- helm/benchmark/static/schema_social_audio.yaml +224 -0
- helm/benchmark/static/schema_sql.yaml +171 -0
- helm/benchmark/static/{schema_tables.yaml → schema_torr.yaml} +187 -30
- helm/benchmark/static/schema_tweetsentbr.yaml +146 -0
- helm/benchmark/static/schema_vhelm.yaml +151 -47
- helm/benchmark/static_build/assets/helm-safety-2907a7b6.png +0 -0
- helm/benchmark/static_build/assets/index-262903c1.js +10 -0
- helm/benchmark/static_build/assets/index-42060d71.css +1 -0
- helm/benchmark/static_build/assets/medhelm-overview-3ddfcd65.png +0 -0
- helm/benchmark/static_build/assets/{react-d4a0b69b.js → react-f82877fd.js} +1 -1
- helm/benchmark/static_build/assets/{recharts-6d337683.js → recharts-4037aff0.js} +1 -1
- helm/benchmark/static_build/assets/{tremor-54a99cc4.js → tremor-9cefc3c5.js} +1 -1
- helm/benchmark/static_build/assets/vhelm-aspects-1437d673.png +0 -0
- helm/benchmark/static_build/assets/vhelm-framework-a1ca3f3f.png +0 -0
- helm/benchmark/static_build/assets/vhelm-model-8afb7616.png +0 -0
- helm/benchmark/static_build/config.js +1 -1
- helm/benchmark/static_build/index.html +5 -5
- helm/benchmark/window_services/default_window_service.py +1 -1
- helm/benchmark/window_services/encoder_decoder_window_service.py +1 -1
- helm/benchmark/window_services/ice_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/lexica_search_window_service.py +1 -1
- helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +1 -1
- helm/benchmark/window_services/local_window_service.py +2 -2
- helm/benchmark/window_services/test_anthropic_window_service.py +3 -3
- helm/benchmark/window_services/test_bloom_window_service.py +3 -3
- helm/benchmark/window_services/test_gpt2_window_service.py +7 -2
- helm/benchmark/window_services/test_gpt4_window_service.py +8 -3
- helm/benchmark/window_services/test_gptj_window_service.py +8 -3
- helm/benchmark/window_services/test_gptneox_window_service.py +3 -3
- helm/benchmark/window_services/test_openai_window_service.py +8 -3
- helm/benchmark/window_services/test_opt_window_service.py +3 -3
- helm/benchmark/window_services/test_palmyra_window_service.py +3 -3
- helm/benchmark/window_services/test_t0pp_window_service.py +3 -3
- helm/benchmark/window_services/test_t511b_window_service.py +3 -3
- helm/benchmark/window_services/test_ul2_window_service.py +3 -3
- helm/benchmark/window_services/test_utils.py +1 -1
- helm/benchmark/window_services/test_yalm_window_service.py +3 -3
- helm/benchmark/window_services/tokenizer_service.py +0 -5
- helm/benchmark/window_services/yalm_window_service.py +1 -1
- helm/clients/ai21_client.py +3 -3
- helm/clients/aleph_alpha_client.py +1 -1
- helm/clients/audio_language/__init__.py +0 -0
- helm/clients/audio_language/diva_llama_client.py +118 -0
- helm/clients/audio_language/llama_omni_client.py +198 -0
- helm/clients/audio_language/qwen2_audiolm_client.py +188 -0
- helm/clients/audio_language/qwen_audiolm_client.py +150 -0
- helm/clients/auto_client.py +4 -2
- helm/clients/azure_openai_client.py +55 -0
- helm/clients/bedrock_client.py +201 -7
- helm/clients/bedrock_utils.py +33 -0
- helm/clients/clip_scorers/clip_scorer.py +1 -1
- helm/clients/clip_scorers/multilingual_clip_scorer.py +1 -1
- helm/clients/cohere_client.py +3 -3
- helm/clients/google_client.py +1 -1
- helm/clients/http_model_client.py +1 -1
- helm/clients/huggingface_client.py +10 -18
- helm/clients/ibm_client.py +267 -0
- helm/clients/image_generation/adobe_vision_client.py +1 -1
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +1 -1
- helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +3 -3
- helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +5 -2
- helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +2 -2
- helm/clients/image_generation/cogview2_client.py +1 -1
- helm/clients/image_generation/dalle2_client.py +1 -1
- helm/clients/image_generation/dalle3_client.py +2 -2
- helm/clients/image_generation/dalle_mini/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/data.py +1 -1
- helm/clients/image_generation/dalle_mini/model/__init__.py +5 -5
- helm/clients/image_generation/dalle_mini/model/configuration.py +1 -1
- helm/clients/image_generation/dalle_mini/model/modeling.py +2 -2
- helm/clients/image_generation/dalle_mini/model/processor.py +4 -4
- helm/clients/image_generation/dalle_mini/model/tokenizer.py +1 -1
- helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -1
- helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +2 -2
- helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +1 -1
- helm/clients/image_generation/dalle_mini_client.py +1 -1
- helm/clients/image_generation/deep_floyd_client.py +1 -1
- helm/clients/image_generation/huggingface_diffusers_client.py +1 -1
- helm/clients/image_generation/lexica_client.py +1 -1
- helm/clients/image_generation/mindalle/models/__init__.py +6 -6
- helm/clients/image_generation/mindalle/models/stage1/vqgan.py +1 -1
- helm/clients/image_generation/mindalle/models/stage2/transformer.py +1 -1
- helm/clients/image_generation/mindalle/utils/__init__.py +3 -3
- helm/clients/image_generation/mindalle_client.py +1 -1
- helm/clients/image_generation/together_image_generation_client.py +1 -1
- helm/clients/lit_gpt_client.py +2 -2
- helm/clients/mistral_client.py +62 -18
- helm/clients/nvidia_nim_client.py +0 -3
- helm/clients/openai_client.py +255 -21
- helm/clients/palmyra_client.py +2 -6
- helm/clients/reka_client.py +1 -1
- helm/clients/stanfordhealthcare_azure_openai_client.py +58 -0
- helm/clients/stanfordhealthcare_claude_client.py +31 -0
- helm/clients/stanfordhealthcare_google_client.py +43 -0
- helm/clients/stanfordhealthcare_http_model_client.py +93 -0
- helm/clients/stanfordhealthcare_openai_client.py +62 -0
- helm/clients/stanfordhealthcare_shc_openai_client.py +42 -0
- helm/clients/test_client.py +1 -1
- helm/clients/test_together_client.py +6 -1
- helm/clients/together_client.py +69 -7
- helm/clients/upstage_client.py +23 -0
- helm/clients/vertexai_client.py +39 -13
- helm/clients/vision_language/open_flamingo/__init__.py +2 -2
- helm/clients/vision_language/open_flamingo/src/factory.py +3 -3
- helm/clients/vision_language/open_flamingo/src/flamingo.py +2 -2
- helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +2 -2
- helm/clients/vision_language/qwen2_vlm_client.py +175 -0
- helm/clients/vllm_client.py +4 -6
- helm/clients/yi_client.py +0 -3
- helm/common/audio_utils.py +111 -0
- helm/common/cache.py +8 -30
- helm/common/file_caches/local_file_cache.py +1 -1
- helm/common/file_caches/test_local_file_cache.py +1 -1
- helm/common/images_utils.py +2 -2
- helm/common/key_value_store.py +9 -9
- helm/common/media_object.py +2 -2
- helm/common/mongo_key_value_store.py +3 -3
- helm/common/multimodal_request_utils.py +26 -0
- helm/common/reeval_parameters.py +12 -0
- helm/common/request.py +6 -2
- helm/common/response_format.py +18 -0
- helm/common/test_cache.py +1 -48
- helm/common/test_media_object.py +1 -1
- helm/common/tokenization_request.py +0 -9
- helm/config/model_deployments.yaml +1258 -33
- helm/config/model_metadata.yaml +1110 -41
- helm/config/tokenizer_configs.yaml +403 -3
- helm/proxy/cli.py +2 -2
- helm/proxy/example_queries.py +1 -1
- helm/proxy/server.py +11 -13
- helm/proxy/services/remote_service.py +1 -7
- helm/proxy/services/server_service.py +6 -19
- helm/proxy/services/service.py +0 -6
- helm/proxy/services/test_remote_service.py +2 -2
- helm/proxy/services/test_service.py +1 -1
- helm/proxy/static/general.js +122 -0
- helm/proxy/static/help.html +99 -0
- helm/proxy/static/index.css +57 -0
- helm/proxy/static/index.html +40 -0
- helm/proxy/static/index.js +456 -0
- helm/proxy/static/info-icon.png +0 -0
- helm/proxy/test_retry.py +1 -1
- helm/proxy/token_counters/auto_token_counter.py +1 -1
- helm/tokenizers/aleph_alpha_tokenizer.py +1 -1
- helm/tokenizers/caching_tokenizer.py +2 -30
- helm/tokenizers/http_model_tokenizer.py +1 -1
- helm/tokenizers/huggingface_tokenizer.py +2 -2
- helm/tokenizers/lit_gpt_tokenizer.py +1 -1
- helm/tokenizers/test_anthropic_tokenizer.py +6 -2
- helm/tokenizers/test_huggingface_tokenizer.py +1 -1
- helm/tokenizers/test_yalm_tokenizer.py +1 -1
- helm/tokenizers/tiktoken_tokenizer.py +1 -1
- helm/tokenizers/tokenizer.py +3 -1
- helm/tokenizers/yalm_tokenizer.py +3 -3
- helm/tokenizers/yalm_tokenizer_data/test_yalm_tokenizer.py +1 -1
- crfm_helm-0.5.3.dist-info/METADATA +0 -355
- crfm_helm-0.5.3.dist-info/RECORD +0 -699
- helm/benchmark/data_overlap/data_overlap_spec.py +0 -86
- helm/benchmark/data_overlap/export_scenario_text.py +0 -119
- helm/benchmark/data_overlap/light_scenario.py +0 -60
- helm/benchmark/metrics/bhasa_metrics_specs.py +0 -10
- helm/benchmark/static_build/assets/01-694cb9b7.png +0 -0
- helm/benchmark/static_build/assets/accenture-6f97eeda.png +0 -0
- helm/benchmark/static_build/assets/ai21-0eb91ec3.png +0 -0
- helm/benchmark/static_build/assets/aisingapore-6dfc9acf.png +0 -0
- helm/benchmark/static_build/assets/aleph-alpha-7ce10034.png +0 -0
- helm/benchmark/static_build/assets/anthropic-70d8bc39.png +0 -0
- helm/benchmark/static_build/assets/bigscience-7f0400c0.png +0 -0
- helm/benchmark/static_build/assets/cohere-3550c6cb.png +0 -0
- helm/benchmark/static_build/assets/cresta-9e22b983.png +0 -0
- helm/benchmark/static_build/assets/cuhk-8c5631e9.png +0 -0
- helm/benchmark/static_build/assets/eleutherai-b9451114.png +0 -0
- helm/benchmark/static_build/assets/google-06d997ad.png +0 -0
- helm/benchmark/static_build/assets/index-05c76bb1.css +0 -1
- helm/benchmark/static_build/assets/index-58f97dcd.js +0 -10
- helm/benchmark/static_build/assets/meta-5580e9f1.png +0 -0
- helm/benchmark/static_build/assets/microsoft-f5ee5016.png +0 -0
- helm/benchmark/static_build/assets/mistral-18e1be23.png +0 -0
- helm/benchmark/static_build/assets/nvidia-86fa75c1.png +0 -0
- helm/benchmark/static_build/assets/openai-3f8653e4.png +0 -0
- helm/benchmark/static_build/assets/scb10x-204bd786.png +0 -0
- helm/benchmark/static_build/assets/tii-24de195c.png +0 -0
- helm/benchmark/static_build/assets/together-a665a35b.png +0 -0
- helm/benchmark/static_build/assets/tsinghua-keg-97d4b395.png +0 -0
- helm/benchmark/static_build/assets/vhelm-framework-cde7618a.png +0 -0
- helm/benchmark/static_build/assets/vhelm-model-6d812526.png +0 -0
- helm/benchmark/static_build/assets/wellsfargo-a86a6c4a.png +0 -0
- helm/benchmark/static_build/assets/yandex-38e09d70.png +0 -0
- helm/tokenizers/anthropic_tokenizer.py +0 -52
- {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info/licenses}/LICENSE +0 -0
- {crfm_helm-0.5.3.dist-info → crfm_helm-0.5.5.dist-info}/top_level.txt +0 -0
- /helm/benchmark/{data_overlap → metrics/ifeval}/__init__.py +0 -0
|
@@ -0,0 +1,1081 @@
|
|
|
1
|
+
---
|
|
2
|
+
############################################################
|
|
3
|
+
metrics:
|
|
4
|
+
# Infrastructure metrics:
|
|
5
|
+
- name: num_perplexity_tokens
|
|
6
|
+
display_name: '# tokens'
|
|
7
|
+
description: Average number of tokens in the predicted output (for language modeling, the input too).
|
|
8
|
+
- name: num_bytes
|
|
9
|
+
display_name: '# bytes'
|
|
10
|
+
description: Average number of bytes in the predicted output (for language modeling, the input too).
|
|
11
|
+
|
|
12
|
+
- name: num_references
|
|
13
|
+
display_name: '# ref'
|
|
14
|
+
description: Number of references.
|
|
15
|
+
- name: num_train_trials
|
|
16
|
+
display_name: '# trials'
|
|
17
|
+
description: Number of trials, where in each trial we choose an independent, random set of training instances.
|
|
18
|
+
- name: estimated_num_tokens_cost
|
|
19
|
+
display_name: 'cost'
|
|
20
|
+
description: An estimate of the number of tokens (including prompt and output completions) needed to perform the request.
|
|
21
|
+
- name: num_prompt_tokens
|
|
22
|
+
display_name: '# prompt tokens'
|
|
23
|
+
description: Number of tokens in the prompt.
|
|
24
|
+
- name: num_prompt_characters
|
|
25
|
+
display_name: '# prompt chars'
|
|
26
|
+
description: Number of characters in the prompt.
|
|
27
|
+
- name: num_completion_tokens
|
|
28
|
+
display_name: '# completion tokens'
|
|
29
|
+
description: Actual number of completion tokens (over all completions).
|
|
30
|
+
- name: num_output_tokens
|
|
31
|
+
display_name: '# output tokens'
|
|
32
|
+
description: Actual number of output tokens.
|
|
33
|
+
- name: max_num_output_tokens
|
|
34
|
+
display_name: 'Max output tokens'
|
|
35
|
+
description: Maximum number of output tokens (overestimate since we might stop earlier due to stop sequences).
|
|
36
|
+
- name: num_requests
|
|
37
|
+
display_name: '# requests'
|
|
38
|
+
description: Number of distinct API requests.
|
|
39
|
+
- name: num_instances
|
|
40
|
+
display_name: '# eval'
|
|
41
|
+
description: Number of evaluation instances.
|
|
42
|
+
- name: num_train_instances
|
|
43
|
+
display_name: '# train'
|
|
44
|
+
description: Number of training instances (e.g., in-context examples).
|
|
45
|
+
- name: prompt_truncated
|
|
46
|
+
display_name: truncated
|
|
47
|
+
description: Fraction of instances where the prompt itself was truncated (implies that there were no in-context examples).
|
|
48
|
+
- name: finish_reason_length
|
|
49
|
+
display_name: finish b/c length
|
|
50
|
+
description: Fraction of instances where the the output was terminated because of the max tokens limit.
|
|
51
|
+
- name: finish_reason_stop
|
|
52
|
+
display_name: finish b/c stop
|
|
53
|
+
description: Fraction of instances where the the output was terminated because of the stop sequences.
|
|
54
|
+
- name: finish_reason_endoftext
|
|
55
|
+
display_name: finish b/c endoftext
|
|
56
|
+
description: Fraction of instances where the the output was terminated because the end of text token was generated.
|
|
57
|
+
- name: finish_reason_unknown
|
|
58
|
+
display_name: finish b/c unknown
|
|
59
|
+
description: Fraction of instances where the the output was terminated for unknown reasons.
|
|
60
|
+
- name: num_completions
|
|
61
|
+
display_name: '# completions'
|
|
62
|
+
description: Number of completions.
|
|
63
|
+
- name: predicted_index
|
|
64
|
+
display_name: Predicted index
|
|
65
|
+
description: Integer index of the reference (0, 1, ...) that was predicted by the model (for multiple-choice).
|
|
66
|
+
|
|
67
|
+
# Accuracy metrics:
|
|
68
|
+
- name: exact_match
|
|
69
|
+
display_name: Exact match
|
|
70
|
+
short_display_name: EM
|
|
71
|
+
description: Fraction of instances that the predicted output matches a correct reference exactly.
|
|
72
|
+
lower_is_better: false
|
|
73
|
+
- name: f1_score
|
|
74
|
+
display_name: F1
|
|
75
|
+
description: Average F1 score in terms of word overlap between the model output and correct reference.
|
|
76
|
+
lower_is_better: false
|
|
77
|
+
- name: live_qa_score
|
|
78
|
+
display_name: Judge Score
|
|
79
|
+
description: LLM-as-judge score
|
|
80
|
+
lower_is_better: false
|
|
81
|
+
- name: medication_qa_score
|
|
82
|
+
display_name: Judge Score
|
|
83
|
+
description: LLM-as-judge score
|
|
84
|
+
lower_is_better: false
|
|
85
|
+
- name: quasi_exact_match
|
|
86
|
+
display_name: Quasi-exact match
|
|
87
|
+
short_display_name: EM
|
|
88
|
+
description: Fraction of instances that the predicted output matches a correct reference up to light processing.
|
|
89
|
+
lower_is_better: false
|
|
90
|
+
- name: prefix_exact_match
|
|
91
|
+
display_name: Prefix exact match
|
|
92
|
+
short_display_name: PEM
|
|
93
|
+
description: Fraction of instances that the predicted output matches the prefix of a correct reference exactly.
|
|
94
|
+
lower_is_better: false
|
|
95
|
+
- name: quasi_prefix_exact_match
|
|
96
|
+
# TODO: should call this prefix_quasi_exact_match
|
|
97
|
+
display_name: Prefix quasi-exact match
|
|
98
|
+
short_display_name: PEM
|
|
99
|
+
description: Fraction of instances that the predicted output matches the prefix of a correct reference up to light processing.
|
|
100
|
+
lower_is_better: false
|
|
101
|
+
- name: logprob
|
|
102
|
+
display_name: Log probability
|
|
103
|
+
short_display_name: Logprob
|
|
104
|
+
description: Predicted output's average log probability (input's log prob for language modeling).
|
|
105
|
+
lower_is_better: false
|
|
106
|
+
- name: logprob_per_byte
|
|
107
|
+
display_name: Log probability / byte
|
|
108
|
+
short_display_name: Logprob/byte
|
|
109
|
+
description: Predicted output's average log probability normalized by the number of bytes.
|
|
110
|
+
lower_is_better: false
|
|
111
|
+
- name: bits_per_byte
|
|
112
|
+
display_name: Bits/byte
|
|
113
|
+
short_display_name: BPB
|
|
114
|
+
lower_is_better: true
|
|
115
|
+
description: Average number of bits per byte according to model probabilities.
|
|
116
|
+
- name: perplexity
|
|
117
|
+
display_name: Perplexity
|
|
118
|
+
short_display_name: PPL
|
|
119
|
+
lower_is_better: true
|
|
120
|
+
description: Perplexity of the output completion (effective branching factor per output token).
|
|
121
|
+
- name: rouge_1
|
|
122
|
+
display_name: ROUGE-1
|
|
123
|
+
description: Average ROUGE score [(Lin, 2004)](https://aclanthology.org/W04-1013/) based on 1-gram overlap.
|
|
124
|
+
lower_is_better: false
|
|
125
|
+
- name: rouge_2
|
|
126
|
+
display_name: ROUGE-2
|
|
127
|
+
description: Average ROUGE score [(Lin, 2004)](https://aclanthology.org/W04-1013/) based on 2-gram overlap.
|
|
128
|
+
lower_is_better: false
|
|
129
|
+
- name: rouge_l
|
|
130
|
+
display_name: ROUGE-L
|
|
131
|
+
description: Average ROUGE score [(Lin, 2004)](https://aclanthology.org/W04-1013/) based on longest common subsequence overlap.
|
|
132
|
+
lower_is_better: false
|
|
133
|
+
- name: bleu_1
|
|
134
|
+
display_name: BLEU-1
|
|
135
|
+
description: Average BLEU score [(Papineni et al., 2002)](https://aclanthology.org/P02-1040/) based on 1-gram overlap.
|
|
136
|
+
lower_is_better: false
|
|
137
|
+
- name: bleu_4
|
|
138
|
+
display_name: BLEU-4
|
|
139
|
+
description: Average BLEU score [(Papineni et al., 2002)](https://aclanthology.org/P02-1040/) based on 4-gram overlap.
|
|
140
|
+
lower_is_better: false
|
|
141
|
+
- name: medec_error_flag_accuracy
|
|
142
|
+
display_name: Medical Error Flag Accuracy
|
|
143
|
+
short_display_name: MedecFlagAcc
|
|
144
|
+
description: Measures how accurately the model identifies whether a clinical note contains an error (binary classification of correct/incorrect).
|
|
145
|
+
lower_is_better: false
|
|
146
|
+
- name: medec_error_sentence_accuracy
|
|
147
|
+
display_name: Medical Error Sentence Accuracy
|
|
148
|
+
short_display_name: MedecSentenceAcc
|
|
149
|
+
description: Measures how accurately the model identifies the specific erroneous sentence within a clinical note.
|
|
150
|
+
lower_is_better: false
|
|
151
|
+
- name: ehr_sql_precision_answerable
|
|
152
|
+
display_name: Precision for Answerable Questions
|
|
153
|
+
short_display_name: EHRSQLPreAns
|
|
154
|
+
description: Measures the proportion of correctly predicted answerable questions among all questions predicted to be answerable.
|
|
155
|
+
lower_is_better: false
|
|
156
|
+
- name: ehr_sql_recall_answerable
|
|
157
|
+
display_name: Recall for Answerable Questions
|
|
158
|
+
short_display_name: EHRSQLReAns
|
|
159
|
+
description: Measures the proportion of correctly predicted answerable questions among all answerable questions in the dataset.
|
|
160
|
+
lower_is_better: false
|
|
161
|
+
- name: mimiciv_billing_code_precision
|
|
162
|
+
display_name: Precision for MIMIC Billing Codes
|
|
163
|
+
short_display_name: MIMICBillingPre
|
|
164
|
+
description: Measures the proportion of correctly predicted ICD codes among all ICD codes predicted by the model.
|
|
165
|
+
lower_is_better: false
|
|
166
|
+
- name: mimiciv_billing_code_recall
|
|
167
|
+
display_name: Recall for MIMIC Billing Codes
|
|
168
|
+
short_display_name: MIMICBillingRec
|
|
169
|
+
description: Measures the proportion of correctly predicted ICD codes among all ICD codes present in the gold standard.
|
|
170
|
+
lower_is_better: false
|
|
171
|
+
- name: mimiciv_billing_code_f1
|
|
172
|
+
display_name: F1 Score for MIMIC Billing Codes
|
|
173
|
+
short_display_name: MIMICBillingF1
|
|
174
|
+
description: Measures the harmonic mean of precision and recall for ICD codes, providing a balanced evaluation of the model's performance.
|
|
175
|
+
lower_is_better: false
|
|
176
|
+
- name: exact_match@5
|
|
177
|
+
display_name: Exact match @5
|
|
178
|
+
short_display_name: EM@5
|
|
179
|
+
description: Fraction of instances where at least one predicted output among the top 5 matches a correct reference exactly.
|
|
180
|
+
lower_is_better: false
|
|
181
|
+
- name: quasi_exact_match@5
|
|
182
|
+
display_name: Quasi-exact match @5
|
|
183
|
+
short_display_name: EM@5
|
|
184
|
+
description: Fraction of instances where at least one predicted output among the top 5 matches a correct reference up to light processing.
|
|
185
|
+
lower_is_better: false
|
|
186
|
+
- name: prefix_exact_match@5
|
|
187
|
+
display_name: Prefix exact match @5
|
|
188
|
+
short_display_name: PEM@5
|
|
189
|
+
description: Fraction of instances that the predicted output among the top 5 matches the prefix of a correct reference exactly.
|
|
190
|
+
lower_is_better: false
|
|
191
|
+
- name: quasi_prefix_exact_match@5
|
|
192
|
+
display_name: Prefix quasi-exact match @5
|
|
193
|
+
short_display_name: PEM@5
|
|
194
|
+
description: Fraction of instances that the predicted output among the top 5 matches the prefix of a correct reference up to light processing.
|
|
195
|
+
lower_is_better: false
|
|
196
|
+
- name: ehr_sql_execution_accuracy
|
|
197
|
+
display_name: Execution accuracy for Generated Query
|
|
198
|
+
short_display_name: EHRSQLExeAcc
|
|
199
|
+
description: Measures the proportion of correctly predicted answerable questions among all questions predicted to be answerable.
|
|
200
|
+
lower_is_better: false
|
|
201
|
+
- name: ehr_sql_query_validity
|
|
202
|
+
display_name: Validity of Generated Query
|
|
203
|
+
short_display_name: EHRSQLQueryValid
|
|
204
|
+
description: Measures the proportion of correctly predicted answerable questions among all answerable questions in the dataset.
|
|
205
|
+
lower_is_better: false
|
|
206
|
+
- name: aci_bench_accuracy
|
|
207
|
+
display_name: ACI-Bench Accuracy
|
|
208
|
+
short_display_name: Accuracy
|
|
209
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
210
|
+
lower_is_better: false
|
|
211
|
+
- name: mtsamples_replicate_accuracy
|
|
212
|
+
display_name: MTSamples Replicate Accuracy
|
|
213
|
+
short_display_name: Accuracy
|
|
214
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
215
|
+
lower_is_better: false
|
|
216
|
+
- name: medalign_accuracy
|
|
217
|
+
display_name: Medalign Accuracy
|
|
218
|
+
short_display_name: Accuracy
|
|
219
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
220
|
+
lower_is_better: false
|
|
221
|
+
- name: dischargeme_accuracy
|
|
222
|
+
display_name: DischargeMe Accuracy
|
|
223
|
+
short_display_name: Accuracy
|
|
224
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
225
|
+
lower_is_better: false
|
|
226
|
+
- name: mtsamples_procedures_accuracy
|
|
227
|
+
display_name: MTSamples Procedures Accuracy
|
|
228
|
+
short_display_name: Accuracy
|
|
229
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
230
|
+
lower_is_better: false
|
|
231
|
+
- name: mimic_rrs_accuracy
|
|
232
|
+
display_name: MIMIC-RRS Accuracy
|
|
233
|
+
short_display_name: Accuracy
|
|
234
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
235
|
+
lower_is_better: false
|
|
236
|
+
- name: chw_care_plan_accuracy
|
|
237
|
+
display_name: NoteExtract Accuracy
|
|
238
|
+
short_display_name: Accuracy
|
|
239
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
240
|
+
lower_is_better: false
|
|
241
|
+
- name: medication_qa_accuracy
|
|
242
|
+
display_name: MedicationQA Accuracy
|
|
243
|
+
short_display_name: Accuracy
|
|
244
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
245
|
+
lower_is_better: false
|
|
246
|
+
- name: starr_patient_instructions_accuracy
|
|
247
|
+
display_name: PatientInstruct Accuracy
|
|
248
|
+
short_display_name: Accuracy
|
|
249
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
250
|
+
lower_is_better: false
|
|
251
|
+
- name: med_dialog_accuracy
|
|
252
|
+
display_name: MedDialog Accuracy
|
|
253
|
+
short_display_name: Accuracy
|
|
254
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
255
|
+
lower_is_better: false
|
|
256
|
+
- name: medi_qa_accuracy
|
|
257
|
+
display_name: MediQA Accuracy
|
|
258
|
+
short_display_name: Accuracy
|
|
259
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
260
|
+
lower_is_better: false
|
|
261
|
+
- name: mental_health_accuracy
|
|
262
|
+
display_name: MentalHealth Accuracy
|
|
263
|
+
short_display_name: Accuracy
|
|
264
|
+
description: Measures the average score assigned by an LLM-based jury evaluating task performance.
|
|
265
|
+
lower_is_better: false
|
|
266
|
+
|
|
267
|
+
# Summariazation metrics
|
|
268
|
+
- name: summac
|
|
269
|
+
display_name: SummaC
|
|
270
|
+
description: Faithfulness scores based on the SummaC method of [Laban et al. (2022)](https://aclanthology.org/2022.tacl-1.10/).
|
|
271
|
+
lower_is_better: false
|
|
272
|
+
- name: QAFactEval
|
|
273
|
+
display_name: QAFactEval
|
|
274
|
+
description: Faithfulness scores based on the SummaC method of [Laban et al. (2022)](https://aclanthology.org/2022.tacl-1.10/).
|
|
275
|
+
lower_is_better: false
|
|
276
|
+
- name: summarization_coverage
|
|
277
|
+
display_name: Coverage
|
|
278
|
+
description: Extent to which the model-generated summaries are extractive fragments from the source document [(Grusky et al., 2018)](https://aclanthology.org/N18-1065/).
|
|
279
|
+
- name: summarization_density
|
|
280
|
+
display_name: Density
|
|
281
|
+
description: Extent to which the model-generated summaries are extractive summaries based on the source document [(Grusky et al., 2018)](https://aclanthology.org/N18-1065/).
|
|
282
|
+
- name: summarization_compression
|
|
283
|
+
display_name: Compression
|
|
284
|
+
description: Extent to which the model-generated summaries are compressed relative to the source document [(Grusky et al., 2018)](https://aclanthology.org/N18-1065/).
|
|
285
|
+
- name: BERTScore-P
|
|
286
|
+
display_name: BERTScore (P)
|
|
287
|
+
description: Average BERTScore precision [(Zhang et al., 2020)](https://openreview.net/pdf?id=SkeHuCVFDr) between model generation and reference summary.
|
|
288
|
+
lower_is_better: false
|
|
289
|
+
- name: BERTScore-R
|
|
290
|
+
display_name: BERTScore (R)
|
|
291
|
+
description: Average BERTScore recall [(Zhang et al., 2020)](https://openreview.net/pdf?id=SkeHuCVFDr) between model generation and reference summary.
|
|
292
|
+
lower_is_better: false
|
|
293
|
+
- name: BERTScore-F
|
|
294
|
+
display_name: BERTScore (F1)
|
|
295
|
+
description: Average BERTScore F1 [(Zhang et al., 2020)](https://openreview.net/pdf?id=SkeHuCVFDr) between model generation and reference summary.
|
|
296
|
+
lower_is_better: false
|
|
297
|
+
- name: HumanEval-faithfulness
|
|
298
|
+
display_name: HumanEval-faithfulness
|
|
299
|
+
description: Human evaluation score for faithfulness.
|
|
300
|
+
lower_is_better: false
|
|
301
|
+
- name: HumanEval-relevance
|
|
302
|
+
display_name: HumanEval-relevance
|
|
303
|
+
description: Human evaluation score for relevance.
|
|
304
|
+
lower_is_better: false
|
|
305
|
+
- name: HumanEval-coherence
|
|
306
|
+
display_name: HumanEval-coherence
|
|
307
|
+
description: Human evaluation score for coherence.
|
|
308
|
+
lower_is_better: false
|
|
309
|
+
|
|
310
|
+
# Toxicity metrics
|
|
311
|
+
- name: expected_max_toxicity
|
|
312
|
+
display_name: Average max toxicity
|
|
313
|
+
short_display_name: Avg. max toxicity
|
|
314
|
+
lower_is_better: true
|
|
315
|
+
description: Average max toxicity score across all completions (based on the PerspectiveAPI toxicity classifier; [Gehman et al. (2020)](https://aclanthology.org/2020.findings-emnlp.301/)).
|
|
316
|
+
- name: max_toxicity_probability
|
|
317
|
+
display_name: max toxicity
|
|
318
|
+
lower_is_better: true
|
|
319
|
+
description: Fraction of instances where most toxic completion is above 0.5 toxicity (based on the PerspectiveAPI toxicity classifier; [Gehman et al. (2020)](https://aclanthology.org/2020.findings-emnlp.301/)).
|
|
320
|
+
- name: toxic_frac
|
|
321
|
+
display_name: Toxic fraction
|
|
322
|
+
lower_is_better: true
|
|
323
|
+
description: Fraction of model outputs that are toxic (based on the PerspectiveAPI toxicity classifier).
|
|
324
|
+
|
|
325
|
+
# Efficiency metrics
|
|
326
|
+
- name: training_co2_cost
|
|
327
|
+
display_name: Estimated training emissions (kg CO2)
|
|
328
|
+
short_display_name: Training emissions (kg CO2)
|
|
329
|
+
lower_is_better: true
|
|
330
|
+
description: Estimate of the CO2 emissions from training the model.
|
|
331
|
+
- name: training_energy_cost
|
|
332
|
+
display_name: Estimated training energy cost (MWh)
|
|
333
|
+
short_display_name: Training energy (MWh)
|
|
334
|
+
lower_is_better: true
|
|
335
|
+
description: Estimate of the amount of energy used to train the model.
|
|
336
|
+
- name: inference_runtime
|
|
337
|
+
display_name: Observed inference runtime (s)
|
|
338
|
+
short_display_name: Observed inference time (s)
|
|
339
|
+
lower_is_better: true
|
|
340
|
+
description: Average observed time to process a request to the model (via an API, and thus depends on particular deployment).
|
|
341
|
+
- name: inference_idealized_runtime
|
|
342
|
+
display_name: Idealized inference runtime (s)
|
|
343
|
+
short_display_name: Idealized inference time (s)
|
|
344
|
+
lower_is_better: true
|
|
345
|
+
description: Average time to process a request to the model based solely on the model architecture (using Megatron-LM).
|
|
346
|
+
- name: inference_denoised_runtime
|
|
347
|
+
display_name: Denoised inference runtime (s)
|
|
348
|
+
short_display_name: Denoised inference time (s)
|
|
349
|
+
lower_is_better: true
|
|
350
|
+
description: Average time to process a request to the model minus performance contention by using profiled runtimes from multiple trials of SyntheticEfficiencyScenario.
|
|
351
|
+
- name: batch_size
|
|
352
|
+
display_name: Batch size
|
|
353
|
+
description: For batch jobs, how many requests are in a batch.
|
|
354
|
+
|
|
355
|
+
# Calibration metrics:
|
|
356
|
+
- name: max_prob
|
|
357
|
+
display_name: Max prob
|
|
358
|
+
description: Model's average confidence in its prediction (only computed for classification tasks)
|
|
359
|
+
lower_is_better: false
|
|
360
|
+
- name: ece_10_bin
|
|
361
|
+
display_name: 10-bin expected calibration error
|
|
362
|
+
short_display_name: ECE (10-bin)
|
|
363
|
+
lower_is_better: true
|
|
364
|
+
description: The average difference between the model's confidence and accuracy, averaged across 10 bins where each bin contains an equal number of points (only computed for classification tasks). Warning - not reliable for small datasets (e.g., with < 300 examples) because each bin will have very few examples.
|
|
365
|
+
- name: ece_1_bin
|
|
366
|
+
display_name: 1-bin expected calibration error
|
|
367
|
+
short_display_name: ECE (1-bin)
|
|
368
|
+
lower_is_better: true
|
|
369
|
+
description: The (absolute value) difference between the model's average confidence and accuracy (only computed for classification tasks).
|
|
370
|
+
- name: selective_cov_acc_area
|
|
371
|
+
display_name: Selective coverage-accuracy area
|
|
372
|
+
short_display_name: Selective Acc
|
|
373
|
+
description: The area under the coverage-accuracy curve, a standard selective classification metric (only computed for classification tasks).
|
|
374
|
+
lower_is_better: false
|
|
375
|
+
- name: selective_acc@10
|
|
376
|
+
display_name: Accuracy at 10% coverage
|
|
377
|
+
short_display_name: Acc@10%
|
|
378
|
+
description: The accuracy for the 10% of predictions that the model is most confident on (only computed for classification tasks).
|
|
379
|
+
lower_is_better: false
|
|
380
|
+
- name: platt_ece_10_bin
|
|
381
|
+
display_name: 10-bin Expected Calibration Error (after Platt scaling)
|
|
382
|
+
short_display_name: Platt-scaled ECE (10-bin)
|
|
383
|
+
lower_is_better: true
|
|
384
|
+
description: 10-bin ECE computed after applying Platt scaling to recalibrate the model's predicted probabilities.
|
|
385
|
+
- name: platt_ece_1_bin
|
|
386
|
+
display_name: 1-bin expected calibration error (after Platt scaling)
|
|
387
|
+
short_display_name: Platt-scaled ECE (1-bin)
|
|
388
|
+
lower_is_better: true
|
|
389
|
+
description: 1-bin ECE computed after applying Platt scaling to recalibrate the model's predicted probabilities.
|
|
390
|
+
- name: platt_coef
|
|
391
|
+
display_name: Platt Scaling Coefficient
|
|
392
|
+
short_display_name: Platt Coef
|
|
393
|
+
description: Coefficient of the Platt scaling classifier (can compare this across tasks).
|
|
394
|
+
lower_is_better: false
|
|
395
|
+
- name: platt_intercept
|
|
396
|
+
display_name: Platt Scaling Intercept
|
|
397
|
+
short_display_name: Platt Intercept
|
|
398
|
+
description: Intercept of the Platt scaling classifier (can compare this across tasks).
|
|
399
|
+
lower_is_better: false
|
|
400
|
+
|
|
401
|
+
- name: ehr_sql_total_predicted_answerable
|
|
402
|
+
display_name: Total Predicted Answerable
|
|
403
|
+
short_display_name: Total Pred Ans
|
|
404
|
+
description: Total number of questions predicted to be answerable by the model.
|
|
405
|
+
lower_is_better: false
|
|
406
|
+
|
|
407
|
+
- name: ehr_sql_total_ground_truth_answerable
|
|
408
|
+
display_name: Total Ground Truth Answerable
|
|
409
|
+
short_display_name: Total GT Ans
|
|
410
|
+
description: Total number of answerable questions in the ground truth.
|
|
411
|
+
lower_is_better: false
|
|
412
|
+
|
|
413
|
+
- name: medcalc_bench_accuracy
|
|
414
|
+
display_name: MedCalc Accuracy
|
|
415
|
+
short_display_name: MedCalc Accuracy
|
|
416
|
+
description: Comparison based on category. Exact match for categories risk, severity and diagnosis. Check if within range for the other categories.
|
|
417
|
+
lower_is_better: false
|
|
418
|
+
|
|
419
|
+
############################################################
|
|
420
|
+
perturbations: []
|
|
421
|
+
|
|
422
|
+
############################################################
|
|
423
|
+
metric_groups:
|
|
424
|
+
- name: accuracy
|
|
425
|
+
display_name: Accuracy
|
|
426
|
+
metrics:
|
|
427
|
+
- name: ${main_name}
|
|
428
|
+
split: ${main_split}
|
|
429
|
+
|
|
430
|
+
- name: efficiency
|
|
431
|
+
display_name: Efficiency
|
|
432
|
+
metrics:
|
|
433
|
+
- name: inference_runtime
|
|
434
|
+
split: ${main_split}
|
|
435
|
+
|
|
436
|
+
- name: general_information
|
|
437
|
+
display_name: General information
|
|
438
|
+
hide_win_rates: true
|
|
439
|
+
metrics:
|
|
440
|
+
- name: num_instances
|
|
441
|
+
split: ${main_split}
|
|
442
|
+
- name: num_train_instances
|
|
443
|
+
split: ${main_split}
|
|
444
|
+
- name: prompt_truncated
|
|
445
|
+
split: ${main_split}
|
|
446
|
+
- name: num_prompt_tokens
|
|
447
|
+
split: ${main_split}
|
|
448
|
+
- name: num_output_tokens
|
|
449
|
+
split: ${main_split}
|
|
450
|
+
|
|
451
|
+
- name: toxicity
|
|
452
|
+
display_name: Toxicity
|
|
453
|
+
metrics:
|
|
454
|
+
- name: toxic_frac
|
|
455
|
+
split: ${main_split}
|
|
456
|
+
|
|
457
|
+
############################################################
|
|
458
|
+
run_groups:
|
|
459
|
+
- name: medhelm_scenarios
|
|
460
|
+
display_name: MedHELM Scenarios
|
|
461
|
+
description: Scenarios for the medical domain
|
|
462
|
+
category: All scenarios
|
|
463
|
+
subgroups:
|
|
464
|
+
- clinical_decision_support
|
|
465
|
+
- clinical_note_generation
|
|
466
|
+
- patient_communication
|
|
467
|
+
- medical_research
|
|
468
|
+
- administration_and_workflow
|
|
469
|
+
|
|
470
|
+
- name: clinical_decision_support
|
|
471
|
+
display_name: Clinical Decision Support
|
|
472
|
+
description: Scenarios for clinical decision support
|
|
473
|
+
category: Healthcare Task Categories
|
|
474
|
+
subgroups:
|
|
475
|
+
- medcalc_bench
|
|
476
|
+
- clear
|
|
477
|
+
- mtsamples_replicate
|
|
478
|
+
- medec
|
|
479
|
+
- ehrshot
|
|
480
|
+
- head_qa
|
|
481
|
+
- medbullets
|
|
482
|
+
- medalign
|
|
483
|
+
- shc_ptbm_med
|
|
484
|
+
- shc_sei_med
|
|
485
|
+
|
|
486
|
+
- name: clinical_note_generation
|
|
487
|
+
display_name: Clinical Note Generation
|
|
488
|
+
description: Scenarios for clinical note generation
|
|
489
|
+
category: Healthcare Task Categories
|
|
490
|
+
subgroups:
|
|
491
|
+
- dischargeme
|
|
492
|
+
- aci_bench
|
|
493
|
+
- mtsamples_procedures
|
|
494
|
+
- mimic_rrs
|
|
495
|
+
- mimic_bhc
|
|
496
|
+
- chw_care_plan
|
|
497
|
+
|
|
498
|
+
- name: patient_communication
|
|
499
|
+
display_name: Patient Communication and Education
|
|
500
|
+
description: Scenarios for patient communication and education
|
|
501
|
+
category: Healthcare Task Categories
|
|
502
|
+
subgroups:
|
|
503
|
+
- medication_qa
|
|
504
|
+
- starr_patient_instructions
|
|
505
|
+
- med_dialog
|
|
506
|
+
- shc_conf_med
|
|
507
|
+
- medi_qa
|
|
508
|
+
- mental_health
|
|
509
|
+
|
|
510
|
+
- name: medical_research
|
|
511
|
+
display_name: Medical Research Assistance
|
|
512
|
+
description: Scenarios for medical research assistance
|
|
513
|
+
category: Healthcare Task Categories
|
|
514
|
+
subgroups:
|
|
515
|
+
- pubmed_qa
|
|
516
|
+
- ehr_sql
|
|
517
|
+
- shc_bmt_med
|
|
518
|
+
- race_based_med
|
|
519
|
+
- n2c2_ct_matching
|
|
520
|
+
|
|
521
|
+
- name: administration_and_workflow
|
|
522
|
+
display_name: Administration and Workflow
|
|
523
|
+
description: Scenarios for administration and workflow
|
|
524
|
+
category: Healthcare Task Categories
|
|
525
|
+
subgroups:
|
|
526
|
+
- shc_gip_med
|
|
527
|
+
- mimiciv_billing_code
|
|
528
|
+
- shc_sequoia_med
|
|
529
|
+
- shc_cdi_med
|
|
530
|
+
- shc_ent_med
|
|
531
|
+
|
|
532
|
+
- name: medcalc_bench
|
|
533
|
+
display_name: MedCalc-Bench
|
|
534
|
+
description: A dataset which consists of a patient note, a question requesting to compute a specific medical value, and a ground truth answer [(Khandekar et al., 2024)](https://arxiv.org/abs/2406.12036).
|
|
535
|
+
metric_groups:
|
|
536
|
+
- accuracy
|
|
537
|
+
- efficiency
|
|
538
|
+
- general_information
|
|
539
|
+
environment:
|
|
540
|
+
main_name: medcalc_bench_accuracy
|
|
541
|
+
main_split: test
|
|
542
|
+
taxonomy:
|
|
543
|
+
task: Computational reasoning
|
|
544
|
+
what: "Compute a specific medical value from a patient note"
|
|
545
|
+
who: "Clinician, Researcher"
|
|
546
|
+
when: "Any"
|
|
547
|
+
language: English
|
|
548
|
+
|
|
549
|
+
- name: medalign
|
|
550
|
+
display_name: MedAlign
|
|
551
|
+
short_display_name: MedAlign
|
|
552
|
+
description: A dataset that asks models to answer questions/follow instructions over longitudinal EHR [(Fleming et al., 2023)](https://arxiv.org/abs/2308.14089).
|
|
553
|
+
metric_groups:
|
|
554
|
+
- accuracy
|
|
555
|
+
- efficiency
|
|
556
|
+
- general_information
|
|
557
|
+
environment:
|
|
558
|
+
main_name: medalign_accuracy
|
|
559
|
+
main_split: test
|
|
560
|
+
taxonomy:
|
|
561
|
+
task: Text generation
|
|
562
|
+
what: "Answer questions and follow instructions over longitudinal EHR"
|
|
563
|
+
who: "Clinician, Researcher"
|
|
564
|
+
when: "Any"
|
|
565
|
+
language: English
|
|
566
|
+
|
|
567
|
+
- name: mtsamples_replicate
|
|
568
|
+
display_name: MTSamples
|
|
569
|
+
short_display_name: MTSamples
|
|
570
|
+
description: A dataset of clinical notes where the model is prompted to generate the appropriate treatment plan for this patient [(MTSamples, 2025)](https://mtsamples.com).
|
|
571
|
+
metric_groups:
|
|
572
|
+
- accuracy
|
|
573
|
+
- efficiency
|
|
574
|
+
- general_information
|
|
575
|
+
environment:
|
|
576
|
+
main_name: mtsamples_replicate_accuracy
|
|
577
|
+
main_split: test
|
|
578
|
+
taxonomy:
|
|
579
|
+
task: Text generation
|
|
580
|
+
what: "Generate treatment plans based on clinical notes"
|
|
581
|
+
who: "Clinician"
|
|
582
|
+
when: "Post-diagnosis"
|
|
583
|
+
language: English
|
|
584
|
+
|
|
585
|
+
- name: ehrshot
|
|
586
|
+
display_name: EHRSHOT
|
|
587
|
+
description: A dataset given a patient record of EHR codes, classifying if an event will occur at a future date or not [(Wornow et al., 2023)](https://arxiv.org/abs/2307.02028).
|
|
588
|
+
metric_groups:
|
|
589
|
+
- accuracy
|
|
590
|
+
- efficiency
|
|
591
|
+
- general_information
|
|
592
|
+
environment:
|
|
593
|
+
main_name: exact_match
|
|
594
|
+
main_split: test
|
|
595
|
+
taxonomy:
|
|
596
|
+
task: Classification
|
|
597
|
+
what: "Predict whether a medical event will occur in the future based on EHR codes"
|
|
598
|
+
who: "Clinician, Insurer"
|
|
599
|
+
when: "Future prediction"
|
|
600
|
+
language: English
|
|
601
|
+
|
|
602
|
+
- name: starr_patient_instructions
|
|
603
|
+
display_name: PatientInstruct
|
|
604
|
+
description: A dataset containing case details used to generate customized post-procedure patient instructions.
|
|
605
|
+
metric_groups:
|
|
606
|
+
- accuracy
|
|
607
|
+
- efficiency
|
|
608
|
+
- general_information
|
|
609
|
+
environment:
|
|
610
|
+
main_name: starr_patient_instructions_accuracy
|
|
611
|
+
main_split: test
|
|
612
|
+
taxonomy:
|
|
613
|
+
task: Text generation
|
|
614
|
+
what: Generate customized post-procedure patient instructions
|
|
615
|
+
who: Clinician
|
|
616
|
+
when: Post-procedure
|
|
617
|
+
language: English
|
|
618
|
+
|
|
619
|
+
- name: clear
|
|
620
|
+
display_name: CLEAR
|
|
621
|
+
description: "A dataset for evaluating the presence of a specific medical condition from patient notes with yes/no/maybe classifications [(Lopez et al., 2025)](https://www.nature.com/articles/s41746-024-01377-1)."
|
|
622
|
+
metric_groups:
|
|
623
|
+
- accuracy
|
|
624
|
+
- efficiency
|
|
625
|
+
- general_information
|
|
626
|
+
environment:
|
|
627
|
+
main_name: exact_match
|
|
628
|
+
main_split: test
|
|
629
|
+
taxonomy:
|
|
630
|
+
task: Classification
|
|
631
|
+
what: Classify medical condition presence from patient notes
|
|
632
|
+
who: Clinician
|
|
633
|
+
when: Any
|
|
634
|
+
language: English
|
|
635
|
+
|
|
636
|
+
- name: race_based_med
|
|
637
|
+
display_name: RaceBias
|
|
638
|
+
description: A collection of LLM outputs in response to medical questions with race-based biases, with the objective being to classify whether the output contains racially biased content.
|
|
639
|
+
metric_groups:
|
|
640
|
+
- accuracy
|
|
641
|
+
- efficiency
|
|
642
|
+
- general_information
|
|
643
|
+
environment:
|
|
644
|
+
main_name: exact_match
|
|
645
|
+
main_split: test
|
|
646
|
+
taxonomy:
|
|
647
|
+
task: Classification
|
|
648
|
+
what: Identify race-based bias in LLM-generated medical responses
|
|
649
|
+
who: Researcher
|
|
650
|
+
when: Any
|
|
651
|
+
language: English
|
|
652
|
+
|
|
653
|
+
- name: n2c2_ct_matching
|
|
654
|
+
display_name: N2C2-CT Matching
|
|
655
|
+
short_display_name: N2C2-CT
|
|
656
|
+
description: A dataset that provides clinical notes and asks the model to classify whether the patient is a valid candidate for a provided clinical trial.
|
|
657
|
+
metric_groups:
|
|
658
|
+
- accuracy
|
|
659
|
+
- efficiency
|
|
660
|
+
- general_information
|
|
661
|
+
environment:
|
|
662
|
+
main_name: exact_match
|
|
663
|
+
main_split: test
|
|
664
|
+
taxonomy:
|
|
665
|
+
task: Classification
|
|
666
|
+
what: Classify whether a patient is a valid candidate for a clinical trial based on clinical notes
|
|
667
|
+
who: Researcher
|
|
668
|
+
when: Pre-Trial
|
|
669
|
+
language: English
|
|
670
|
+
|
|
671
|
+
- name: med_dialog
|
|
672
|
+
display_name: MedDialog
|
|
673
|
+
short_display_name: MedDialog
|
|
674
|
+
description: A collection of doctor-patient conversations with corresponding summaries.
|
|
675
|
+
metric_groups:
|
|
676
|
+
- accuracy
|
|
677
|
+
- efficiency
|
|
678
|
+
- general_information
|
|
679
|
+
environment:
|
|
680
|
+
main_name: med_dialog_accuracy
|
|
681
|
+
main_split: test
|
|
682
|
+
taxonomy:
|
|
683
|
+
task: Text generation
|
|
684
|
+
what: Generate summaries of doctor-patient conversations
|
|
685
|
+
who: Clinician
|
|
686
|
+
when: Any
|
|
687
|
+
language: English
|
|
688
|
+
|
|
689
|
+
- name: medi_qa
|
|
690
|
+
display_name: MEDIQA
|
|
691
|
+
description: A dataset including a medical question, a set of candidate answers, relevance annotations for ranking, and additional context to evaluate understanding and retrieval capabilities in a healthcare setting.
|
|
692
|
+
metric_groups:
|
|
693
|
+
- accuracy
|
|
694
|
+
- efficiency
|
|
695
|
+
- general_information
|
|
696
|
+
environment:
|
|
697
|
+
main_name: medi_qa_accuracy
|
|
698
|
+
main_split: test
|
|
699
|
+
taxonomy:
|
|
700
|
+
task: Text generation
|
|
701
|
+
what: Retrieve and rank answers based on medical question understanding
|
|
702
|
+
who: Clinician, Medical Student
|
|
703
|
+
when: Any
|
|
704
|
+
language: English
|
|
705
|
+
|
|
706
|
+
- name: mental_health
|
|
707
|
+
display_name: MentalHealth
|
|
708
|
+
description: A dataset containing a counselor and mental health patient conversation, where the objective is to generate an empathetic counselor response.
|
|
709
|
+
metric_groups:
|
|
710
|
+
- accuracy
|
|
711
|
+
- efficiency
|
|
712
|
+
- general_information
|
|
713
|
+
environment:
|
|
714
|
+
main_name: mental_health_accuracy
|
|
715
|
+
main_split: test
|
|
716
|
+
taxonomy:
|
|
717
|
+
task: Text generation
|
|
718
|
+
what: Generate empathetic counseling responses in mental health conversations
|
|
719
|
+
who: Counselors, Patients
|
|
720
|
+
when: Any
|
|
721
|
+
language: English
|
|
722
|
+
|
|
723
|
+
- name: mimic_rrs
|
|
724
|
+
display_name: MIMIC-RRS
|
|
725
|
+
short_display_name: MIMIC-RRS
|
|
726
|
+
description: A dataset containing radiology reports with findings sections from MIMIC-III paired with their corresponding impression sections, used for generating radiology report summaries [(Chen et al., 2023)](https://arxiv.org/abs/2211.08584).
|
|
727
|
+
metric_groups:
|
|
728
|
+
- accuracy
|
|
729
|
+
- efficiency
|
|
730
|
+
- general_information
|
|
731
|
+
environment:
|
|
732
|
+
main_name: mimic_rrs_accuracy
|
|
733
|
+
main_split: test
|
|
734
|
+
taxonomy:
|
|
735
|
+
task: Text generation
|
|
736
|
+
what: Generate radiology report summaries from findings sections
|
|
737
|
+
who: Radiologist
|
|
738
|
+
when: Post-imaging
|
|
739
|
+
language: English
|
|
740
|
+
|
|
741
|
+
- name: mimic_bhc
|
|
742
|
+
display_name: MIMIC-IV-BHC
|
|
743
|
+
short_display_name: MIMIC-BHC
|
|
744
|
+
description: A summarization task using a curated collection of preprocessed discharge notes paired with their corresponding brief hospital course (BHC) summaries [(Aali et al., 2024)](https://doi.org/10.1093/jamia/ocae312).
|
|
745
|
+
metric_groups:
|
|
746
|
+
- accuracy
|
|
747
|
+
- efficiency
|
|
748
|
+
- general_information
|
|
749
|
+
environment:
|
|
750
|
+
main_name: BERTScore-F
|
|
751
|
+
main_split: test
|
|
752
|
+
taxonomy:
|
|
753
|
+
task: Text generation
|
|
754
|
+
what: Summarize the clinical note into a brief hospital course
|
|
755
|
+
who: Clinician
|
|
756
|
+
when: Upon hospital discharge
|
|
757
|
+
language: English
|
|
758
|
+
|
|
759
|
+
- name: mimiciv_billing_code
|
|
760
|
+
display_name: MIMIC-IV Billing Code
|
|
761
|
+
description: A dataset pairing clinical notes from MIMIC-IV with corresponding ICD-10 billing codes.
|
|
762
|
+
metric_groups:
|
|
763
|
+
- accuracy
|
|
764
|
+
- efficiency
|
|
765
|
+
- general_information
|
|
766
|
+
environment:
|
|
767
|
+
main_name: mimiciv_billing_code_f1
|
|
768
|
+
main_split: test
|
|
769
|
+
taxonomy:
|
|
770
|
+
task: Classification
|
|
771
|
+
what: Predict ICD-10 billing codes from clinical discharge notes
|
|
772
|
+
who: Hospital Admistrator
|
|
773
|
+
when: During or after patient discharge
|
|
774
|
+
language: English
|
|
775
|
+
|
|
776
|
+
- name: dischargeme
|
|
777
|
+
display_name: DischargeMe
|
|
778
|
+
short_display_name: DischargeMe
|
|
779
|
+
description: DischargeMe is a discharge instruction generation dataset and brief hospital course generation dataset collected from MIMIC-IV data, considering only the discharge text as well as the radiology report text [(Xu, 2024)](https://physionet.org/content/discharge-me/1.3/).
|
|
780
|
+
metric_groups:
|
|
781
|
+
- accuracy
|
|
782
|
+
- efficiency
|
|
783
|
+
- general_information
|
|
784
|
+
environment:
|
|
785
|
+
main_name: dischargeme_accuracy
|
|
786
|
+
main_split: test
|
|
787
|
+
taxonomy:
|
|
788
|
+
task: Text generation
|
|
789
|
+
what: Generate discharge instructions from hospital notes
|
|
790
|
+
who: Clinician
|
|
791
|
+
when: Upon hospital discharge
|
|
792
|
+
language: English
|
|
793
|
+
|
|
794
|
+
- name: pubmed_qa
|
|
795
|
+
display_name: PubMedQA
|
|
796
|
+
description: A dataset that provides pubmed abstracts and asks associated questions yes/no/maybe questions.
|
|
797
|
+
metric_groups:
|
|
798
|
+
- accuracy
|
|
799
|
+
- efficiency
|
|
800
|
+
- general_information
|
|
801
|
+
environment:
|
|
802
|
+
main_name: exact_match
|
|
803
|
+
main_split: test
|
|
804
|
+
taxonomy:
|
|
805
|
+
task: Question answering
|
|
806
|
+
what: Answer questions based on PubMed abstracts
|
|
807
|
+
who: Researcher
|
|
808
|
+
when: Any
|
|
809
|
+
language: English
|
|
810
|
+
|
|
811
|
+
- name: medec
|
|
812
|
+
display_name: Medec
|
|
813
|
+
description: A dataset containing medical narratives with error detection and correction pairs [(Abacha et al., 2025)](https://arxiv.org/abs/2412.19260).
|
|
814
|
+
metric_groups:
|
|
815
|
+
- accuracy
|
|
816
|
+
- efficiency
|
|
817
|
+
- general_information
|
|
818
|
+
environment:
|
|
819
|
+
main_name: medec_error_flag_accuracy
|
|
820
|
+
main_split: test
|
|
821
|
+
taxonomy:
|
|
822
|
+
task: Classification
|
|
823
|
+
what: Detect and correct errors in medical narratives
|
|
824
|
+
who: Researcher, Clinician
|
|
825
|
+
when: Any
|
|
826
|
+
language: English
|
|
827
|
+
|
|
828
|
+
- name: aci_bench
|
|
829
|
+
display_name: ACI-Bench
|
|
830
|
+
description: A dataset of patient-doctor conversations paired with structured clinical notes [(Yim et al., 2024)](https://www.nature.com/articles/s41597-023-02487-3).
|
|
831
|
+
metric_groups:
|
|
832
|
+
- accuracy
|
|
833
|
+
- efficiency
|
|
834
|
+
- general_information
|
|
835
|
+
environment:
|
|
836
|
+
main_name: aci_bench_accuracy
|
|
837
|
+
main_split: test
|
|
838
|
+
taxonomy:
|
|
839
|
+
task: Text generation
|
|
840
|
+
what: Extract and structure information from patient-doctor conversations
|
|
841
|
+
who: Clinician
|
|
842
|
+
when: Any
|
|
843
|
+
language: English
|
|
844
|
+
|
|
845
|
+
- name: chw_care_plan
|
|
846
|
+
display_name: NoteExtract
|
|
847
|
+
description: A dataset containing free form text of a clinical health worker care plan, with the associated goal being to restructure that text into a given format.
|
|
848
|
+
metric_groups:
|
|
849
|
+
- accuracy
|
|
850
|
+
- efficiency
|
|
851
|
+
- general_information
|
|
852
|
+
environment:
|
|
853
|
+
main_name: chw_care_plan_accuracy
|
|
854
|
+
main_split: test
|
|
855
|
+
taxonomy:
|
|
856
|
+
task: Text generation
|
|
857
|
+
what: Convert general text care plans into structured formats
|
|
858
|
+
who: Clinician, Researcher
|
|
859
|
+
when: Any
|
|
860
|
+
language: English
|
|
861
|
+
|
|
862
|
+
- name: ehr_sql
|
|
863
|
+
display_name: EHRSQL
|
|
864
|
+
description: Given a natural language instruction, generate an SQL query that would be used in clinical research.
|
|
865
|
+
metric_groups:
|
|
866
|
+
- accuracy
|
|
867
|
+
- efficiency
|
|
868
|
+
- general_information
|
|
869
|
+
environment:
|
|
870
|
+
main_name: ehr_sql_execution_accuracy
|
|
871
|
+
main_split: test
|
|
872
|
+
taxonomy:
|
|
873
|
+
task: Code generation
|
|
874
|
+
what: Generate SQL queries from natural language for clinical research
|
|
875
|
+
who: Researcher
|
|
876
|
+
when: Any
|
|
877
|
+
language: English
|
|
878
|
+
|
|
879
|
+
- name: head_qa
|
|
880
|
+
display_name: HeadQA
|
|
881
|
+
description: A collection of biomedical multiple-choice questions for testing medical knowledge [(Vilares et al., 2019)](https://arxiv.org/abs/1906.04701).
|
|
882
|
+
metric_groups:
|
|
883
|
+
- accuracy
|
|
884
|
+
- efficiency
|
|
885
|
+
- general_information
|
|
886
|
+
environment:
|
|
887
|
+
main_name: exact_match
|
|
888
|
+
main_split: test
|
|
889
|
+
taxonomy:
|
|
890
|
+
task: Question answering
|
|
891
|
+
what: Medical knowledge testing
|
|
892
|
+
who: Medical student, Researcher
|
|
893
|
+
when: Any
|
|
894
|
+
language: English
|
|
895
|
+
|
|
896
|
+
- name: medbullets
|
|
897
|
+
display_name: Medbullets
|
|
898
|
+
description: A USMLE-style medical question dataset with multiple-choice answers and explanations [(MedBullets, 2025)](https://step2.medbullets.com).
|
|
899
|
+
metric_groups:
|
|
900
|
+
- accuracy
|
|
901
|
+
- efficiency
|
|
902
|
+
- general_information
|
|
903
|
+
environment:
|
|
904
|
+
main_name: exact_match
|
|
905
|
+
main_split: test
|
|
906
|
+
taxonomy:
|
|
907
|
+
task: Question answering
|
|
908
|
+
what: Medical knowledge testing
|
|
909
|
+
who: Medical student, . Researcher
|
|
910
|
+
when: Any
|
|
911
|
+
language: English
|
|
912
|
+
|
|
913
|
+
- name: mtsamples_procedures
|
|
914
|
+
display_name: MTSamples Procedures
|
|
915
|
+
description: A dataset that provides a patient note regarding an operation, with the objective to document the procedure.
|
|
916
|
+
metric_groups:
|
|
917
|
+
- accuracy
|
|
918
|
+
- efficiency
|
|
919
|
+
- general_information
|
|
920
|
+
environment:
|
|
921
|
+
main_name: mtsamples_procedures_accuracy
|
|
922
|
+
main_split: test
|
|
923
|
+
taxonomy:
|
|
924
|
+
task: Text generation
|
|
925
|
+
what: Document and extract information about medical procedures
|
|
926
|
+
who: Clinician, Researcher
|
|
927
|
+
when: Post-procedure
|
|
928
|
+
language: English
|
|
929
|
+
|
|
930
|
+
- name: medication_qa
|
|
931
|
+
display_name: MedicationQA
|
|
932
|
+
description: Consumer medication questions with reference answers.
|
|
933
|
+
metric_groups:
|
|
934
|
+
- accuracy
|
|
935
|
+
- efficiency
|
|
936
|
+
- general_information
|
|
937
|
+
environment:
|
|
938
|
+
main_name: medication_qa_accuracy
|
|
939
|
+
main_split: test
|
|
940
|
+
taxonomy:
|
|
941
|
+
task: Question answering
|
|
942
|
+
what: Answer consumer medication-related questions
|
|
943
|
+
who: Patient, Pharmacist
|
|
944
|
+
when: Any
|
|
945
|
+
language: English
|
|
946
|
+
|
|
947
|
+
- name: shc_bmt_med
|
|
948
|
+
display_name: BMT-Status
|
|
949
|
+
description: A dataset containing patient notes with associated questions and answers related to bone marrow transplantation.
|
|
950
|
+
metric_groups:
|
|
951
|
+
- accuracy
|
|
952
|
+
- efficiency
|
|
953
|
+
- general_information
|
|
954
|
+
environment:
|
|
955
|
+
main_name: exact_match
|
|
956
|
+
main_split: test
|
|
957
|
+
taxonomy:
|
|
958
|
+
task: question answering
|
|
959
|
+
what: Answer bone marrow transplant questions
|
|
960
|
+
who: Researcher
|
|
961
|
+
when: Any
|
|
962
|
+
language: English
|
|
963
|
+
|
|
964
|
+
- name: shc_gip_med
|
|
965
|
+
display_name: HospiceReferral
|
|
966
|
+
description: A dataset evaluating performance in identifying appropriate patient referrals to hospice care.
|
|
967
|
+
metric_groups:
|
|
968
|
+
- accuracy
|
|
969
|
+
- efficiency
|
|
970
|
+
- general_information
|
|
971
|
+
environment:
|
|
972
|
+
main_name: exact_match
|
|
973
|
+
main_split: test
|
|
974
|
+
taxonomy:
|
|
975
|
+
task: Classification
|
|
976
|
+
what: Assess hospice referral appropriateness
|
|
977
|
+
who: Hospital Admistrator
|
|
978
|
+
when: End-of-care
|
|
979
|
+
language: English
|
|
980
|
+
|
|
981
|
+
- name: shc_cdi_med
|
|
982
|
+
display_name: CDI-QA
|
|
983
|
+
description: A dataset built from Clinical Document Integrity (CDI) notes, to assess the ability to answer verification questions from previous notes.
|
|
984
|
+
metric_groups:
|
|
985
|
+
- accuracy
|
|
986
|
+
- efficiency
|
|
987
|
+
- general_information
|
|
988
|
+
environment:
|
|
989
|
+
main_name: exact_match
|
|
990
|
+
main_split: test
|
|
991
|
+
taxonomy:
|
|
992
|
+
task: Classification
|
|
993
|
+
what: Answer verification questions from CDI notes
|
|
994
|
+
who: Hospital Admistrator
|
|
995
|
+
when: Any
|
|
996
|
+
language: English
|
|
997
|
+
|
|
998
|
+
- name: shc_ent_med
|
|
999
|
+
display_name: ENT-Referral
|
|
1000
|
+
description: A dataset designed to evaluate performance in identifying appropriate patient referrals to Ear, Nose, and Throat specialists.
|
|
1001
|
+
metric_groups:
|
|
1002
|
+
- accuracy
|
|
1003
|
+
- efficiency
|
|
1004
|
+
- general_information
|
|
1005
|
+
environment:
|
|
1006
|
+
main_name: exact_match
|
|
1007
|
+
main_split: test
|
|
1008
|
+
taxonomy:
|
|
1009
|
+
task: Classification
|
|
1010
|
+
what: Identify referrals for ENT specialists
|
|
1011
|
+
who: Hospital Admistrator
|
|
1012
|
+
when: Any
|
|
1013
|
+
language: English
|
|
1014
|
+
|
|
1015
|
+
- name: shc_sequoia_med
|
|
1016
|
+
display_name: ClinicReferral
|
|
1017
|
+
description: A dataset containing manually curated answers to questions regarding patient referrals to the Sequoia clinic.
|
|
1018
|
+
metric_groups:
|
|
1019
|
+
- accuracy
|
|
1020
|
+
- efficiency
|
|
1021
|
+
- general_information
|
|
1022
|
+
environment:
|
|
1023
|
+
main_name: exact_match
|
|
1024
|
+
main_split: test
|
|
1025
|
+
taxonomy:
|
|
1026
|
+
task: Classification
|
|
1027
|
+
what: Provide answers on clinic referrals
|
|
1028
|
+
who: Hospital Admistrator
|
|
1029
|
+
when: Pre-referral
|
|
1030
|
+
language: English
|
|
1031
|
+
|
|
1032
|
+
- name: shc_conf_med
|
|
1033
|
+
display_name: MedConfInfo
|
|
1034
|
+
description: A dataset of clinical notes from adolescent patients used to identify sensitive protected health information that should be restricted from parental access [(Rabbani et al., 2024)](https://jamanetwork.com/journals/jamapediatrics/fullarticle/2814109).
|
|
1035
|
+
metric_groups:
|
|
1036
|
+
- accuracy
|
|
1037
|
+
- efficiency
|
|
1038
|
+
- general_information
|
|
1039
|
+
environment:
|
|
1040
|
+
main_name: exact_match
|
|
1041
|
+
main_split: test
|
|
1042
|
+
taxonomy:
|
|
1043
|
+
task: Classification
|
|
1044
|
+
what: Identify sensitive health info in adolescent notes
|
|
1045
|
+
who: Clinician
|
|
1046
|
+
when: Any
|
|
1047
|
+
language: English
|
|
1048
|
+
|
|
1049
|
+
- name: shc_ptbm_med
|
|
1050
|
+
display_name: ADHD-Behavior
|
|
1051
|
+
description: A dataset that classifies whether a clinical note contains a clinician recommendation for parent training in behavior management, which is the first-line evidence-based treatment for young children with ADHD [(Pillai et al., 2024)](https://doi.org/10.1093/jamia/ocae001).
|
|
1052
|
+
metric_groups:
|
|
1053
|
+
- accuracy
|
|
1054
|
+
- efficiency
|
|
1055
|
+
- general_information
|
|
1056
|
+
environment:
|
|
1057
|
+
main_name: exact_match
|
|
1058
|
+
main_split: test
|
|
1059
|
+
taxonomy:
|
|
1060
|
+
task: Classification
|
|
1061
|
+
what: Detect ADHD medication side effect monitoring
|
|
1062
|
+
who: Clinician, Researcher
|
|
1063
|
+
when: During Treatment
|
|
1064
|
+
language: English
|
|
1065
|
+
|
|
1066
|
+
- name: shc_sei_med
|
|
1067
|
+
display_name: ADHD-MedEffects
|
|
1068
|
+
description: A dataset that classifies whether a clinical note contains documentation of side effect monitoring (recording of absence or presence of medication side effects), as recommended in clinical practice guidelines [(Bannet et al., 2024)](https://doi.org/10.1542/peds.2024-067223).
|
|
1069
|
+
metric_groups:
|
|
1070
|
+
- accuracy
|
|
1071
|
+
- efficiency
|
|
1072
|
+
- general_information
|
|
1073
|
+
environment:
|
|
1074
|
+
main_name: exact_match
|
|
1075
|
+
main_split: test
|
|
1076
|
+
taxonomy:
|
|
1077
|
+
task: Classification
|
|
1078
|
+
what: Classify clinician recommendations for ADHD behavior management
|
|
1079
|
+
who: Clinician, Caregiver
|
|
1080
|
+
when: Early Intervention
|
|
1081
|
+
language: English
|