crfm-helm 0.4.0__py3-none-any.whl → 0.5.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of crfm-helm might be problematic. Click here for more details.
- crfm_helm-0.5.10.dist-info/METADATA +369 -0
- crfm_helm-0.5.10.dist-info/RECORD +1008 -0
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.10.dist-info}/WHEEL +1 -1
- helm/benchmark/adaptation/adapter_spec.py +80 -29
- helm/benchmark/adaptation/adapters/adapter.py +2 -2
- helm/benchmark/adaptation/adapters/adapter_factory.py +39 -28
- helm/benchmark/adaptation/adapters/binary_ranking_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/chat_adapter.py +49 -0
- helm/benchmark/adaptation/adapters/ehr_instruction_adapter.py +108 -0
- helm/benchmark/adaptation/adapters/generation_adapter.py +2 -1
- helm/benchmark/adaptation/adapters/in_context_learning_adapter.py +24 -8
- helm/benchmark/adaptation/adapters/language_modeling_adapter.py +3 -4
- helm/benchmark/adaptation/adapters/multimodal/generation_multimodal_adapter.py +4 -2
- helm/benchmark/adaptation/adapters/multimodal/in_context_learning_multimodal_adapter.py +2 -1
- helm/benchmark/adaptation/adapters/multimodal/multimodal_prompt.py +7 -0
- helm/benchmark/adaptation/adapters/multimodal/multiple_choice_joint_multimodal_adapter.py +112 -0
- helm/benchmark/adaptation/adapters/multimodal/test_in_context_learning_multimodal_adapter.py +6 -3
- helm/benchmark/adaptation/adapters/multimodal/test_multimodal_prompt.py +3 -1
- helm/benchmark/adaptation/adapters/multiple_choice_calibrated_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/multiple_choice_joint_adapter.py +18 -8
- helm/benchmark/adaptation/adapters/multiple_choice_joint_chain_of_thought_adapter.py +87 -0
- helm/benchmark/adaptation/adapters/multiple_choice_separate_adapter.py +1 -1
- helm/benchmark/adaptation/adapters/test_adapter.py +5 -4
- helm/benchmark/adaptation/adapters/test_generation_adapter.py +46 -22
- helm/benchmark/adaptation/adapters/test_language_modeling_adapter.py +17 -29
- helm/benchmark/adaptation/adapters/test_multiple_choice_joint_adapter.py +138 -16
- helm/benchmark/adaptation/common_adapter_specs.py +443 -0
- helm/benchmark/adaptation/prompt.py +1 -1
- helm/benchmark/adaptation/request_state.py +6 -1
- helm/benchmark/adaptation/scenario_state.py +6 -2
- helm/benchmark/annotation/aci_bench_annotator.py +84 -0
- helm/benchmark/annotation/air_bench_annotator.py +79 -0
- helm/benchmark/annotation/alrage_annotator.py +90 -0
- helm/benchmark/annotation/annotator.py +48 -0
- helm/benchmark/annotation/annotator_factory.py +50 -0
- helm/benchmark/annotation/anthropic_red_team_annotator.py +57 -0
- helm/benchmark/annotation/autobencher_capabilities_annotator.py +107 -0
- helm/benchmark/annotation/autobencher_safety_annotator.py +98 -0
- helm/benchmark/annotation/bigcodebench_annotator.py +108 -0
- helm/benchmark/annotation/bird_sql_annotator.py +58 -0
- helm/benchmark/annotation/call_center_annotator.py +258 -0
- helm/benchmark/annotation/chw_care_plan_annotator.py +82 -0
- helm/benchmark/annotation/czech_bank_qa_annotator.py +78 -0
- helm/benchmark/annotation/dischargeme_annotator.py +96 -0
- helm/benchmark/annotation/ehr_sql_annotator.py +87 -0
- helm/benchmark/annotation/financebench_annotator.py +79 -0
- helm/benchmark/annotation/harm_bench_annotator.py +55 -0
- helm/benchmark/annotation/helpdesk_call_summarization_annotator.py +131 -0
- helm/benchmark/annotation/image2struct/image_compiler_annotator.py +93 -0
- helm/benchmark/annotation/image2struct/latex_compiler_annotator.py +59 -0
- helm/benchmark/annotation/image2struct/lilypond_compiler_annotator.py +86 -0
- helm/benchmark/annotation/image2struct/webpage_compiler_annotator.py +132 -0
- helm/benchmark/annotation/live_qa_annotator.py +76 -0
- helm/benchmark/annotation/med_dialog_annotator.py +88 -0
- helm/benchmark/annotation/medalign_annotator.py +89 -0
- helm/benchmark/annotation/medi_qa_annotator.py +87 -0
- helm/benchmark/annotation/medication_qa_annotator.py +86 -0
- helm/benchmark/annotation/mental_health_annotator.py +87 -0
- helm/benchmark/annotation/mimic_bhc_annotator.py +89 -0
- helm/benchmark/annotation/mimic_rrs_annotator.py +89 -0
- helm/benchmark/annotation/model_as_judge.py +309 -0
- helm/benchmark/annotation/mtsamples_procedures_annotator.py +87 -0
- helm/benchmark/annotation/mtsamples_replicate_annotator.py +90 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_template.txt +152 -0
- helm/benchmark/annotation/omni_math/gpt_evaluation_zero_shot_template.txt +36 -0
- helm/benchmark/annotation/omni_math_annotator.py +131 -0
- helm/benchmark/annotation/simple_safety_tests_annotator.py +50 -0
- helm/benchmark/annotation/spider_annotator.py +18 -0
- helm/benchmark/annotation/starr_patient_instructions_annotator.py +87 -0
- helm/benchmark/annotation/test_annotator_factory.py +26 -0
- helm/benchmark/annotation/test_dummy_annotator.py +44 -0
- helm/benchmark/annotation/wildbench/eval_template.pairwise.v2.md +75 -0
- helm/benchmark/annotation/wildbench/eval_template.score.v2.md +66 -0
- helm/benchmark/annotation/wildbench_annotator.py +119 -0
- helm/benchmark/annotation/xstest_annotator.py +100 -0
- helm/benchmark/annotation_executor.py +144 -0
- helm/benchmark/augmentations/cleva_perturbation.py +9 -8
- helm/benchmark/augmentations/contraction_expansion_perturbation.py +2 -2
- helm/benchmark/augmentations/contrast_sets_perturbation.py +2 -2
- helm/benchmark/augmentations/data_augmenter.py +0 -2
- helm/benchmark/augmentations/dialect_perturbation.py +4 -5
- helm/benchmark/augmentations/extra_space_perturbation.py +2 -2
- helm/benchmark/augmentations/filler_words_perturbation.py +2 -2
- helm/benchmark/augmentations/gender_perturbation.py +3 -3
- helm/benchmark/augmentations/lowercase_perturbation.py +2 -2
- helm/benchmark/augmentations/mild_mix_perturbation.py +6 -6
- helm/benchmark/augmentations/misspelling_perturbation.py +2 -2
- helm/benchmark/augmentations/person_name_perturbation.py +4 -5
- helm/benchmark/augmentations/perturbation.py +26 -4
- helm/benchmark/augmentations/perturbation_description.py +1 -1
- helm/benchmark/augmentations/space_perturbation.py +2 -2
- helm/benchmark/augmentations/suffix_perturbation.py +29 -0
- helm/benchmark/augmentations/synonym_perturbation.py +4 -3
- helm/benchmark/augmentations/test_perturbation.py +56 -19
- helm/benchmark/augmentations/translate_perturbation.py +31 -0
- helm/benchmark/augmentations/typos_perturbation.py +2 -2
- helm/benchmark/config_registry.py +7 -1
- helm/benchmark/data_preprocessor.py +2 -2
- helm/benchmark/executor.py +54 -25
- helm/benchmark/huggingface_registration.py +28 -10
- helm/benchmark/metrics/air_bench_metrics.py +3212 -0
- helm/benchmark/metrics/alrage_metric.py +35 -0
- helm/benchmark/metrics/annotation_metrics.py +108 -0
- helm/benchmark/metrics/basic_metrics.py +437 -667
- helm/benchmark/metrics/bbq_metrics.py +17 -6
- helm/benchmark/metrics/bias_metrics.py +18 -9
- helm/benchmark/metrics/bias_word_lists.py +1 -1
- helm/benchmark/metrics/bigcodebench_metrics.py +25 -0
- helm/benchmark/metrics/bird_sql_metrics.py +28 -0
- helm/benchmark/metrics/classification_metrics.py +107 -22
- helm/benchmark/metrics/cleva_accuracy_metrics.py +8 -5
- helm/benchmark/metrics/cleva_harms_metrics.py +12 -11
- helm/benchmark/metrics/code_metrics.py +5 -5
- helm/benchmark/metrics/code_metrics_helper.py +11 -3
- helm/benchmark/metrics/codeinsights_code_efficiency_metrics.py +186 -0
- helm/benchmark/metrics/codeinsights_code_evaluation_metrics.py +477 -0
- helm/benchmark/metrics/codeinsights_correct_code_metrics.py +366 -0
- helm/benchmark/metrics/codeinsights_edge_case_metrics.py +92 -0
- helm/benchmark/metrics/codeinsights_metric_specs.py +51 -0
- helm/benchmark/metrics/comet_metric.py +125 -0
- helm/benchmark/metrics/common_metric_specs.py +174 -0
- helm/benchmark/metrics/conv_fin_qa_calc_metrics.py +83 -0
- helm/benchmark/metrics/copyright_metrics.py +5 -5
- helm/benchmark/metrics/czech_bank_qa_metrics.py +29 -0
- helm/benchmark/metrics/decodingtrust_fairness_metrics.py +72 -0
- helm/benchmark/metrics/decodingtrust_ood_knowledge_metrics.py +66 -0
- helm/benchmark/metrics/decodingtrust_privacy_metrics.py +101 -0
- helm/benchmark/metrics/decodingtrust_stereotype_bias_metrics.py +202 -0
- helm/benchmark/metrics/disinformation_metrics.py +8 -114
- helm/benchmark/metrics/dry_run_metrics.py +35 -6
- helm/benchmark/metrics/efficiency_metrics.py +287 -0
- helm/benchmark/metrics/ehr_sql_metrics.py +159 -0
- helm/benchmark/metrics/evaluate_instances_metric.py +59 -0
- helm/benchmark/metrics/evaluate_reference_metrics.py +831 -0
- helm/benchmark/metrics/fin_qa_metrics.py +60 -0
- helm/benchmark/metrics/fin_qa_metrics_helper.py +398 -0
- helm/benchmark/metrics/gpqa_chain_of_thought_metric.py +115 -0
- helm/benchmark/metrics/gpt4_audio_critique_metrics.py +167 -0
- helm/benchmark/metrics/gpt4_audio_refusal_metrics.py +145 -0
- helm/benchmark/metrics/gpt4v_originality_critique_metrics.py +126 -0
- helm/benchmark/metrics/helpdesk_call_summarization_metrics.py +48 -0
- helm/benchmark/metrics/ifeval/instructions.py +1574 -0
- helm/benchmark/metrics/ifeval/instructions_registry.py +182 -0
- helm/benchmark/metrics/ifeval/instructions_registry.pyi +3 -0
- helm/benchmark/metrics/ifeval/instructions_util.py +153 -0
- helm/benchmark/metrics/ifeval_metrics.py +67 -0
- helm/benchmark/metrics/image_generation/aesthetics_metrics.py +54 -0
- helm/benchmark/metrics/image_generation/aesthetics_scorer.py +66 -0
- helm/benchmark/metrics/image_generation/clip_score_metrics.py +84 -0
- helm/benchmark/metrics/image_generation/denoised_runtime_metric.py +42 -0
- helm/benchmark/metrics/image_generation/detection_metrics.py +57 -0
- helm/benchmark/metrics/image_generation/detectors/base_detector.py +8 -0
- helm/benchmark/metrics/image_generation/detectors/vitdet.py +178 -0
- helm/benchmark/metrics/image_generation/efficiency_metrics.py +41 -0
- helm/benchmark/metrics/image_generation/fidelity_metrics.py +168 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/fractal_dimension_util.py +63 -0
- helm/benchmark/metrics/image_generation/fractal_dimension/test_fractal_dimension_util.py +33 -0
- helm/benchmark/metrics/image_generation/fractal_dimension_metric.py +50 -0
- helm/benchmark/metrics/image_generation/gender_metrics.py +58 -0
- helm/benchmark/metrics/image_generation/image_critique_metrics.py +284 -0
- helm/benchmark/metrics/image_generation/lpips_metrics.py +82 -0
- helm/benchmark/metrics/image_generation/multi_scale_ssim_metrics.py +82 -0
- helm/benchmark/metrics/image_generation/nsfw_detector.py +96 -0
- helm/benchmark/metrics/image_generation/nsfw_metrics.py +103 -0
- helm/benchmark/metrics/image_generation/nudity_metrics.py +38 -0
- helm/benchmark/metrics/image_generation/photorealism_critique_metrics.py +153 -0
- helm/benchmark/metrics/image_generation/psnr_metrics.py +78 -0
- helm/benchmark/metrics/image_generation/q16/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/q16/q16_toxicity_detector.py +90 -0
- helm/benchmark/metrics/image_generation/q16/test_q16.py +20 -0
- helm/benchmark/metrics/image_generation/q16_toxicity_metrics.py +48 -0
- helm/benchmark/metrics/image_generation/skin_tone_metrics.py +164 -0
- helm/benchmark/metrics/image_generation/uiqi_metrics.py +92 -0
- helm/benchmark/metrics/image_generation/watermark/__init__.py +0 -0
- helm/benchmark/metrics/image_generation/watermark/test_watermark_detector.py +16 -0
- helm/benchmark/metrics/image_generation/watermark/watermark_detector.py +87 -0
- helm/benchmark/metrics/image_generation/watermark_metrics.py +48 -0
- helm/benchmark/metrics/instruction_following_critique_metrics.py +48 -5
- helm/benchmark/metrics/kpi_edgar_metrics.py +142 -0
- helm/benchmark/metrics/language_modeling_metrics.py +111 -0
- helm/benchmark/metrics/live_qa_metrics.py +35 -0
- helm/benchmark/metrics/llm_jury_metrics.py +58 -0
- helm/benchmark/metrics/lmkt_metric_specs.py +12 -0
- helm/benchmark/metrics/lmkt_metrics.py +47 -0
- helm/benchmark/metrics/machine_translation_metrics.py +89 -0
- helm/benchmark/metrics/medcalc_bench_metrics.py +137 -0
- helm/benchmark/metrics/medec_metrics.py +124 -0
- helm/benchmark/metrics/melt_bias_metric.py +234 -0
- helm/benchmark/metrics/melt_bias_word_lists.py +1367 -0
- helm/benchmark/metrics/melt_metric_specs.py +43 -0
- helm/benchmark/metrics/melt_toxicity_metric.py +107 -0
- helm/benchmark/metrics/metric.py +121 -175
- helm/benchmark/metrics/metric_name.py +0 -1
- helm/benchmark/metrics/metric_service.py +23 -7
- helm/benchmark/metrics/mimiciv_billing_code_metrics.py +127 -0
- helm/benchmark/metrics/nltk_helper.py +32 -0
- helm/benchmark/metrics/omni_math_metrics.py +44 -0
- helm/benchmark/metrics/openai_mrcr_metrics.py +52 -0
- helm/benchmark/metrics/output_processing_metric.py +60 -0
- helm/benchmark/metrics/output_processors.py +15 -0
- helm/benchmark/metrics/paraphrase_generation_metrics.py +5 -6
- helm/benchmark/metrics/prometheus_vision_critique_metrics.py +185 -0
- helm/benchmark/metrics/ranking_metrics.py +5 -5
- helm/benchmark/metrics/reference_metric.py +148 -0
- helm/benchmark/metrics/reka_vibe_critique_metrics.py +158 -0
- helm/benchmark/metrics/ruler_qa_metrics.py +34 -0
- helm/benchmark/metrics/safety_metrics.py +91 -0
- helm/benchmark/metrics/seahelm_metrics.py +201 -0
- helm/benchmark/metrics/seahelm_metrics_specs.py +10 -0
- helm/benchmark/metrics/spider_metrics.py +7 -0
- helm/benchmark/metrics/statistic.py +1 -1
- helm/benchmark/metrics/summac/model_summac.py +8 -11
- helm/benchmark/metrics/summarization_critique_metrics.py +4 -4
- helm/benchmark/metrics/summarization_metrics.py +150 -11
- helm/benchmark/metrics/test_bias_metrics.py +5 -1
- helm/benchmark/metrics/test_classification_metrics.py +145 -70
- helm/benchmark/metrics/test_disinformation_metrics.py +78 -0
- helm/benchmark/metrics/{test_basic_metrics.py → test_evaluate_reference_metrics.py} +20 -1
- helm/benchmark/metrics/test_metric.py +3 -3
- helm/benchmark/metrics/test_statistic.py +2 -2
- helm/benchmark/metrics/tokens/ai21_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/auto_token_cost_estimator.py +6 -6
- helm/benchmark/metrics/tokens/cohere_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/free_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/gooseai_token_cost_estimator.py +11 -3
- helm/benchmark/metrics/tokens/openai_token_cost_estimator.py +1 -1
- helm/benchmark/metrics/tokens/test_ai21_token_cost_estimator.py +3 -3
- helm/benchmark/metrics/tokens/test_openai_token_cost_estimator.py +7 -7
- helm/benchmark/metrics/toxicity_metrics.py +37 -7
- helm/benchmark/metrics/toxicity_utils.py +23 -0
- helm/benchmark/metrics/ultra_suite_asr_classification_metrics.py +52 -0
- helm/benchmark/metrics/unitxt_metrics.py +107 -0
- helm/benchmark/metrics/vision_language/__init__.py +0 -0
- helm/benchmark/metrics/vision_language/emd_utils.py +347 -0
- helm/benchmark/metrics/vision_language/image_metrics.py +537 -0
- helm/benchmark/metrics/vision_language/image_utils.py +100 -0
- helm/benchmark/metrics/wildbench_metrics.py +54 -0
- helm/benchmark/model_deployment_registry.py +69 -5
- helm/benchmark/model_metadata_registry.py +58 -2
- helm/benchmark/multi_gpu_runner.py +133 -0
- helm/benchmark/presentation/contamination.py +3 -3
- helm/benchmark/presentation/create_plots.py +51 -20
- helm/benchmark/presentation/run_display.py +51 -12
- helm/benchmark/presentation/run_entry.py +2 -2
- helm/benchmark/presentation/schema.py +83 -66
- helm/benchmark/presentation/summarize.py +483 -388
- helm/benchmark/presentation/table.py +8 -8
- helm/benchmark/presentation/taxonomy_info.py +20 -0
- helm/benchmark/presentation/test_contamination.py +2 -2
- helm/benchmark/presentation/test_create_plots.py +4 -1
- helm/benchmark/presentation/test_run_entry.py +2 -2
- helm/benchmark/presentation/test_schema.py +11 -0
- helm/benchmark/presentation/test_summarize.py +148 -6
- helm/benchmark/presentation/torr_robustness_summarizer.py +178 -0
- helm/benchmark/reeval_run.py +202 -0
- helm/benchmark/reeval_runner.py +355 -0
- helm/benchmark/run.py +151 -87
- helm/benchmark/run_expander.py +418 -33
- helm/benchmark/run_spec.py +93 -0
- helm/benchmark/run_spec_factory.py +180 -0
- helm/benchmark/run_specs/__init__.py +0 -0
- helm/benchmark/run_specs/air_bench_run_specs.py +58 -0
- helm/benchmark/run_specs/arabic_run_specs.py +197 -0
- helm/benchmark/run_specs/audio_run_specs.py +657 -0
- helm/benchmark/run_specs/bluex_run_specs.py +40 -0
- helm/benchmark/run_specs/call_center_run_specs.py +201 -0
- helm/benchmark/run_specs/capabilities_run_specs.py +308 -0
- helm/benchmark/run_specs/classic_run_specs.py +1393 -0
- helm/benchmark/run_specs/cleva_run_specs.py +277 -0
- helm/benchmark/run_specs/codeinsights_run_specs.py +192 -0
- helm/benchmark/run_specs/decodingtrust_run_specs.py +316 -0
- helm/benchmark/run_specs/enem_challenge_specs.py +31 -0
- helm/benchmark/run_specs/enterprise_run_specs.py +280 -0
- helm/benchmark/run_specs/experimental_run_specs.py +224 -0
- helm/benchmark/run_specs/finance_run_specs.py +114 -0
- helm/benchmark/run_specs/healthqa_br_run_specs.py +40 -0
- helm/benchmark/run_specs/heim_run_specs.py +625 -0
- helm/benchmark/run_specs/imdb_ptbr_run_specs.py +30 -0
- helm/benchmark/run_specs/instruction_following_run_specs.py +129 -0
- helm/benchmark/run_specs/lite_run_specs.py +307 -0
- helm/benchmark/run_specs/lmkt_run_specs.py +144 -0
- helm/benchmark/run_specs/long_context_run_specs.py +188 -0
- helm/benchmark/run_specs/medhelm/__init__.py +0 -0
- helm/benchmark/run_specs/medhelm/benchmark_config.py +219 -0
- helm/benchmark/run_specs/medhelm_run_specs.py +1570 -0
- helm/benchmark/run_specs/melt_run_specs.py +783 -0
- helm/benchmark/run_specs/mmlu_clinical_afr_run_specs.py +49 -0
- helm/benchmark/run_specs/multilingual_run_specs.py +50 -0
- helm/benchmark/run_specs/oab_exams_specs.py +32 -0
- helm/benchmark/run_specs/safety_run_specs.py +191 -0
- helm/benchmark/run_specs/seahelm_run_specs.py +652 -0
- helm/benchmark/run_specs/simple_run_specs.py +104 -0
- helm/benchmark/run_specs/speech_disorder_audio_run_specs.py +167 -0
- helm/benchmark/run_specs/sql_run_specs.py +54 -0
- helm/benchmark/run_specs/tweetsentbr_run_specs.py +32 -0
- helm/benchmark/run_specs/unitxt_run_specs.py +51 -0
- helm/benchmark/run_specs/vlm_run_specs.py +1057 -0
- helm/benchmark/run_specs/winogrande_afr_run_specs.py +47 -0
- helm/benchmark/runner.py +63 -62
- helm/benchmark/runner_config_registry.py +21 -0
- helm/benchmark/scenarios/aci_bench_scenario.py +149 -0
- helm/benchmark/scenarios/air_bench_scenario.py +76 -0
- helm/benchmark/scenarios/alghafa_scenario.py +126 -0
- helm/benchmark/scenarios/alrage_scenario.py +54 -0
- helm/benchmark/scenarios/anthropic_hh_rlhf_scenario.py +27 -3
- helm/benchmark/scenarios/anthropic_red_team_scenario.py +82 -0
- helm/benchmark/scenarios/arabic_exams_scenario.py +114 -0
- helm/benchmark/scenarios/arabic_mmlu_scenario.py +82 -0
- helm/benchmark/scenarios/aratrust_scenario.py +95 -0
- helm/benchmark/scenarios/audio_language/__init__.py +0 -0
- helm/benchmark/scenarios/audio_language/air_bench_chat_scenario.py +130 -0
- helm/benchmark/scenarios/audio_language/air_bench_foundation_scenario.py +154 -0
- helm/benchmark/scenarios/audio_language/ami_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/audio_mnist_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audio_pairs_scenario.py +62 -0
- helm/benchmark/scenarios/audio_language/audiocaps_scenario.py +59 -0
- helm/benchmark/scenarios/audio_language/casual_conversations2_scenario.py +152 -0
- helm/benchmark/scenarios/audio_language/common_voice_15_scenario.py +99 -0
- helm/benchmark/scenarios/audio_language/corebench_scenario.py +77 -0
- helm/benchmark/scenarios/audio_language/covost2_scenario.py +163 -0
- helm/benchmark/scenarios/audio_language/fleurs_fairness_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/fleurs_scenario.py +312 -0
- helm/benchmark/scenarios/audio_language/iemocap_audio_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/librispeech_fairness_scenario.py +96 -0
- helm/benchmark/scenarios/audio_language/librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/meld_audio_scenario.py +113 -0
- helm/benchmark/scenarios/audio_language/multilingual_librispeech_scenario.py +80 -0
- helm/benchmark/scenarios/audio_language/mustard_scenario.py +142 -0
- helm/benchmark/scenarios/audio_language/mutox_scenario.py +254 -0
- helm/benchmark/scenarios/audio_language/parade_scenario.py +97 -0
- helm/benchmark/scenarios/audio_language/speech_robust_bench_scenario.py +124 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_asr_classification_scenario.py +74 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_asr_transcription_scenario.py +70 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_classification_scenario.py +79 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_disorder_breakdown_scenario.py +78 -0
- helm/benchmark/scenarios/audio_language/ultra_suite_disorder_symptoms_scenario.py +78 -0
- helm/benchmark/scenarios/audio_language/vocal_sound_scenario.py +83 -0
- helm/benchmark/scenarios/audio_language/voice_jailbreak_attacks_scenario.py +87 -0
- helm/benchmark/scenarios/audio_language/voxceleb2_scenario.py +105 -0
- helm/benchmark/scenarios/autobencher_capabilities_scenario.py +68 -0
- helm/benchmark/scenarios/autobencher_safety_scenario.py +51 -0
- helm/benchmark/scenarios/babi_qa_scenario.py +16 -1
- helm/benchmark/scenarios/banking77_scenario.py +77 -0
- helm/benchmark/scenarios/bbq_scenario.py +17 -2
- helm/benchmark/scenarios/best_chatgpt_prompts.yaml +473 -0
- helm/benchmark/scenarios/big_bench_scenario.py +11 -1
- helm/benchmark/scenarios/bigcodebench_scenario.py +58 -0
- helm/benchmark/scenarios/bird_sql_scenario.py +112 -0
- helm/benchmark/scenarios/bird_sql_scenario_helper.py +118 -0
- helm/benchmark/scenarios/blimp_scenario.py +1 -1
- helm/benchmark/scenarios/bluex_scenario.py +70 -0
- helm/benchmark/scenarios/bold_scenario.py +18 -3
- helm/benchmark/scenarios/boolq_scenario.py +21 -1
- helm/benchmark/scenarios/call_center_scenario.py +84 -0
- helm/benchmark/scenarios/casehold_scenario.py +79 -0
- helm/benchmark/scenarios/chw_care_plan_scenario.py +129 -0
- helm/benchmark/scenarios/ci_mcqa_scenario.py +80 -0
- helm/benchmark/scenarios/civil_comments_scenario.py +14 -1
- helm/benchmark/scenarios/clear_scenario.py +180 -0
- helm/benchmark/scenarios/cleva_scenario.py +482 -3
- helm/benchmark/scenarios/code_scenario.py +46 -4
- helm/benchmark/scenarios/codeinsights_code_efficiency_scenario.py +197 -0
- helm/benchmark/scenarios/codeinsights_correct_code_scenario.py +78 -0
- helm/benchmark/scenarios/codeinsights_edge_case_scenario.py +192 -0
- helm/benchmark/scenarios/codeinsights_student_coding_scenario.py +162 -0
- helm/benchmark/scenarios/codeinsights_student_mistake_scenario.py +188 -0
- helm/benchmark/scenarios/commonsense_scenario.py +33 -1
- helm/benchmark/scenarios/compositional_instructions.yaml +70 -0
- helm/benchmark/scenarios/conv_fin_qa_calc_scenario.py +118 -0
- helm/benchmark/scenarios/copyright_scenario.py +35 -1
- helm/benchmark/scenarios/covid_dialog_scenario.py +10 -1
- helm/benchmark/scenarios/cti_to_mitre_scenario.py +261 -0
- helm/benchmark/scenarios/custom_mcqa_scenario.py +1 -1
- helm/benchmark/scenarios/czech_bank_qa_scenario.py +148 -0
- helm/benchmark/scenarios/decodingtrust_adv_demonstration_scenario.py +190 -0
- helm/benchmark/scenarios/decodingtrust_adv_robustness_scenario.py +143 -0
- helm/benchmark/scenarios/decodingtrust_fairness_scenario.py +98 -0
- helm/benchmark/scenarios/decodingtrust_machine_ethics_scenario.py +344 -0
- helm/benchmark/scenarios/decodingtrust_ood_robustness_scenario.py +217 -0
- helm/benchmark/scenarios/decodingtrust_privacy_scenario.py +571 -0
- helm/benchmark/scenarios/decodingtrust_stereotype_bias_scenario.py +80 -0
- helm/benchmark/scenarios/decodingtrust_toxicity_prompts_scenario.py +90 -0
- helm/benchmark/scenarios/dialogue_scenarios.py +13 -3
- helm/benchmark/scenarios/dischargeme_scenario.py +196 -0
- helm/benchmark/scenarios/disinformation_scenario.py +32 -1
- helm/benchmark/scenarios/dyck_language_scenario.py +25 -1
- helm/benchmark/scenarios/echr_judgment_classification_scenario.py +113 -0
- helm/benchmark/scenarios/ehr_sql_scenario.py +137 -0
- helm/benchmark/scenarios/ehrshot_scenario.py +1541 -0
- helm/benchmark/scenarios/enem_challenge_scenario.py +77 -0
- helm/benchmark/scenarios/entity_data_imputation_scenario.py +33 -3
- helm/benchmark/scenarios/entity_matching_scenario.py +26 -2
- helm/benchmark/scenarios/ewok_scenario.py +116 -0
- helm/benchmark/scenarios/exams_multilingual_scenario.py +115 -0
- helm/benchmark/scenarios/fin_qa_scenario.py +139 -0
- helm/benchmark/scenarios/financebench_scenario.py +74 -0
- helm/benchmark/scenarios/financial_phrasebank_scenario.py +115 -0
- helm/benchmark/scenarios/gold_commodity_news_scenario.py +145 -0
- helm/benchmark/scenarios/gpqa_scenario.py +98 -0
- helm/benchmark/scenarios/grammar.py +2 -2
- helm/benchmark/scenarios/grammar_scenario.py +21 -2
- helm/benchmark/scenarios/gsm_scenario.py +31 -1
- helm/benchmark/scenarios/harm_bench_gcg_transfer_scenario.py +61 -0
- helm/benchmark/scenarios/harm_bench_scenario.py +70 -0
- helm/benchmark/scenarios/headqa_scenario.py +158 -0
- helm/benchmark/scenarios/healthqa_br_scenario.py +80 -0
- helm/benchmark/scenarios/helpdesk_call_summarization_scenario.py +50 -0
- helm/benchmark/scenarios/ice_scenario.py +28 -4
- helm/benchmark/scenarios/ifeval_scenario.py +71 -0
- helm/benchmark/scenarios/image_generation/__init__.py +0 -0
- helm/benchmark/scenarios/image_generation/common_syntactic_processes_scenario.py +105 -0
- helm/benchmark/scenarios/image_generation/cub200_scenario.py +95 -0
- helm/benchmark/scenarios/image_generation/daily_dalle_scenario.py +124 -0
- helm/benchmark/scenarios/image_generation/demographic_stereotypes_scenario.py +82 -0
- helm/benchmark/scenarios/image_generation/detection_scenario.py +83 -0
- helm/benchmark/scenarios/image_generation/draw_bench_scenario.py +74 -0
- helm/benchmark/scenarios/image_generation/i2p_scenario.py +57 -0
- helm/benchmark/scenarios/image_generation/landing_page_scenario.py +46 -0
- helm/benchmark/scenarios/image_generation/logos_scenario.py +223 -0
- helm/benchmark/scenarios/image_generation/magazine_cover_scenario.py +91 -0
- helm/benchmark/scenarios/image_generation/mental_disorders_scenario.py +46 -0
- helm/benchmark/scenarios/image_generation/mscoco_scenario.py +91 -0
- helm/benchmark/scenarios/image_generation/paint_skills_scenario.py +72 -0
- helm/benchmark/scenarios/image_generation/parti_prompts_scenario.py +94 -0
- helm/benchmark/scenarios/image_generation/radiology_scenario.py +42 -0
- helm/benchmark/scenarios/image_generation/relational_understanding_scenario.py +52 -0
- helm/benchmark/scenarios/image_generation/time_most_significant_historical_figures_scenario.py +124 -0
- helm/benchmark/scenarios/image_generation/winoground_scenario.py +62 -0
- helm/benchmark/scenarios/imdb_ptbr_scenario.py +60 -0
- helm/benchmark/scenarios/imdb_scenario.py +26 -3
- helm/benchmark/scenarios/infinite_bench_en_mc_scenario.py +111 -0
- helm/benchmark/scenarios/infinite_bench_en_qa_scenario.py +85 -0
- helm/benchmark/scenarios/infinite_bench_en_sum_scenario.py +98 -0
- helm/benchmark/scenarios/interactive_qa_mmlu_scenario.py +2 -2
- helm/benchmark/scenarios/koala_scenario.py +21 -1
- helm/benchmark/scenarios/kpi_edgar_scenario.py +172 -0
- helm/benchmark/scenarios/legal_contract_summarization_scenario.py +149 -0
- helm/benchmark/scenarios/legal_opinion_sentiment_classification_scenario.py +77 -0
- helm/benchmark/scenarios/legal_summarization_scenario.py +61 -1
- helm/benchmark/scenarios/legal_support_scenario.py +24 -1
- helm/benchmark/scenarios/legalbench_scenario.py +45 -3
- helm/benchmark/scenarios/lex_glue_scenario.py +23 -2
- helm/benchmark/scenarios/lextreme_scenario.py +22 -1
- helm/benchmark/scenarios/live_qa_scenario.py +94 -0
- helm/benchmark/scenarios/lm_entry_scenario.py +185 -0
- helm/benchmark/scenarios/lmkt_scenarios.py +288 -0
- helm/benchmark/scenarios/lsat_qa_scenario.py +15 -1
- helm/benchmark/scenarios/madinah_qa_scenario.py +73 -0
- helm/benchmark/scenarios/math_scenario.py +81 -22
- helm/benchmark/scenarios/mbzuai_human_translated_arabic_mmlu.py +68 -0
- helm/benchmark/scenarios/me_q_sum_scenario.py +10 -1
- helm/benchmark/scenarios/med_dialog_scenario.py +56 -22
- helm/benchmark/scenarios/med_mcqa_scenario.py +24 -1
- helm/benchmark/scenarios/med_paragraph_simplification_scenario.py +10 -1
- helm/benchmark/scenarios/med_qa_scenario.py +30 -1
- helm/benchmark/scenarios/medalign_scenario.py +117 -0
- helm/benchmark/scenarios/medalign_scenario_helper.py +326 -0
- helm/benchmark/scenarios/medbullets_scenario.py +167 -0
- helm/benchmark/scenarios/medcalc_bench_scenario.py +149 -0
- helm/benchmark/scenarios/medec_scenario.py +148 -0
- helm/benchmark/scenarios/medhallu_scenario.py +95 -0
- helm/benchmark/scenarios/medhelm/__init__.py +0 -0
- helm/benchmark/scenarios/medhelm/judges.yaml +14 -0
- helm/benchmark/scenarios/medhelm_configurable_scenario.py +101 -0
- helm/benchmark/scenarios/medi_qa_scenario.py +134 -0
- helm/benchmark/scenarios/medication_qa_scenario.py +96 -0
- helm/benchmark/scenarios/melt_ir_scenario.py +171 -0
- helm/benchmark/scenarios/melt_knowledge_scenario.py +246 -0
- helm/benchmark/scenarios/melt_lm_scenarios.py +252 -0
- helm/benchmark/scenarios/melt_scenarios.py +793 -0
- helm/benchmark/scenarios/melt_srn_scenario.py +342 -0
- helm/benchmark/scenarios/melt_synthetic_reasoning_scenario.py +222 -0
- helm/benchmark/scenarios/melt_translation_scenario.py +152 -0
- helm/benchmark/scenarios/mental_health_scenario.py +146 -0
- helm/benchmark/scenarios/mimic_bhc_scenario.py +127 -0
- helm/benchmark/scenarios/mimic_rrs_scenario.py +121 -0
- helm/benchmark/scenarios/mimiciv_billing_code_scenario.py +99 -0
- helm/benchmark/scenarios/mmlu_clinical_afr_scenario.py +74 -0
- helm/benchmark/scenarios/mmlu_pro_scenario.py +113 -0
- helm/benchmark/scenarios/mmlu_scenario.py +32 -1
- helm/benchmark/scenarios/mmmlu_scenario.py +85 -0
- helm/benchmark/scenarios/msmarco_scenario.py +31 -1
- helm/benchmark/scenarios/mtsamples_procedures_scenario.py +166 -0
- helm/benchmark/scenarios/mtsamples_replicate_scenario.py +164 -0
- helm/benchmark/scenarios/n2c2_ct_matching_scenario.py +297 -0
- helm/benchmark/scenarios/narrativeqa_scenario.py +20 -1
- helm/benchmark/scenarios/natural_qa_scenario.py +33 -1
- helm/benchmark/scenarios/newsqa_scenario.py +1 -1
- helm/benchmark/scenarios/oab_exams_scenario.py +57 -0
- helm/benchmark/scenarios/omni_math_scenario.py +71 -0
- helm/benchmark/scenarios/open_assistant_scenario.py +33 -2
- helm/benchmark/scenarios/openai_mrcr_scenario.py +94 -0
- helm/benchmark/scenarios/opinions_qa_scenario.py +1 -5
- helm/benchmark/scenarios/pubmed_qa_scenario.py +81 -43
- helm/benchmark/scenarios/quac_scenario.py +24 -1
- helm/benchmark/scenarios/race_based_med_scenario.py +175 -0
- helm/benchmark/scenarios/raft_scenario.py +33 -3
- helm/benchmark/scenarios/real_toxicity_prompts_scenario.py +14 -1
- helm/benchmark/scenarios/ruler_qa_scenario_helper.py +171 -0
- helm/benchmark/scenarios/ruler_qa_scenarios.py +128 -0
- helm/benchmark/scenarios/scenario.py +44 -1
- helm/benchmark/scenarios/seahelm_scenario.py +2295 -0
- helm/benchmark/scenarios/self_instruct_scenario.py +29 -1
- helm/benchmark/scenarios/shc_bmt_scenario.py +97 -0
- helm/benchmark/scenarios/shc_cdi_scenario.py +95 -0
- helm/benchmark/scenarios/shc_conf_scenario.py +99 -0
- helm/benchmark/scenarios/shc_ent_scenario.py +98 -0
- helm/benchmark/scenarios/shc_gip_scenario.py +94 -0
- helm/benchmark/scenarios/shc_privacy_scenario.py +100 -0
- helm/benchmark/scenarios/shc_proxy_scenario.py +98 -0
- helm/benchmark/scenarios/shc_ptbm_scenario.py +104 -0
- helm/benchmark/scenarios/shc_sei_scenario.py +94 -0
- helm/benchmark/scenarios/shc_sequoia_scenario.py +98 -0
- helm/benchmark/scenarios/simple_safety_tests_scenario.py +44 -0
- helm/benchmark/scenarios/simple_scenarios.py +122 -1
- helm/benchmark/scenarios/situation_prompts.yaml +49 -0
- helm/benchmark/scenarios/spider_scenario.py +109 -0
- helm/benchmark/scenarios/starr_patient_instructions_scenario.py +119 -0
- helm/benchmark/scenarios/summarization_scenario.py +48 -1
- helm/benchmark/scenarios/sumosum_scenario.py +157 -0
- helm/benchmark/scenarios/synthetic_efficiency_scenario.py +22 -1
- helm/benchmark/scenarios/synthetic_reasoning_natural_scenario.py +24 -1
- helm/benchmark/scenarios/synthetic_reasoning_scenario.py +11 -1
- helm/benchmark/scenarios/test_air_bench_scenario.py +27 -0
- helm/benchmark/scenarios/test_alghafa_scenario.py +29 -0
- helm/benchmark/scenarios/test_alrage_scenario.py +23 -0
- helm/benchmark/scenarios/test_arabic_exams_scenario.py +21 -0
- helm/benchmark/scenarios/test_aratrust_scenario.py +21 -0
- helm/benchmark/scenarios/test_bigcodebench_scenario.py +26 -0
- helm/benchmark/scenarios/test_bluex_scenario.py +59 -0
- helm/benchmark/scenarios/test_commonsense_scenario.py +21 -0
- helm/benchmark/scenarios/test_czech_bank_qa_scenario.py +18 -0
- helm/benchmark/scenarios/test_enem_challenge_scenario.py +53 -0
- helm/benchmark/scenarios/test_ewok_scenario.py +29 -0
- helm/benchmark/scenarios/test_exams_multilingual_scenario.py +29 -0
- helm/benchmark/scenarios/test_financebench_scenario.py +26 -0
- helm/benchmark/scenarios/test_gold_commodity_news_scenario.py +18 -0
- helm/benchmark/scenarios/test_gpqa_scenario.py +44 -0
- helm/benchmark/scenarios/test_gsm_scenario.py +31 -0
- helm/benchmark/scenarios/test_healtha_br_scenario.py +57 -0
- helm/benchmark/scenarios/test_ifeval_scenario.py +36 -0
- helm/benchmark/scenarios/test_imdb_ptbr_scenario.py +27 -0
- helm/benchmark/scenarios/test_infinite_bench_en_qa_scenario.py +18 -0
- helm/benchmark/scenarios/test_infinite_bench_en_sum_scenario.py +31 -0
- helm/benchmark/scenarios/test_legalbench_scenario.py +30 -0
- helm/benchmark/scenarios/test_math_scenario.py +4 -3
- helm/benchmark/scenarios/test_med_qa_scenario.py +30 -0
- helm/benchmark/scenarios/test_mmlu_clinical_afr_scenario.py +21 -0
- helm/benchmark/scenarios/test_mmlu_pro_scenario.py +53 -0
- helm/benchmark/scenarios/test_mmlu_scenario.py +33 -0
- helm/benchmark/scenarios/test_narrativeqa_scenario.py +73 -0
- helm/benchmark/scenarios/test_oab_exams_scenario.py +51 -0
- helm/benchmark/scenarios/test_omni_math_scenario.py +27 -0
- helm/benchmark/scenarios/test_scenario.py +6 -3
- helm/benchmark/scenarios/test_simple_scenarios.py +50 -0
- helm/benchmark/scenarios/test_tweetsentbr_scenario.py +24 -0
- helm/benchmark/scenarios/test_wildbench_scenario.py +15 -0
- helm/benchmark/scenarios/test_winogrande_afr_scenario.py +19 -0
- helm/benchmark/scenarios/thai_exam_scenario.py +239 -0
- helm/benchmark/scenarios/the_pile_scenario.py +13 -1
- helm/benchmark/scenarios/truthful_qa_scenario.py +26 -2
- helm/benchmark/scenarios/tweetsentbr_scenario.py +66 -0
- helm/benchmark/scenarios/twitter_aae_scenario.py +20 -1
- helm/benchmark/scenarios/unitxt_scenario.py +62 -0
- helm/benchmark/scenarios/verifiability_judgment_scenario.py +4 -2
- helm/benchmark/scenarios/vicuna_scenario.py +22 -2
- helm/benchmark/scenarios/vision_language/a_okvqa_scenario.py +83 -0
- helm/benchmark/scenarios/vision_language/bingo_scenario.py +103 -0
- helm/benchmark/scenarios/vision_language/blink_scenario.py +140 -0
- helm/benchmark/scenarios/vision_language/crossmodal_3600_scenario.py +135 -0
- helm/benchmark/scenarios/vision_language/exams_v_scenario.py +104 -0
- helm/benchmark/scenarios/vision_language/fair_face_scenario.py +136 -0
- helm/benchmark/scenarios/vision_language/flickr30k_scenario.py +74 -0
- helm/benchmark/scenarios/vision_language/gqa_scenario.py +91 -0
- helm/benchmark/scenarios/vision_language/hateful_memes_scenario.py +94 -0
- helm/benchmark/scenarios/vision_language/heim_human_eval_scenario.py +113 -0
- helm/benchmark/scenarios/vision_language/image2struct/__init__.py +0 -0
- helm/benchmark/scenarios/vision_language/image2struct/chart2csv_scenario.py +55 -0
- helm/benchmark/scenarios/vision_language/image2struct/image2struct_scenario.py +225 -0
- helm/benchmark/scenarios/vision_language/image2struct/latex_scenario.py +21 -0
- helm/benchmark/scenarios/vision_language/image2struct/musicsheet_scenario.py +16 -0
- helm/benchmark/scenarios/vision_language/image2struct/utils_latex.py +339 -0
- helm/benchmark/scenarios/vision_language/image2struct/webpage/__init__.py +0 -0
- helm/benchmark/scenarios/vision_language/image2struct/webpage/driver.py +84 -0
- helm/benchmark/scenarios/vision_language/image2struct/webpage/jekyll_server.py +182 -0
- helm/benchmark/scenarios/vision_language/image2struct/webpage/utils.py +31 -0
- helm/benchmark/scenarios/vision_language/image2struct/webpage_scenario.py +256 -0
- helm/benchmark/scenarios/vision_language/math_vista_scenario.py +117 -0
- helm/benchmark/scenarios/vision_language/mementos_scenario.py +124 -0
- helm/benchmark/scenarios/vision_language/mm_safety_bench_scenario.py +103 -0
- helm/benchmark/scenarios/vision_language/mm_star_scenario.py +95 -0
- helm/benchmark/scenarios/vision_language/mme_scenario.py +148 -0
- helm/benchmark/scenarios/vision_language/mmmu_scenario.py +187 -0
- helm/benchmark/scenarios/vision_language/mscoco_captioning_scenario.py +92 -0
- helm/benchmark/scenarios/vision_language/mscoco_categorization_scenario.py +117 -0
- helm/benchmark/scenarios/vision_language/msr_vtt_scenario.py +75 -0
- helm/benchmark/scenarios/vision_language/multipanelvqa_scenario.py +169 -0
- helm/benchmark/scenarios/vision_language/originality_scenario.py +35 -0
- helm/benchmark/scenarios/vision_language/pairs_scenario.py +247 -0
- helm/benchmark/scenarios/vision_language/pope_scenario.py +105 -0
- helm/benchmark/scenarios/vision_language/real_world_qa_scenario.py +57 -0
- helm/benchmark/scenarios/vision_language/seed_bench_scenario.py +131 -0
- helm/benchmark/scenarios/vision_language/unicorn_scenario.py +108 -0
- helm/benchmark/scenarios/vision_language/vibe_eval_scenario.py +98 -0
- helm/benchmark/scenarios/vision_language/viz_wiz_scenario.py +4 -5
- helm/benchmark/scenarios/vision_language/vqa_rad_scenario.py +88 -0
- helm/benchmark/scenarios/vision_language/vqa_scenario.py +8 -4
- helm/benchmark/scenarios/wikifact_scenario.py +31 -1
- helm/benchmark/scenarios/wikitext_103_scenario.py +1 -1
- helm/benchmark/scenarios/wildbench_scenario.py +101 -0
- helm/benchmark/scenarios/winogrande_afr_scenario.py +78 -0
- helm/benchmark/scenarios/wmt_14_scenario.py +33 -2
- helm/benchmark/scenarios/xstest_scenario.py +35 -0
- helm/benchmark/server.py +32 -2
- helm/benchmark/slurm_jobs.py +1 -2
- helm/benchmark/slurm_runner.py +78 -50
- helm/benchmark/static/schema_air_bench.yaml +3149 -0
- helm/benchmark/static/schema_arabic.yaml +271 -0
- helm/benchmark/static/schema_audio.yaml +763 -0
- helm/benchmark/static/schema_autobencher.yaml +150 -0
- helm/benchmark/static/schema_call_center.yaml +269 -0
- helm/benchmark/static/schema_capabilities.yaml +254 -0
- helm/benchmark/static/schema_classic.yaml +259 -1140
- helm/benchmark/static/schema_cleva.yaml +768 -0
- helm/benchmark/static/schema_czech_bank.yaml +148 -0
- helm/benchmark/static/schema_decodingtrust.yaml +444 -0
- helm/benchmark/static/schema_enem_challenge.yaml +146 -0
- helm/benchmark/static/schema_enterprise.yaml +319 -0
- helm/benchmark/static/schema_ewok.yaml +367 -0
- helm/benchmark/static/schema_finance.yaml +191 -0
- helm/benchmark/static/schema_heim.yaml +1389 -0
- helm/benchmark/static/schema_image2struct.yaml +588 -0
- helm/benchmark/static/schema_instruction_following.yaml +161 -0
- helm/benchmark/static/schema_legal.yaml +566 -0
- helm/benchmark/static/schema_lite.yaml +3 -286
- helm/benchmark/static/schema_long_context.yaml +282 -0
- helm/benchmark/static/schema_medhelm.yaml +1176 -0
- helm/benchmark/static/schema_melt.yaml +1257 -0
- helm/benchmark/static/schema_mmlu.yaml +1449 -0
- helm/benchmark/static/schema_mmlu_winogrande_afr.yaml +1045 -0
- helm/benchmark/static/schema_safety.yaml +283 -0
- helm/benchmark/static/schema_seahelm.yaml +723 -0
- helm/benchmark/static/schema_slp.yaml +219 -0
- helm/benchmark/static/schema_slphelm.yaml +162 -0
- helm/benchmark/static/schema_social_audio.yaml +224 -0
- helm/benchmark/static/schema_sql.yaml +171 -0
- helm/benchmark/static/schema_thai.yaml +244 -0
- helm/benchmark/static/schema_torr.yaml +474 -0
- helm/benchmark/static/schema_tweetsentbr.yaml +146 -0
- helm/benchmark/static/schema_unitxt.yaml +370 -0
- helm/benchmark/static/schema_vhelm.yaml +933 -0
- helm/benchmark/static/schema_vhelm_lite.yaml +109 -0
- helm/benchmark/static/schema_video.yaml +219 -0
- helm/benchmark/static_build/assets/air-overview-DpBbyagA.png +0 -0
- helm/benchmark/static_build/assets/audio-table-Dn5NMMeJ.png +0 -0
- helm/benchmark/static_build/assets/heim-logo-BJtQlEbV.png +0 -0
- helm/benchmark/static_build/assets/helm-safety-COfndXuS.png +0 -0
- helm/benchmark/static_build/assets/helmhero-D9TvmJsp.png +0 -0
- helm/benchmark/static_build/assets/index-oIeiQW2g.css +1 -0
- helm/benchmark/static_build/assets/index-qOFpOyHb.js +10 -0
- helm/benchmark/static_build/assets/medhelm-overview-CND0EIsy.png +0 -0
- helm/benchmark/static_build/assets/medhelm-v1-overview-Cu2tphBB.png +0 -0
- helm/benchmark/static_build/assets/overview-BwypNWnk.png +0 -0
- helm/benchmark/static_build/assets/process-flow-DWDJC733.png +0 -0
- helm/benchmark/static_build/assets/react-BteFIppM.js +85 -0
- helm/benchmark/static_build/assets/recharts-DxuQtTOs.js +97 -0
- helm/benchmark/static_build/assets/tremor-DR4fE7ko.js +10 -0
- helm/benchmark/static_build/assets/vhelm-aspects-NiDQofvP.png +0 -0
- helm/benchmark/static_build/assets/vhelm-framework-NxJE4fdA.png +0 -0
- helm/benchmark/static_build/assets/vhelm-model-ypCL5Yvq.png +0 -0
- helm/benchmark/static_build/config.js +4 -0
- helm/benchmark/static_build/index.html +19 -0
- helm/benchmark/test_data_preprocessor.py +3 -3
- helm/benchmark/test_run_expander.py +1 -1
- helm/benchmark/window_services/default_window_service.py +3 -45
- helm/benchmark/window_services/encoder_decoder_window_service.py +4 -15
- helm/benchmark/window_services/ice_window_service.py +1 -35
- helm/benchmark/window_services/image_generation/__init__.py +0 -0
- helm/benchmark/window_services/image_generation/clip_window_service.py +13 -0
- helm/benchmark/window_services/image_generation/lexica_search_window_service.py +9 -0
- helm/benchmark/window_services/image_generation/openai_dalle_window_service.py +9 -0
- helm/benchmark/window_services/image_generation/test_clip_window_service.py +29 -0
- helm/benchmark/window_services/image_generation/test_openai_dalle_window_service.py +30 -0
- helm/benchmark/window_services/local_window_service.py +22 -5
- helm/benchmark/window_services/test_anthropic_window_service.py +5 -4
- helm/benchmark/window_services/test_bloom_window_service.py +5 -4
- helm/benchmark/window_services/test_flan_t5_window_service.py +2 -1
- helm/benchmark/window_services/test_gpt2_window_service.py +9 -4
- helm/benchmark/window_services/test_gpt4_window_service.py +10 -4
- helm/benchmark/window_services/test_gptj_window_service.py +11 -5
- helm/benchmark/window_services/test_gptneox_window_service.py +6 -5
- helm/benchmark/window_services/test_openai_window_service.py +18 -12
- helm/benchmark/window_services/test_opt_window_service.py +6 -5
- helm/benchmark/window_services/test_palmyra_window_service.py +5 -4
- helm/benchmark/window_services/test_t0pp_window_service.py +5 -4
- helm/benchmark/window_services/test_t511b_window_service.py +5 -4
- helm/benchmark/window_services/test_ul2_window_service.py +5 -4
- helm/benchmark/window_services/test_utils.py +6 -6
- helm/benchmark/window_services/test_yalm_window_service.py +5 -4
- helm/benchmark/window_services/tokenizer_service.py +7 -13
- helm/benchmark/window_services/window_service.py +42 -0
- helm/benchmark/window_services/window_service_factory.py +4 -1
- helm/benchmark/window_services/yalm_window_service.py +1 -28
- helm/clients/__init__.py +0 -0
- helm/{proxy/clients → clients}/ai21_client.py +78 -12
- helm/clients/aleph_alpha_client.py +114 -0
- helm/{proxy/clients → clients}/anthropic_client.py +304 -21
- helm/clients/audio_language/__init__.py +0 -0
- helm/clients/audio_language/diva_llama_client.py +122 -0
- helm/clients/audio_language/llama_omni/arguments.py +61 -0
- helm/clients/audio_language/llama_omni/constants.py +9 -0
- helm/clients/audio_language/llama_omni/conversation.py +213 -0
- helm/clients/audio_language/llama_omni/model/__init__.py +0 -0
- helm/clients/audio_language/llama_omni/model/builder.py +88 -0
- helm/clients/audio_language/llama_omni/model/language_model/omni_speech2s_llama.py +190 -0
- helm/clients/audio_language/llama_omni/model/language_model/omni_speech_llama.py +118 -0
- helm/clients/audio_language/llama_omni/model/omni_speech_arch.py +249 -0
- helm/clients/audio_language/llama_omni/model/speech_encoder/builder.py +9 -0
- helm/clients/audio_language/llama_omni/model/speech_encoder/speech_encoder.py +27 -0
- helm/clients/audio_language/llama_omni/model/speech_generator/builder.py +9 -0
- helm/clients/audio_language/llama_omni/model/speech_generator/generation.py +622 -0
- helm/clients/audio_language/llama_omni/model/speech_generator/speech_generator.py +104 -0
- helm/clients/audio_language/llama_omni/model/speech_projector/builder.py +9 -0
- helm/clients/audio_language/llama_omni/model/speech_projector/speech_projector.py +27 -0
- helm/clients/audio_language/llama_omni/preprocess.py +295 -0
- helm/clients/audio_language/llama_omni/utils.py +202 -0
- helm/clients/audio_language/llama_omni_client.py +199 -0
- helm/clients/audio_language/qwen2_5_omni_client.py +210 -0
- helm/clients/audio_language/qwen2_audiolm_client.py +191 -0
- helm/clients/audio_language/qwen_audiolm_client.py +153 -0
- helm/clients/audio_language/qwen_omni/configuration_qwen2_5_omni.py +519 -0
- helm/clients/audio_language/qwen_omni/modeling_qwen2_5_omni.py +4308 -0
- helm/clients/audio_language/qwen_omni/processing_qwen2_5_omni.py +270 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/__init__.py +0 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/v2_5/__init__.py +8 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/v2_5/audio_process.py +56 -0
- helm/clients/audio_language/qwen_omni/qwen2_5_omni_utils/v2_5/vision_process.py +380 -0
- helm/clients/audio_language/test.py +62 -0
- helm/{proxy/clients → clients}/auto_client.py +72 -31
- helm/clients/azure_openai_client.py +55 -0
- helm/clients/bedrock_client.py +381 -0
- helm/clients/bedrock_utils.py +105 -0
- helm/{proxy/clients → clients}/client.py +92 -17
- helm/clients/clip_score_client.py +49 -0
- helm/clients/clip_scorers/__init__.py +0 -0
- helm/clients/clip_scorers/base_clip_scorer.py +18 -0
- helm/clients/clip_scorers/clip_scorer.py +50 -0
- helm/clients/clip_scorers/multilingual_clip_scorer.py +50 -0
- helm/{proxy/clients → clients}/cohere_client.py +105 -14
- helm/clients/dspy_client.py +135 -0
- helm/clients/gcs_client.py +82 -0
- helm/{proxy/clients → clients}/google_client.py +8 -6
- helm/clients/google_translate_client.py +35 -0
- helm/clients/grok_client.py +36 -0
- helm/{proxy/clients → clients}/http_model_client.py +8 -8
- helm/{proxy/clients → clients}/huggingface_client.py +157 -86
- helm/clients/huggingface_pipeline_client.py +138 -0
- helm/clients/ibm_client.py +269 -0
- helm/clients/image_generation/__init__.py +0 -0
- helm/clients/image_generation/adobe_vision_client.py +80 -0
- helm/clients/image_generation/aleph_alpha_image_generation_client.py +100 -0
- helm/clients/image_generation/cogview2/__init__.py +0 -0
- helm/clients/image_generation/cogview2/coglm_strategy.py +96 -0
- helm/clients/image_generation/cogview2/coglm_utils.py +82 -0
- helm/clients/image_generation/cogview2/sr_pipeline/__init__.py +15 -0
- helm/clients/image_generation/cogview2/sr_pipeline/direct_sr.py +99 -0
- helm/clients/image_generation/cogview2/sr_pipeline/dsr_model.py +254 -0
- helm/clients/image_generation/cogview2/sr_pipeline/dsr_sampling.py +190 -0
- helm/clients/image_generation/cogview2/sr_pipeline/iterative_sr.py +144 -0
- helm/clients/image_generation/cogview2/sr_pipeline/itersr_model.py +269 -0
- helm/clients/image_generation/cogview2/sr_pipeline/itersr_sampling.py +120 -0
- helm/clients/image_generation/cogview2/sr_pipeline/sr_group.py +42 -0
- helm/clients/image_generation/cogview2_client.py +192 -0
- helm/clients/image_generation/dalle2_client.py +194 -0
- helm/clients/image_generation/dalle3_client.py +108 -0
- helm/clients/image_generation/dalle_mini/__init__.py +3 -0
- helm/clients/image_generation/dalle_mini/data.py +442 -0
- helm/clients/image_generation/dalle_mini/model/__init__.py +5 -0
- helm/clients/image_generation/dalle_mini/model/configuration.py +175 -0
- helm/clients/image_generation/dalle_mini/model/modeling.py +1834 -0
- helm/clients/image_generation/dalle_mini/model/partitions.py +84 -0
- helm/clients/image_generation/dalle_mini/model/processor.py +63 -0
- helm/clients/image_generation/dalle_mini/model/text.py +251 -0
- helm/clients/image_generation/dalle_mini/model/tokenizer.py +9 -0
- helm/clients/image_generation/dalle_mini/model/utils.py +29 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/__init__.py +1 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/configuration_vqgan.py +40 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py +107 -0
- helm/clients/image_generation/dalle_mini/vqgan_jax/modeling_flax_vqgan.py +610 -0
- helm/clients/image_generation/dalle_mini_client.py +191 -0
- helm/clients/image_generation/deep_floyd_client.py +80 -0
- helm/clients/image_generation/huggingface_diffusers_client.py +250 -0
- helm/clients/image_generation/image_generation_client_utils.py +9 -0
- helm/clients/image_generation/lexica_client.py +88 -0
- helm/clients/image_generation/mindalle/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/__init__.py +216 -0
- helm/clients/image_generation/mindalle/models/stage1/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/stage1/layers.py +312 -0
- helm/clients/image_generation/mindalle/models/stage1/vqgan.py +103 -0
- helm/clients/image_generation/mindalle/models/stage2/__init__.py +0 -0
- helm/clients/image_generation/mindalle/models/stage2/layers.py +144 -0
- helm/clients/image_generation/mindalle/models/stage2/transformer.py +268 -0
- helm/clients/image_generation/mindalle/models/tokenizer.py +30 -0
- helm/clients/image_generation/mindalle/utils/__init__.py +3 -0
- helm/clients/image_generation/mindalle/utils/config.py +129 -0
- helm/clients/image_generation/mindalle/utils/sampling.py +149 -0
- helm/clients/image_generation/mindalle/utils/utils.py +89 -0
- helm/clients/image_generation/mindalle_client.py +116 -0
- helm/clients/image_generation/nudity_check_client.py +64 -0
- helm/clients/image_generation/together_image_generation_client.py +113 -0
- helm/{proxy/clients → clients}/lit_gpt_client.py +6 -6
- helm/{proxy/clients → clients}/megatron_client.py +7 -5
- helm/clients/mistral_client.py +180 -0
- helm/clients/moderation_api_client.py +111 -0
- helm/clients/nvidia_nim_client.py +32 -0
- helm/clients/open_lm_client.py +43 -0
- helm/clients/openai_client.py +604 -0
- helm/clients/openai_responses_client.py +200 -0
- helm/clients/openrouter_client.py +31 -0
- helm/{proxy/clients → clients}/palmyra_client.py +31 -14
- helm/{proxy/clients → clients}/perspective_api_client.py +18 -14
- helm/clients/reka_client.py +190 -0
- helm/clients/simple_client.py +64 -0
- helm/clients/stanfordhealthcare_azure_openai_client.py +58 -0
- helm/clients/stanfordhealthcare_claude_client.py +31 -0
- helm/clients/stanfordhealthcare_google_client.py +43 -0
- helm/clients/stanfordhealthcare_http_model_client.py +95 -0
- helm/clients/stanfordhealthcare_openai_client.py +62 -0
- helm/clients/stanfordhealthcare_shc_openai_client.py +42 -0
- helm/{proxy/clients → clients}/test_auto_client.py +13 -15
- helm/clients/test_client.py +98 -0
- helm/{proxy/clients → clients}/test_huggingface_client.py +31 -16
- helm/clients/test_openrouter_client.py +69 -0
- helm/clients/test_simple_client.py +19 -0
- helm/clients/test_together_client.py +184 -0
- helm/clients/together_client.py +599 -0
- helm/clients/upstage_client.py +23 -0
- helm/clients/vertexai_client.py +488 -0
- helm/clients/vision_language/__init__.py +0 -0
- helm/clients/vision_language/huggingface_vision2seq_client.py +148 -0
- helm/clients/vision_language/huggingface_vlm_client.py +114 -0
- helm/{proxy/clients → clients}/vision_language/idefics_client.py +61 -51
- helm/clients/vision_language/open_flamingo/__init__.py +2 -0
- helm/clients/vision_language/open_flamingo/src/__init__.py +0 -0
- helm/clients/vision_language/open_flamingo/src/factory.py +147 -0
- helm/clients/vision_language/open_flamingo/src/flamingo.py +337 -0
- helm/clients/vision_language/open_flamingo/src/flamingo_lm.py +155 -0
- helm/clients/vision_language/open_flamingo/src/helpers.py +267 -0
- helm/clients/vision_language/open_flamingo/src/utils.py +47 -0
- helm/clients/vision_language/open_flamingo_client.py +155 -0
- helm/clients/vision_language/paligemma_client.py +147 -0
- helm/clients/vision_language/palmyra_vision_client.py +101 -0
- helm/clients/vision_language/qwen2_vlm_client.py +189 -0
- helm/clients/vision_language/qwen_vlm_client.py +174 -0
- helm/clients/vllm_client.py +80 -0
- helm/clients/vllm_granite_thinking_client.py +56 -0
- helm/clients/writer_client.py +105 -0
- helm/clients/yi_client.py +28 -0
- helm/common/audio_utils.py +111 -0
- helm/common/cache.py +23 -33
- helm/common/cache_backend_config.py +47 -0
- helm/common/clip_score_request.py +41 -0
- helm/common/context.py +80 -0
- helm/common/credentials_utils.py +5 -5
- helm/common/critique_request.py +10 -2
- helm/common/file_caches/__init__.py +0 -0
- helm/common/file_caches/file_cache.py +16 -0
- helm/common/file_caches/local_file_cache.py +61 -0
- helm/common/file_caches/test_local_file_cache.py +25 -0
- helm/common/file_upload_request.py +27 -0
- helm/common/general.py +10 -3
- helm/common/hierarchical_logger.py +124 -12
- helm/common/image_generation_parameters.py +25 -0
- helm/common/images_utils.py +60 -5
- helm/common/key_value_store.py +41 -10
- helm/common/local_context.py +140 -0
- helm/common/media_object.py +14 -1
- helm/common/moderations_api_request.py +71 -0
- helm/common/mongo_key_value_store.py +8 -7
- helm/common/multimodal_request_utils.py +57 -0
- helm/common/nudity_check_request.py +29 -0
- helm/common/object_spec.py +23 -8
- helm/common/optional_dependencies.py +1 -1
- helm/common/reeval_parameters.py +12 -0
- helm/common/remote_context.py +61 -0
- helm/common/request.py +45 -19
- helm/common/response_format.py +18 -0
- helm/common/test_cache.py +1 -48
- helm/common/test_general.py +10 -0
- helm/common/test_logging.py +94 -0
- helm/common/test_media_object.py +1 -1
- helm/common/tokenization_request.py +1 -10
- helm/config/model_deployments.yaml +4713 -1005
- helm/config/model_metadata.yaml +4045 -255
- helm/config/tokenizer_configs.yaml +1091 -50
- helm/proxy/accounts.py +31 -4
- helm/proxy/cli.py +6 -4
- helm/proxy/critique/mechanical_turk_critique_importer.py +3 -0
- helm/proxy/critique/mechanical_turk_utils.py +1 -1
- helm/proxy/critique/model_critique_client.py +40 -10
- helm/proxy/example_queries.py +33 -28
- helm/proxy/retry.py +5 -0
- helm/proxy/server.py +82 -18
- helm/proxy/services/remote_service.py +32 -7
- helm/proxy/services/server_service.py +71 -69
- helm/proxy/services/service.py +30 -6
- helm/proxy/services/test_remote_service.py +6 -5
- helm/proxy/services/test_service.py +1 -13
- helm/proxy/static/help.html +99 -0
- helm/proxy/static/index.css +61 -0
- helm/proxy/static/index.html +40 -0
- helm/proxy/static/index.js +462 -0
- helm/proxy/test_accounts.py +32 -0
- helm/proxy/test_retry.py +1 -1
- helm/proxy/token_counters/auto_token_counter.py +37 -37
- helm/proxy/token_counters/test_auto_token_counter.py +164 -0
- helm/proxy/token_counters/token_counter.py +3 -5
- helm/tokenizers/__init__.py +0 -0
- helm/tokenizers/ai21_tokenizer.py +52 -0
- helm/{proxy/tokenizers → tokenizers}/aleph_alpha_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/auto_tokenizer.py +9 -12
- helm/{proxy/tokenizers → tokenizers}/caching_tokenizer.py +2 -30
- helm/tokenizers/cohere_tokenizer.py +50 -0
- helm/tokenizers/grok_tokenizer.py +55 -0
- helm/{proxy/tokenizers → tokenizers}/http_model_tokenizer.py +4 -4
- helm/{proxy/tokenizers → tokenizers}/huggingface_tokenizer.py +44 -41
- helm/{proxy/tokenizers → tokenizers}/lit_gpt_tokenizer.py +1 -1
- helm/tokenizers/simple_tokenizer.py +33 -0
- helm/tokenizers/test_ai21_tokenizer.py +48 -0
- helm/{proxy/tokenizers → tokenizers}/test_anthropic_tokenizer.py +6 -2
- helm/tokenizers/test_cohere_tokenizer.py +39 -0
- helm/tokenizers/test_grok_tokenizer.py +33 -0
- helm/{proxy/tokenizers → tokenizers}/test_huggingface_tokenizer.py +9 -2
- helm/tokenizers/test_simple_tokenizer.py +33 -0
- helm/{proxy/tokenizers → tokenizers}/test_yalm_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/tiktoken_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/tokenizer.py +3 -1
- helm/{proxy/tokenizers → tokenizers}/vertexai_tokenizer.py +1 -1
- helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer.py +8 -6
- helm/tokenizers/yalm_tokenizer_data/__init__.py +0 -0
- helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer_data/test_yalm_tokenizer.py +1 -1
- helm/tokenizers/yalm_tokenizer_data/voc_100b.sp +0 -0
- helm/{proxy/tokenizers → tokenizers}/yalm_tokenizer_data/yalm_tokenizer.py +1 -1
- crfm_helm-0.4.0.dist-info/METADATA +0 -264
- crfm_helm-0.4.0.dist-info/RECORD +0 -397
- helm/benchmark/data_overlap/data_overlap_spec.py +0 -86
- helm/benchmark/data_overlap/export_scenario_text.py +0 -119
- helm/benchmark/data_overlap/light_scenario.py +0 -60
- helm/benchmark/metrics/numeracy_metrics.py +0 -72
- helm/benchmark/metrics/test_numeracy_metrics.py +0 -95
- helm/benchmark/run_specs.py +0 -2762
- helm/benchmark/scenarios/numeracy_scenario.py +0 -784
- helm/benchmark/static/benchmarking.css +0 -156
- helm/benchmark/static/benchmarking.js +0 -1705
- helm/benchmark/static/config.js +0 -3
- helm/benchmark/static/images/helm-logo.png +0 -0
- helm/benchmark/static/images/language-model-helm.png +0 -0
- helm/benchmark/static/images/organizations/ai21.png +0 -0
- helm/benchmark/static/images/organizations/anthropic.png +0 -0
- helm/benchmark/static/images/organizations/bigscience.png +0 -0
- helm/benchmark/static/images/organizations/cohere.png +0 -0
- helm/benchmark/static/images/organizations/eleutherai.png +0 -0
- helm/benchmark/static/images/organizations/google.png +0 -0
- helm/benchmark/static/images/organizations/meta.png +0 -0
- helm/benchmark/static/images/organizations/microsoft.png +0 -0
- helm/benchmark/static/images/organizations/nvidia.png +0 -0
- helm/benchmark/static/images/organizations/openai.png +0 -0
- helm/benchmark/static/images/organizations/together.png +0 -0
- helm/benchmark/static/images/organizations/tsinghua-keg.png +0 -0
- helm/benchmark/static/images/organizations/yandex.png +0 -0
- helm/benchmark/static/images/scenarios-by-metrics.png +0 -0
- helm/benchmark/static/images/taxonomy-scenarios.png +0 -0
- helm/benchmark/static/index.html +0 -68
- helm/benchmark/static/json-urls.js +0 -69
- helm/benchmark/static/plot-captions.js +0 -27
- helm/benchmark/static/utils.js +0 -285
- helm/benchmark/test_model_deployment_definition.py +0 -92
- helm/benchmark/test_model_properties.py +0 -1570
- helm/benchmark/vlm_run_specs.py +0 -97
- helm/benchmark/window_services/ai21_window_service.py +0 -258
- helm/benchmark/window_services/cohere_window_service.py +0 -163
- helm/benchmark/window_services/flan_t5_window_service.py +0 -29
- helm/benchmark/window_services/gpt2_window_service.py +0 -32
- helm/benchmark/window_services/huggingface_window_service.py +0 -60
- helm/benchmark/window_services/t0pp_window_service.py +0 -35
- helm/benchmark/window_services/t511b_window_service.py +0 -30
- helm/benchmark/window_services/test_ai21_window_service.py +0 -163
- helm/benchmark/window_services/test_cohere_window_service.py +0 -74
- helm/benchmark/window_services/test_cohere_window_service_utils.py +0 -8328
- helm/benchmark/window_services/test_ice_window_service.py +0 -326
- helm/benchmark/window_services/test_mt_nlg_window_service.py +0 -48
- helm/benchmark/window_services/ul2_window_service.py +0 -30
- helm/benchmark/window_services/wider_ai21_window_service.py +0 -24
- helm/common/cache_utils.py +0 -14
- helm/proxy/clients/aleph_alpha_client.py +0 -95
- helm/proxy/clients/goose_ai_client.py +0 -99
- helm/proxy/clients/microsoft_client.py +0 -180
- helm/proxy/clients/openai_client.py +0 -206
- helm/proxy/clients/simple_client.py +0 -60
- helm/proxy/clients/test_client.py +0 -49
- helm/proxy/clients/test_together_client.py +0 -97
- helm/proxy/clients/together_client.py +0 -334
- helm/proxy/clients/vertexai_client.py +0 -115
- helm/proxy/token_counters/ai21_token_counter.py +0 -20
- helm/proxy/token_counters/cohere_token_counter.py +0 -13
- helm/proxy/token_counters/free_token_counter.py +0 -12
- helm/proxy/token_counters/gooseai_token_counter.py +0 -24
- helm/proxy/token_counters/openai_token_counter.py +0 -22
- helm/proxy/token_counters/test_ai21_token_counter.py +0 -88
- helm/proxy/token_counters/test_openai_token_counter.py +0 -81
- helm/proxy/tokenizers/ai21_tokenizer.py +0 -60
- helm/proxy/tokenizers/anthropic_tokenizer.py +0 -52
- helm/proxy/tokenizers/cohere_tokenizer.py +0 -83
- helm/proxy/tokenizers/ice_tokenizer.py +0 -30
- helm/proxy/tokenizers/simple_tokenizer.py +0 -32
- helm/proxy/tokenizers/test_ice_tokenizer.py +0 -57
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.10.dist-info}/entry_points.txt +0 -0
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.10.dist-info/licenses}/LICENSE +0 -0
- {crfm_helm-0.4.0.dist-info → crfm_helm-0.5.10.dist-info}/top_level.txt +0 -0
- /helm/benchmark/{data_overlap → annotation}/__init__.py +0 -0
- /helm/{proxy/clients → benchmark/annotation/image2struct}/__init__.py +0 -0
- /helm/{proxy/clients/vision_language → benchmark/metrics/ifeval}/__init__.py +0 -0
- /helm/{proxy/tokenizers → benchmark/metrics/image_generation}/__init__.py +0 -0
- /helm/{proxy/tokenizers/yalm_tokenizer_data → benchmark/metrics/image_generation/detectors}/__init__.py +0 -0
- /helm/benchmark/{static/images/crfm-logo.png → static_build/assets/crfm-logo-Du4T1uWZ.png} +0 -0
- /helm/benchmark/{static/images/helm-logo-simple.png → static_build/assets/helm-logo-simple-DzOhNN41.png} +0 -0
- /helm/{proxy/clients → clients}/ai21_utils.py +0 -0
- /helm/{proxy/clients → clients}/cohere_utils.py +0 -0
- /helm/{proxy/clients → clients}/lit_gpt_generate.py +0 -0
- /helm/{proxy/clients → clients}/toxicity_classifier_client.py +0 -0
- /helm/{benchmark → proxy}/static/general.js +0 -0
- /helm/{benchmark → proxy}/static/info-icon.png +0 -0
|
@@ -0,0 +1,1834 @@
|
|
|
1
|
+
# coding=utf-8
|
|
2
|
+
# Copyright 2021-2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and & DALL·E Mini team. All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
"""DalleBart model."""
|
|
16
|
+
|
|
17
|
+
import math
|
|
18
|
+
from functools import partial
|
|
19
|
+
from typing import Any, Dict, Optional, Tuple
|
|
20
|
+
|
|
21
|
+
from transformers.modeling_flax_outputs import (
|
|
22
|
+
FlaxBaseModelOutput,
|
|
23
|
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
|
24
|
+
FlaxCausalLMOutputWithCrossAttentions,
|
|
25
|
+
FlaxSeq2SeqLMOutput,
|
|
26
|
+
)
|
|
27
|
+
from transformers.modeling_flax_utils import ACT2FN
|
|
28
|
+
from transformers.models.bart.modeling_flax_bart import (
|
|
29
|
+
FlaxBartAttention,
|
|
30
|
+
FlaxBartForConditionalGeneration,
|
|
31
|
+
FlaxBartForConditionalGenerationModule,
|
|
32
|
+
FlaxBartModule,
|
|
33
|
+
)
|
|
34
|
+
from transformers.utils import ModelOutput, logging
|
|
35
|
+
from transformers.generation.configuration_utils import GenerationConfig
|
|
36
|
+
|
|
37
|
+
from helm.common.optional_dependencies import handle_module_not_found_error
|
|
38
|
+
from helm.clients.image_generation.dalle_mini.model.configuration import DalleBartConfig
|
|
39
|
+
from helm.clients.image_generation.dalle_mini.model.utils import PretrainedFromWandbMixin
|
|
40
|
+
|
|
41
|
+
try:
|
|
42
|
+
import flax
|
|
43
|
+
import flax.linen as nn
|
|
44
|
+
import jax
|
|
45
|
+
import jax.numpy as jnp
|
|
46
|
+
from einops import rearrange
|
|
47
|
+
from flax.core.frozen_dict import unfreeze
|
|
48
|
+
from flax.linen import combine_masks, make_causal_mask
|
|
49
|
+
from flax.linen import partitioning as nn_partitioning
|
|
50
|
+
from flax.linen.linear import PrecisionLike
|
|
51
|
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
|
52
|
+
from jax import custom_jvp, lax
|
|
53
|
+
from jax.random import PRNGKey
|
|
54
|
+
except ModuleNotFoundError as e:
|
|
55
|
+
handle_module_not_found_error(e, ["heim"])
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
logger = logging.get_logger(__name__)
|
|
59
|
+
|
|
60
|
+
remat = nn_partitioning.remat
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def smelu(beta: Any = 1.0):
|
|
64
|
+
"""
|
|
65
|
+
Implementation of "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations"
|
|
66
|
+
https://arxiv.org/abs/2202.06499
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
@custom_jvp
|
|
70
|
+
@jax.jit
|
|
71
|
+
def _smelu(x: Any) -> Any:
|
|
72
|
+
x = jnp.where(x <= -beta, 0.0, x)
|
|
73
|
+
return jnp.where(x >= beta, x, jnp.square(x + beta) / (4 * beta))
|
|
74
|
+
|
|
75
|
+
_smelu.defjvps(
|
|
76
|
+
lambda g, ans, x: lax.select(
|
|
77
|
+
x == -beta,
|
|
78
|
+
lax.full_like(g, 0),
|
|
79
|
+
lax.select(x == beta, lax.full_like(g, 1), g),
|
|
80
|
+
)
|
|
81
|
+
)
|
|
82
|
+
return _smelu
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
ACT2FN.update({"smelu": smelu()})
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
# deepnet initialization
|
|
89
|
+
def deepnet_init(init_std, gain=1):
|
|
90
|
+
init = jax.nn.initializers.normal(init_std)
|
|
91
|
+
|
|
92
|
+
def _init(*args, **kwargs):
|
|
93
|
+
return gain * init(*args, **kwargs)
|
|
94
|
+
|
|
95
|
+
return _init
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
# deepnet gain
|
|
99
|
+
deepnet_gain = {
|
|
100
|
+
"encoder": {
|
|
101
|
+
"alpha": lambda config: 0.81 * (config.encoder_layers**4 * config.decoder_layers) ** 0.0625,
|
|
102
|
+
"beta": lambda config: 0.87 * (config.encoder_layers**4 * config.decoder_layers) ** -0.0625,
|
|
103
|
+
},
|
|
104
|
+
"decoder": {
|
|
105
|
+
"alpha": lambda config: (3 * config.decoder_layers) ** 0.25,
|
|
106
|
+
"beta": lambda config: (12 * config.decoder_layers) ** -0.25,
|
|
107
|
+
},
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
# subln gain
|
|
111
|
+
subln_gain = {
|
|
112
|
+
"encoder": lambda config: math.sqrt(
|
|
113
|
+
1.0 / 3.0 * math.log(3 * config.decoder_layers) * math.log(2 * config.encoder_layers)
|
|
114
|
+
),
|
|
115
|
+
"decoder": lambda config: math.sqrt(math.log(3 * config.decoder_layers)),
|
|
116
|
+
}
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
class RMSNorm(nn.Module):
|
|
120
|
+
"""
|
|
121
|
+
From "Root Mean Square Layer Normalization" by https://arxiv.org/abs/1910.07467
|
|
122
|
+
|
|
123
|
+
Adapted from flax.linen.LayerNorm
|
|
124
|
+
"""
|
|
125
|
+
|
|
126
|
+
epsilon: float = 1e-6
|
|
127
|
+
dtype: Any = jnp.float32
|
|
128
|
+
param_dtype: Any = jnp.float32
|
|
129
|
+
use_scale: bool = True
|
|
130
|
+
scale_init: Any = jax.nn.initializers.ones
|
|
131
|
+
|
|
132
|
+
@nn.compact
|
|
133
|
+
def __call__(self, x):
|
|
134
|
+
reduction_axes = (-1,)
|
|
135
|
+
feature_axes = (-1,)
|
|
136
|
+
|
|
137
|
+
rms_sq = self._compute_rms_sq(x, reduction_axes)
|
|
138
|
+
|
|
139
|
+
return self._normalize(
|
|
140
|
+
self,
|
|
141
|
+
x,
|
|
142
|
+
rms_sq,
|
|
143
|
+
reduction_axes,
|
|
144
|
+
feature_axes,
|
|
145
|
+
self.dtype,
|
|
146
|
+
self.param_dtype,
|
|
147
|
+
self.epsilon,
|
|
148
|
+
self.use_scale,
|
|
149
|
+
self.scale_init,
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
def _compute_rms_sq(self, x, axes):
|
|
153
|
+
x = jnp.asarray(x, jnp.promote_types(jnp.float32, jnp.result_type(x)))
|
|
154
|
+
rms_sq = jnp.mean(jax.lax.square(x), axes)
|
|
155
|
+
return rms_sq
|
|
156
|
+
|
|
157
|
+
def _normalize(
|
|
158
|
+
self,
|
|
159
|
+
mdl,
|
|
160
|
+
x,
|
|
161
|
+
rms_sq,
|
|
162
|
+
reduction_axes,
|
|
163
|
+
feature_axes,
|
|
164
|
+
dtype,
|
|
165
|
+
param_dtype,
|
|
166
|
+
epsilon,
|
|
167
|
+
use_scale,
|
|
168
|
+
scale_init,
|
|
169
|
+
):
|
|
170
|
+
reduction_axes = nn.normalization._canonicalize_axes(x.ndim, reduction_axes)
|
|
171
|
+
feature_axes = nn.normalization._canonicalize_axes(x.ndim, feature_axes)
|
|
172
|
+
stats_shape = list(x.shape)
|
|
173
|
+
for axis in reduction_axes:
|
|
174
|
+
stats_shape[axis] = 1
|
|
175
|
+
rms_sq = rms_sq.reshape(stats_shape)
|
|
176
|
+
feature_shape = [1] * x.ndim
|
|
177
|
+
reduced_feature_shape = []
|
|
178
|
+
for ax in feature_axes:
|
|
179
|
+
feature_shape[ax] = x.shape[ax]
|
|
180
|
+
reduced_feature_shape.append(x.shape[ax])
|
|
181
|
+
mul = lax.rsqrt(rms_sq + epsilon)
|
|
182
|
+
if use_scale:
|
|
183
|
+
scale = mdl.param("scale", scale_init, reduced_feature_shape, param_dtype).reshape(feature_shape)
|
|
184
|
+
mul *= scale
|
|
185
|
+
y = mul * x
|
|
186
|
+
return jnp.asarray(y, dtype)
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
def norm(type, *args, **kwargs):
|
|
190
|
+
if type == "rmsnorm":
|
|
191
|
+
return RMSNorm(*args, **kwargs)
|
|
192
|
+
elif type == "layernorm":
|
|
193
|
+
return nn.LayerNorm(*args, **kwargs)
|
|
194
|
+
else:
|
|
195
|
+
raise ValueError(f"Unknown norm type {type}")
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def dot_product_attention_weights(
|
|
199
|
+
query: Any,
|
|
200
|
+
key: Any,
|
|
201
|
+
bias: Optional[Any] = None,
|
|
202
|
+
mask: Optional[Any] = None,
|
|
203
|
+
embed_pos: Optional[Any] = None,
|
|
204
|
+
broadcast_dropout: bool = True,
|
|
205
|
+
dropout_rng: Optional[PRNGKey] = None,
|
|
206
|
+
dropout_rate: float = 0.0,
|
|
207
|
+
deterministic: bool = False,
|
|
208
|
+
dtype: Any = jnp.float32,
|
|
209
|
+
precision: PrecisionLike = None,
|
|
210
|
+
sinkhorn_iters: int = 1,
|
|
211
|
+
is_encoder: bool = False,
|
|
212
|
+
tau=None,
|
|
213
|
+
):
|
|
214
|
+
"""
|
|
215
|
+
Computes dot-product attention weights given query and key.
|
|
216
|
+
mask is included into the bias.
|
|
217
|
+
|
|
218
|
+
Adapted from flax.linen.attention.dot_product_attention_weights"
|
|
219
|
+
"""
|
|
220
|
+
assert query.ndim == key.ndim, "q, k must have same rank."
|
|
221
|
+
assert query.shape[:-3] == key.shape[:-3], "q, k batch dims must match."
|
|
222
|
+
assert query.shape[-2] == key.shape[-2], "q, k num_heads must match."
|
|
223
|
+
assert query.shape[-1] == key.shape[-1], "q, k depths must match."
|
|
224
|
+
|
|
225
|
+
# attn weight shape is (batch..., num_heads, q_length, kv_length)
|
|
226
|
+
attn_weights = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=precision)
|
|
227
|
+
|
|
228
|
+
# divide by tau (used in Swin v2)
|
|
229
|
+
if tau is not None:
|
|
230
|
+
attn_weights = attn_weights / tau
|
|
231
|
+
else:
|
|
232
|
+
depth = query.shape[-1]
|
|
233
|
+
attn_weights = attn_weights / jnp.sqrt(depth).astype(dtype)
|
|
234
|
+
|
|
235
|
+
# apply attention bias: masking, dropout, proximity bias, etc.
|
|
236
|
+
if bias is not None:
|
|
237
|
+
attn_weights = attn_weights + bias
|
|
238
|
+
|
|
239
|
+
# add relative position
|
|
240
|
+
if embed_pos is not None:
|
|
241
|
+
attn_weights = attn_weights + embed_pos
|
|
242
|
+
|
|
243
|
+
# normalize the attention weights
|
|
244
|
+
if not is_encoder or sinkhorn_iters == 1:
|
|
245
|
+
# sinkhorn does not work for causal (leaks info of future tokens into past)
|
|
246
|
+
attn_weights = jax.nn.softmax(attn_weights).astype(dtype)
|
|
247
|
+
else:
|
|
248
|
+
# adapted from https://github.com/lucidrains/sinkhorn-transformer
|
|
249
|
+
for i in range(sinkhorn_iters):
|
|
250
|
+
# when causal, some attn_weights have been set to -inf through bias
|
|
251
|
+
if i % 2 == 0:
|
|
252
|
+
attn_weights -= jax.nn.logsumexp(attn_weights, axis=-1, keepdims=True)
|
|
253
|
+
else:
|
|
254
|
+
attn_weights -= jax.nn.logsumexp(attn_weights, axis=-2, keepdims=True)
|
|
255
|
+
if mask is not None:
|
|
256
|
+
attn_weights = jnp.where(mask, attn_weights, -jnp.inf)
|
|
257
|
+
attn_weights = jnp.exp(attn_weights).astype(dtype)
|
|
258
|
+
|
|
259
|
+
# apply attention dropout
|
|
260
|
+
if not deterministic and dropout_rate > 0.0:
|
|
261
|
+
keep_prob = 1.0 - dropout_rate
|
|
262
|
+
if broadcast_dropout:
|
|
263
|
+
# dropout is broadcast across the batch + head dimensions
|
|
264
|
+
dropout_shape = tuple([1] * (key.ndim - 2)) + attn_weights.shape[-2:]
|
|
265
|
+
keep = jax.random.bernoulli(dropout_rng, keep_prob, dropout_shape)
|
|
266
|
+
else:
|
|
267
|
+
keep = jax.random.bernoulli(dropout_rng, keep_prob, attn_weights.shape)
|
|
268
|
+
multiplier = keep.astype(attn_weights.dtype) / jnp.asarray(keep_prob, dtype=dtype)
|
|
269
|
+
attn_weights = attn_weights * multiplier
|
|
270
|
+
|
|
271
|
+
return attn_weights
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
class FlaxBartAttention(FlaxBartAttention):
|
|
275
|
+
"""
|
|
276
|
+
Edits:
|
|
277
|
+
- causal mask is used only in decoder and considers image_length
|
|
278
|
+
- scale attention heads per NormFormer paper
|
|
279
|
+
"""
|
|
280
|
+
|
|
281
|
+
is_encoder: bool = False
|
|
282
|
+
is_cross_attention: bool = False
|
|
283
|
+
q_length: int = None
|
|
284
|
+
k_length: int = None
|
|
285
|
+
|
|
286
|
+
def setup(self) -> None:
|
|
287
|
+
self.head_dim = self.embed_dim // self.num_heads
|
|
288
|
+
if self.head_dim * self.num_heads != self.embed_dim:
|
|
289
|
+
raise ValueError(
|
|
290
|
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
|
291
|
+
f" and `num_heads`: {self.num_heads})."
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
dense = partial(
|
|
295
|
+
nn.Dense,
|
|
296
|
+
self.embed_dim,
|
|
297
|
+
use_bias=self.bias,
|
|
298
|
+
dtype=self.dtype,
|
|
299
|
+
)
|
|
300
|
+
|
|
301
|
+
if self.config.use_deepnet_scaling:
|
|
302
|
+
gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"](self.config)
|
|
303
|
+
elif self.config.use_subln_init and not self.is_cross_attention:
|
|
304
|
+
gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config)
|
|
305
|
+
|
|
306
|
+
self.q_proj = dense(kernel_init=jax.nn.initializers.normal(self.config.init_std))
|
|
307
|
+
self.k_proj = dense(kernel_init=jax.nn.initializers.normal(self.config.init_std))
|
|
308
|
+
self.v_proj = dense(
|
|
309
|
+
kernel_init=(
|
|
310
|
+
deepnet_init(self.config.init_std, gain)
|
|
311
|
+
if (self.config.use_deepnet_scaling or (self.config.use_subln_init and not self.is_cross_attention))
|
|
312
|
+
else jax.nn.initializers.normal(self.config.init_std)
|
|
313
|
+
)
|
|
314
|
+
)
|
|
315
|
+
self.out_proj = dense(
|
|
316
|
+
kernel_init=(
|
|
317
|
+
deepnet_init(self.config.init_std, gain)
|
|
318
|
+
if (self.config.use_deepnet_scaling or (self.config.use_subln_init and not self.is_cross_attention))
|
|
319
|
+
else jax.nn.initializers.normal(self.config.init_std)
|
|
320
|
+
)
|
|
321
|
+
)
|
|
322
|
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
|
323
|
+
|
|
324
|
+
if self.config.use_head_scale:
|
|
325
|
+
self.head_scale = self.param("head_scale", jax.nn.initializers.ones, (1, 1, self.num_heads, 1))
|
|
326
|
+
|
|
327
|
+
if self.config.use_cosine_attention:
|
|
328
|
+
# TODO: try using a learnt scale, somehow it immediately diverges in my experiments
|
|
329
|
+
self.tau = self.config.tau_init
|
|
330
|
+
|
|
331
|
+
if self.config.use_swin_position_embeddings:
|
|
332
|
+
self.rel_bias = nn.Embed(
|
|
333
|
+
self.q_length,
|
|
334
|
+
self.k_length * self.num_heads,
|
|
335
|
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
336
|
+
)
|
|
337
|
+
|
|
338
|
+
if self.causal:
|
|
339
|
+
# used only in decoder
|
|
340
|
+
self.causal_mask = make_causal_mask(jnp.ones((1, self.config.image_length), dtype="bool"), dtype="bool")
|
|
341
|
+
|
|
342
|
+
if self.config.ln_positions in ["subln"] and not self.is_cross_attention:
|
|
343
|
+
self.mid_layernorm = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)
|
|
344
|
+
|
|
345
|
+
def __call__(
|
|
346
|
+
self,
|
|
347
|
+
hidden_states: jnp.ndarray,
|
|
348
|
+
key_value_states: Optional[jnp.ndarray] = None,
|
|
349
|
+
attention_mask: Optional[jnp.ndarray] = None,
|
|
350
|
+
init_cache: bool = False,
|
|
351
|
+
deterministic: bool = True,
|
|
352
|
+
) -> Tuple[jnp.ndarray]:
|
|
353
|
+
"""Input shape: Batch x Time x Channel"""
|
|
354
|
+
|
|
355
|
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
|
356
|
+
# for the decoder
|
|
357
|
+
is_cross_attention = key_value_states is not None
|
|
358
|
+
batch_size = hidden_states.shape[0]
|
|
359
|
+
|
|
360
|
+
# get query proj
|
|
361
|
+
query_states = self.q_proj(hidden_states)
|
|
362
|
+
# get key, value proj
|
|
363
|
+
if is_cross_attention:
|
|
364
|
+
# cross_attentions
|
|
365
|
+
key_states = self.k_proj(key_value_states)
|
|
366
|
+
value_states = self.v_proj(key_value_states)
|
|
367
|
+
else:
|
|
368
|
+
# self_attention
|
|
369
|
+
key_states = self.k_proj(hidden_states)
|
|
370
|
+
value_states = self.v_proj(hidden_states)
|
|
371
|
+
|
|
372
|
+
query_states = self._split_heads(query_states)
|
|
373
|
+
key_states = self._split_heads(key_states)
|
|
374
|
+
value_states = self._split_heads(value_states)
|
|
375
|
+
|
|
376
|
+
# handle cache prepare causal attention mask
|
|
377
|
+
if self.causal:
|
|
378
|
+
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
|
379
|
+
if self.has_variable("cache", "cached_key"):
|
|
380
|
+
mask_shift = self.variables["cache"]["cache_index"]
|
|
381
|
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
|
382
|
+
causal_mask = lax.dynamic_slice(
|
|
383
|
+
self.causal_mask,
|
|
384
|
+
(0, 0, mask_shift, 0),
|
|
385
|
+
(1, 1, query_length, max_decoder_length),
|
|
386
|
+
)
|
|
387
|
+
else:
|
|
388
|
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
|
389
|
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
|
390
|
+
|
|
391
|
+
# combine masks if needed
|
|
392
|
+
if attention_mask is not None and self.causal:
|
|
393
|
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
|
394
|
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
|
395
|
+
elif self.causal:
|
|
396
|
+
attention_mask = causal_mask
|
|
397
|
+
elif attention_mask is not None:
|
|
398
|
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
|
399
|
+
|
|
400
|
+
# During fast autoregressive decoding, we feed one position at a time,
|
|
401
|
+
# and cache the keys and values step by step.
|
|
402
|
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
|
403
|
+
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
|
404
|
+
key_states, value_states, query_states, attention_mask
|
|
405
|
+
)
|
|
406
|
+
|
|
407
|
+
# Convert the boolean attention mask to an attention bias.
|
|
408
|
+
if attention_mask is not None:
|
|
409
|
+
# attention mask in the form of attention bias
|
|
410
|
+
attention_bias = lax.select(
|
|
411
|
+
attention_mask > 0,
|
|
412
|
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
|
413
|
+
jnp.full(attention_mask.shape, -jnp.inf).astype(self.dtype),
|
|
414
|
+
)
|
|
415
|
+
else:
|
|
416
|
+
attention_bias = None
|
|
417
|
+
|
|
418
|
+
dropout_rng = None
|
|
419
|
+
if not deterministic and self.dropout > 0.0:
|
|
420
|
+
dropout_rng = self.make_rng("dropout")
|
|
421
|
+
|
|
422
|
+
if self.config.use_cosine_attention:
|
|
423
|
+
# normalize q and k
|
|
424
|
+
query_states = query_states / (jnp.linalg.norm(query_states, axis=-1, keepdims=True) + 1e-8)
|
|
425
|
+
key_states = key_states / (jnp.linalg.norm(key_states, axis=-1, keepdims=True) + 1e-8)
|
|
426
|
+
|
|
427
|
+
# relative position embeddings
|
|
428
|
+
if self.config.use_swin_position_embeddings:
|
|
429
|
+
position_ids = jnp.arange(self.q_length)
|
|
430
|
+
embed_pos = self.rel_bias(position_ids)
|
|
431
|
+
embed_pos = rearrange(embed_pos, "q (k h) -> 1 h q k", h=self.num_heads)
|
|
432
|
+
else:
|
|
433
|
+
embed_pos = None
|
|
434
|
+
|
|
435
|
+
tau = self.tau if self.config.use_cosine_attention else None
|
|
436
|
+
attn_weights = dot_product_attention_weights(
|
|
437
|
+
query_states,
|
|
438
|
+
key_states,
|
|
439
|
+
bias=attention_bias,
|
|
440
|
+
mask=attention_mask,
|
|
441
|
+
embed_pos=embed_pos,
|
|
442
|
+
dropout_rng=dropout_rng,
|
|
443
|
+
dropout_rate=self.dropout,
|
|
444
|
+
broadcast_dropout=True,
|
|
445
|
+
deterministic=deterministic,
|
|
446
|
+
dtype=self.dtype,
|
|
447
|
+
precision=None,
|
|
448
|
+
sinkhorn_iters=self.config.sinkhorn_iters,
|
|
449
|
+
is_encoder=self.is_encoder,
|
|
450
|
+
tau=tau,
|
|
451
|
+
)
|
|
452
|
+
|
|
453
|
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
|
454
|
+
if self.config.use_head_scale:
|
|
455
|
+
# per Normformer
|
|
456
|
+
attn_output = attn_output * self.head_scale
|
|
457
|
+
attn_output = self._merge_heads(attn_output)
|
|
458
|
+
|
|
459
|
+
if self.config.ln_positions in ["subln"] and not self.is_cross_attention:
|
|
460
|
+
attn_output = self.mid_layernorm(attn_output)
|
|
461
|
+
|
|
462
|
+
attn_output = self.out_proj(attn_output)
|
|
463
|
+
|
|
464
|
+
return attn_output, attn_weights
|
|
465
|
+
|
|
466
|
+
|
|
467
|
+
class GLU(nn.Module):
|
|
468
|
+
"""From "GLU Variants Improve Transformer" by https://arxiv.org/abs/2002.05202"""
|
|
469
|
+
|
|
470
|
+
config: DalleBartConfig
|
|
471
|
+
ffn_dim: int
|
|
472
|
+
embed_dim: int
|
|
473
|
+
dtype: jnp.dtype = jnp.float32
|
|
474
|
+
is_encoder: bool = False
|
|
475
|
+
|
|
476
|
+
@nn.compact
|
|
477
|
+
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
|
|
478
|
+
|
|
479
|
+
if self.config.use_deepnet_scaling:
|
|
480
|
+
gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"](self.config)
|
|
481
|
+
elif self.config.use_subln_init:
|
|
482
|
+
gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config)
|
|
483
|
+
|
|
484
|
+
if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]:
|
|
485
|
+
x = norm(
|
|
486
|
+
self.config.ln_type,
|
|
487
|
+
dtype=self.dtype,
|
|
488
|
+
epsilon=1e-05,
|
|
489
|
+
use_scale=self.config.force_ln_scale,
|
|
490
|
+
)(x)
|
|
491
|
+
w = nn.Dense(
|
|
492
|
+
self.ffn_dim,
|
|
493
|
+
dtype=self.dtype,
|
|
494
|
+
use_bias=self.config.use_bias,
|
|
495
|
+
kernel_init=(
|
|
496
|
+
deepnet_init(self.config.init_std, gain)
|
|
497
|
+
if (self.config.use_deepnet_scaling or self.config.use_subln_init)
|
|
498
|
+
else jax.nn.initializers.normal(self.config.init_std)
|
|
499
|
+
),
|
|
500
|
+
)(x)
|
|
501
|
+
w = ACT2FN[self.config.activation_function](w)
|
|
502
|
+
v = nn.Dense(
|
|
503
|
+
self.ffn_dim,
|
|
504
|
+
dtype=self.dtype,
|
|
505
|
+
use_bias=self.config.use_bias,
|
|
506
|
+
kernel_init=(
|
|
507
|
+
deepnet_init(self.config.init_std, gain)
|
|
508
|
+
if (self.config.use_deepnet_scaling or self.config.use_subln_init)
|
|
509
|
+
else jax.nn.initializers.normal(self.config.init_std)
|
|
510
|
+
),
|
|
511
|
+
)(x)
|
|
512
|
+
x = w * v
|
|
513
|
+
if self.config.ln_positions in ["normformer", "subln"]:
|
|
514
|
+
x = norm(
|
|
515
|
+
self.config.ln_type,
|
|
516
|
+
dtype=self.dtype,
|
|
517
|
+
epsilon=1e-05,
|
|
518
|
+
use_scale=self.config.force_ln_scale,
|
|
519
|
+
)(x)
|
|
520
|
+
x = nn.Dropout(rate=self.config.activation_dropout)(x, deterministic=deterministic)
|
|
521
|
+
|
|
522
|
+
x = nn.Dense(
|
|
523
|
+
self.embed_dim,
|
|
524
|
+
dtype=self.dtype,
|
|
525
|
+
use_bias=self.config.use_bias,
|
|
526
|
+
kernel_init=(
|
|
527
|
+
deepnet_init(self.config.init_std, gain)
|
|
528
|
+
if (self.config.use_deepnet_scaling or self.config.use_subln_init)
|
|
529
|
+
else jax.nn.initializers.normal(self.config.init_std)
|
|
530
|
+
),
|
|
531
|
+
)(x)
|
|
532
|
+
if self.config.ln_positions in ["swinv2", "cogview"]:
|
|
533
|
+
x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x)
|
|
534
|
+
x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic)
|
|
535
|
+
return x
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
class FFN(nn.Module):
|
|
539
|
+
"""Simple FFN layer"""
|
|
540
|
+
|
|
541
|
+
config: DalleBartConfig
|
|
542
|
+
ffn_dim: int
|
|
543
|
+
embed_dim: int
|
|
544
|
+
dtype: jnp.dtype = jnp.float32
|
|
545
|
+
is_encoder: bool = False
|
|
546
|
+
|
|
547
|
+
@nn.compact
|
|
548
|
+
def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray:
|
|
549
|
+
|
|
550
|
+
if self.config.use_deepnet_scaling:
|
|
551
|
+
gain = deepnet_gain["encoder" if self.is_encoder else "decoder"]["beta"](self.config)
|
|
552
|
+
elif self.config.use_subln_init:
|
|
553
|
+
gain = subln_gain["encoder" if self.is_encoder else "decoder"](self.config)
|
|
554
|
+
if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]:
|
|
555
|
+
x = norm(
|
|
556
|
+
self.config.ln_type,
|
|
557
|
+
dtype=self.dtype,
|
|
558
|
+
epsilon=1e-05,
|
|
559
|
+
use_scale=self.config.force_ln_scale,
|
|
560
|
+
)(x)
|
|
561
|
+
x = nn.Dense(
|
|
562
|
+
self.ffn_dim,
|
|
563
|
+
dtype=self.dtype,
|
|
564
|
+
use_bias=self.config.use_bias,
|
|
565
|
+
kernel_init=(
|
|
566
|
+
deepnet_init(self.config.init_std, gain)
|
|
567
|
+
if (self.config.use_deepnet_scaling or self.config.use_subln_init)
|
|
568
|
+
else jax.nn.initializers.normal(self.config.init_std)
|
|
569
|
+
),
|
|
570
|
+
)(x)
|
|
571
|
+
x = ACT2FN[self.config.activation_function](x)
|
|
572
|
+
if self.config.ln_positions in ["normformer", "subln"]:
|
|
573
|
+
x = norm(
|
|
574
|
+
self.config.ln_type,
|
|
575
|
+
dtype=self.dtype,
|
|
576
|
+
epsilon=1e-05,
|
|
577
|
+
use_scale=self.config.force_ln_scale,
|
|
578
|
+
)(x)
|
|
579
|
+
x = nn.Dropout(rate=self.config.activation_dropout)(x, deterministic=deterministic)
|
|
580
|
+
x = nn.Dense(
|
|
581
|
+
self.embed_dim,
|
|
582
|
+
dtype=self.dtype,
|
|
583
|
+
use_bias=self.config.use_bias,
|
|
584
|
+
kernel_init=(
|
|
585
|
+
deepnet_init(self.config.init_std, gain)
|
|
586
|
+
if (self.config.use_deepnet_scaling or self.config.use_subln_init)
|
|
587
|
+
else jax.nn.initializers.normal(self.config.init_std)
|
|
588
|
+
),
|
|
589
|
+
)(x)
|
|
590
|
+
if self.config.ln_positions in ["swinv2", "cogview"]:
|
|
591
|
+
x = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(x)
|
|
592
|
+
x = nn.Dropout(rate=self.config.dropout)(x, deterministic=deterministic)
|
|
593
|
+
return x
|
|
594
|
+
|
|
595
|
+
|
|
596
|
+
class FlaxBartEncoderLayer(nn.Module):
|
|
597
|
+
"""
|
|
598
|
+
Edits:
|
|
599
|
+
- no bias
|
|
600
|
+
- use custom FlaxBartAttention
|
|
601
|
+
"""
|
|
602
|
+
|
|
603
|
+
config: DalleBartConfig
|
|
604
|
+
dtype: jnp.dtype = jnp.float32
|
|
605
|
+
add_norm: bool = False
|
|
606
|
+
use_scale: bool = True
|
|
607
|
+
|
|
608
|
+
@nn.compact
|
|
609
|
+
def __call__(
|
|
610
|
+
self,
|
|
611
|
+
hidden_states: jnp.ndarray,
|
|
612
|
+
attention_mask: jnp.ndarray,
|
|
613
|
+
output_attentions: bool = True,
|
|
614
|
+
deterministic: bool = True,
|
|
615
|
+
) -> Tuple[jnp.ndarray]:
|
|
616
|
+
|
|
617
|
+
if self.config.use_scan:
|
|
618
|
+
hidden_states = hidden_states[0]
|
|
619
|
+
|
|
620
|
+
res_gain = deepnet_gain["encoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1
|
|
621
|
+
|
|
622
|
+
embed_dim = self.config.d_model
|
|
623
|
+
residual = hidden_states
|
|
624
|
+
if self.config.ln_positions in ["normformer", "cogview", "preln", "subln"]:
|
|
625
|
+
hidden_states = norm(
|
|
626
|
+
self.config.ln_type,
|
|
627
|
+
dtype=self.dtype,
|
|
628
|
+
epsilon=1e-05,
|
|
629
|
+
use_scale=self.config.force_ln_scale,
|
|
630
|
+
)(hidden_states)
|
|
631
|
+
hidden_states, attn_weights = FlaxBartAttention(
|
|
632
|
+
config=self.config,
|
|
633
|
+
embed_dim=embed_dim,
|
|
634
|
+
num_heads=self.config.encoder_attention_heads,
|
|
635
|
+
dropout=self.config.attention_dropout,
|
|
636
|
+
bias=self.config.use_bias,
|
|
637
|
+
dtype=self.dtype,
|
|
638
|
+
is_encoder=True,
|
|
639
|
+
is_cross_attention=False,
|
|
640
|
+
q_length=self.config.max_text_length,
|
|
641
|
+
k_length=self.config.max_text_length,
|
|
642
|
+
)(hidden_states=hidden_states, attention_mask=attention_mask)
|
|
643
|
+
|
|
644
|
+
if self.config.ln_positions in ["normformer", "swinv2", "cogview"]:
|
|
645
|
+
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(hidden_states)
|
|
646
|
+
hidden_states = nn.Dropout(rate=self.config.dropout)(hidden_states, deterministic=deterministic)
|
|
647
|
+
hidden_states = residual * res_gain + hidden_states
|
|
648
|
+
if self.config.ln_positions in ["postln"]:
|
|
649
|
+
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(hidden_states)
|
|
650
|
+
|
|
651
|
+
residual = hidden_states
|
|
652
|
+
ff_block = (
|
|
653
|
+
GLU(
|
|
654
|
+
config=self.config,
|
|
655
|
+
ffn_dim=self.config.encoder_ffn_dim,
|
|
656
|
+
embed_dim=embed_dim,
|
|
657
|
+
dtype=self.dtype,
|
|
658
|
+
is_encoder=True,
|
|
659
|
+
)
|
|
660
|
+
if self.config.use_glu
|
|
661
|
+
else FFN(
|
|
662
|
+
config=self.config,
|
|
663
|
+
ffn_dim=self.config.encoder_ffn_dim,
|
|
664
|
+
embed_dim=embed_dim,
|
|
665
|
+
dtype=self.dtype,
|
|
666
|
+
is_encoder=True,
|
|
667
|
+
)
|
|
668
|
+
)
|
|
669
|
+
hidden_states = ff_block(hidden_states, deterministic=deterministic)
|
|
670
|
+
hidden_states = residual * res_gain + hidden_states
|
|
671
|
+
if self.add_norm:
|
|
672
|
+
use_scale = self.use_scale or self.config.force_ln_scale
|
|
673
|
+
hidden_states = norm(
|
|
674
|
+
self.config.ln_type,
|
|
675
|
+
dtype=self.dtype,
|
|
676
|
+
epsilon=1e-05,
|
|
677
|
+
use_scale=use_scale,
|
|
678
|
+
)(hidden_states)
|
|
679
|
+
|
|
680
|
+
outputs = (hidden_states,)
|
|
681
|
+
|
|
682
|
+
if output_attentions:
|
|
683
|
+
outputs += (attn_weights,)
|
|
684
|
+
|
|
685
|
+
if self.config.use_scan:
|
|
686
|
+
outputs = (outputs, None)
|
|
687
|
+
|
|
688
|
+
return outputs
|
|
689
|
+
|
|
690
|
+
|
|
691
|
+
class FlaxBartDecoderLayer(nn.Module):
|
|
692
|
+
"""
|
|
693
|
+
Edits:
|
|
694
|
+
- no bias
|
|
695
|
+
- use custom FlaxBartAttention
|
|
696
|
+
"""
|
|
697
|
+
|
|
698
|
+
config: DalleBartConfig
|
|
699
|
+
dtype: jnp.dtype = jnp.float32
|
|
700
|
+
add_norm: bool = False
|
|
701
|
+
use_scale: bool = True
|
|
702
|
+
|
|
703
|
+
@nn.compact
|
|
704
|
+
def __call__(
|
|
705
|
+
self,
|
|
706
|
+
hidden_states: jnp.ndarray,
|
|
707
|
+
attention_mask: jnp.ndarray,
|
|
708
|
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
|
709
|
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
|
710
|
+
init_cache: bool = False,
|
|
711
|
+
output_attentions: bool = True,
|
|
712
|
+
deterministic: bool = True,
|
|
713
|
+
) -> Tuple[jnp.ndarray]:
|
|
714
|
+
|
|
715
|
+
if self.config.use_scan:
|
|
716
|
+
hidden_states = hidden_states[0]
|
|
717
|
+
|
|
718
|
+
res_gain = deepnet_gain["decoder"]["alpha"](self.config) if self.config.use_deepnet_scaling else 1
|
|
719
|
+
|
|
720
|
+
embed_dim = self.config.d_model
|
|
721
|
+
residual = hidden_states
|
|
722
|
+
|
|
723
|
+
# Self Attention
|
|
724
|
+
if self.config.ln_positions in ["normformer", "cogview", "preln"]:
|
|
725
|
+
hidden_states = norm(
|
|
726
|
+
self.config.ln_type,
|
|
727
|
+
dtype=self.dtype,
|
|
728
|
+
epsilon=1e-05,
|
|
729
|
+
use_scale=self.config.force_ln_scale,
|
|
730
|
+
)(hidden_states)
|
|
731
|
+
hidden_states, attn_weights = FlaxBartAttention(
|
|
732
|
+
config=self.config,
|
|
733
|
+
embed_dim=embed_dim,
|
|
734
|
+
num_heads=self.config.decoder_attention_heads,
|
|
735
|
+
dropout=self.config.attention_dropout,
|
|
736
|
+
causal=True,
|
|
737
|
+
bias=self.config.use_bias,
|
|
738
|
+
dtype=self.dtype,
|
|
739
|
+
is_encoder=False,
|
|
740
|
+
is_cross_attention=False,
|
|
741
|
+
q_length=self.config.image_length,
|
|
742
|
+
k_length=self.config.image_length,
|
|
743
|
+
)(
|
|
744
|
+
hidden_states=hidden_states,
|
|
745
|
+
attention_mask=attention_mask,
|
|
746
|
+
init_cache=init_cache,
|
|
747
|
+
)
|
|
748
|
+
|
|
749
|
+
if self.config.ln_positions in ["normformer", "swinv2", "cogview"]:
|
|
750
|
+
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(hidden_states)
|
|
751
|
+
hidden_states = nn.Dropout(rate=self.config.dropout)(hidden_states, deterministic=deterministic)
|
|
752
|
+
hidden_states = residual * res_gain + hidden_states
|
|
753
|
+
if self.config.ln_positions in ["postln"]:
|
|
754
|
+
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(hidden_states)
|
|
755
|
+
|
|
756
|
+
# Cross Attention
|
|
757
|
+
cross_attn_weights = None
|
|
758
|
+
if encoder_hidden_states is not None:
|
|
759
|
+
residual = hidden_states
|
|
760
|
+
if self.config.ln_positions in ["normformer", "cogview", "preln"]:
|
|
761
|
+
hidden_states = norm(
|
|
762
|
+
self.config.ln_type,
|
|
763
|
+
dtype=self.dtype,
|
|
764
|
+
epsilon=1e-05,
|
|
765
|
+
use_scale=self.config.force_ln_scale,
|
|
766
|
+
)(hidden_states)
|
|
767
|
+
hidden_states, cross_attn_weights = FlaxBartAttention(
|
|
768
|
+
config=self.config,
|
|
769
|
+
embed_dim=embed_dim,
|
|
770
|
+
num_heads=self.config.decoder_attention_heads,
|
|
771
|
+
dropout=self.config.attention_dropout,
|
|
772
|
+
bias=self.config.use_bias,
|
|
773
|
+
dtype=self.dtype,
|
|
774
|
+
is_encoder=False,
|
|
775
|
+
is_cross_attention=True,
|
|
776
|
+
q_length=self.config.image_length,
|
|
777
|
+
k_length=self.config.max_text_length,
|
|
778
|
+
)(
|
|
779
|
+
hidden_states=hidden_states,
|
|
780
|
+
key_value_states=encoder_hidden_states,
|
|
781
|
+
attention_mask=encoder_attention_mask,
|
|
782
|
+
)
|
|
783
|
+
if self.config.ln_positions in ["normformer", "swinv2", "cogview"]:
|
|
784
|
+
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(hidden_states)
|
|
785
|
+
hidden_states = nn.Dropout(rate=self.config.dropout)(hidden_states, deterministic=deterministic)
|
|
786
|
+
hidden_states = residual * res_gain + hidden_states
|
|
787
|
+
if self.config.ln_positions in ["postln"]:
|
|
788
|
+
hidden_states = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)(hidden_states)
|
|
789
|
+
|
|
790
|
+
# Feed forward
|
|
791
|
+
residual = hidden_states
|
|
792
|
+
ff_block = (
|
|
793
|
+
GLU(
|
|
794
|
+
config=self.config,
|
|
795
|
+
ffn_dim=self.config.decoder_ffn_dim,
|
|
796
|
+
embed_dim=embed_dim,
|
|
797
|
+
dtype=self.dtype,
|
|
798
|
+
is_encoder=False,
|
|
799
|
+
)
|
|
800
|
+
if self.config.use_glu
|
|
801
|
+
else FFN(
|
|
802
|
+
config=self.config,
|
|
803
|
+
ffn_dim=self.config.decoder_ffn_dim,
|
|
804
|
+
embed_dim=embed_dim,
|
|
805
|
+
dtype=self.dtype,
|
|
806
|
+
is_encoder=False,
|
|
807
|
+
)
|
|
808
|
+
)
|
|
809
|
+
hidden_states = ff_block(hidden_states, deterministic=deterministic)
|
|
810
|
+
hidden_states = residual * res_gain + hidden_states
|
|
811
|
+
if self.add_norm:
|
|
812
|
+
use_scale = self.use_scale or self.config.force_ln_scale
|
|
813
|
+
hidden_states = norm(
|
|
814
|
+
self.config.ln_type,
|
|
815
|
+
dtype=self.dtype,
|
|
816
|
+
epsilon=1e-05,
|
|
817
|
+
use_scale=use_scale,
|
|
818
|
+
)(hidden_states)
|
|
819
|
+
|
|
820
|
+
outputs = (hidden_states,)
|
|
821
|
+
|
|
822
|
+
if output_attentions:
|
|
823
|
+
outputs += (attn_weights, cross_attn_weights)
|
|
824
|
+
|
|
825
|
+
if self.config.use_scan:
|
|
826
|
+
outputs = (outputs, None)
|
|
827
|
+
|
|
828
|
+
return outputs
|
|
829
|
+
|
|
830
|
+
|
|
831
|
+
class FlaxBartEncoderLayerCollection(nn.Module):
|
|
832
|
+
config: DalleBartConfig
|
|
833
|
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
|
834
|
+
"""
|
|
835
|
+
Edits:
|
|
836
|
+
- use custom FlaxBartEncoderLayer
|
|
837
|
+
- allow Gradient Checkpointing (nn.remat)
|
|
838
|
+
"""
|
|
839
|
+
|
|
840
|
+
@nn.compact
|
|
841
|
+
def __call__(
|
|
842
|
+
self,
|
|
843
|
+
hidden_states,
|
|
844
|
+
attention_mask,
|
|
845
|
+
deterministic: bool = True,
|
|
846
|
+
output_attentions: bool = False,
|
|
847
|
+
output_hidden_states: bool = False,
|
|
848
|
+
return_dict: bool = True,
|
|
849
|
+
):
|
|
850
|
+
all_hidden_states = () if output_hidden_states else None
|
|
851
|
+
all_self_attns = () if output_attentions else None
|
|
852
|
+
|
|
853
|
+
n_layers = self.config.encoder_layers
|
|
854
|
+
layer = (
|
|
855
|
+
remat(
|
|
856
|
+
FlaxBartEncoderLayer,
|
|
857
|
+
static_argnums=(2, 3),
|
|
858
|
+
prevent_cse=not self.config.use_scan,
|
|
859
|
+
)
|
|
860
|
+
if self.config.gradient_checkpointing
|
|
861
|
+
else FlaxBartEncoderLayer
|
|
862
|
+
)
|
|
863
|
+
|
|
864
|
+
if self.config.use_scan:
|
|
865
|
+
# all blocks are the same so we use nn.scan
|
|
866
|
+
assert not output_attentions, "cannot scan with output_attentions"
|
|
867
|
+
assert not output_hidden_states, "cannot scan with output_hidden_states"
|
|
868
|
+
hidden_states = (hidden_states,)
|
|
869
|
+
# we use a scale on all norms (even last layer) to allow scanning
|
|
870
|
+
hidden_states, _ = nn.scan(
|
|
871
|
+
layer,
|
|
872
|
+
variable_axes={"params": 0, "cache": 0},
|
|
873
|
+
split_rngs={"params": True, "dropout": True},
|
|
874
|
+
in_axes=(nn.broadcast, nn.broadcast, nn.broadcast),
|
|
875
|
+
length=n_layers,
|
|
876
|
+
)(
|
|
877
|
+
self.config,
|
|
878
|
+
dtype=self.dtype,
|
|
879
|
+
add_norm=self.config.ln_positions == "postln",
|
|
880
|
+
name="FlaxBartEncoderLayers",
|
|
881
|
+
)(
|
|
882
|
+
hidden_states,
|
|
883
|
+
attention_mask,
|
|
884
|
+
output_attentions,
|
|
885
|
+
deterministic,
|
|
886
|
+
)
|
|
887
|
+
hidden_states = hidden_states[0]
|
|
888
|
+
else:
|
|
889
|
+
for i in range(n_layers):
|
|
890
|
+
if output_hidden_states:
|
|
891
|
+
all_hidden_states += (hidden_states,)
|
|
892
|
+
# final layernorm on the output of the last layer
|
|
893
|
+
# or every 6 layers for Swin v2
|
|
894
|
+
add_norm = self.config.ln_positions == "postln" or (
|
|
895
|
+
self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) and (i != n_layers - 1)
|
|
896
|
+
)
|
|
897
|
+
# we don't need to scale the norm for the last layer
|
|
898
|
+
use_scale = i != n_layers - 1
|
|
899
|
+
layer_outputs = layer(
|
|
900
|
+
self.config,
|
|
901
|
+
dtype=self.dtype,
|
|
902
|
+
add_norm=add_norm,
|
|
903
|
+
use_scale=use_scale,
|
|
904
|
+
name=f"FlaxBartEncoderLayer_{i}",
|
|
905
|
+
)(
|
|
906
|
+
hidden_states,
|
|
907
|
+
attention_mask,
|
|
908
|
+
output_attentions,
|
|
909
|
+
deterministic,
|
|
910
|
+
)
|
|
911
|
+
hidden_states = layer_outputs[0]
|
|
912
|
+
if output_attentions:
|
|
913
|
+
all_self_attns += (layer_outputs[1],)
|
|
914
|
+
|
|
915
|
+
# add hidden states from the last layer
|
|
916
|
+
if output_hidden_states:
|
|
917
|
+
all_hidden_states += (hidden_states,)
|
|
918
|
+
|
|
919
|
+
outputs = [
|
|
920
|
+
hidden_states,
|
|
921
|
+
all_hidden_states,
|
|
922
|
+
all_self_attns,
|
|
923
|
+
]
|
|
924
|
+
|
|
925
|
+
if not return_dict:
|
|
926
|
+
return tuple(v for v in outputs if v is not None)
|
|
927
|
+
|
|
928
|
+
return FlaxBaseModelOutput(
|
|
929
|
+
last_hidden_state=hidden_states,
|
|
930
|
+
hidden_states=all_hidden_states,
|
|
931
|
+
attentions=all_self_attns,
|
|
932
|
+
)
|
|
933
|
+
|
|
934
|
+
|
|
935
|
+
class FlaxBartDecoderLayerCollection(nn.Module):
|
|
936
|
+
config: DalleBartConfig
|
|
937
|
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
|
938
|
+
"""
|
|
939
|
+
Edits:
|
|
940
|
+
- use custom FlaxBartDecoderLayer
|
|
941
|
+
- allow Gradient Checkpointing (nn.remat)
|
|
942
|
+
"""
|
|
943
|
+
|
|
944
|
+
@nn.compact
|
|
945
|
+
def __call__(
|
|
946
|
+
self,
|
|
947
|
+
hidden_states,
|
|
948
|
+
attention_mask,
|
|
949
|
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
|
950
|
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
|
951
|
+
deterministic: bool = True,
|
|
952
|
+
init_cache: bool = False,
|
|
953
|
+
output_attentions: bool = False,
|
|
954
|
+
output_hidden_states: bool = False,
|
|
955
|
+
return_dict: bool = True,
|
|
956
|
+
):
|
|
957
|
+
# decoder layers
|
|
958
|
+
all_hidden_states = () if output_hidden_states else None
|
|
959
|
+
all_self_attns = () if output_attentions else None
|
|
960
|
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
|
961
|
+
|
|
962
|
+
n_layers = self.config.decoder_layers
|
|
963
|
+
layer = (
|
|
964
|
+
remat(
|
|
965
|
+
FlaxBartDecoderLayer,
|
|
966
|
+
static_argnums=(4, 5, 6),
|
|
967
|
+
prevent_cse=not self.config.use_scan,
|
|
968
|
+
)
|
|
969
|
+
if self.config.gradient_checkpointing
|
|
970
|
+
else FlaxBartDecoderLayer
|
|
971
|
+
)
|
|
972
|
+
|
|
973
|
+
if self.config.use_scan:
|
|
974
|
+
# all blocks are the same so we use nn.scan
|
|
975
|
+
assert not output_attentions, "cannot scan with output_attentions"
|
|
976
|
+
assert not output_hidden_states, "cannot scan with output_hidden_states"
|
|
977
|
+
hidden_states = (hidden_states,)
|
|
978
|
+
# we use a scale on all norms (even last layer) to allow scanning
|
|
979
|
+
hidden_states, _ = nn.scan(
|
|
980
|
+
layer,
|
|
981
|
+
variable_axes={"params": 0, "cache": 0},
|
|
982
|
+
split_rngs={"params": True, "dropout": True},
|
|
983
|
+
in_axes=(
|
|
984
|
+
nn.broadcast,
|
|
985
|
+
nn.broadcast,
|
|
986
|
+
nn.broadcast,
|
|
987
|
+
nn.broadcast,
|
|
988
|
+
nn.broadcast,
|
|
989
|
+
nn.broadcast,
|
|
990
|
+
),
|
|
991
|
+
length=n_layers,
|
|
992
|
+
)(
|
|
993
|
+
self.config,
|
|
994
|
+
dtype=self.dtype,
|
|
995
|
+
add_norm=self.config.ln_positions == "postln",
|
|
996
|
+
name="FlaxBartDecoderLayers",
|
|
997
|
+
)(
|
|
998
|
+
hidden_states,
|
|
999
|
+
attention_mask,
|
|
1000
|
+
encoder_hidden_states,
|
|
1001
|
+
encoder_attention_mask,
|
|
1002
|
+
init_cache,
|
|
1003
|
+
output_attentions,
|
|
1004
|
+
deterministic,
|
|
1005
|
+
)
|
|
1006
|
+
hidden_states = hidden_states[0]
|
|
1007
|
+
|
|
1008
|
+
else:
|
|
1009
|
+
for i in range(n_layers):
|
|
1010
|
+
if output_hidden_states:
|
|
1011
|
+
all_hidden_states += (hidden_states,)
|
|
1012
|
+
# final layernorm on the output of the last layer
|
|
1013
|
+
# or every 6 layers for Swin v2
|
|
1014
|
+
add_norm = self.config.ln_positions == "postln" or (
|
|
1015
|
+
self.config.ln_positions == "swinv2" and ((i + 1) % 6 == 0) and (i != n_layers - 1)
|
|
1016
|
+
)
|
|
1017
|
+
# we don't need to scale the norm for the last layer
|
|
1018
|
+
use_scale = i != n_layers - 1
|
|
1019
|
+
layer_outputs = layer(
|
|
1020
|
+
self.config,
|
|
1021
|
+
dtype=self.dtype,
|
|
1022
|
+
add_norm=add_norm,
|
|
1023
|
+
use_scale=use_scale,
|
|
1024
|
+
name=f"FlaxBartDecoderLayer_{i}",
|
|
1025
|
+
)(
|
|
1026
|
+
hidden_states,
|
|
1027
|
+
attention_mask,
|
|
1028
|
+
encoder_hidden_states,
|
|
1029
|
+
encoder_attention_mask,
|
|
1030
|
+
init_cache,
|
|
1031
|
+
output_attentions,
|
|
1032
|
+
deterministic,
|
|
1033
|
+
)
|
|
1034
|
+
|
|
1035
|
+
hidden_states = layer_outputs[0]
|
|
1036
|
+
if output_attentions:
|
|
1037
|
+
all_self_attns += (layer_outputs[1],)
|
|
1038
|
+
|
|
1039
|
+
if encoder_hidden_states is not None:
|
|
1040
|
+
all_cross_attentions += (layer_outputs[2],)
|
|
1041
|
+
|
|
1042
|
+
# add hidden states from the last decoder layer
|
|
1043
|
+
if output_hidden_states:
|
|
1044
|
+
all_hidden_states += (hidden_states,)
|
|
1045
|
+
|
|
1046
|
+
outputs = [
|
|
1047
|
+
hidden_states,
|
|
1048
|
+
all_hidden_states,
|
|
1049
|
+
all_self_attns,
|
|
1050
|
+
all_cross_attentions,
|
|
1051
|
+
]
|
|
1052
|
+
|
|
1053
|
+
if not return_dict:
|
|
1054
|
+
return tuple(v for v in outputs if v is not None)
|
|
1055
|
+
|
|
1056
|
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
|
1057
|
+
last_hidden_state=hidden_states,
|
|
1058
|
+
hidden_states=all_hidden_states,
|
|
1059
|
+
attentions=all_self_attns,
|
|
1060
|
+
cross_attentions=all_cross_attentions,
|
|
1061
|
+
)
|
|
1062
|
+
|
|
1063
|
+
|
|
1064
|
+
class FlaxBartEncoder(nn.Module):
|
|
1065
|
+
config: DalleBartConfig
|
|
1066
|
+
embed_tokens: nn.Embed
|
|
1067
|
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
|
1068
|
+
"""
|
|
1069
|
+
Edits:
|
|
1070
|
+
- offset set to 0 (no padding token)
|
|
1071
|
+
- use max_text_length instead of max_position_embeddings
|
|
1072
|
+
- use custom FlaxBartEncoderLayerCollection
|
|
1073
|
+
- embed_tokens cannot be None (issue at compile time)
|
|
1074
|
+
"""
|
|
1075
|
+
|
|
1076
|
+
def setup(self):
|
|
1077
|
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
1078
|
+
|
|
1079
|
+
embed_dim = self.config.d_model
|
|
1080
|
+
self.padding_idx = self.config.pad_token_id
|
|
1081
|
+
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
|
1082
|
+
|
|
1083
|
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
|
1084
|
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
|
1085
|
+
self.offset = 0
|
|
1086
|
+
if self.config.use_absolute_position_embeddings:
|
|
1087
|
+
self.embed_positions = nn.Embed(
|
|
1088
|
+
self.config.max_text_length + self.offset, # image length for BOS
|
|
1089
|
+
embed_dim,
|
|
1090
|
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
1091
|
+
)
|
|
1092
|
+
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
|
|
1093
|
+
self.layernorm_embedding = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)
|
|
1094
|
+
|
|
1095
|
+
# postln is already applied in every layer
|
|
1096
|
+
if self.config.use_final_ln_encoder and self.config.ln_positions != "postln":
|
|
1097
|
+
self.final_ln = norm(
|
|
1098
|
+
self.config.ln_type,
|
|
1099
|
+
dtype=self.dtype,
|
|
1100
|
+
epsilon=1e-05,
|
|
1101
|
+
use_scale=self.config.force_ln_scale,
|
|
1102
|
+
)
|
|
1103
|
+
else:
|
|
1104
|
+
self.final_ln = None
|
|
1105
|
+
|
|
1106
|
+
def __call__(
|
|
1107
|
+
self,
|
|
1108
|
+
input_ids,
|
|
1109
|
+
attention_mask,
|
|
1110
|
+
position_ids,
|
|
1111
|
+
output_attentions: bool = False,
|
|
1112
|
+
output_hidden_states: bool = False,
|
|
1113
|
+
return_dict: bool = True,
|
|
1114
|
+
deterministic: bool = True,
|
|
1115
|
+
):
|
|
1116
|
+
input_shape = input_ids.shape
|
|
1117
|
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
|
1118
|
+
|
|
1119
|
+
hidden_states = self.embed_tokens(input_ids) * self.embed_scale
|
|
1120
|
+
|
|
1121
|
+
if self.config.use_absolute_position_embeddings:
|
|
1122
|
+
embed_pos = self.embed_positions(position_ids + self.offset)
|
|
1123
|
+
hidden_states = hidden_states + embed_pos
|
|
1124
|
+
|
|
1125
|
+
hidden_states = self.layernorm_embedding(hidden_states)
|
|
1126
|
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
|
1127
|
+
|
|
1128
|
+
outputs = self.layers(
|
|
1129
|
+
hidden_states,
|
|
1130
|
+
attention_mask,
|
|
1131
|
+
deterministic=deterministic,
|
|
1132
|
+
output_attentions=output_attentions,
|
|
1133
|
+
output_hidden_states=output_hidden_states,
|
|
1134
|
+
return_dict=return_dict,
|
|
1135
|
+
)
|
|
1136
|
+
|
|
1137
|
+
if self.final_ln is None:
|
|
1138
|
+
final_output = outputs[0]
|
|
1139
|
+
else:
|
|
1140
|
+
final_output = self.final_ln(outputs[0])
|
|
1141
|
+
|
|
1142
|
+
if not return_dict:
|
|
1143
|
+
return (final_output,) + outputs[1:]
|
|
1144
|
+
|
|
1145
|
+
return FlaxBaseModelOutput(
|
|
1146
|
+
last_hidden_state=final_output,
|
|
1147
|
+
hidden_states=outputs.hidden_states,
|
|
1148
|
+
attentions=outputs.attentions,
|
|
1149
|
+
)
|
|
1150
|
+
|
|
1151
|
+
|
|
1152
|
+
class FlaxBartDecoder(nn.Module):
|
|
1153
|
+
config: DalleBartConfig
|
|
1154
|
+
embed_tokens: nn.Embed
|
|
1155
|
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
|
1156
|
+
"""
|
|
1157
|
+
Edits:
|
|
1158
|
+
- offset set to 0 (no padding token)
|
|
1159
|
+
- use image_length instead of max_position_embeddings
|
|
1160
|
+
- use custom FlaxBartDecoderLayerCollection
|
|
1161
|
+
- embed_tokens cannot be None (issue at compile time)
|
|
1162
|
+
"""
|
|
1163
|
+
|
|
1164
|
+
def setup(self):
|
|
1165
|
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
1166
|
+
|
|
1167
|
+
embed_dim = self.config.d_model
|
|
1168
|
+
self.padding_idx = self.config.pad_token_id
|
|
1169
|
+
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
|
1170
|
+
|
|
1171
|
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
|
1172
|
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
|
1173
|
+
self.offset = 0
|
|
1174
|
+
if self.config.use_absolute_position_embeddings:
|
|
1175
|
+
self.embed_positions = nn.Embed(
|
|
1176
|
+
self.config.image_length + self.offset, # image length for BOS
|
|
1177
|
+
embed_dim,
|
|
1178
|
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
1179
|
+
)
|
|
1180
|
+
|
|
1181
|
+
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
|
|
1182
|
+
self.layernorm_embedding = norm(self.config.ln_type, dtype=self.dtype, epsilon=1e-05)
|
|
1183
|
+
|
|
1184
|
+
# postln is already applied in every layer
|
|
1185
|
+
if self.config.use_final_ln_decoder and self.config.ln_positions != "postln":
|
|
1186
|
+
self.final_ln = norm(
|
|
1187
|
+
self.config.ln_type,
|
|
1188
|
+
dtype=self.dtype,
|
|
1189
|
+
epsilon=1e-05,
|
|
1190
|
+
use_scale=self.config.force_ln_scale,
|
|
1191
|
+
)
|
|
1192
|
+
|
|
1193
|
+
def __call__(
|
|
1194
|
+
self,
|
|
1195
|
+
input_ids,
|
|
1196
|
+
attention_mask,
|
|
1197
|
+
position_ids,
|
|
1198
|
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
|
1199
|
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
|
1200
|
+
init_cache: bool = False,
|
|
1201
|
+
output_attentions: bool = False,
|
|
1202
|
+
output_hidden_states: bool = False,
|
|
1203
|
+
return_dict: bool = True,
|
|
1204
|
+
deterministic: bool = True,
|
|
1205
|
+
):
|
|
1206
|
+
input_shape = input_ids.shape
|
|
1207
|
+
input_ids = input_ids.reshape(-1, input_shape[-1])
|
|
1208
|
+
|
|
1209
|
+
hidden_states = self.embed_tokens(input_ids) * self.embed_scale
|
|
1210
|
+
|
|
1211
|
+
if self.config.use_absolute_position_embeddings:
|
|
1212
|
+
embed_pos = self.embed_positions(position_ids + self.offset)
|
|
1213
|
+
hidden_states = hidden_states + embed_pos
|
|
1214
|
+
|
|
1215
|
+
hidden_states = self.layernorm_embedding(hidden_states)
|
|
1216
|
+
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
|
1217
|
+
|
|
1218
|
+
outputs = self.layers(
|
|
1219
|
+
hidden_states,
|
|
1220
|
+
attention_mask,
|
|
1221
|
+
encoder_hidden_states,
|
|
1222
|
+
encoder_attention_mask,
|
|
1223
|
+
deterministic=deterministic,
|
|
1224
|
+
init_cache=init_cache,
|
|
1225
|
+
output_attentions=output_attentions,
|
|
1226
|
+
output_hidden_states=output_hidden_states,
|
|
1227
|
+
return_dict=return_dict,
|
|
1228
|
+
)
|
|
1229
|
+
|
|
1230
|
+
if self.final_ln is None:
|
|
1231
|
+
final_output = outputs[0]
|
|
1232
|
+
else:
|
|
1233
|
+
final_output = self.final_ln(outputs[0])
|
|
1234
|
+
|
|
1235
|
+
if not return_dict:
|
|
1236
|
+
return (final_output,) + outputs[1:]
|
|
1237
|
+
|
|
1238
|
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
|
1239
|
+
last_hidden_state=final_output,
|
|
1240
|
+
hidden_states=outputs.hidden_states,
|
|
1241
|
+
attentions=outputs.attentions,
|
|
1242
|
+
cross_attentions=outputs.cross_attentions,
|
|
1243
|
+
)
|
|
1244
|
+
|
|
1245
|
+
|
|
1246
|
+
class FlaxBartModule(FlaxBartModule):
|
|
1247
|
+
"""
|
|
1248
|
+
Edits
|
|
1249
|
+
- use custom FlaxBartEncoder & FlaxBartDecoder
|
|
1250
|
+
- use separate embeddings for Encoder & Decoder
|
|
1251
|
+
"""
|
|
1252
|
+
|
|
1253
|
+
def setup(self):
|
|
1254
|
+
encoder_embed_tokens = nn.Embed(
|
|
1255
|
+
self.config.encoder_vocab_size,
|
|
1256
|
+
self.config.d_model,
|
|
1257
|
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
1258
|
+
)
|
|
1259
|
+
decoder_embed_tokens = nn.Embed(
|
|
1260
|
+
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
|
1261
|
+
self.config.d_model,
|
|
1262
|
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
1263
|
+
)
|
|
1264
|
+
|
|
1265
|
+
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens)
|
|
1266
|
+
self.decoder = FlaxBartDecoder(self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens)
|
|
1267
|
+
|
|
1268
|
+
|
|
1269
|
+
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
|
1270
|
+
"""
|
|
1271
|
+
Edits:
|
|
1272
|
+
- no bias
|
|
1273
|
+
- lm_head set to image_vocab_size + 1 (for BOS)
|
|
1274
|
+
- uses custom FlaxBartModule
|
|
1275
|
+
"""
|
|
1276
|
+
|
|
1277
|
+
def setup(self):
|
|
1278
|
+
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
|
1279
|
+
self.lm_head = nn.Dense(
|
|
1280
|
+
self.config.image_vocab_size
|
|
1281
|
+
+ 1, # image vocab size + 1 for BOS to have same size as decoder inputs (for sharding)
|
|
1282
|
+
use_bias=False,
|
|
1283
|
+
dtype=self.dtype,
|
|
1284
|
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
|
1285
|
+
)
|
|
1286
|
+
|
|
1287
|
+
def __call__(
|
|
1288
|
+
self,
|
|
1289
|
+
input_ids,
|
|
1290
|
+
attention_mask,
|
|
1291
|
+
decoder_input_ids,
|
|
1292
|
+
decoder_attention_mask,
|
|
1293
|
+
position_ids,
|
|
1294
|
+
decoder_position_ids,
|
|
1295
|
+
output_attentions: bool = False,
|
|
1296
|
+
output_hidden_states: bool = False,
|
|
1297
|
+
return_dict: bool = True,
|
|
1298
|
+
deterministic: bool = True,
|
|
1299
|
+
):
|
|
1300
|
+
outputs = self.model(
|
|
1301
|
+
input_ids=input_ids,
|
|
1302
|
+
attention_mask=attention_mask,
|
|
1303
|
+
decoder_input_ids=decoder_input_ids,
|
|
1304
|
+
decoder_attention_mask=decoder_attention_mask,
|
|
1305
|
+
position_ids=position_ids,
|
|
1306
|
+
decoder_position_ids=decoder_position_ids,
|
|
1307
|
+
output_attentions=output_attentions,
|
|
1308
|
+
output_hidden_states=output_hidden_states,
|
|
1309
|
+
return_dict=return_dict,
|
|
1310
|
+
deterministic=deterministic,
|
|
1311
|
+
)
|
|
1312
|
+
|
|
1313
|
+
hidden_states = outputs[0]
|
|
1314
|
+
|
|
1315
|
+
if self.config.tie_word_embeddings:
|
|
1316
|
+
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
|
1317
|
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
|
1318
|
+
else:
|
|
1319
|
+
lm_logits = self.lm_head(hidden_states)
|
|
1320
|
+
|
|
1321
|
+
if not return_dict:
|
|
1322
|
+
output = (lm_logits,) + outputs[1:]
|
|
1323
|
+
return output
|
|
1324
|
+
|
|
1325
|
+
return FlaxSeq2SeqLMOutput(
|
|
1326
|
+
logits=lm_logits,
|
|
1327
|
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
1328
|
+
decoder_attentions=outputs.decoder_attentions,
|
|
1329
|
+
cross_attentions=outputs.cross_attentions,
|
|
1330
|
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
|
1331
|
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
|
1332
|
+
encoder_attentions=outputs.encoder_attentions,
|
|
1333
|
+
)
|
|
1334
|
+
|
|
1335
|
+
|
|
1336
|
+
@flax.struct.dataclass
|
|
1337
|
+
class SampleState:
|
|
1338
|
+
cur_len: jnp.ndarray
|
|
1339
|
+
sequences: jnp.ndarray
|
|
1340
|
+
running_token: jnp.ndarray
|
|
1341
|
+
is_sent_finished: jnp.ndarray
|
|
1342
|
+
prng_key: jnp.ndarray
|
|
1343
|
+
model_kwargs: Dict[str, jnp.ndarray]
|
|
1344
|
+
model_kwargs_uncond: Dict[str, jnp.ndarray]
|
|
1345
|
+
|
|
1346
|
+
|
|
1347
|
+
@flax.struct.dataclass
|
|
1348
|
+
class FlaxSampleOutput(ModelOutput):
|
|
1349
|
+
"""
|
|
1350
|
+
Flax Base class for outputs of decoder-only generation models using sampling.
|
|
1351
|
+
|
|
1352
|
+
|
|
1353
|
+
Args:
|
|
1354
|
+
sequences (`jnp.ndarray` of shape `(batch_size, max_length)`):
|
|
1355
|
+
The generated sequences.
|
|
1356
|
+
"""
|
|
1357
|
+
|
|
1358
|
+
sequences: jnp.ndarray = None
|
|
1359
|
+
|
|
1360
|
+
|
|
1361
|
+
class DalleBart(PretrainedFromWandbMixin, FlaxBartForConditionalGeneration):
|
|
1362
|
+
"""
|
|
1363
|
+
Edits:
|
|
1364
|
+
- renamed from FlaxBartForConditionalGeneration
|
|
1365
|
+
- uses custom FlaxBartForConditionalGenerationModule
|
|
1366
|
+
- no bias in decode method
|
|
1367
|
+
- custom prepare_inputs_for_generation using "max_length - 1" to avoid issues
|
|
1368
|
+
related to position embedding during model.generate()
|
|
1369
|
+
- custom generate method to allow super conditions
|
|
1370
|
+
- num_params property
|
|
1371
|
+
- unscan function
|
|
1372
|
+
"""
|
|
1373
|
+
|
|
1374
|
+
module_class = FlaxBartForConditionalGenerationModule
|
|
1375
|
+
config_class = DalleBartConfig
|
|
1376
|
+
|
|
1377
|
+
def num_params(self, params=None):
|
|
1378
|
+
if params is None:
|
|
1379
|
+
params = self.params
|
|
1380
|
+
num_params = jax.tree_util.tree_map(lambda param: param.size, flatten_dict(unfreeze(params))).values()
|
|
1381
|
+
return sum(list(num_params))
|
|
1382
|
+
|
|
1383
|
+
def unscan(self, params):
|
|
1384
|
+
if self.config.use_scan:
|
|
1385
|
+
self.config.use_scan = False
|
|
1386
|
+
params = flatten_dict(params)
|
|
1387
|
+
scanned_keys = [k for k in params.keys() if "layers" in k]
|
|
1388
|
+
for k in scanned_keys:
|
|
1389
|
+
v = params[k]
|
|
1390
|
+
name_idx = k.index("layers") + 1
|
|
1391
|
+
for i in range(len(v)):
|
|
1392
|
+
new_k = (
|
|
1393
|
+
*k[:name_idx],
|
|
1394
|
+
f"{k[name_idx][:-1]}_{i}",
|
|
1395
|
+
*k[name_idx + 1 :],
|
|
1396
|
+
)
|
|
1397
|
+
params[new_k] = v[i]
|
|
1398
|
+
del params[k]
|
|
1399
|
+
params = unflatten_dict(params)
|
|
1400
|
+
return params
|
|
1401
|
+
|
|
1402
|
+
def decode(
|
|
1403
|
+
self,
|
|
1404
|
+
decoder_input_ids,
|
|
1405
|
+
encoder_outputs,
|
|
1406
|
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
|
1407
|
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
|
1408
|
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
|
1409
|
+
past_key_values: dict = None,
|
|
1410
|
+
output_attentions: Optional[bool] = None,
|
|
1411
|
+
output_hidden_states: Optional[bool] = None,
|
|
1412
|
+
return_dict: Optional[bool] = None,
|
|
1413
|
+
train: bool = False,
|
|
1414
|
+
params: dict = None,
|
|
1415
|
+
dropout_rng: PRNGKey = None,
|
|
1416
|
+
):
|
|
1417
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
1418
|
+
output_hidden_states = (
|
|
1419
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
1420
|
+
)
|
|
1421
|
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
|
1422
|
+
|
|
1423
|
+
encoder_hidden_states = encoder_outputs[0]
|
|
1424
|
+
if encoder_attention_mask is None:
|
|
1425
|
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
|
1426
|
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
|
1427
|
+
|
|
1428
|
+
batch_size, sequence_length = decoder_input_ids.shape
|
|
1429
|
+
if decoder_attention_mask is None:
|
|
1430
|
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
|
1431
|
+
|
|
1432
|
+
if decoder_position_ids is None:
|
|
1433
|
+
if past_key_values is not None:
|
|
1434
|
+
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
|
|
1435
|
+
|
|
1436
|
+
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
|
1437
|
+
|
|
1438
|
+
# Handle any PRNG if needed
|
|
1439
|
+
rngs = {}
|
|
1440
|
+
if dropout_rng is not None:
|
|
1441
|
+
rngs["dropout"] = dropout_rng
|
|
1442
|
+
|
|
1443
|
+
inputs = {"params": params or self.params}
|
|
1444
|
+
|
|
1445
|
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
|
1446
|
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
|
1447
|
+
# it can be changed by FlaxBartAttention module
|
|
1448
|
+
if past_key_values:
|
|
1449
|
+
inputs["cache"] = past_key_values
|
|
1450
|
+
mutable = ["cache"]
|
|
1451
|
+
else:
|
|
1452
|
+
mutable = False
|
|
1453
|
+
|
|
1454
|
+
def _decoder_forward(
|
|
1455
|
+
module,
|
|
1456
|
+
decoder_input_ids,
|
|
1457
|
+
decoder_attention_mask,
|
|
1458
|
+
decoder_position_ids,
|
|
1459
|
+
**kwargs,
|
|
1460
|
+
):
|
|
1461
|
+
decoder_module = module._get_decoder_module()
|
|
1462
|
+
outputs = decoder_module(
|
|
1463
|
+
decoder_input_ids,
|
|
1464
|
+
decoder_attention_mask,
|
|
1465
|
+
decoder_position_ids,
|
|
1466
|
+
**kwargs,
|
|
1467
|
+
)
|
|
1468
|
+
hidden_states = outputs[0]
|
|
1469
|
+
|
|
1470
|
+
if self.config.tie_word_embeddings:
|
|
1471
|
+
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
|
|
1472
|
+
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
|
|
1473
|
+
else:
|
|
1474
|
+
lm_logits = module.lm_head(hidden_states)
|
|
1475
|
+
|
|
1476
|
+
return lm_logits, outputs
|
|
1477
|
+
|
|
1478
|
+
outputs = self.module.apply(
|
|
1479
|
+
inputs,
|
|
1480
|
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
|
1481
|
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
|
1482
|
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
|
1483
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
1484
|
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
|
1485
|
+
output_attentions=output_attentions,
|
|
1486
|
+
output_hidden_states=output_hidden_states,
|
|
1487
|
+
return_dict=return_dict,
|
|
1488
|
+
deterministic=not train,
|
|
1489
|
+
rngs=rngs,
|
|
1490
|
+
mutable=mutable,
|
|
1491
|
+
method=_decoder_forward,
|
|
1492
|
+
)
|
|
1493
|
+
|
|
1494
|
+
if past_key_values is None:
|
|
1495
|
+
lm_logits, decoder_outputs = outputs
|
|
1496
|
+
else:
|
|
1497
|
+
(lm_logits, decoder_outputs), past = outputs
|
|
1498
|
+
|
|
1499
|
+
if return_dict:
|
|
1500
|
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
|
1501
|
+
logits=lm_logits,
|
|
1502
|
+
hidden_states=decoder_outputs.hidden_states,
|
|
1503
|
+
attentions=decoder_outputs.attentions,
|
|
1504
|
+
cross_attentions=decoder_outputs.cross_attentions,
|
|
1505
|
+
)
|
|
1506
|
+
else:
|
|
1507
|
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
|
1508
|
+
|
|
1509
|
+
# add updated cache to model output
|
|
1510
|
+
if past_key_values is not None and return_dict:
|
|
1511
|
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
|
1512
|
+
return outputs
|
|
1513
|
+
elif past_key_values is not None and not return_dict:
|
|
1514
|
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
|
1515
|
+
|
|
1516
|
+
return outputs
|
|
1517
|
+
|
|
1518
|
+
def prepare_inputs_for_generation(
|
|
1519
|
+
self,
|
|
1520
|
+
decoder_input_ids,
|
|
1521
|
+
max_length,
|
|
1522
|
+
attention_mask: Optional[jnp.DeviceArray] = None,
|
|
1523
|
+
decoder_attention_mask: Optional[jnp.DeviceArray] = None,
|
|
1524
|
+
encoder_outputs=None,
|
|
1525
|
+
**kwargs,
|
|
1526
|
+
):
|
|
1527
|
+
# initializing the cache
|
|
1528
|
+
batch_size, seq_length = decoder_input_ids.shape
|
|
1529
|
+
|
|
1530
|
+
past_key_values = self.init_cache(batch_size, max_length - 1, encoder_outputs)
|
|
1531
|
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
|
1532
|
+
# But since the decoder uses a causal mask, those positions are masked anyways.
|
|
1533
|
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
|
1534
|
+
extended_attention_mask = jnp.ones((batch_size, max_length - 1), dtype="i4")
|
|
1535
|
+
if decoder_attention_mask is not None:
|
|
1536
|
+
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
|
1537
|
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
|
|
1538
|
+
else:
|
|
1539
|
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
|
1540
|
+
|
|
1541
|
+
return {
|
|
1542
|
+
"past_key_values": past_key_values,
|
|
1543
|
+
"encoder_outputs": encoder_outputs,
|
|
1544
|
+
"encoder_attention_mask": attention_mask,
|
|
1545
|
+
"decoder_attention_mask": extended_attention_mask,
|
|
1546
|
+
"decoder_position_ids": position_ids,
|
|
1547
|
+
}
|
|
1548
|
+
|
|
1549
|
+
def generate(
|
|
1550
|
+
self,
|
|
1551
|
+
input_ids: jnp.ndarray,
|
|
1552
|
+
attention_mask: Optional[jnp.ndarray] = None,
|
|
1553
|
+
max_length: Optional[int] = None,
|
|
1554
|
+
pad_token_id: Optional[int] = None,
|
|
1555
|
+
bos_token_id: Optional[int] = None,
|
|
1556
|
+
eos_token_id: Optional[int] = None,
|
|
1557
|
+
decoder_start_token_id: Optional[int] = None,
|
|
1558
|
+
do_sample: Optional[bool] = None,
|
|
1559
|
+
prng_key: Optional[jnp.ndarray] = None,
|
|
1560
|
+
top_k: Optional[int] = None,
|
|
1561
|
+
top_p: Optional[float] = None,
|
|
1562
|
+
temperature: Optional[float] = None,
|
|
1563
|
+
num_beams: Optional[int] = None,
|
|
1564
|
+
no_repeat_ngram_size: Optional[int] = None,
|
|
1565
|
+
min_length: Optional[int] = None,
|
|
1566
|
+
forced_bos_token_id: Optional[int] = None,
|
|
1567
|
+
forced_eos_token_id: Optional[int] = None,
|
|
1568
|
+
length_penalty: Optional[float] = None,
|
|
1569
|
+
early_stopping: Optional[bool] = None,
|
|
1570
|
+
trace: bool = True,
|
|
1571
|
+
params: Optional[Dict[str, jnp.ndarray]] = None,
|
|
1572
|
+
condition_scale: Optional[float] = 1.0,
|
|
1573
|
+
input_ids_uncond: Optional[jnp.ndarray] = None,
|
|
1574
|
+
attention_mask_uncond: Optional[jnp.ndarray] = None,
|
|
1575
|
+
**model_kwargs,
|
|
1576
|
+
):
|
|
1577
|
+
"""Edit: Allow super conditioning."""
|
|
1578
|
+
|
|
1579
|
+
# set init values
|
|
1580
|
+
max_length = max_length if max_length is not None else self.config.max_length
|
|
1581
|
+
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
|
|
1582
|
+
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
|
|
1583
|
+
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
|
|
1584
|
+
decoder_start_token_id = (
|
|
1585
|
+
decoder_start_token_id if decoder_start_token_id else self.config.decoder_start_token_id
|
|
1586
|
+
)
|
|
1587
|
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
|
1588
|
+
|
|
1589
|
+
if decoder_start_token_id is None and self.config.is_encoder_decoder:
|
|
1590
|
+
raise ValueError("`decoder_start_token_id` has to be defined for encoder-decoder generation.")
|
|
1591
|
+
|
|
1592
|
+
do_sample = do_sample if do_sample is not None else self.config.do_sample
|
|
1593
|
+
num_beams = num_beams if num_beams is not None else self.config.num_beams
|
|
1594
|
+
|
|
1595
|
+
if self.config.is_encoder_decoder:
|
|
1596
|
+
# add encoder_outputs to model_kwargs
|
|
1597
|
+
if model_kwargs.get("encoder_outputs") is None:
|
|
1598
|
+
model_kwargs_input = dict(model_kwargs)
|
|
1599
|
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
|
1600
|
+
input_ids,
|
|
1601
|
+
params,
|
|
1602
|
+
{"attention_mask": attention_mask, **model_kwargs_input},
|
|
1603
|
+
)
|
|
1604
|
+
if condition_scale != 1.0:
|
|
1605
|
+
assert input_ids_uncond is not None, "`input_ids_uncond` has to be defined for super conditioning."
|
|
1606
|
+
assert do_sample is True, "`do_sample` has to be True for super conditioning."
|
|
1607
|
+
assert num_beams == 1, "`num_beams` has to be 1 for super conditioning."
|
|
1608
|
+
model_kwargs_uncond = self._prepare_encoder_decoder_kwargs_for_generation(
|
|
1609
|
+
input_ids_uncond,
|
|
1610
|
+
params,
|
|
1611
|
+
{
|
|
1612
|
+
"attention_mask": attention_mask_uncond,
|
|
1613
|
+
**model_kwargs_input,
|
|
1614
|
+
},
|
|
1615
|
+
)
|
|
1616
|
+
else:
|
|
1617
|
+
model_kwargs_uncond = None
|
|
1618
|
+
# prepare decoder_input_ids for generation
|
|
1619
|
+
input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
|
1620
|
+
|
|
1621
|
+
if not do_sample and num_beams == 1:
|
|
1622
|
+
logits_processor = self._get_logits_processor(
|
|
1623
|
+
no_repeat_ngram_size,
|
|
1624
|
+
min_length,
|
|
1625
|
+
max_length,
|
|
1626
|
+
eos_token_id,
|
|
1627
|
+
forced_bos_token_id,
|
|
1628
|
+
forced_eos_token_id,
|
|
1629
|
+
)
|
|
1630
|
+
return self._greedy_search(
|
|
1631
|
+
input_ids,
|
|
1632
|
+
max_length,
|
|
1633
|
+
pad_token_id,
|
|
1634
|
+
eos_token_id,
|
|
1635
|
+
logits_processor=logits_processor,
|
|
1636
|
+
trace=trace,
|
|
1637
|
+
params=params,
|
|
1638
|
+
model_kwargs=model_kwargs,
|
|
1639
|
+
)
|
|
1640
|
+
elif do_sample and num_beams == 1:
|
|
1641
|
+
try:
|
|
1642
|
+
logits_warper = self._get_logits_warper(top_k=top_k, top_p=top_p, temperature=temperature)
|
|
1643
|
+
logits_processor = self._get_logits_processor(
|
|
1644
|
+
no_repeat_ngram_size,
|
|
1645
|
+
min_length,
|
|
1646
|
+
max_length,
|
|
1647
|
+
eos_token_id,
|
|
1648
|
+
forced_bos_token_id,
|
|
1649
|
+
forced_eos_token_id,
|
|
1650
|
+
)
|
|
1651
|
+
except:
|
|
1652
|
+
logits_warper = self._get_logits_warper(
|
|
1653
|
+
generation_config=GenerationConfig(top_k=top_k, top_p=top_p, temperature=temperature)
|
|
1654
|
+
)
|
|
1655
|
+
logits_processor = self._get_logits_processor(
|
|
1656
|
+
generation_config=GenerationConfig(
|
|
1657
|
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
|
1658
|
+
min_length=min_length,
|
|
1659
|
+
max_length=max_length,
|
|
1660
|
+
eos_token_id=eos_token_id,
|
|
1661
|
+
forced_bos_token_id=forced_bos_token_id,
|
|
1662
|
+
forced_eos_token_id=forced_eos_token_id,
|
|
1663
|
+
)
|
|
1664
|
+
)
|
|
1665
|
+
|
|
1666
|
+
return self._sample(
|
|
1667
|
+
input_ids,
|
|
1668
|
+
max_length,
|
|
1669
|
+
pad_token_id,
|
|
1670
|
+
eos_token_id,
|
|
1671
|
+
prng_key,
|
|
1672
|
+
logits_warper=logits_warper,
|
|
1673
|
+
logits_processor=logits_processor,
|
|
1674
|
+
trace=trace,
|
|
1675
|
+
params=params,
|
|
1676
|
+
model_kwargs=model_kwargs,
|
|
1677
|
+
condition_scale=condition_scale,
|
|
1678
|
+
model_kwargs_uncond=model_kwargs_uncond,
|
|
1679
|
+
)
|
|
1680
|
+
elif not do_sample and num_beams > 1:
|
|
1681
|
+
# broadcast input_ids & encoder_outputs
|
|
1682
|
+
input_ids = self._expand_to_num_beams(input_ids, num_beams=num_beams)
|
|
1683
|
+
|
|
1684
|
+
if "encoder_outputs" in model_kwargs:
|
|
1685
|
+
model_kwargs["encoder_outputs"]["last_hidden_state"] = self._expand_to_num_beams(
|
|
1686
|
+
model_kwargs["encoder_outputs"]["last_hidden_state"],
|
|
1687
|
+
num_beams=num_beams,
|
|
1688
|
+
)
|
|
1689
|
+
|
|
1690
|
+
if "attention_mask" in model_kwargs:
|
|
1691
|
+
model_kwargs["attention_mask"] = self._expand_to_num_beams(
|
|
1692
|
+
model_kwargs["attention_mask"], num_beams=num_beams
|
|
1693
|
+
)
|
|
1694
|
+
|
|
1695
|
+
logits_processor = self._get_logits_processor(
|
|
1696
|
+
no_repeat_ngram_size,
|
|
1697
|
+
min_length,
|
|
1698
|
+
max_length,
|
|
1699
|
+
eos_token_id,
|
|
1700
|
+
forced_bos_token_id,
|
|
1701
|
+
forced_eos_token_id,
|
|
1702
|
+
)
|
|
1703
|
+
|
|
1704
|
+
return self._beam_search(
|
|
1705
|
+
input_ids,
|
|
1706
|
+
max_length,
|
|
1707
|
+
pad_token_id,
|
|
1708
|
+
eos_token_id,
|
|
1709
|
+
length_penalty=length_penalty,
|
|
1710
|
+
early_stopping=early_stopping,
|
|
1711
|
+
logits_processor=logits_processor,
|
|
1712
|
+
trace=trace,
|
|
1713
|
+
params=params,
|
|
1714
|
+
model_kwargs=model_kwargs,
|
|
1715
|
+
)
|
|
1716
|
+
else:
|
|
1717
|
+
raise NotImplementedError("`Beam sampling is currently not implemented.")
|
|
1718
|
+
|
|
1719
|
+
def _sample(
|
|
1720
|
+
self,
|
|
1721
|
+
input_ids: None,
|
|
1722
|
+
max_length: Optional[int] = None,
|
|
1723
|
+
pad_token_id: Optional[int] = None,
|
|
1724
|
+
eos_token_id: Optional[int] = None,
|
|
1725
|
+
prng_key: Optional[jnp.ndarray] = None,
|
|
1726
|
+
logits_processor=None,
|
|
1727
|
+
logits_warper=None,
|
|
1728
|
+
trace: bool = True,
|
|
1729
|
+
params: Optional[Dict[str, jnp.ndarray]] = None,
|
|
1730
|
+
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
|
|
1731
|
+
condition_scale: float = 1.0,
|
|
1732
|
+
model_kwargs_uncond: Optional[Dict[str, jnp.ndarray]] = None,
|
|
1733
|
+
):
|
|
1734
|
+
# init values
|
|
1735
|
+
max_length = max_length if max_length is not None else self.config.max_length
|
|
1736
|
+
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
|
|
1737
|
+
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
|
|
1738
|
+
prng_key = prng_key if prng_key is not None else jax.random.PRNGKey(0)
|
|
1739
|
+
|
|
1740
|
+
batch_size, cur_len = input_ids.shape
|
|
1741
|
+
|
|
1742
|
+
eos_token_id = jnp.array(eos_token_id)
|
|
1743
|
+
pad_token_id = jnp.array(pad_token_id)
|
|
1744
|
+
cur_len = jnp.array(cur_len)
|
|
1745
|
+
|
|
1746
|
+
# per batch-item holding current token in loop.
|
|
1747
|
+
sequences = jnp.full((batch_size, max_length), pad_token_id, dtype=jnp.int32)
|
|
1748
|
+
sequences = lax.dynamic_update_slice(sequences, input_ids, (0, 0))
|
|
1749
|
+
|
|
1750
|
+
# per batch-item state bit indicating if sentence has finished.
|
|
1751
|
+
is_sent_finished = jnp.zeros((batch_size,), dtype=jnp.bool_)
|
|
1752
|
+
|
|
1753
|
+
# For Seq2Seq generation, we only need to use the decoder instead of the whole model in generation loop
|
|
1754
|
+
# and pass it the `encoder_outputs`, which are part of the `model_kwargs`.
|
|
1755
|
+
model = self.decode if self.config.is_encoder_decoder else self
|
|
1756
|
+
|
|
1757
|
+
# initialize model specific kwargs
|
|
1758
|
+
model_kwargs = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs)
|
|
1759
|
+
if condition_scale != 1.0:
|
|
1760
|
+
model_kwargs_uncond = self.prepare_inputs_for_generation(input_ids, max_length, **model_kwargs_uncond)
|
|
1761
|
+
|
|
1762
|
+
# initialize state
|
|
1763
|
+
state = SampleState(
|
|
1764
|
+
cur_len=cur_len,
|
|
1765
|
+
sequences=sequences,
|
|
1766
|
+
running_token=input_ids,
|
|
1767
|
+
is_sent_finished=is_sent_finished,
|
|
1768
|
+
prng_key=prng_key,
|
|
1769
|
+
model_kwargs=model_kwargs,
|
|
1770
|
+
model_kwargs_uncond=model_kwargs_uncond,
|
|
1771
|
+
)
|
|
1772
|
+
|
|
1773
|
+
def sample_search_cond_fn(state):
|
|
1774
|
+
"""state termination condition fn."""
|
|
1775
|
+
has_reached_max_length = state.cur_len == max_length
|
|
1776
|
+
all_sequence_finished = jnp.all(state.is_sent_finished)
|
|
1777
|
+
finish_generation = jnp.logical_or(has_reached_max_length, all_sequence_finished)
|
|
1778
|
+
return ~finish_generation
|
|
1779
|
+
|
|
1780
|
+
def sample_search_body_fn(state):
|
|
1781
|
+
"""state update fn."""
|
|
1782
|
+
prng_key, prng_key_next = jax.random.split(state.prng_key)
|
|
1783
|
+
model_outputs = model(state.running_token, params=params, **state.model_kwargs)
|
|
1784
|
+
|
|
1785
|
+
logits = model_outputs.logits[:, -1]
|
|
1786
|
+
|
|
1787
|
+
# perform super conditioning
|
|
1788
|
+
# Source: @RiversHaveWings - https://twitter.com/RiversHaveWings/status/1478093658716966912?s=20&t=xdm-wZ61Wf7OLnE_NJHZ1w
|
|
1789
|
+
if condition_scale != 1.0:
|
|
1790
|
+
model_outputs_uncond = model(state.running_token, params=params, **state.model_kwargs_uncond)
|
|
1791
|
+
logits_uncond = model_outputs_uncond.logits[:, -1]
|
|
1792
|
+
logits = logits_uncond + condition_scale * (logits - logits_uncond)
|
|
1793
|
+
else:
|
|
1794
|
+
model_outputs_uncond = None
|
|
1795
|
+
|
|
1796
|
+
# apply min_length, ...
|
|
1797
|
+
logits = logits_processor(state.sequences, logits, state.cur_len)
|
|
1798
|
+
# apply top_k, top_k, temperature
|
|
1799
|
+
logits = logits_warper(logits, logits, state.cur_len)
|
|
1800
|
+
|
|
1801
|
+
next_token = jax.random.categorical(prng_key, logits, axis=-1)
|
|
1802
|
+
|
|
1803
|
+
next_is_sent_finished = state.is_sent_finished | (next_token == eos_token_id)
|
|
1804
|
+
next_token = next_token * ~next_is_sent_finished + pad_token_id * next_is_sent_finished
|
|
1805
|
+
next_token = next_token[:, None]
|
|
1806
|
+
|
|
1807
|
+
next_sequences = lax.dynamic_update_slice(state.sequences, next_token, (0, state.cur_len))
|
|
1808
|
+
next_model_kwargs = self.update_inputs_for_generation(model_outputs, state.model_kwargs)
|
|
1809
|
+
next_model_kwargs_uncond = (
|
|
1810
|
+
self.update_inputs_for_generation(model_outputs_uncond, state.model_kwargs_uncond)
|
|
1811
|
+
if condition_scale != 1.0
|
|
1812
|
+
else None
|
|
1813
|
+
)
|
|
1814
|
+
|
|
1815
|
+
return SampleState(
|
|
1816
|
+
cur_len=state.cur_len + 1,
|
|
1817
|
+
sequences=next_sequences,
|
|
1818
|
+
running_token=next_token,
|
|
1819
|
+
is_sent_finished=next_is_sent_finished,
|
|
1820
|
+
model_kwargs=next_model_kwargs,
|
|
1821
|
+
model_kwargs_uncond=next_model_kwargs_uncond,
|
|
1822
|
+
prng_key=prng_key_next,
|
|
1823
|
+
)
|
|
1824
|
+
|
|
1825
|
+
# The very first prompt often has sequence length > 1, so run outside of `lax.while_loop` to comply with TPU
|
|
1826
|
+
if input_ids.shape[1] > 1:
|
|
1827
|
+
state = sample_search_body_fn(state)
|
|
1828
|
+
|
|
1829
|
+
if not trace:
|
|
1830
|
+
state = self._run_loop_in_debug(sample_search_cond_fn, sample_search_body_fn, state)
|
|
1831
|
+
else:
|
|
1832
|
+
state = lax.while_loop(sample_search_cond_fn, sample_search_body_fn, state)
|
|
1833
|
+
|
|
1834
|
+
return FlaxSampleOutput(sequences=state.sequences)
|