crca 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- CRCA.py +172 -7
- MODEL_CARD.md +53 -0
- PKG-INFO +8 -2
- RELEASE_NOTES.md +17 -0
- STABILITY.md +19 -0
- architecture/hybrid/consistency_engine.py +362 -0
- architecture/hybrid/conversation_manager.py +421 -0
- architecture/hybrid/explanation_generator.py +452 -0
- architecture/hybrid/few_shot_learner.py +533 -0
- architecture/hybrid/graph_compressor.py +286 -0
- architecture/hybrid/hybrid_agent.py +4398 -0
- architecture/hybrid/language_compiler.py +623 -0
- architecture/hybrid/main,py +0 -0
- architecture/hybrid/reasoning_tracker.py +322 -0
- architecture/hybrid/self_verifier.py +524 -0
- architecture/hybrid/task_decomposer.py +567 -0
- architecture/hybrid/text_corrector.py +341 -0
- benchmark_results/crca_core_benchmarks.json +178 -0
- branches/crca_sd/crca_sd_realtime.py +6 -2
- branches/general_agent/__init__.py +102 -0
- branches/general_agent/general_agent.py +1400 -0
- branches/general_agent/personality.py +169 -0
- branches/general_agent/utils/__init__.py +19 -0
- branches/general_agent/utils/prompt_builder.py +170 -0
- {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/METADATA +8 -2
- {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/RECORD +303 -20
- crca_core/__init__.py +35 -0
- crca_core/benchmarks/__init__.py +14 -0
- crca_core/benchmarks/synthetic_scm.py +103 -0
- crca_core/core/__init__.py +23 -0
- crca_core/core/api.py +120 -0
- crca_core/core/estimate.py +208 -0
- crca_core/core/godclass.py +72 -0
- crca_core/core/intervention_design.py +174 -0
- crca_core/core/lifecycle.py +48 -0
- crca_core/discovery/__init__.py +9 -0
- crca_core/discovery/tabular.py +193 -0
- crca_core/identify/__init__.py +171 -0
- crca_core/identify/backdoor.py +39 -0
- crca_core/identify/frontdoor.py +48 -0
- crca_core/identify/graph.py +106 -0
- crca_core/identify/id_algorithm.py +43 -0
- crca_core/identify/iv.py +48 -0
- crca_core/models/__init__.py +67 -0
- crca_core/models/provenance.py +56 -0
- crca_core/models/refusal.py +39 -0
- crca_core/models/result.py +83 -0
- crca_core/models/spec.py +151 -0
- crca_core/models/validation.py +68 -0
- crca_core/scm/__init__.py +9 -0
- crca_core/scm/linear_gaussian.py +198 -0
- crca_core/timeseries/__init__.py +6 -0
- crca_core/timeseries/pcmci.py +181 -0
- crca_llm/__init__.py +12 -0
- crca_llm/client.py +85 -0
- crca_llm/coauthor.py +118 -0
- crca_llm/orchestrator.py +289 -0
- crca_llm/types.py +21 -0
- crca_reasoning/__init__.py +16 -0
- crca_reasoning/critique.py +54 -0
- crca_reasoning/godclass.py +206 -0
- crca_reasoning/memory.py +24 -0
- crca_reasoning/rationale.py +10 -0
- crca_reasoning/react_controller.py +81 -0
- crca_reasoning/tool_router.py +97 -0
- crca_reasoning/types.py +40 -0
- crca_sd/__init__.py +15 -0
- crca_sd/crca_sd_core.py +2 -0
- crca_sd/crca_sd_governance.py +2 -0
- crca_sd/crca_sd_mpc.py +2 -0
- crca_sd/crca_sd_realtime.py +2 -0
- crca_sd/crca_sd_tui.py +2 -0
- cuda-keyring_1.1-1_all.deb +0 -0
- cuda-keyring_1.1-1_all.deb.1 +0 -0
- docs/IMAGE_ANNOTATION_USAGE.md +539 -0
- docs/INSTALL_DEEPSPEED.md +125 -0
- docs/api/branches/crca-cg.md +19 -0
- docs/api/branches/crca-q.md +27 -0
- docs/api/branches/crca-sd.md +37 -0
- docs/api/branches/general-agent.md +24 -0
- docs/api/branches/overview.md +19 -0
- docs/api/crca/agent-methods.md +62 -0
- docs/api/crca/operations.md +79 -0
- docs/api/crca/overview.md +32 -0
- docs/api/image-annotation/engine.md +52 -0
- docs/api/image-annotation/overview.md +17 -0
- docs/api/schemas/annotation.md +34 -0
- docs/api/schemas/core-schemas.md +82 -0
- docs/api/schemas/overview.md +32 -0
- docs/api/schemas/policy.md +30 -0
- docs/api/utils/conversation.md +22 -0
- docs/api/utils/graph-reasoner.md +32 -0
- docs/api/utils/overview.md +21 -0
- docs/api/utils/router.md +19 -0
- docs/api/utils/utilities.md +97 -0
- docs/architecture/causal-graphs.md +41 -0
- docs/architecture/data-flow.md +29 -0
- docs/architecture/design-principles.md +33 -0
- docs/architecture/hybrid-agent/components.md +38 -0
- docs/architecture/hybrid-agent/consistency.md +26 -0
- docs/architecture/hybrid-agent/overview.md +44 -0
- docs/architecture/hybrid-agent/reasoning.md +22 -0
- docs/architecture/llm-integration.md +26 -0
- docs/architecture/modular-structure.md +37 -0
- docs/architecture/overview.md +69 -0
- docs/architecture/policy-engine-arch.md +29 -0
- docs/branches/crca-cg/corposwarm.md +39 -0
- docs/branches/crca-cg/esg-scoring.md +30 -0
- docs/branches/crca-cg/multi-agent.md +35 -0
- docs/branches/crca-cg/overview.md +40 -0
- docs/branches/crca-q/alternative-data.md +55 -0
- docs/branches/crca-q/architecture.md +71 -0
- docs/branches/crca-q/backtesting.md +45 -0
- docs/branches/crca-q/causal-engine.md +33 -0
- docs/branches/crca-q/execution.md +39 -0
- docs/branches/crca-q/market-data.md +60 -0
- docs/branches/crca-q/overview.md +58 -0
- docs/branches/crca-q/philosophy.md +60 -0
- docs/branches/crca-q/portfolio-optimization.md +66 -0
- docs/branches/crca-q/risk-management.md +102 -0
- docs/branches/crca-q/setup.md +65 -0
- docs/branches/crca-q/signal-generation.md +61 -0
- docs/branches/crca-q/signal-validation.md +43 -0
- docs/branches/crca-sd/core.md +84 -0
- docs/branches/crca-sd/governance.md +53 -0
- docs/branches/crca-sd/mpc-solver.md +65 -0
- docs/branches/crca-sd/overview.md +59 -0
- docs/branches/crca-sd/realtime.md +28 -0
- docs/branches/crca-sd/tui.md +20 -0
- docs/branches/general-agent/overview.md +37 -0
- docs/branches/general-agent/personality.md +36 -0
- docs/branches/general-agent/prompt-builder.md +30 -0
- docs/changelog/index.md +79 -0
- docs/contributing/code-style.md +69 -0
- docs/contributing/documentation.md +43 -0
- docs/contributing/overview.md +29 -0
- docs/contributing/testing.md +29 -0
- docs/core/crcagent/async-operations.md +65 -0
- docs/core/crcagent/automatic-extraction.md +107 -0
- docs/core/crcagent/batch-prediction.md +80 -0
- docs/core/crcagent/bayesian-inference.md +60 -0
- docs/core/crcagent/causal-graph.md +92 -0
- docs/core/crcagent/counterfactuals.md +96 -0
- docs/core/crcagent/deterministic-simulation.md +78 -0
- docs/core/crcagent/dual-mode-operation.md +82 -0
- docs/core/crcagent/initialization.md +88 -0
- docs/core/crcagent/optimization.md +65 -0
- docs/core/crcagent/overview.md +63 -0
- docs/core/crcagent/time-series.md +57 -0
- docs/core/schemas/annotation.md +30 -0
- docs/core/schemas/core-schemas.md +82 -0
- docs/core/schemas/overview.md +30 -0
- docs/core/schemas/policy.md +41 -0
- docs/core/templates/base-agent.md +31 -0
- docs/core/templates/feature-mixins.md +31 -0
- docs/core/templates/overview.md +29 -0
- docs/core/templates/templates-guide.md +75 -0
- docs/core/tools/mcp-client.md +34 -0
- docs/core/tools/overview.md +24 -0
- docs/core/utils/conversation.md +27 -0
- docs/core/utils/graph-reasoner.md +29 -0
- docs/core/utils/overview.md +27 -0
- docs/core/utils/router.md +27 -0
- docs/core/utils/utilities.md +97 -0
- docs/css/custom.css +84 -0
- docs/examples/basic-usage.md +57 -0
- docs/examples/general-agent/general-agent-examples.md +50 -0
- docs/examples/hybrid-agent/hybrid-agent-examples.md +56 -0
- docs/examples/image-annotation/image-annotation-examples.md +54 -0
- docs/examples/integration/integration-examples.md +58 -0
- docs/examples/overview.md +37 -0
- docs/examples/trading/trading-examples.md +46 -0
- docs/features/causal-reasoning/advanced-topics.md +101 -0
- docs/features/causal-reasoning/counterfactuals.md +43 -0
- docs/features/causal-reasoning/do-calculus.md +50 -0
- docs/features/causal-reasoning/overview.md +47 -0
- docs/features/causal-reasoning/structural-models.md +52 -0
- docs/features/hybrid-agent/advanced-components.md +55 -0
- docs/features/hybrid-agent/core-components.md +64 -0
- docs/features/hybrid-agent/overview.md +34 -0
- docs/features/image-annotation/engine.md +82 -0
- docs/features/image-annotation/features.md +113 -0
- docs/features/image-annotation/integration.md +75 -0
- docs/features/image-annotation/overview.md +53 -0
- docs/features/image-annotation/quickstart.md +73 -0
- docs/features/policy-engine/doctrine-ledger.md +105 -0
- docs/features/policy-engine/monitoring.md +44 -0
- docs/features/policy-engine/mpc-control.md +89 -0
- docs/features/policy-engine/overview.md +46 -0
- docs/getting-started/configuration.md +225 -0
- docs/getting-started/first-agent.md +164 -0
- docs/getting-started/installation.md +144 -0
- docs/getting-started/quickstart.md +137 -0
- docs/index.md +118 -0
- docs/js/mathjax.js +13 -0
- docs/lrm/discovery_proof_notes.md +25 -0
- docs/lrm/finetune_full.md +83 -0
- docs/lrm/math_appendix.md +120 -0
- docs/lrm/overview.md +32 -0
- docs/mkdocs.yml +238 -0
- docs/stylesheets/extra.css +21 -0
- docs_generated/crca_core/CounterfactualResult.md +12 -0
- docs_generated/crca_core/DiscoveryHypothesisResult.md +13 -0
- docs_generated/crca_core/DraftSpec.md +13 -0
- docs_generated/crca_core/EstimateResult.md +13 -0
- docs_generated/crca_core/IdentificationResult.md +17 -0
- docs_generated/crca_core/InterventionDesignResult.md +12 -0
- docs_generated/crca_core/LockedSpec.md +15 -0
- docs_generated/crca_core/RefusalResult.md +12 -0
- docs_generated/crca_core/ValidationReport.md +9 -0
- docs_generated/crca_core/index.md +13 -0
- examples/general_agent_example.py +277 -0
- examples/general_agent_quickstart.py +202 -0
- examples/general_agent_simple.py +92 -0
- examples/hybrid_agent_auto_extraction.py +84 -0
- examples/hybrid_agent_dictionary_demo.py +104 -0
- examples/hybrid_agent_enhanced.py +179 -0
- examples/hybrid_agent_general_knowledge.py +107 -0
- examples/image_annotation_quickstart.py +328 -0
- examples/test_hybrid_fixes.py +77 -0
- image_annotation/__init__.py +27 -0
- image_annotation/annotation_engine.py +2593 -0
- install_cuda_wsl2.sh +59 -0
- install_deepspeed.sh +56 -0
- install_deepspeed_simple.sh +87 -0
- mkdocs.yml +252 -0
- ollama/Modelfile +8 -0
- prompts/__init__.py +2 -1
- prompts/default_crca.py +9 -1
- prompts/general_agent.py +227 -0
- prompts/image_annotation.py +56 -0
- pyproject.toml +17 -2
- requirements-docs.txt +10 -0
- requirements.txt +21 -2
- schemas/__init__.py +26 -1
- schemas/annotation.py +222 -0
- schemas/conversation.py +193 -0
- schemas/hybrid.py +211 -0
- schemas/reasoning.py +276 -0
- schemas_export/crca_core/CounterfactualResult.schema.json +108 -0
- schemas_export/crca_core/DiscoveryHypothesisResult.schema.json +113 -0
- schemas_export/crca_core/DraftSpec.schema.json +635 -0
- schemas_export/crca_core/EstimateResult.schema.json +113 -0
- schemas_export/crca_core/IdentificationResult.schema.json +145 -0
- schemas_export/crca_core/InterventionDesignResult.schema.json +111 -0
- schemas_export/crca_core/LockedSpec.schema.json +646 -0
- schemas_export/crca_core/RefusalResult.schema.json +90 -0
- schemas_export/crca_core/ValidationReport.schema.json +62 -0
- scripts/build_lrm_dataset.py +80 -0
- scripts/export_crca_core_schemas.py +54 -0
- scripts/export_hf_lrm.py +37 -0
- scripts/export_ollama_gguf.py +45 -0
- scripts/generate_changelog.py +157 -0
- scripts/generate_crca_core_docs_from_schemas.py +86 -0
- scripts/run_crca_core_benchmarks.py +163 -0
- scripts/run_full_finetune.py +198 -0
- scripts/run_lrm_eval.py +31 -0
- templates/graph_management.py +29 -0
- tests/conftest.py +9 -0
- tests/test_core.py +2 -3
- tests/test_crca_core_discovery_tabular.py +15 -0
- tests/test_crca_core_estimate_dowhy.py +36 -0
- tests/test_crca_core_identify.py +18 -0
- tests/test_crca_core_intervention_design.py +36 -0
- tests/test_crca_core_linear_gaussian_scm.py +69 -0
- tests/test_crca_core_spec.py +25 -0
- tests/test_crca_core_timeseries_pcmci.py +15 -0
- tests/test_crca_llm_coauthor.py +12 -0
- tests/test_crca_llm_orchestrator.py +80 -0
- tests/test_hybrid_agent_llm_enhanced.py +556 -0
- tests/test_image_annotation_demo.py +376 -0
- tests/test_image_annotation_operational.py +408 -0
- tests/test_image_annotation_unit.py +551 -0
- tests/test_training_moe.py +13 -0
- training/__init__.py +42 -0
- training/datasets.py +140 -0
- training/deepspeed_zero2_0_5b.json +22 -0
- training/deepspeed_zero2_1_5b.json +22 -0
- training/deepspeed_zero3_0_5b.json +28 -0
- training/deepspeed_zero3_14b.json +28 -0
- training/deepspeed_zero3_h100_3gpu.json +20 -0
- training/deepspeed_zero3_offload.json +28 -0
- training/eval.py +92 -0
- training/finetune.py +516 -0
- training/public_datasets.py +89 -0
- training_data/react_train.jsonl +7473 -0
- utils/agent_discovery.py +311 -0
- utils/batch_processor.py +317 -0
- utils/conversation.py +78 -0
- utils/edit_distance.py +118 -0
- utils/formatter.py +33 -0
- utils/graph_reasoner.py +530 -0
- utils/rate_limiter.py +283 -0
- utils/router.py +2 -2
- utils/tool_discovery.py +307 -0
- webui/__init__.py +10 -0
- webui/app.py +229 -0
- webui/config.py +104 -0
- webui/static/css/style.css +332 -0
- webui/static/js/main.js +284 -0
- webui/templates/index.html +42 -0
- tests/test_crca_excel.py +0 -166
- tests/test_data_broker.py +0 -424
- tests/test_palantir.py +0 -349
- {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/WHEEL +0 -0
- {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
# Causal Graph Architecture
|
|
2
|
+
|
|
3
|
+
Architecture for causal graph representation and manipulation.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Causal graphs are represented as directed acyclic graphs (DAGs) with nodes for variables and edges for causal relationships.
|
|
8
|
+
|
|
9
|
+
## Mathematical Foundation
|
|
10
|
+
|
|
11
|
+
A causal graph $G = (V, E)$ where:
|
|
12
|
+
- $V$: Set of variables
|
|
13
|
+
- $E$: Set of causal edges $(X \to Y)$
|
|
14
|
+
|
|
15
|
+
The graph must satisfy acyclicity:
|
|
16
|
+
|
|
17
|
+
$$\nexists \text{ path } X \to \cdots \to X$$
|
|
18
|
+
|
|
19
|
+
## Graph Operations
|
|
20
|
+
|
|
21
|
+
### Path Finding
|
|
22
|
+
|
|
23
|
+
Find all paths from $X$ to $Y$:
|
|
24
|
+
|
|
25
|
+
$$Paths(X, Y) = \{p : X \to^* Y\}$$
|
|
26
|
+
|
|
27
|
+
### Confounder Identification
|
|
28
|
+
|
|
29
|
+
Identify confounders $Z$ for relationship $X \to Y$:
|
|
30
|
+
|
|
31
|
+
$$Z \in Confounders(X, Y) \iff Z \to X \text{ and } Z \to Y$$
|
|
32
|
+
|
|
33
|
+
### Adjustment Sets
|
|
34
|
+
|
|
35
|
+
Find valid adjustment set for $X \to Y$:
|
|
36
|
+
|
|
37
|
+
$$Z \text{ valid } \iff Z \text{ blocks all backdoor paths}$$
|
|
38
|
+
|
|
39
|
+
## Next Steps
|
|
40
|
+
|
|
41
|
+
- [LLM Integration](llm-integration.md) - LLM integration architecture
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# Data Flow
|
|
2
|
+
|
|
3
|
+
Data flow through the CR-CA system.
|
|
4
|
+
|
|
5
|
+
## Causal Analysis Flow
|
|
6
|
+
|
|
7
|
+
```mermaid
|
|
8
|
+
graph LR
|
|
9
|
+
Input[Natural Language Input] --> Extract[Variable Extraction]
|
|
10
|
+
Extract --> Graph[Causal Graph Construction]
|
|
11
|
+
Graph --> SCM[SCM Fitting]
|
|
12
|
+
SCM --> Inference[Causal Inference]
|
|
13
|
+
Inference --> Counterfactual[Counterfactual Generation]
|
|
14
|
+
Counterfactual --> Output[Results]
|
|
15
|
+
```
|
|
16
|
+
|
|
17
|
+
## Mathematical Flow
|
|
18
|
+
|
|
19
|
+
1. **Input**: Natural language task $T$
|
|
20
|
+
2. **Extraction**: Variables $V = \{V_1, \ldots, V_n\}$
|
|
21
|
+
3. **Graph**: Causal DAG $G = (V, E)$
|
|
22
|
+
4. **SCM**: Structural equations $F = \{f_1, \ldots, f_n\}$
|
|
23
|
+
5. **Inference**: Causal effects $E[Y | do(X=x)]$
|
|
24
|
+
6. **Counterfactuals**: $P(Y_{x'} | X=x, Y=y)$
|
|
25
|
+
|
|
26
|
+
## Next Steps
|
|
27
|
+
|
|
28
|
+
- [Modular Structure](modular-structure.md) - Modular architecture
|
|
29
|
+
- [Hybrid Agent](hybrid-agent/overview.md) - Hybrid agent architecture
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
# Design Principles
|
|
2
|
+
|
|
3
|
+
CR-CA is designed following key principles for maintainability and extensibility.
|
|
4
|
+
|
|
5
|
+
## Principles
|
|
6
|
+
|
|
7
|
+
### 1. Modularity
|
|
8
|
+
|
|
9
|
+
Each component is self-contained with clear interfaces:
|
|
10
|
+
|
|
11
|
+
$$M_i: I_i \to O_i$$
|
|
12
|
+
|
|
13
|
+
Where $M_i$ is module $i$ with inputs $I_i$ and outputs $O_i$.
|
|
14
|
+
|
|
15
|
+
### 2. Separation of Concerns
|
|
16
|
+
|
|
17
|
+
- **Causal Reasoning**: Core SCM computation
|
|
18
|
+
- **LLM Integration**: Natural language processing
|
|
19
|
+
- **Application Logic**: Domain-specific implementations
|
|
20
|
+
|
|
21
|
+
### 3. Extensibility
|
|
22
|
+
|
|
23
|
+
New agents can be created by extending base classes:
|
|
24
|
+
|
|
25
|
+
$$Agent_{new} = BaseAgent \oplus Mixins \oplus CustomLogic$$
|
|
26
|
+
|
|
27
|
+
### 4. Mathematical Rigor
|
|
28
|
+
|
|
29
|
+
All causal operations are mathematically grounded in Pearl's framework.
|
|
30
|
+
|
|
31
|
+
## Next Steps
|
|
32
|
+
|
|
33
|
+
- [Data Flow](data-flow.md) - Data flow diagrams
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# Hybrid Agent Components
|
|
2
|
+
|
|
3
|
+
Breakdown of hybrid agent components.
|
|
4
|
+
|
|
5
|
+
## Core Components
|
|
6
|
+
|
|
7
|
+
### Consistency Engine
|
|
8
|
+
|
|
9
|
+
Ensures logical consistency across reasoning steps.
|
|
10
|
+
|
|
11
|
+
### Conversation Manager
|
|
12
|
+
|
|
13
|
+
Manages multi-turn conversations and context.
|
|
14
|
+
|
|
15
|
+
### Explanation Generator
|
|
16
|
+
|
|
17
|
+
Generates explanations for reasoning steps.
|
|
18
|
+
|
|
19
|
+
### Task Decomposer
|
|
20
|
+
|
|
21
|
+
Decomposes complex tasks into subtasks.
|
|
22
|
+
|
|
23
|
+
### Self Verifier
|
|
24
|
+
|
|
25
|
+
Verifies reasoning steps for correctness.
|
|
26
|
+
|
|
27
|
+
## Mathematical Foundation
|
|
28
|
+
|
|
29
|
+
Each component contributes to the overall reasoning:
|
|
30
|
+
|
|
31
|
+
$$P(Correct | Components) = \prod_{i=1}^n P(Correct | C_i)$$
|
|
32
|
+
|
|
33
|
+
Where $C_i$ are components.
|
|
34
|
+
|
|
35
|
+
## Next Steps
|
|
36
|
+
|
|
37
|
+
- [Consistency](consistency.md) - Consistency mechanisms
|
|
38
|
+
- [Reasoning](reasoning.md) - Reasoning architecture
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
# Consistency Mechanisms
|
|
2
|
+
|
|
3
|
+
How the hybrid agent ensures consistency across reasoning steps.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Consistency mechanisms verify that reasoning steps are logically consistent and don't contradict previous conclusions.
|
|
8
|
+
|
|
9
|
+
## Mathematical Foundation
|
|
10
|
+
|
|
11
|
+
Consistency is checked using:
|
|
12
|
+
|
|
13
|
+
$$\text{Consistent}(S_1, S_2) = \begin{cases}
|
|
14
|
+
1 & \text{if } S_1 \not\models \neg S_2 \\
|
|
15
|
+
0 & \text{otherwise}
|
|
16
|
+
\end{cases}$$
|
|
17
|
+
|
|
18
|
+
Where $S_1, S_2$ are reasoning steps.
|
|
19
|
+
|
|
20
|
+
## Usage
|
|
21
|
+
|
|
22
|
+
The consistency engine automatically checks consistency during reasoning.
|
|
23
|
+
|
|
24
|
+
## Next Steps
|
|
25
|
+
|
|
26
|
+
- [Reasoning](reasoning.md) - Reasoning architecture
|
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
# Hybrid Agent Architecture
|
|
2
|
+
|
|
3
|
+
The hybrid agent architecture combines multiple reasoning components.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Hybrid agent integrates consistency engine, conversation manager, explanation generator, and other components.
|
|
8
|
+
|
|
9
|
+
## Architecture
|
|
10
|
+
|
|
11
|
+
```mermaid
|
|
12
|
+
graph TB
|
|
13
|
+
HA[Hybrid Agent]
|
|
14
|
+
CE[Consistency Engine]
|
|
15
|
+
CM[Conversation Manager]
|
|
16
|
+
EG[Explanation Generator]
|
|
17
|
+
TD[Task Decomposer]
|
|
18
|
+
SV[Self Verifier]
|
|
19
|
+
|
|
20
|
+
HA --> CE
|
|
21
|
+
HA --> CM
|
|
22
|
+
HA --> EG
|
|
23
|
+
HA --> TD
|
|
24
|
+
HA --> SV
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
## Mathematical Foundation
|
|
28
|
+
|
|
29
|
+
Hybrid agent combines multiple reasoning modes:
|
|
30
|
+
|
|
31
|
+
$$R_{hybrid} = \alpha R_{LLM} + \beta R_{deterministic} + \gamma R_{symbolic}$$
|
|
32
|
+
|
|
33
|
+
Where $\alpha + \beta + \gamma = 1$ and each $R_i$ is a reasoning component.
|
|
34
|
+
|
|
35
|
+
## Components
|
|
36
|
+
|
|
37
|
+
- **[Consistency Engine](../features/hybrid-agent/consistency-engine.md)**: Ensures consistency
|
|
38
|
+
- **[Conversation Manager](../features/hybrid-agent/conversation-manager.md)**: Manages dialogue
|
|
39
|
+
- **[Task Decomposer](../features/hybrid-agent/task-decomposer.md)**: Decomposes tasks
|
|
40
|
+
|
|
41
|
+
## Next Steps
|
|
42
|
+
|
|
43
|
+
- [Components](components.md) - Component breakdown
|
|
44
|
+
- [Consistency](consistency.md) - Consistency mechanisms
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
# Reasoning Architecture
|
|
2
|
+
|
|
3
|
+
The hybrid agent's reasoning architecture.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Reasoning architecture combines multiple reasoning modes for robust inference.
|
|
8
|
+
|
|
9
|
+
## Mathematical Foundation
|
|
10
|
+
|
|
11
|
+
Reasoning combines:
|
|
12
|
+
|
|
13
|
+
$$R_{final} = \arg\max_{r} \sum_{i} w_i P(r | M_i)$$
|
|
14
|
+
|
|
15
|
+
Where:
|
|
16
|
+
- $M_i$: Different reasoning modes
|
|
17
|
+
- $w_i$: Weights for each mode
|
|
18
|
+
- $P(r | M_i)$: Probability of result $r$ under mode $M_i$
|
|
19
|
+
|
|
20
|
+
## Next Steps
|
|
21
|
+
|
|
22
|
+
- [Causal Graphs](../causal-graphs.md) - Causal graph architecture
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
# LLM Integration Architecture
|
|
2
|
+
|
|
3
|
+
Architecture for integrating large language models with causal reasoning.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
LLM integration enables natural language understanding and causal reasoning through language models.
|
|
8
|
+
|
|
9
|
+
## Mathematical Foundation
|
|
10
|
+
|
|
11
|
+
LLM-based causal inference approximates:
|
|
12
|
+
|
|
13
|
+
$$P(Y | do(X=x)) \approx LLM(T, X, Y, Context)$$
|
|
14
|
+
|
|
15
|
+
Where $T$ is the task description and $Context$ includes relevant information.
|
|
16
|
+
|
|
17
|
+
## Integration Points
|
|
18
|
+
|
|
19
|
+
1. **Variable Extraction**: Extract variables from natural language
|
|
20
|
+
2. **Relationship Identification**: Identify causal relationships
|
|
21
|
+
3. **Causal Inference**: Approximate causal effects
|
|
22
|
+
4. **Explanation Generation**: Generate explanations
|
|
23
|
+
|
|
24
|
+
## Next Steps
|
|
25
|
+
|
|
26
|
+
- [Policy Engine Architecture](policy-engine-arch.md) - Policy engine architecture
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
# Modular Structure
|
|
2
|
+
|
|
3
|
+
CR-CA's modular architecture enables flexible composition and extension.
|
|
4
|
+
|
|
5
|
+
## Module Organization
|
|
6
|
+
|
|
7
|
+
```
|
|
8
|
+
CR-CA/
|
|
9
|
+
├── CRCA.py # Core agent
|
|
10
|
+
├── utils/ # Utilities
|
|
11
|
+
├── templates/ # Agent templates
|
|
12
|
+
├── schemas/ # Data schemas
|
|
13
|
+
├── branches/ # Specialized branches
|
|
14
|
+
├── features/ # Feature modules
|
|
15
|
+
└── architecture/ # Architecture components
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
## Module Dependencies
|
|
19
|
+
|
|
20
|
+
Modules follow a dependency hierarchy:
|
|
21
|
+
|
|
22
|
+
$$Core \to Utils \to Templates \to Branches$$
|
|
23
|
+
|
|
24
|
+
Where each layer depends only on lower layers.
|
|
25
|
+
|
|
26
|
+
## Mathematical Foundation
|
|
27
|
+
|
|
28
|
+
Modules communicate through well-defined interfaces:
|
|
29
|
+
|
|
30
|
+
$$f: M_1 \times M_2 \times \cdots \times M_n \to O$$
|
|
31
|
+
|
|
32
|
+
Where $M_i$ are input modules and $O$ is the output.
|
|
33
|
+
|
|
34
|
+
## Next Steps
|
|
35
|
+
|
|
36
|
+
- [Hybrid Agent](hybrid-agent/overview.md) - Hybrid agent architecture
|
|
37
|
+
- [Causal Graphs](causal-graphs.md) - Causal graph architecture
|
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
# Architecture Overview
|
|
2
|
+
|
|
3
|
+
CR-CA follows a modular architecture with clear separation of concerns.
|
|
4
|
+
|
|
5
|
+
## System Architecture
|
|
6
|
+
|
|
7
|
+
```mermaid
|
|
8
|
+
graph TB
|
|
9
|
+
subgraph "Application Layer"
|
|
10
|
+
SD[CRCA-SD]
|
|
11
|
+
CG[CRCA-CG]
|
|
12
|
+
Q[CRCA-Q]
|
|
13
|
+
end
|
|
14
|
+
|
|
15
|
+
subgraph "Core Layer"
|
|
16
|
+
CA[CRCAAgent]
|
|
17
|
+
CG2[Causal Graph]
|
|
18
|
+
SCM[SCM Engine]
|
|
19
|
+
end
|
|
20
|
+
|
|
21
|
+
subgraph "Utils Layer"
|
|
22
|
+
U[Utils]
|
|
23
|
+
T[Tools]
|
|
24
|
+
TM[Templates]
|
|
25
|
+
end
|
|
26
|
+
|
|
27
|
+
SD --> CA
|
|
28
|
+
CG --> CA
|
|
29
|
+
Q --> CA
|
|
30
|
+
CA --> CG2
|
|
31
|
+
CA --> SCM
|
|
32
|
+
CA --> U
|
|
33
|
+
CA --> T
|
|
34
|
+
```
|
|
35
|
+
|
|
36
|
+
## Mathematical Foundation
|
|
37
|
+
|
|
38
|
+
The architecture implements a layered causal reasoning system:
|
|
39
|
+
|
|
40
|
+
**Layer 1 - Application**: Domain-specific agents
|
|
41
|
+
**Layer 2 - Core**: Causal reasoning engine with SCMs
|
|
42
|
+
**Layer 3 - Utils**: Supporting utilities and tools
|
|
43
|
+
|
|
44
|
+
The causal reasoning follows:
|
|
45
|
+
|
|
46
|
+
$$Y = f(Pa(Y), U_Y)$$
|
|
47
|
+
|
|
48
|
+
Where structural equations are defined at the core layer.
|
|
49
|
+
|
|
50
|
+
## Key Components
|
|
51
|
+
|
|
52
|
+
- **CRCAAgent**: Core causal reasoning agent
|
|
53
|
+
- **Causal Graph**: DAG representation of causal relationships
|
|
54
|
+
- **SCM Engine**: Structural causal model computation
|
|
55
|
+
- **Utils**: Supporting utilities
|
|
56
|
+
- **Templates**: Agent creation framework
|
|
57
|
+
|
|
58
|
+
## Documentation
|
|
59
|
+
|
|
60
|
+
- **[Design Principles](design-principles.md)**: Design principles
|
|
61
|
+
- **[Data Flow](data-flow.md)**: Data flow diagrams
|
|
62
|
+
- **[Modular Structure](modular-structure.md)**: Modular architecture
|
|
63
|
+
- **[Hybrid Agent](hybrid-agent/overview.md)**: Hybrid agent architecture
|
|
64
|
+
- **[Causal Graphs](causal-graphs.md)**: Causal graph architecture
|
|
65
|
+
|
|
66
|
+
## Next Steps
|
|
67
|
+
|
|
68
|
+
- [Design Principles](design-principles.md) - Design principles
|
|
69
|
+
- [Data Flow](data-flow.md) - Data flow
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# Policy Engine Architecture
|
|
2
|
+
|
|
3
|
+
Architecture for the policy engine system.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Policy engine implements Model Predictive Control (MPC) for autonomous system control.
|
|
8
|
+
|
|
9
|
+
## Mathematical Foundation
|
|
10
|
+
|
|
11
|
+
Policy engine solves:
|
|
12
|
+
|
|
13
|
+
$$\min_{\mathbf{u}_{t:t+H-1}} \sum_{k=0}^{H-1} \ell(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) + V(\mathbf{x}_{t+H})$$
|
|
14
|
+
|
|
15
|
+
Subject to:
|
|
16
|
+
|
|
17
|
+
$$\mathbf{x}_{t+k+1} = f(\mathbf{x}_{t+k}, \mathbf{u}_{t+k})$$
|
|
18
|
+
$$\mathbf{g}(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) \leq 0$$
|
|
19
|
+
|
|
20
|
+
## Components
|
|
21
|
+
|
|
22
|
+
- **Doctrine**: Policy objectives and constraints
|
|
23
|
+
- **Ledger**: State tracking and event storage
|
|
24
|
+
- **Rollback**: Rollback mechanisms
|
|
25
|
+
- **MPC**: Model Predictive Control solver
|
|
26
|
+
|
|
27
|
+
## Next Steps
|
|
28
|
+
|
|
29
|
+
- [API Reference](../api/crca/overview.md) - API documentation
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
# CorporateSwarm
|
|
2
|
+
|
|
3
|
+
CorporateSwarm is a multi-agent system for corporate governance decision-making.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
CorporateSwarm coordinates multiple specialized agents to make complex corporate governance decisions.
|
|
8
|
+
|
|
9
|
+
## Architecture
|
|
10
|
+
|
|
11
|
+
```mermaid
|
|
12
|
+
graph TB
|
|
13
|
+
CS[CorporateSwarm]
|
|
14
|
+
A1[Agent 1]
|
|
15
|
+
A2[Agent 2]
|
|
16
|
+
A3[Agent 3]
|
|
17
|
+
CO[Coordinator]
|
|
18
|
+
|
|
19
|
+
CS --> CO
|
|
20
|
+
CO --> A1
|
|
21
|
+
CO --> A2
|
|
22
|
+
CO --> A3
|
|
23
|
+
A1 --> CS
|
|
24
|
+
A2 --> CS
|
|
25
|
+
A3 --> CS
|
|
26
|
+
```
|
|
27
|
+
|
|
28
|
+
## Usage
|
|
29
|
+
|
|
30
|
+
```python
|
|
31
|
+
from branches.crca_cg.corposwarm import CorporateSwarm
|
|
32
|
+
|
|
33
|
+
swarm = CorporateSwarm()
|
|
34
|
+
decision = swarm.make_decision(problem)
|
|
35
|
+
```
|
|
36
|
+
|
|
37
|
+
## Next Steps
|
|
38
|
+
|
|
39
|
+
- [ESG Scoring](esg-scoring.md) - ESG scoring system
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
# ESG Scoring
|
|
2
|
+
|
|
3
|
+
ESG (Environmental, Social, and Governance) scoring system for corporate evaluation.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
ESG scoring evaluates companies based on environmental, social, and governance factors.
|
|
8
|
+
|
|
9
|
+
## Mathematical Foundation
|
|
10
|
+
|
|
11
|
+
ESG score is computed as:
|
|
12
|
+
|
|
13
|
+
$$\text{ESG} = w_E \cdot S_E + w_S \cdot S_S + w_G \cdot S_G$$
|
|
14
|
+
|
|
15
|
+
Where:
|
|
16
|
+
- $S_E, S_S, S_G$: Environmental, Social, Governance sub-scores
|
|
17
|
+
- $w_E, w_S, w_G$: Weights (typically $w_E + w_S + w_G = 1$)
|
|
18
|
+
|
|
19
|
+
## Usage
|
|
20
|
+
|
|
21
|
+
```python
|
|
22
|
+
from branches.crca_cg.corposwarm import ESGScorer
|
|
23
|
+
|
|
24
|
+
scorer = ESGScorer()
|
|
25
|
+
score = scorer.compute_esg_score(company_data)
|
|
26
|
+
```
|
|
27
|
+
|
|
28
|
+
## Next Steps
|
|
29
|
+
|
|
30
|
+
- [Multi-Agent](multi-agent.md) - Multi-agent orchestration
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# Multi-Agent Orchestration
|
|
2
|
+
|
|
3
|
+
Multi-agent orchestration coordinates multiple agents for complex corporate governance decisions.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Multi-agent systems enable distributed decision-making with specialized agents handling different aspects of governance.
|
|
8
|
+
|
|
9
|
+
## Mathematical Foundation
|
|
10
|
+
|
|
11
|
+
Multi-agent coordination can be modeled as:
|
|
12
|
+
|
|
13
|
+
$$\max_{\{\mathbf{u}_i\}} \sum_{i=1}^n w_i J_i(\mathbf{u}_i, \mathbf{u}_{-i})$$
|
|
14
|
+
|
|
15
|
+
Subject to:
|
|
16
|
+
|
|
17
|
+
$$g(\mathbf{u}_1, \ldots, \mathbf{u}_n) \leq 0$$
|
|
18
|
+
|
|
19
|
+
Where:
|
|
20
|
+
- $\mathbf{u}_i$: Actions of agent $i$
|
|
21
|
+
- $J_i$: Objective of agent $i$
|
|
22
|
+
- $w_i$: Weight for agent $i$
|
|
23
|
+
|
|
24
|
+
## Usage
|
|
25
|
+
|
|
26
|
+
```python
|
|
27
|
+
from branches.crca_cg.corposwarm import MultiAgentOrchestrator
|
|
28
|
+
|
|
29
|
+
orchestrator = MultiAgentOrchestrator()
|
|
30
|
+
decision = orchestrator.coordinate(agents, problem)
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
## Next Steps
|
|
34
|
+
|
|
35
|
+
- [General Agent](../general-agent/overview.md) - General purpose agent
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# CRCA-CG Overview
|
|
2
|
+
|
|
3
|
+
CRCA-CG (CRCA for Corporate Governance) provides corporate governance capabilities with CorporateSwarm, ESG scoring, and multi-agent orchestration.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
CRCA-CG extends CR-CA for corporate governance applications, enabling multi-agent systems for organizational decision-making.
|
|
8
|
+
|
|
9
|
+
## Key Features
|
|
10
|
+
|
|
11
|
+
- **CorporateSwarm**: Multi-agent system for corporate governance
|
|
12
|
+
- **ESG Scoring**: Environmental, Social, and Governance scoring
|
|
13
|
+
- **Multi-Agent Orchestration**: Coordinate multiple agents for complex decisions
|
|
14
|
+
|
|
15
|
+
## Mathematical Foundation
|
|
16
|
+
|
|
17
|
+
Corporate governance decisions can be modeled as:
|
|
18
|
+
|
|
19
|
+
$$\max_{\mathbf{d}} E[V(\mathbf{d}, \mathbf{s})]$$
|
|
20
|
+
|
|
21
|
+
Subject to:
|
|
22
|
+
|
|
23
|
+
$$g_i(\mathbf{d}, \mathbf{s}) \leq 0, \quad i = 1, \ldots, m$$
|
|
24
|
+
|
|
25
|
+
Where:
|
|
26
|
+
- $\mathbf{d}$: Decision vector
|
|
27
|
+
- $\mathbf{s}$: System state
|
|
28
|
+
- $V$: Value function
|
|
29
|
+
- $g_i$: Governance constraints
|
|
30
|
+
|
|
31
|
+
## Documentation
|
|
32
|
+
|
|
33
|
+
- **[CorporateSwarm](corposwarm.md)**: CorporateSwarm implementation
|
|
34
|
+
- **[ESG Scoring](esg-scoring.md)**: ESG scoring system
|
|
35
|
+
- **[Multi-Agent](multi-agent.md)**: Multi-agent orchestration
|
|
36
|
+
|
|
37
|
+
## Next Steps
|
|
38
|
+
|
|
39
|
+
- [CorporateSwarm](corposwarm.md) - CorporateSwarm system
|
|
40
|
+
- [ESG Scoring](esg-scoring.md) - ESG scoring
|
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
# Alternative Data Sources
|
|
2
|
+
|
|
3
|
+
CRCA-Q integrates alternative data sources for enhanced signal generation.
|
|
4
|
+
|
|
5
|
+
## Overview
|
|
6
|
+
|
|
7
|
+
Alternative data includes on-chain metrics, social sentiment, news, GitHub activity, and exchange metrics.
|
|
8
|
+
|
|
9
|
+
## Data Sources
|
|
10
|
+
|
|
11
|
+
### On-Chain Metrics
|
|
12
|
+
|
|
13
|
+
Ethereum/blockchain metrics:
|
|
14
|
+
- Active addresses growth
|
|
15
|
+
- Transaction volume trends
|
|
16
|
+
- Network growth rate
|
|
17
|
+
|
|
18
|
+
### Social Sentiment
|
|
19
|
+
|
|
20
|
+
- Twitter sentiment (via Twitter API v2)
|
|
21
|
+
- Reddit sentiment (via Reddit API)
|
|
22
|
+
- Social volume metrics
|
|
23
|
+
|
|
24
|
+
### News Sentiment
|
|
25
|
+
|
|
26
|
+
- NewsAPI sentiment scores
|
|
27
|
+
- Headline sentiment analysis
|
|
28
|
+
|
|
29
|
+
## Mathematical Foundation
|
|
30
|
+
|
|
31
|
+
Alternative data signals are weighted by confidence:
|
|
32
|
+
|
|
33
|
+
$$S_{alt} = \sum_{i} w_i S_i$$
|
|
34
|
+
|
|
35
|
+
Where:
|
|
36
|
+
- $w_i$: Confidence weight for source $i$
|
|
37
|
+
- $S_i$: Signal from source $i$
|
|
38
|
+
|
|
39
|
+
Confidence weights consider:
|
|
40
|
+
- Freshness (40%)
|
|
41
|
+
- Reliability (40%)
|
|
42
|
+
- Stability (20%)
|
|
43
|
+
|
|
44
|
+
## Usage
|
|
45
|
+
|
|
46
|
+
```python
|
|
47
|
+
from branches.CRCA-Q import AltDataClient
|
|
48
|
+
|
|
49
|
+
client = AltDataClient()
|
|
50
|
+
alt_data = client.fetch_alternative_data("BTC")
|
|
51
|
+
```
|
|
52
|
+
|
|
53
|
+
## Next Steps
|
|
54
|
+
|
|
55
|
+
- [Signal Generation](signal-generation.md) - Signal generation
|
|
@@ -0,0 +1,71 @@
|
|
|
1
|
+
# CRCA-Q Architecture
|
|
2
|
+
|
|
3
|
+
CRCA-Q is organized into five major subsystems.
|
|
4
|
+
|
|
5
|
+
## System Architecture
|
|
6
|
+
|
|
7
|
+
```mermaid
|
|
8
|
+
graph TB
|
|
9
|
+
subgraph "Data Layer"
|
|
10
|
+
MDC[MarketDataClient]
|
|
11
|
+
ADC[AltDataClient]
|
|
12
|
+
end
|
|
13
|
+
|
|
14
|
+
subgraph "Signal Generation"
|
|
15
|
+
TSS[TimeSeriesSignals]
|
|
16
|
+
VS[VolatilitySignals]
|
|
17
|
+
LS[LiquiditySignals]
|
|
18
|
+
end
|
|
19
|
+
|
|
20
|
+
subgraph "Causal Reasoning"
|
|
21
|
+
CE[CausalEngine]
|
|
22
|
+
CRCA[CRCAAgent]
|
|
23
|
+
SV[SignalValidator]
|
|
24
|
+
end
|
|
25
|
+
|
|
26
|
+
subgraph "Portfolio Optimization"
|
|
27
|
+
PO[PortfolioOptimizer]
|
|
28
|
+
CE2[CovarianceEstimator]
|
|
29
|
+
end
|
|
30
|
+
|
|
31
|
+
subgraph "Risk Management"
|
|
32
|
+
RM[RiskMonitor]
|
|
33
|
+
CB[CircuitBreaker]
|
|
34
|
+
end
|
|
35
|
+
|
|
36
|
+
MDC --> TSS
|
|
37
|
+
ADC --> TSS
|
|
38
|
+
TSS --> SV
|
|
39
|
+
VS --> SV
|
|
40
|
+
LS --> SV
|
|
41
|
+
SV --> CE
|
|
42
|
+
CE --> CRCA
|
|
43
|
+
CE --> PO
|
|
44
|
+
PO --> RM
|
|
45
|
+
RM --> CB
|
|
46
|
+
```
|
|
47
|
+
|
|
48
|
+
## Data Flow
|
|
49
|
+
|
|
50
|
+
1. **Data Acquisition**: MarketDataClient and AltDataClient fetch data
|
|
51
|
+
2. **Signal Generation**: Multiple signal classes compute indicators
|
|
52
|
+
3. **Causal Validation**: CausalEngine validates signals using SCMs
|
|
53
|
+
4. **Prediction**: Ensemble models generate predictions
|
|
54
|
+
5. **Portfolio Optimization**: PortfolioOptimizer allocates capital
|
|
55
|
+
6. **Risk Management**: RiskMonitor and CircuitBreaker enforce limits
|
|
56
|
+
7. **Execution**: ExecutionEngine places trades
|
|
57
|
+
|
|
58
|
+
## Mathematical Foundation
|
|
59
|
+
|
|
60
|
+
The system implements a causal graph:
|
|
61
|
+
|
|
62
|
+
$$Sentiment \to Volume \to Liquidity \to Price Impact \to Returns$$
|
|
63
|
+
|
|
64
|
+
Each relationship is validated using:
|
|
65
|
+
|
|
66
|
+
$$P(Returns | do(Sentiment = s)) = \sum_{v,l} P(Returns | Sentiment=s, Volume=v, Liquidity=l) P(Volume=v, Liquidity=l | Sentiment=s)$$
|
|
67
|
+
|
|
68
|
+
## Next Steps
|
|
69
|
+
|
|
70
|
+
- [Market Data](market-data.md) - Market data client
|
|
71
|
+
- [Signal Generation](signal-generation.md) - Signal generation
|