crca 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. CRCA.py +172 -7
  2. MODEL_CARD.md +53 -0
  3. PKG-INFO +8 -2
  4. RELEASE_NOTES.md +17 -0
  5. STABILITY.md +19 -0
  6. architecture/hybrid/consistency_engine.py +362 -0
  7. architecture/hybrid/conversation_manager.py +421 -0
  8. architecture/hybrid/explanation_generator.py +452 -0
  9. architecture/hybrid/few_shot_learner.py +533 -0
  10. architecture/hybrid/graph_compressor.py +286 -0
  11. architecture/hybrid/hybrid_agent.py +4398 -0
  12. architecture/hybrid/language_compiler.py +623 -0
  13. architecture/hybrid/main,py +0 -0
  14. architecture/hybrid/reasoning_tracker.py +322 -0
  15. architecture/hybrid/self_verifier.py +524 -0
  16. architecture/hybrid/task_decomposer.py +567 -0
  17. architecture/hybrid/text_corrector.py +341 -0
  18. benchmark_results/crca_core_benchmarks.json +178 -0
  19. branches/crca_sd/crca_sd_realtime.py +6 -2
  20. branches/general_agent/__init__.py +102 -0
  21. branches/general_agent/general_agent.py +1400 -0
  22. branches/general_agent/personality.py +169 -0
  23. branches/general_agent/utils/__init__.py +19 -0
  24. branches/general_agent/utils/prompt_builder.py +170 -0
  25. {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/METADATA +8 -2
  26. {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/RECORD +303 -20
  27. crca_core/__init__.py +35 -0
  28. crca_core/benchmarks/__init__.py +14 -0
  29. crca_core/benchmarks/synthetic_scm.py +103 -0
  30. crca_core/core/__init__.py +23 -0
  31. crca_core/core/api.py +120 -0
  32. crca_core/core/estimate.py +208 -0
  33. crca_core/core/godclass.py +72 -0
  34. crca_core/core/intervention_design.py +174 -0
  35. crca_core/core/lifecycle.py +48 -0
  36. crca_core/discovery/__init__.py +9 -0
  37. crca_core/discovery/tabular.py +193 -0
  38. crca_core/identify/__init__.py +171 -0
  39. crca_core/identify/backdoor.py +39 -0
  40. crca_core/identify/frontdoor.py +48 -0
  41. crca_core/identify/graph.py +106 -0
  42. crca_core/identify/id_algorithm.py +43 -0
  43. crca_core/identify/iv.py +48 -0
  44. crca_core/models/__init__.py +67 -0
  45. crca_core/models/provenance.py +56 -0
  46. crca_core/models/refusal.py +39 -0
  47. crca_core/models/result.py +83 -0
  48. crca_core/models/spec.py +151 -0
  49. crca_core/models/validation.py +68 -0
  50. crca_core/scm/__init__.py +9 -0
  51. crca_core/scm/linear_gaussian.py +198 -0
  52. crca_core/timeseries/__init__.py +6 -0
  53. crca_core/timeseries/pcmci.py +181 -0
  54. crca_llm/__init__.py +12 -0
  55. crca_llm/client.py +85 -0
  56. crca_llm/coauthor.py +118 -0
  57. crca_llm/orchestrator.py +289 -0
  58. crca_llm/types.py +21 -0
  59. crca_reasoning/__init__.py +16 -0
  60. crca_reasoning/critique.py +54 -0
  61. crca_reasoning/godclass.py +206 -0
  62. crca_reasoning/memory.py +24 -0
  63. crca_reasoning/rationale.py +10 -0
  64. crca_reasoning/react_controller.py +81 -0
  65. crca_reasoning/tool_router.py +97 -0
  66. crca_reasoning/types.py +40 -0
  67. crca_sd/__init__.py +15 -0
  68. crca_sd/crca_sd_core.py +2 -0
  69. crca_sd/crca_sd_governance.py +2 -0
  70. crca_sd/crca_sd_mpc.py +2 -0
  71. crca_sd/crca_sd_realtime.py +2 -0
  72. crca_sd/crca_sd_tui.py +2 -0
  73. cuda-keyring_1.1-1_all.deb +0 -0
  74. cuda-keyring_1.1-1_all.deb.1 +0 -0
  75. docs/IMAGE_ANNOTATION_USAGE.md +539 -0
  76. docs/INSTALL_DEEPSPEED.md +125 -0
  77. docs/api/branches/crca-cg.md +19 -0
  78. docs/api/branches/crca-q.md +27 -0
  79. docs/api/branches/crca-sd.md +37 -0
  80. docs/api/branches/general-agent.md +24 -0
  81. docs/api/branches/overview.md +19 -0
  82. docs/api/crca/agent-methods.md +62 -0
  83. docs/api/crca/operations.md +79 -0
  84. docs/api/crca/overview.md +32 -0
  85. docs/api/image-annotation/engine.md +52 -0
  86. docs/api/image-annotation/overview.md +17 -0
  87. docs/api/schemas/annotation.md +34 -0
  88. docs/api/schemas/core-schemas.md +82 -0
  89. docs/api/schemas/overview.md +32 -0
  90. docs/api/schemas/policy.md +30 -0
  91. docs/api/utils/conversation.md +22 -0
  92. docs/api/utils/graph-reasoner.md +32 -0
  93. docs/api/utils/overview.md +21 -0
  94. docs/api/utils/router.md +19 -0
  95. docs/api/utils/utilities.md +97 -0
  96. docs/architecture/causal-graphs.md +41 -0
  97. docs/architecture/data-flow.md +29 -0
  98. docs/architecture/design-principles.md +33 -0
  99. docs/architecture/hybrid-agent/components.md +38 -0
  100. docs/architecture/hybrid-agent/consistency.md +26 -0
  101. docs/architecture/hybrid-agent/overview.md +44 -0
  102. docs/architecture/hybrid-agent/reasoning.md +22 -0
  103. docs/architecture/llm-integration.md +26 -0
  104. docs/architecture/modular-structure.md +37 -0
  105. docs/architecture/overview.md +69 -0
  106. docs/architecture/policy-engine-arch.md +29 -0
  107. docs/branches/crca-cg/corposwarm.md +39 -0
  108. docs/branches/crca-cg/esg-scoring.md +30 -0
  109. docs/branches/crca-cg/multi-agent.md +35 -0
  110. docs/branches/crca-cg/overview.md +40 -0
  111. docs/branches/crca-q/alternative-data.md +55 -0
  112. docs/branches/crca-q/architecture.md +71 -0
  113. docs/branches/crca-q/backtesting.md +45 -0
  114. docs/branches/crca-q/causal-engine.md +33 -0
  115. docs/branches/crca-q/execution.md +39 -0
  116. docs/branches/crca-q/market-data.md +60 -0
  117. docs/branches/crca-q/overview.md +58 -0
  118. docs/branches/crca-q/philosophy.md +60 -0
  119. docs/branches/crca-q/portfolio-optimization.md +66 -0
  120. docs/branches/crca-q/risk-management.md +102 -0
  121. docs/branches/crca-q/setup.md +65 -0
  122. docs/branches/crca-q/signal-generation.md +61 -0
  123. docs/branches/crca-q/signal-validation.md +43 -0
  124. docs/branches/crca-sd/core.md +84 -0
  125. docs/branches/crca-sd/governance.md +53 -0
  126. docs/branches/crca-sd/mpc-solver.md +65 -0
  127. docs/branches/crca-sd/overview.md +59 -0
  128. docs/branches/crca-sd/realtime.md +28 -0
  129. docs/branches/crca-sd/tui.md +20 -0
  130. docs/branches/general-agent/overview.md +37 -0
  131. docs/branches/general-agent/personality.md +36 -0
  132. docs/branches/general-agent/prompt-builder.md +30 -0
  133. docs/changelog/index.md +79 -0
  134. docs/contributing/code-style.md +69 -0
  135. docs/contributing/documentation.md +43 -0
  136. docs/contributing/overview.md +29 -0
  137. docs/contributing/testing.md +29 -0
  138. docs/core/crcagent/async-operations.md +65 -0
  139. docs/core/crcagent/automatic-extraction.md +107 -0
  140. docs/core/crcagent/batch-prediction.md +80 -0
  141. docs/core/crcagent/bayesian-inference.md +60 -0
  142. docs/core/crcagent/causal-graph.md +92 -0
  143. docs/core/crcagent/counterfactuals.md +96 -0
  144. docs/core/crcagent/deterministic-simulation.md +78 -0
  145. docs/core/crcagent/dual-mode-operation.md +82 -0
  146. docs/core/crcagent/initialization.md +88 -0
  147. docs/core/crcagent/optimization.md +65 -0
  148. docs/core/crcagent/overview.md +63 -0
  149. docs/core/crcagent/time-series.md +57 -0
  150. docs/core/schemas/annotation.md +30 -0
  151. docs/core/schemas/core-schemas.md +82 -0
  152. docs/core/schemas/overview.md +30 -0
  153. docs/core/schemas/policy.md +41 -0
  154. docs/core/templates/base-agent.md +31 -0
  155. docs/core/templates/feature-mixins.md +31 -0
  156. docs/core/templates/overview.md +29 -0
  157. docs/core/templates/templates-guide.md +75 -0
  158. docs/core/tools/mcp-client.md +34 -0
  159. docs/core/tools/overview.md +24 -0
  160. docs/core/utils/conversation.md +27 -0
  161. docs/core/utils/graph-reasoner.md +29 -0
  162. docs/core/utils/overview.md +27 -0
  163. docs/core/utils/router.md +27 -0
  164. docs/core/utils/utilities.md +97 -0
  165. docs/css/custom.css +84 -0
  166. docs/examples/basic-usage.md +57 -0
  167. docs/examples/general-agent/general-agent-examples.md +50 -0
  168. docs/examples/hybrid-agent/hybrid-agent-examples.md +56 -0
  169. docs/examples/image-annotation/image-annotation-examples.md +54 -0
  170. docs/examples/integration/integration-examples.md +58 -0
  171. docs/examples/overview.md +37 -0
  172. docs/examples/trading/trading-examples.md +46 -0
  173. docs/features/causal-reasoning/advanced-topics.md +101 -0
  174. docs/features/causal-reasoning/counterfactuals.md +43 -0
  175. docs/features/causal-reasoning/do-calculus.md +50 -0
  176. docs/features/causal-reasoning/overview.md +47 -0
  177. docs/features/causal-reasoning/structural-models.md +52 -0
  178. docs/features/hybrid-agent/advanced-components.md +55 -0
  179. docs/features/hybrid-agent/core-components.md +64 -0
  180. docs/features/hybrid-agent/overview.md +34 -0
  181. docs/features/image-annotation/engine.md +82 -0
  182. docs/features/image-annotation/features.md +113 -0
  183. docs/features/image-annotation/integration.md +75 -0
  184. docs/features/image-annotation/overview.md +53 -0
  185. docs/features/image-annotation/quickstart.md +73 -0
  186. docs/features/policy-engine/doctrine-ledger.md +105 -0
  187. docs/features/policy-engine/monitoring.md +44 -0
  188. docs/features/policy-engine/mpc-control.md +89 -0
  189. docs/features/policy-engine/overview.md +46 -0
  190. docs/getting-started/configuration.md +225 -0
  191. docs/getting-started/first-agent.md +164 -0
  192. docs/getting-started/installation.md +144 -0
  193. docs/getting-started/quickstart.md +137 -0
  194. docs/index.md +118 -0
  195. docs/js/mathjax.js +13 -0
  196. docs/lrm/discovery_proof_notes.md +25 -0
  197. docs/lrm/finetune_full.md +83 -0
  198. docs/lrm/math_appendix.md +120 -0
  199. docs/lrm/overview.md +32 -0
  200. docs/mkdocs.yml +238 -0
  201. docs/stylesheets/extra.css +21 -0
  202. docs_generated/crca_core/CounterfactualResult.md +12 -0
  203. docs_generated/crca_core/DiscoveryHypothesisResult.md +13 -0
  204. docs_generated/crca_core/DraftSpec.md +13 -0
  205. docs_generated/crca_core/EstimateResult.md +13 -0
  206. docs_generated/crca_core/IdentificationResult.md +17 -0
  207. docs_generated/crca_core/InterventionDesignResult.md +12 -0
  208. docs_generated/crca_core/LockedSpec.md +15 -0
  209. docs_generated/crca_core/RefusalResult.md +12 -0
  210. docs_generated/crca_core/ValidationReport.md +9 -0
  211. docs_generated/crca_core/index.md +13 -0
  212. examples/general_agent_example.py +277 -0
  213. examples/general_agent_quickstart.py +202 -0
  214. examples/general_agent_simple.py +92 -0
  215. examples/hybrid_agent_auto_extraction.py +84 -0
  216. examples/hybrid_agent_dictionary_demo.py +104 -0
  217. examples/hybrid_agent_enhanced.py +179 -0
  218. examples/hybrid_agent_general_knowledge.py +107 -0
  219. examples/image_annotation_quickstart.py +328 -0
  220. examples/test_hybrid_fixes.py +77 -0
  221. image_annotation/__init__.py +27 -0
  222. image_annotation/annotation_engine.py +2593 -0
  223. install_cuda_wsl2.sh +59 -0
  224. install_deepspeed.sh +56 -0
  225. install_deepspeed_simple.sh +87 -0
  226. mkdocs.yml +252 -0
  227. ollama/Modelfile +8 -0
  228. prompts/__init__.py +2 -1
  229. prompts/default_crca.py +9 -1
  230. prompts/general_agent.py +227 -0
  231. prompts/image_annotation.py +56 -0
  232. pyproject.toml +17 -2
  233. requirements-docs.txt +10 -0
  234. requirements.txt +21 -2
  235. schemas/__init__.py +26 -1
  236. schemas/annotation.py +222 -0
  237. schemas/conversation.py +193 -0
  238. schemas/hybrid.py +211 -0
  239. schemas/reasoning.py +276 -0
  240. schemas_export/crca_core/CounterfactualResult.schema.json +108 -0
  241. schemas_export/crca_core/DiscoveryHypothesisResult.schema.json +113 -0
  242. schemas_export/crca_core/DraftSpec.schema.json +635 -0
  243. schemas_export/crca_core/EstimateResult.schema.json +113 -0
  244. schemas_export/crca_core/IdentificationResult.schema.json +145 -0
  245. schemas_export/crca_core/InterventionDesignResult.schema.json +111 -0
  246. schemas_export/crca_core/LockedSpec.schema.json +646 -0
  247. schemas_export/crca_core/RefusalResult.schema.json +90 -0
  248. schemas_export/crca_core/ValidationReport.schema.json +62 -0
  249. scripts/build_lrm_dataset.py +80 -0
  250. scripts/export_crca_core_schemas.py +54 -0
  251. scripts/export_hf_lrm.py +37 -0
  252. scripts/export_ollama_gguf.py +45 -0
  253. scripts/generate_changelog.py +157 -0
  254. scripts/generate_crca_core_docs_from_schemas.py +86 -0
  255. scripts/run_crca_core_benchmarks.py +163 -0
  256. scripts/run_full_finetune.py +198 -0
  257. scripts/run_lrm_eval.py +31 -0
  258. templates/graph_management.py +29 -0
  259. tests/conftest.py +9 -0
  260. tests/test_core.py +2 -3
  261. tests/test_crca_core_discovery_tabular.py +15 -0
  262. tests/test_crca_core_estimate_dowhy.py +36 -0
  263. tests/test_crca_core_identify.py +18 -0
  264. tests/test_crca_core_intervention_design.py +36 -0
  265. tests/test_crca_core_linear_gaussian_scm.py +69 -0
  266. tests/test_crca_core_spec.py +25 -0
  267. tests/test_crca_core_timeseries_pcmci.py +15 -0
  268. tests/test_crca_llm_coauthor.py +12 -0
  269. tests/test_crca_llm_orchestrator.py +80 -0
  270. tests/test_hybrid_agent_llm_enhanced.py +556 -0
  271. tests/test_image_annotation_demo.py +376 -0
  272. tests/test_image_annotation_operational.py +408 -0
  273. tests/test_image_annotation_unit.py +551 -0
  274. tests/test_training_moe.py +13 -0
  275. training/__init__.py +42 -0
  276. training/datasets.py +140 -0
  277. training/deepspeed_zero2_0_5b.json +22 -0
  278. training/deepspeed_zero2_1_5b.json +22 -0
  279. training/deepspeed_zero3_0_5b.json +28 -0
  280. training/deepspeed_zero3_14b.json +28 -0
  281. training/deepspeed_zero3_h100_3gpu.json +20 -0
  282. training/deepspeed_zero3_offload.json +28 -0
  283. training/eval.py +92 -0
  284. training/finetune.py +516 -0
  285. training/public_datasets.py +89 -0
  286. training_data/react_train.jsonl +7473 -0
  287. utils/agent_discovery.py +311 -0
  288. utils/batch_processor.py +317 -0
  289. utils/conversation.py +78 -0
  290. utils/edit_distance.py +118 -0
  291. utils/formatter.py +33 -0
  292. utils/graph_reasoner.py +530 -0
  293. utils/rate_limiter.py +283 -0
  294. utils/router.py +2 -2
  295. utils/tool_discovery.py +307 -0
  296. webui/__init__.py +10 -0
  297. webui/app.py +229 -0
  298. webui/config.py +104 -0
  299. webui/static/css/style.css +332 -0
  300. webui/static/js/main.js +284 -0
  301. webui/templates/index.html +42 -0
  302. tests/test_crca_excel.py +0 -166
  303. tests/test_data_broker.py +0 -424
  304. tests/test_palantir.py +0 -349
  305. {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/WHEEL +0 -0
  306. {crca-1.4.0.dist-info → crca-1.5.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,41 @@
1
+ # Causal Graph Architecture
2
+
3
+ Architecture for causal graph representation and manipulation.
4
+
5
+ ## Overview
6
+
7
+ Causal graphs are represented as directed acyclic graphs (DAGs) with nodes for variables and edges for causal relationships.
8
+
9
+ ## Mathematical Foundation
10
+
11
+ A causal graph $G = (V, E)$ where:
12
+ - $V$: Set of variables
13
+ - $E$: Set of causal edges $(X \to Y)$
14
+
15
+ The graph must satisfy acyclicity:
16
+
17
+ $$\nexists \text{ path } X \to \cdots \to X$$
18
+
19
+ ## Graph Operations
20
+
21
+ ### Path Finding
22
+
23
+ Find all paths from $X$ to $Y$:
24
+
25
+ $$Paths(X, Y) = \{p : X \to^* Y\}$$
26
+
27
+ ### Confounder Identification
28
+
29
+ Identify confounders $Z$ for relationship $X \to Y$:
30
+
31
+ $$Z \in Confounders(X, Y) \iff Z \to X \text{ and } Z \to Y$$
32
+
33
+ ### Adjustment Sets
34
+
35
+ Find valid adjustment set for $X \to Y$:
36
+
37
+ $$Z \text{ valid } \iff Z \text{ blocks all backdoor paths}$$
38
+
39
+ ## Next Steps
40
+
41
+ - [LLM Integration](llm-integration.md) - LLM integration architecture
@@ -0,0 +1,29 @@
1
+ # Data Flow
2
+
3
+ Data flow through the CR-CA system.
4
+
5
+ ## Causal Analysis Flow
6
+
7
+ ```mermaid
8
+ graph LR
9
+ Input[Natural Language Input] --> Extract[Variable Extraction]
10
+ Extract --> Graph[Causal Graph Construction]
11
+ Graph --> SCM[SCM Fitting]
12
+ SCM --> Inference[Causal Inference]
13
+ Inference --> Counterfactual[Counterfactual Generation]
14
+ Counterfactual --> Output[Results]
15
+ ```
16
+
17
+ ## Mathematical Flow
18
+
19
+ 1. **Input**: Natural language task $T$
20
+ 2. **Extraction**: Variables $V = \{V_1, \ldots, V_n\}$
21
+ 3. **Graph**: Causal DAG $G = (V, E)$
22
+ 4. **SCM**: Structural equations $F = \{f_1, \ldots, f_n\}$
23
+ 5. **Inference**: Causal effects $E[Y | do(X=x)]$
24
+ 6. **Counterfactuals**: $P(Y_{x'} | X=x, Y=y)$
25
+
26
+ ## Next Steps
27
+
28
+ - [Modular Structure](modular-structure.md) - Modular architecture
29
+ - [Hybrid Agent](hybrid-agent/overview.md) - Hybrid agent architecture
@@ -0,0 +1,33 @@
1
+ # Design Principles
2
+
3
+ CR-CA is designed following key principles for maintainability and extensibility.
4
+
5
+ ## Principles
6
+
7
+ ### 1. Modularity
8
+
9
+ Each component is self-contained with clear interfaces:
10
+
11
+ $$M_i: I_i \to O_i$$
12
+
13
+ Where $M_i$ is module $i$ with inputs $I_i$ and outputs $O_i$.
14
+
15
+ ### 2. Separation of Concerns
16
+
17
+ - **Causal Reasoning**: Core SCM computation
18
+ - **LLM Integration**: Natural language processing
19
+ - **Application Logic**: Domain-specific implementations
20
+
21
+ ### 3. Extensibility
22
+
23
+ New agents can be created by extending base classes:
24
+
25
+ $$Agent_{new} = BaseAgent \oplus Mixins \oplus CustomLogic$$
26
+
27
+ ### 4. Mathematical Rigor
28
+
29
+ All causal operations are mathematically grounded in Pearl's framework.
30
+
31
+ ## Next Steps
32
+
33
+ - [Data Flow](data-flow.md) - Data flow diagrams
@@ -0,0 +1,38 @@
1
+ # Hybrid Agent Components
2
+
3
+ Breakdown of hybrid agent components.
4
+
5
+ ## Core Components
6
+
7
+ ### Consistency Engine
8
+
9
+ Ensures logical consistency across reasoning steps.
10
+
11
+ ### Conversation Manager
12
+
13
+ Manages multi-turn conversations and context.
14
+
15
+ ### Explanation Generator
16
+
17
+ Generates explanations for reasoning steps.
18
+
19
+ ### Task Decomposer
20
+
21
+ Decomposes complex tasks into subtasks.
22
+
23
+ ### Self Verifier
24
+
25
+ Verifies reasoning steps for correctness.
26
+
27
+ ## Mathematical Foundation
28
+
29
+ Each component contributes to the overall reasoning:
30
+
31
+ $$P(Correct | Components) = \prod_{i=1}^n P(Correct | C_i)$$
32
+
33
+ Where $C_i$ are components.
34
+
35
+ ## Next Steps
36
+
37
+ - [Consistency](consistency.md) - Consistency mechanisms
38
+ - [Reasoning](reasoning.md) - Reasoning architecture
@@ -0,0 +1,26 @@
1
+ # Consistency Mechanisms
2
+
3
+ How the hybrid agent ensures consistency across reasoning steps.
4
+
5
+ ## Overview
6
+
7
+ Consistency mechanisms verify that reasoning steps are logically consistent and don't contradict previous conclusions.
8
+
9
+ ## Mathematical Foundation
10
+
11
+ Consistency is checked using:
12
+
13
+ $$\text{Consistent}(S_1, S_2) = \begin{cases}
14
+ 1 & \text{if } S_1 \not\models \neg S_2 \\
15
+ 0 & \text{otherwise}
16
+ \end{cases}$$
17
+
18
+ Where $S_1, S_2$ are reasoning steps.
19
+
20
+ ## Usage
21
+
22
+ The consistency engine automatically checks consistency during reasoning.
23
+
24
+ ## Next Steps
25
+
26
+ - [Reasoning](reasoning.md) - Reasoning architecture
@@ -0,0 +1,44 @@
1
+ # Hybrid Agent Architecture
2
+
3
+ The hybrid agent architecture combines multiple reasoning components.
4
+
5
+ ## Overview
6
+
7
+ Hybrid agent integrates consistency engine, conversation manager, explanation generator, and other components.
8
+
9
+ ## Architecture
10
+
11
+ ```mermaid
12
+ graph TB
13
+ HA[Hybrid Agent]
14
+ CE[Consistency Engine]
15
+ CM[Conversation Manager]
16
+ EG[Explanation Generator]
17
+ TD[Task Decomposer]
18
+ SV[Self Verifier]
19
+
20
+ HA --> CE
21
+ HA --> CM
22
+ HA --> EG
23
+ HA --> TD
24
+ HA --> SV
25
+ ```
26
+
27
+ ## Mathematical Foundation
28
+
29
+ Hybrid agent combines multiple reasoning modes:
30
+
31
+ $$R_{hybrid} = \alpha R_{LLM} + \beta R_{deterministic} + \gamma R_{symbolic}$$
32
+
33
+ Where $\alpha + \beta + \gamma = 1$ and each $R_i$ is a reasoning component.
34
+
35
+ ## Components
36
+
37
+ - **[Consistency Engine](../features/hybrid-agent/consistency-engine.md)**: Ensures consistency
38
+ - **[Conversation Manager](../features/hybrid-agent/conversation-manager.md)**: Manages dialogue
39
+ - **[Task Decomposer](../features/hybrid-agent/task-decomposer.md)**: Decomposes tasks
40
+
41
+ ## Next Steps
42
+
43
+ - [Components](components.md) - Component breakdown
44
+ - [Consistency](consistency.md) - Consistency mechanisms
@@ -0,0 +1,22 @@
1
+ # Reasoning Architecture
2
+
3
+ The hybrid agent's reasoning architecture.
4
+
5
+ ## Overview
6
+
7
+ Reasoning architecture combines multiple reasoning modes for robust inference.
8
+
9
+ ## Mathematical Foundation
10
+
11
+ Reasoning combines:
12
+
13
+ $$R_{final} = \arg\max_{r} \sum_{i} w_i P(r | M_i)$$
14
+
15
+ Where:
16
+ - $M_i$: Different reasoning modes
17
+ - $w_i$: Weights for each mode
18
+ - $P(r | M_i)$: Probability of result $r$ under mode $M_i$
19
+
20
+ ## Next Steps
21
+
22
+ - [Causal Graphs](../causal-graphs.md) - Causal graph architecture
@@ -0,0 +1,26 @@
1
+ # LLM Integration Architecture
2
+
3
+ Architecture for integrating large language models with causal reasoning.
4
+
5
+ ## Overview
6
+
7
+ LLM integration enables natural language understanding and causal reasoning through language models.
8
+
9
+ ## Mathematical Foundation
10
+
11
+ LLM-based causal inference approximates:
12
+
13
+ $$P(Y | do(X=x)) \approx LLM(T, X, Y, Context)$$
14
+
15
+ Where $T$ is the task description and $Context$ includes relevant information.
16
+
17
+ ## Integration Points
18
+
19
+ 1. **Variable Extraction**: Extract variables from natural language
20
+ 2. **Relationship Identification**: Identify causal relationships
21
+ 3. **Causal Inference**: Approximate causal effects
22
+ 4. **Explanation Generation**: Generate explanations
23
+
24
+ ## Next Steps
25
+
26
+ - [Policy Engine Architecture](policy-engine-arch.md) - Policy engine architecture
@@ -0,0 +1,37 @@
1
+ # Modular Structure
2
+
3
+ CR-CA's modular architecture enables flexible composition and extension.
4
+
5
+ ## Module Organization
6
+
7
+ ```
8
+ CR-CA/
9
+ ├── CRCA.py # Core agent
10
+ ├── utils/ # Utilities
11
+ ├── templates/ # Agent templates
12
+ ├── schemas/ # Data schemas
13
+ ├── branches/ # Specialized branches
14
+ ├── features/ # Feature modules
15
+ └── architecture/ # Architecture components
16
+ ```
17
+
18
+ ## Module Dependencies
19
+
20
+ Modules follow a dependency hierarchy:
21
+
22
+ $$Core \to Utils \to Templates \to Branches$$
23
+
24
+ Where each layer depends only on lower layers.
25
+
26
+ ## Mathematical Foundation
27
+
28
+ Modules communicate through well-defined interfaces:
29
+
30
+ $$f: M_1 \times M_2 \times \cdots \times M_n \to O$$
31
+
32
+ Where $M_i$ are input modules and $O$ is the output.
33
+
34
+ ## Next Steps
35
+
36
+ - [Hybrid Agent](hybrid-agent/overview.md) - Hybrid agent architecture
37
+ - [Causal Graphs](causal-graphs.md) - Causal graph architecture
@@ -0,0 +1,69 @@
1
+ # Architecture Overview
2
+
3
+ CR-CA follows a modular architecture with clear separation of concerns.
4
+
5
+ ## System Architecture
6
+
7
+ ```mermaid
8
+ graph TB
9
+ subgraph "Application Layer"
10
+ SD[CRCA-SD]
11
+ CG[CRCA-CG]
12
+ Q[CRCA-Q]
13
+ end
14
+
15
+ subgraph "Core Layer"
16
+ CA[CRCAAgent]
17
+ CG2[Causal Graph]
18
+ SCM[SCM Engine]
19
+ end
20
+
21
+ subgraph "Utils Layer"
22
+ U[Utils]
23
+ T[Tools]
24
+ TM[Templates]
25
+ end
26
+
27
+ SD --> CA
28
+ CG --> CA
29
+ Q --> CA
30
+ CA --> CG2
31
+ CA --> SCM
32
+ CA --> U
33
+ CA --> T
34
+ ```
35
+
36
+ ## Mathematical Foundation
37
+
38
+ The architecture implements a layered causal reasoning system:
39
+
40
+ **Layer 1 - Application**: Domain-specific agents
41
+ **Layer 2 - Core**: Causal reasoning engine with SCMs
42
+ **Layer 3 - Utils**: Supporting utilities and tools
43
+
44
+ The causal reasoning follows:
45
+
46
+ $$Y = f(Pa(Y), U_Y)$$
47
+
48
+ Where structural equations are defined at the core layer.
49
+
50
+ ## Key Components
51
+
52
+ - **CRCAAgent**: Core causal reasoning agent
53
+ - **Causal Graph**: DAG representation of causal relationships
54
+ - **SCM Engine**: Structural causal model computation
55
+ - **Utils**: Supporting utilities
56
+ - **Templates**: Agent creation framework
57
+
58
+ ## Documentation
59
+
60
+ - **[Design Principles](design-principles.md)**: Design principles
61
+ - **[Data Flow](data-flow.md)**: Data flow diagrams
62
+ - **[Modular Structure](modular-structure.md)**: Modular architecture
63
+ - **[Hybrid Agent](hybrid-agent/overview.md)**: Hybrid agent architecture
64
+ - **[Causal Graphs](causal-graphs.md)**: Causal graph architecture
65
+
66
+ ## Next Steps
67
+
68
+ - [Design Principles](design-principles.md) - Design principles
69
+ - [Data Flow](data-flow.md) - Data flow
@@ -0,0 +1,29 @@
1
+ # Policy Engine Architecture
2
+
3
+ Architecture for the policy engine system.
4
+
5
+ ## Overview
6
+
7
+ Policy engine implements Model Predictive Control (MPC) for autonomous system control.
8
+
9
+ ## Mathematical Foundation
10
+
11
+ Policy engine solves:
12
+
13
+ $$\min_{\mathbf{u}_{t:t+H-1}} \sum_{k=0}^{H-1} \ell(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) + V(\mathbf{x}_{t+H})$$
14
+
15
+ Subject to:
16
+
17
+ $$\mathbf{x}_{t+k+1} = f(\mathbf{x}_{t+k}, \mathbf{u}_{t+k})$$
18
+ $$\mathbf{g}(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) \leq 0$$
19
+
20
+ ## Components
21
+
22
+ - **Doctrine**: Policy objectives and constraints
23
+ - **Ledger**: State tracking and event storage
24
+ - **Rollback**: Rollback mechanisms
25
+ - **MPC**: Model Predictive Control solver
26
+
27
+ ## Next Steps
28
+
29
+ - [API Reference](../api/crca/overview.md) - API documentation
@@ -0,0 +1,39 @@
1
+ # CorporateSwarm
2
+
3
+ CorporateSwarm is a multi-agent system for corporate governance decision-making.
4
+
5
+ ## Overview
6
+
7
+ CorporateSwarm coordinates multiple specialized agents to make complex corporate governance decisions.
8
+
9
+ ## Architecture
10
+
11
+ ```mermaid
12
+ graph TB
13
+ CS[CorporateSwarm]
14
+ A1[Agent 1]
15
+ A2[Agent 2]
16
+ A3[Agent 3]
17
+ CO[Coordinator]
18
+
19
+ CS --> CO
20
+ CO --> A1
21
+ CO --> A2
22
+ CO --> A3
23
+ A1 --> CS
24
+ A2 --> CS
25
+ A3 --> CS
26
+ ```
27
+
28
+ ## Usage
29
+
30
+ ```python
31
+ from branches.crca_cg.corposwarm import CorporateSwarm
32
+
33
+ swarm = CorporateSwarm()
34
+ decision = swarm.make_decision(problem)
35
+ ```
36
+
37
+ ## Next Steps
38
+
39
+ - [ESG Scoring](esg-scoring.md) - ESG scoring system
@@ -0,0 +1,30 @@
1
+ # ESG Scoring
2
+
3
+ ESG (Environmental, Social, and Governance) scoring system for corporate evaluation.
4
+
5
+ ## Overview
6
+
7
+ ESG scoring evaluates companies based on environmental, social, and governance factors.
8
+
9
+ ## Mathematical Foundation
10
+
11
+ ESG score is computed as:
12
+
13
+ $$\text{ESG} = w_E \cdot S_E + w_S \cdot S_S + w_G \cdot S_G$$
14
+
15
+ Where:
16
+ - $S_E, S_S, S_G$: Environmental, Social, Governance sub-scores
17
+ - $w_E, w_S, w_G$: Weights (typically $w_E + w_S + w_G = 1$)
18
+
19
+ ## Usage
20
+
21
+ ```python
22
+ from branches.crca_cg.corposwarm import ESGScorer
23
+
24
+ scorer = ESGScorer()
25
+ score = scorer.compute_esg_score(company_data)
26
+ ```
27
+
28
+ ## Next Steps
29
+
30
+ - [Multi-Agent](multi-agent.md) - Multi-agent orchestration
@@ -0,0 +1,35 @@
1
+ # Multi-Agent Orchestration
2
+
3
+ Multi-agent orchestration coordinates multiple agents for complex corporate governance decisions.
4
+
5
+ ## Overview
6
+
7
+ Multi-agent systems enable distributed decision-making with specialized agents handling different aspects of governance.
8
+
9
+ ## Mathematical Foundation
10
+
11
+ Multi-agent coordination can be modeled as:
12
+
13
+ $$\max_{\{\mathbf{u}_i\}} \sum_{i=1}^n w_i J_i(\mathbf{u}_i, \mathbf{u}_{-i})$$
14
+
15
+ Subject to:
16
+
17
+ $$g(\mathbf{u}_1, \ldots, \mathbf{u}_n) \leq 0$$
18
+
19
+ Where:
20
+ - $\mathbf{u}_i$: Actions of agent $i$
21
+ - $J_i$: Objective of agent $i$
22
+ - $w_i$: Weight for agent $i$
23
+
24
+ ## Usage
25
+
26
+ ```python
27
+ from branches.crca_cg.corposwarm import MultiAgentOrchestrator
28
+
29
+ orchestrator = MultiAgentOrchestrator()
30
+ decision = orchestrator.coordinate(agents, problem)
31
+ ```
32
+
33
+ ## Next Steps
34
+
35
+ - [General Agent](../general-agent/overview.md) - General purpose agent
@@ -0,0 +1,40 @@
1
+ # CRCA-CG Overview
2
+
3
+ CRCA-CG (CRCA for Corporate Governance) provides corporate governance capabilities with CorporateSwarm, ESG scoring, and multi-agent orchestration.
4
+
5
+ ## Overview
6
+
7
+ CRCA-CG extends CR-CA for corporate governance applications, enabling multi-agent systems for organizational decision-making.
8
+
9
+ ## Key Features
10
+
11
+ - **CorporateSwarm**: Multi-agent system for corporate governance
12
+ - **ESG Scoring**: Environmental, Social, and Governance scoring
13
+ - **Multi-Agent Orchestration**: Coordinate multiple agents for complex decisions
14
+
15
+ ## Mathematical Foundation
16
+
17
+ Corporate governance decisions can be modeled as:
18
+
19
+ $$\max_{\mathbf{d}} E[V(\mathbf{d}, \mathbf{s})]$$
20
+
21
+ Subject to:
22
+
23
+ $$g_i(\mathbf{d}, \mathbf{s}) \leq 0, \quad i = 1, \ldots, m$$
24
+
25
+ Where:
26
+ - $\mathbf{d}$: Decision vector
27
+ - $\mathbf{s}$: System state
28
+ - $V$: Value function
29
+ - $g_i$: Governance constraints
30
+
31
+ ## Documentation
32
+
33
+ - **[CorporateSwarm](corposwarm.md)**: CorporateSwarm implementation
34
+ - **[ESG Scoring](esg-scoring.md)**: ESG scoring system
35
+ - **[Multi-Agent](multi-agent.md)**: Multi-agent orchestration
36
+
37
+ ## Next Steps
38
+
39
+ - [CorporateSwarm](corposwarm.md) - CorporateSwarm system
40
+ - [ESG Scoring](esg-scoring.md) - ESG scoring
@@ -0,0 +1,55 @@
1
+ # Alternative Data Sources
2
+
3
+ CRCA-Q integrates alternative data sources for enhanced signal generation.
4
+
5
+ ## Overview
6
+
7
+ Alternative data includes on-chain metrics, social sentiment, news, GitHub activity, and exchange metrics.
8
+
9
+ ## Data Sources
10
+
11
+ ### On-Chain Metrics
12
+
13
+ Ethereum/blockchain metrics:
14
+ - Active addresses growth
15
+ - Transaction volume trends
16
+ - Network growth rate
17
+
18
+ ### Social Sentiment
19
+
20
+ - Twitter sentiment (via Twitter API v2)
21
+ - Reddit sentiment (via Reddit API)
22
+ - Social volume metrics
23
+
24
+ ### News Sentiment
25
+
26
+ - NewsAPI sentiment scores
27
+ - Headline sentiment analysis
28
+
29
+ ## Mathematical Foundation
30
+
31
+ Alternative data signals are weighted by confidence:
32
+
33
+ $$S_{alt} = \sum_{i} w_i S_i$$
34
+
35
+ Where:
36
+ - $w_i$: Confidence weight for source $i$
37
+ - $S_i$: Signal from source $i$
38
+
39
+ Confidence weights consider:
40
+ - Freshness (40%)
41
+ - Reliability (40%)
42
+ - Stability (20%)
43
+
44
+ ## Usage
45
+
46
+ ```python
47
+ from branches.CRCA-Q import AltDataClient
48
+
49
+ client = AltDataClient()
50
+ alt_data = client.fetch_alternative_data("BTC")
51
+ ```
52
+
53
+ ## Next Steps
54
+
55
+ - [Signal Generation](signal-generation.md) - Signal generation
@@ -0,0 +1,71 @@
1
+ # CRCA-Q Architecture
2
+
3
+ CRCA-Q is organized into five major subsystems.
4
+
5
+ ## System Architecture
6
+
7
+ ```mermaid
8
+ graph TB
9
+ subgraph "Data Layer"
10
+ MDC[MarketDataClient]
11
+ ADC[AltDataClient]
12
+ end
13
+
14
+ subgraph "Signal Generation"
15
+ TSS[TimeSeriesSignals]
16
+ VS[VolatilitySignals]
17
+ LS[LiquiditySignals]
18
+ end
19
+
20
+ subgraph "Causal Reasoning"
21
+ CE[CausalEngine]
22
+ CRCA[CRCAAgent]
23
+ SV[SignalValidator]
24
+ end
25
+
26
+ subgraph "Portfolio Optimization"
27
+ PO[PortfolioOptimizer]
28
+ CE2[CovarianceEstimator]
29
+ end
30
+
31
+ subgraph "Risk Management"
32
+ RM[RiskMonitor]
33
+ CB[CircuitBreaker]
34
+ end
35
+
36
+ MDC --> TSS
37
+ ADC --> TSS
38
+ TSS --> SV
39
+ VS --> SV
40
+ LS --> SV
41
+ SV --> CE
42
+ CE --> CRCA
43
+ CE --> PO
44
+ PO --> RM
45
+ RM --> CB
46
+ ```
47
+
48
+ ## Data Flow
49
+
50
+ 1. **Data Acquisition**: MarketDataClient and AltDataClient fetch data
51
+ 2. **Signal Generation**: Multiple signal classes compute indicators
52
+ 3. **Causal Validation**: CausalEngine validates signals using SCMs
53
+ 4. **Prediction**: Ensemble models generate predictions
54
+ 5. **Portfolio Optimization**: PortfolioOptimizer allocates capital
55
+ 6. **Risk Management**: RiskMonitor and CircuitBreaker enforce limits
56
+ 7. **Execution**: ExecutionEngine places trades
57
+
58
+ ## Mathematical Foundation
59
+
60
+ The system implements a causal graph:
61
+
62
+ $$Sentiment \to Volume \to Liquidity \to Price Impact \to Returns$$
63
+
64
+ Each relationship is validated using:
65
+
66
+ $$P(Returns | do(Sentiment = s)) = \sum_{v,l} P(Returns | Sentiment=s, Volume=v, Liquidity=l) P(Volume=v, Liquidity=l | Sentiment=s)$$
67
+
68
+ ## Next Steps
69
+
70
+ - [Market Data](market-data.md) - Market data client
71
+ - [Signal Generation](signal-generation.md) - Signal generation