coordinate-system 7.0.0__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- coordinate_system/__init__.py +324 -0
- coordinate_system/complex_geometric_physics.py +519 -0
- coordinate_system/coordinate_system.cp313-win_amd64.pyd +0 -0
- coordinate_system/curve_interpolation.py +507 -0
- coordinate_system/differential_geometry.py +986 -0
- coordinate_system/spectral_geometry.py +1602 -0
- coordinate_system/u3_frame.py +885 -0
- coordinate_system/visualization.py +1069 -0
- coordinate_system-7.0.0.dist-info/LICENSE +9 -0
- coordinate_system-7.0.0.dist-info/METADATA +312 -0
- coordinate_system-7.0.0.dist-info/RECORD +13 -0
- coordinate_system-7.0.0.dist-info/WHEEL +5 -0
- coordinate_system-7.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,885 @@
|
|
|
1
|
+
"""
|
|
2
|
+
U(3) Complex Frame and Gauge Field Unification Framework
|
|
3
|
+
================================================================================
|
|
4
|
+
|
|
5
|
+
Complete implementation based on "Complex Frame and Gauge Field Unification Program"
|
|
6
|
+
|
|
7
|
+
Core Theory:
|
|
8
|
+
- Complex frame U(x) ∈ U(3) as unified structure of spacetime and gauge fields
|
|
9
|
+
- Symmetry breaking chain: SU(4) → SU(3) × SU(2) × U(1)
|
|
10
|
+
- Imaginary time embedding: ℝ³ × iℝ → internal rotational degrees of freedom
|
|
11
|
+
- Gauge field as complex frame connection: A_μ ∈ 𝔲(3)
|
|
12
|
+
- Three phase angles corresponding to color degrees of freedom (red, green, blue)
|
|
13
|
+
|
|
14
|
+
Author: Enhanced by AI following theoretical framework
|
|
15
|
+
Date: 2025-12-04
|
|
16
|
+
Version: 7.0.0-alpha
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
__version__ = '7.0.0-alpha'
|
|
20
|
+
|
|
21
|
+
import numpy as np
|
|
22
|
+
from typing import Tuple, Optional, List, Dict, Any
|
|
23
|
+
from dataclasses import dataclass
|
|
24
|
+
import warnings
|
|
25
|
+
|
|
26
|
+
# Attempt to import basic coordinate system
|
|
27
|
+
try:
|
|
28
|
+
from .coordinate_system import coord3, vec3, quat
|
|
29
|
+
except ImportError:
|
|
30
|
+
try:
|
|
31
|
+
from coordinate_system import coord3, vec3, quat
|
|
32
|
+
except ImportError:
|
|
33
|
+
coord3 = None
|
|
34
|
+
vec3 = None
|
|
35
|
+
quat = None
|
|
36
|
+
|
|
37
|
+
# Physical constants
|
|
38
|
+
HBAR = 1.0 # Reduced Planck constant (natural units)
|
|
39
|
+
C_SPEED = 1.0 # Speed of light (natural units)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
# ============================================================
|
|
43
|
+
# U(3) Complex Frame Class
|
|
44
|
+
# ============================================================
|
|
45
|
+
|
|
46
|
+
class U3Frame:
|
|
47
|
+
"""
|
|
48
|
+
U(3) Complex Frame - Complete three-dimensional unitary matrix frame
|
|
49
|
+
|
|
50
|
+
Mathematical form:
|
|
51
|
+
U(x) = [e₁(x), e₂(x), e₃(x)] ∈ U(3)
|
|
52
|
+
|
|
53
|
+
Each basis vector eₖ = aₖ + ibₖ ∈ ℂ³ satisfies:
|
|
54
|
+
⟨eⱼ, eₖ⟩ = δⱼₖ (complex inner product)
|
|
55
|
+
det(U) = e^{iφ} (phase degree of freedom)
|
|
56
|
+
|
|
57
|
+
Symmetry decomposition:
|
|
58
|
+
U(3) ⊃ SU(3) × U(1)
|
|
59
|
+
SU(3) ⊃ SU(2) × U(1)
|
|
60
|
+
|
|
61
|
+
Physical interpretation:
|
|
62
|
+
- Real part Re(eₖ): spatial direction vectors
|
|
63
|
+
- Imaginary part Im(eₖ): imaginary time evolution direction
|
|
64
|
+
- Three phase angles (θ₁, θ₂, θ₃): color degrees of freedom (red, green, blue)
|
|
65
|
+
"""
|
|
66
|
+
|
|
67
|
+
def __init__(self,
|
|
68
|
+
e1: Optional[np.ndarray] = None,
|
|
69
|
+
e2: Optional[np.ndarray] = None,
|
|
70
|
+
e3: Optional[np.ndarray] = None,
|
|
71
|
+
ensure_unitary: bool = True):
|
|
72
|
+
"""
|
|
73
|
+
Initialize U(3) complex frame
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
e1, e2, e3: Three complex basis vectors, each a complex array of shape (3,)
|
|
77
|
+
ensure_unitary: Whether to ensure unitarity
|
|
78
|
+
"""
|
|
79
|
+
if e1 is None:
|
|
80
|
+
# Default: identity frame
|
|
81
|
+
self.e1 = np.array([1.0+0j, 0.0+0j, 0.0+0j], dtype=complex)
|
|
82
|
+
self.e2 = np.array([0.0+0j, 1.0+0j, 0.0+0j], dtype=complex)
|
|
83
|
+
self.e3 = np.array([0.0+0j, 0.0+0j, 1.0+0j], dtype=complex)
|
|
84
|
+
else:
|
|
85
|
+
self.e1 = np.array(e1, dtype=complex)
|
|
86
|
+
self.e2 = np.array(e2, dtype=complex)
|
|
87
|
+
self.e3 = np.array(e3, dtype=complex)
|
|
88
|
+
|
|
89
|
+
if ensure_unitary:
|
|
90
|
+
self._gram_schmidt_orthonormalize()
|
|
91
|
+
|
|
92
|
+
# -------------------- Basic Properties --------------------
|
|
93
|
+
|
|
94
|
+
@property
|
|
95
|
+
def matrix(self) -> np.ndarray:
|
|
96
|
+
"""
|
|
97
|
+
U(3) matrix representation
|
|
98
|
+
|
|
99
|
+
Returns:
|
|
100
|
+
3×3 complex matrix [e₁ | e₂ | e₃]
|
|
101
|
+
"""
|
|
102
|
+
return np.column_stack([self.e1, self.e2, self.e3])
|
|
103
|
+
|
|
104
|
+
@property
|
|
105
|
+
def determinant(self) -> complex:
|
|
106
|
+
"""
|
|
107
|
+
Determinant det(U) = e^{iφ}
|
|
108
|
+
|
|
109
|
+
For U(3): |det(U)| = 1
|
|
110
|
+
"""
|
|
111
|
+
return np.linalg.det(self.matrix)
|
|
112
|
+
|
|
113
|
+
@property
|
|
114
|
+
def global_phase(self) -> float:
|
|
115
|
+
"""
|
|
116
|
+
Global phase φ = arg(det(U))
|
|
117
|
+
|
|
118
|
+
Corresponds to U(1) global gauge transformation
|
|
119
|
+
"""
|
|
120
|
+
return np.angle(self.determinant)
|
|
121
|
+
|
|
122
|
+
@property
|
|
123
|
+
def real_part(self) -> np.ndarray:
|
|
124
|
+
"""Real part: spatial frame"""
|
|
125
|
+
return np.column_stack([self.e1.real, self.e2.real, self.e3.real])
|
|
126
|
+
|
|
127
|
+
@property
|
|
128
|
+
def imag_part(self) -> np.ndarray:
|
|
129
|
+
"""Imaginary part: imaginary time direction"""
|
|
130
|
+
return np.column_stack([self.e1.imag, self.e2.imag, self.e3.imag])
|
|
131
|
+
|
|
132
|
+
# -------------------- Symmetry Decomposition --------------------
|
|
133
|
+
|
|
134
|
+
def to_su3_u1(self) -> Tuple['SU3Component', complex]:
|
|
135
|
+
"""
|
|
136
|
+
Decompose into SU(3) × U(1)
|
|
137
|
+
|
|
138
|
+
U(3) = SU(3) × U(1)
|
|
139
|
+
U = (det U)^{1/3} · V
|
|
140
|
+
|
|
141
|
+
where V ∈ SU(3), det(V) = 1
|
|
142
|
+
|
|
143
|
+
Returns:
|
|
144
|
+
(su3_component, u1_phase)
|
|
145
|
+
"""
|
|
146
|
+
det_u = self.determinant
|
|
147
|
+
u1_phase = det_u ** (1/3) # ∛det(U)
|
|
148
|
+
|
|
149
|
+
# Normalize to SU(3)
|
|
150
|
+
V_matrix = self.matrix / u1_phase
|
|
151
|
+
|
|
152
|
+
return SU3Component(V_matrix), u1_phase
|
|
153
|
+
|
|
154
|
+
def color_phases(self) -> Tuple[float, float, float]:
|
|
155
|
+
"""
|
|
156
|
+
Extract color phase angles (θ₁, θ₂, θ₃)
|
|
157
|
+
|
|
158
|
+
For diagonalized complex frame:
|
|
159
|
+
U = diag(e^{iθ₁}, e^{iθ₂}, e^{iθ₃})
|
|
160
|
+
|
|
161
|
+
Constraint: θ₁ + θ₂ + θ₃ = φ (global phase)
|
|
162
|
+
|
|
163
|
+
Returns:
|
|
164
|
+
(θ_red, θ_green, θ_blue)
|
|
165
|
+
"""
|
|
166
|
+
# Extract phases of diagonal elements
|
|
167
|
+
diag = np.diag(self.matrix)
|
|
168
|
+
phases = np.angle(diag)
|
|
169
|
+
|
|
170
|
+
return tuple(phases)
|
|
171
|
+
|
|
172
|
+
def to_quaternion_representation(self) -> Tuple[complex, complex, complex, complex]:
|
|
173
|
+
"""
|
|
174
|
+
Convert to quaternion representation (SU(2) subgroup only)
|
|
175
|
+
|
|
176
|
+
SU(2) ⊂ SU(3) corresponds to quaternion q = a + bi + cj + dk
|
|
177
|
+
|
|
178
|
+
Returns:
|
|
179
|
+
(q0, q1, q2, q3) quaternion components
|
|
180
|
+
"""
|
|
181
|
+
# Extract upper-left 2×2 submatrix (corresponding to SU(2))
|
|
182
|
+
su2_block = self.matrix[:2, :2]
|
|
183
|
+
|
|
184
|
+
# SU(2) → quaternion
|
|
185
|
+
# U = [[a+ib, -c+id], [c+id, a-ib]]
|
|
186
|
+
a = su2_block[0, 0].real
|
|
187
|
+
b = su2_block[0, 0].imag
|
|
188
|
+
c = su2_block[1, 0].real
|
|
189
|
+
d = su2_block[1, 0].imag
|
|
190
|
+
|
|
191
|
+
# Normalize
|
|
192
|
+
norm = np.sqrt(a**2 + b**2 + c**2 + d**2)
|
|
193
|
+
if norm > 1e-10:
|
|
194
|
+
return (a/norm, b/norm, c/norm, d/norm)
|
|
195
|
+
else:
|
|
196
|
+
return (1.0, 0.0, 0.0, 0.0)
|
|
197
|
+
|
|
198
|
+
# -------------------- Gauge Transformations --------------------
|
|
199
|
+
|
|
200
|
+
def gauge_transform_u1(self, phi: float) -> 'U3Frame':
|
|
201
|
+
"""
|
|
202
|
+
U(1) global gauge transformation
|
|
203
|
+
|
|
204
|
+
U → e^{iφ} U
|
|
205
|
+
|
|
206
|
+
Args:
|
|
207
|
+
phi: Gauge phase
|
|
208
|
+
|
|
209
|
+
Returns:
|
|
210
|
+
Transformed frame
|
|
211
|
+
"""
|
|
212
|
+
factor = np.exp(1j * phi)
|
|
213
|
+
return U3Frame(
|
|
214
|
+
e1=self.e1 * factor,
|
|
215
|
+
e2=self.e2 * factor,
|
|
216
|
+
e3=self.e3 * factor,
|
|
217
|
+
ensure_unitary=False
|
|
218
|
+
)
|
|
219
|
+
|
|
220
|
+
def gauge_transform_su2(self, pauli_vector: Tuple[float, float, float]) -> 'U3Frame':
|
|
221
|
+
"""
|
|
222
|
+
SU(2) gauge transformation (acting on first two basis vectors)
|
|
223
|
+
|
|
224
|
+
Corresponds to weak interaction gauge group
|
|
225
|
+
|
|
226
|
+
Args:
|
|
227
|
+
pauli_vector: (θ_x, θ_y, θ_z) Pauli vector parameters
|
|
228
|
+
|
|
229
|
+
Returns:
|
|
230
|
+
Transformed frame
|
|
231
|
+
"""
|
|
232
|
+
θ_x, θ_y, θ_z = pauli_vector
|
|
233
|
+
θ = np.sqrt(θ_x**2 + θ_y**2 + θ_z**2)
|
|
234
|
+
|
|
235
|
+
if θ < 1e-10:
|
|
236
|
+
return self
|
|
237
|
+
|
|
238
|
+
# SU(2) matrix: exp(i θ·σ/2)
|
|
239
|
+
n = np.array([θ_x, θ_y, θ_z]) / θ
|
|
240
|
+
cos_half = np.cos(θ/2)
|
|
241
|
+
sin_half = np.sin(θ/2)
|
|
242
|
+
|
|
243
|
+
# Construct SU(2) matrix
|
|
244
|
+
su2_matrix = np.array([
|
|
245
|
+
[cos_half + 1j*n[2]*sin_half, (1j*n[0] + n[1])*sin_half],
|
|
246
|
+
[(1j*n[0] - n[1])*sin_half, cos_half - 1j*n[2]*sin_half]
|
|
247
|
+
], dtype=complex)
|
|
248
|
+
|
|
249
|
+
# Apply to first two basis vectors
|
|
250
|
+
e12_block = np.column_stack([self.e1[:2], self.e2[:2]])
|
|
251
|
+
e12_transformed = e12_block @ su2_matrix
|
|
252
|
+
|
|
253
|
+
new_e1 = np.concatenate([e12_transformed[:, 0], [self.e1[2]]])
|
|
254
|
+
new_e2 = np.concatenate([e12_transformed[:, 1], [self.e2[2]]])
|
|
255
|
+
|
|
256
|
+
return U3Frame(e1=new_e1, e2=new_e2, e3=self.e3, ensure_unitary=False)
|
|
257
|
+
|
|
258
|
+
def gauge_transform_su3(self, gell_mann_params: np.ndarray) -> 'U3Frame':
|
|
259
|
+
"""
|
|
260
|
+
SU(3) gauge transformation (gluon transformation)
|
|
261
|
+
|
|
262
|
+
Corresponds to strong interaction gauge group (QCD)
|
|
263
|
+
|
|
264
|
+
Args:
|
|
265
|
+
gell_mann_params: 8 Gell-Mann matrix parameters (θ₁, ..., θ₈)
|
|
266
|
+
|
|
267
|
+
Returns:
|
|
268
|
+
Transformed frame
|
|
269
|
+
"""
|
|
270
|
+
if len(gell_mann_params) != 8:
|
|
271
|
+
raise ValueError("SU(3) requires 8 parameters (Gell-Mann matrices)")
|
|
272
|
+
|
|
273
|
+
# Construct SU(3) matrix: exp(i Σₐ θₐ λₐ/2)
|
|
274
|
+
su3_matrix = self._build_su3_matrix(gell_mann_params)
|
|
275
|
+
|
|
276
|
+
# Apply transformation
|
|
277
|
+
new_matrix = self.matrix @ su3_matrix
|
|
278
|
+
|
|
279
|
+
return U3Frame(
|
|
280
|
+
e1=new_matrix[:, 0],
|
|
281
|
+
e2=new_matrix[:, 1],
|
|
282
|
+
e3=new_matrix[:, 2],
|
|
283
|
+
ensure_unitary=False
|
|
284
|
+
)
|
|
285
|
+
|
|
286
|
+
# -------------------- Imaginary Time Evolution --------------------
|
|
287
|
+
|
|
288
|
+
def imaginary_time_evolution(self, tau: float, hamiltonian: Optional[np.ndarray] = None) -> 'U3Frame':
|
|
289
|
+
"""
|
|
290
|
+
Imaginary time evolution operator: exp(-τĤ)
|
|
291
|
+
|
|
292
|
+
Corresponds to Wick rotation: t → -iτ
|
|
293
|
+
|
|
294
|
+
Mathematical form:
|
|
295
|
+
U(τ) = exp(-τĤ) U(0)
|
|
296
|
+
|
|
297
|
+
Physical meaning:
|
|
298
|
+
- τ > 0: Imaginary time parameter (thermodynamic β = 1/kT)
|
|
299
|
+
- Ĥ: Hamiltonian operator (energy operator)
|
|
300
|
+
- Connection to path integral: Z = Tr[exp(-βĤ)]
|
|
301
|
+
|
|
302
|
+
Args:
|
|
303
|
+
tau: Imaginary time parameter
|
|
304
|
+
hamiltonian: 3×3 Hermitian matrix (default uses standard Laplacian)
|
|
305
|
+
|
|
306
|
+
Returns:
|
|
307
|
+
Evolved frame
|
|
308
|
+
"""
|
|
309
|
+
if hamiltonian is None:
|
|
310
|
+
# Default: use simple diagonal Hamiltonian
|
|
311
|
+
hamiltonian = np.diag([1.0, 1.0, 1.0])
|
|
312
|
+
|
|
313
|
+
# Evolution operator: exp(-τĤ)
|
|
314
|
+
evolution_op = scipy_expm(-tau * hamiltonian)
|
|
315
|
+
|
|
316
|
+
# Apply to frame
|
|
317
|
+
new_matrix = evolution_op @ self.matrix
|
|
318
|
+
|
|
319
|
+
return U3Frame(
|
|
320
|
+
e1=new_matrix[:, 0],
|
|
321
|
+
e2=new_matrix[:, 1],
|
|
322
|
+
e3=new_matrix[:, 2],
|
|
323
|
+
ensure_unitary=False
|
|
324
|
+
)
|
|
325
|
+
|
|
326
|
+
def wick_rotation(self, real_time: float) -> 'U3Frame':
|
|
327
|
+
"""
|
|
328
|
+
Wick rotation: t → -iτ
|
|
329
|
+
|
|
330
|
+
Convert real time evolution to imaginary time evolution
|
|
331
|
+
|
|
332
|
+
Args:
|
|
333
|
+
real_time: Real time t
|
|
334
|
+
|
|
335
|
+
Returns:
|
|
336
|
+
Frame after Wick rotation (imaginary time τ = it)
|
|
337
|
+
"""
|
|
338
|
+
tau = -1j * real_time
|
|
339
|
+
return self.imaginary_time_evolution(tau.imag)
|
|
340
|
+
|
|
341
|
+
# -------------------- Internal Methods --------------------
|
|
342
|
+
|
|
343
|
+
def _gram_schmidt_orthonormalize(self):
|
|
344
|
+
"""Gram-Schmidt orthonormalization"""
|
|
345
|
+
# Normalize e1
|
|
346
|
+
norm1 = np.sqrt(np.vdot(self.e1, self.e1).real)
|
|
347
|
+
if norm1 > 1e-10:
|
|
348
|
+
self.e1 = self.e1 / norm1
|
|
349
|
+
|
|
350
|
+
# Orthogonalize and normalize e2
|
|
351
|
+
self.e2 = self.e2 - np.vdot(self.e1, self.e2) * self.e1
|
|
352
|
+
norm2 = np.sqrt(np.vdot(self.e2, self.e2).real)
|
|
353
|
+
if norm2 > 1e-10:
|
|
354
|
+
self.e2 = self.e2 / norm2
|
|
355
|
+
|
|
356
|
+
# Orthogonalize and normalize e3
|
|
357
|
+
self.e3 = self.e3 - np.vdot(self.e1, self.e3) * self.e1 - np.vdot(self.e2, self.e3) * self.e2
|
|
358
|
+
norm3 = np.sqrt(np.vdot(self.e3, self.e3).real)
|
|
359
|
+
if norm3 > 1e-10:
|
|
360
|
+
self.e3 = self.e3 / norm3
|
|
361
|
+
|
|
362
|
+
def _build_su3_matrix(self, params: np.ndarray) -> np.ndarray:
|
|
363
|
+
"""Construct SU(3) matrix"""
|
|
364
|
+
# Gell-Mann matrices (λ₁ to λ₈)
|
|
365
|
+
lambda_matrices = self._gell_mann_matrices()
|
|
366
|
+
|
|
367
|
+
# Linear combination
|
|
368
|
+
generator = sum(params[i] * lambda_matrices[i] for i in range(8))
|
|
369
|
+
|
|
370
|
+
# Exponential map
|
|
371
|
+
return scipy_expm(1j * generator)
|
|
372
|
+
|
|
373
|
+
@staticmethod
|
|
374
|
+
def _gell_mann_matrices() -> List[np.ndarray]:
|
|
375
|
+
"""Gell-Mann 矩阵(SU(3) 生成元)"""
|
|
376
|
+
λ = [
|
|
377
|
+
# λ₁
|
|
378
|
+
np.array([[0, 1, 0], [1, 0, 0], [0, 0, 0]], dtype=complex),
|
|
379
|
+
# λ₂
|
|
380
|
+
np.array([[0, -1j, 0], [1j, 0, 0], [0, 0, 0]], dtype=complex),
|
|
381
|
+
# λ₃
|
|
382
|
+
np.array([[1, 0, 0], [0, -1, 0], [0, 0, 0]], dtype=complex),
|
|
383
|
+
# λ₄
|
|
384
|
+
np.array([[0, 0, 1], [0, 0, 0], [1, 0, 0]], dtype=complex),
|
|
385
|
+
# λ₅
|
|
386
|
+
np.array([[0, 0, -1j], [0, 0, 0], [1j, 0, 0]], dtype=complex),
|
|
387
|
+
# λ₆
|
|
388
|
+
np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0]], dtype=complex),
|
|
389
|
+
# λ₇
|
|
390
|
+
np.array([[0, 0, 0], [0, 0, -1j], [0, 1j, 0]], dtype=complex),
|
|
391
|
+
# λ₈
|
|
392
|
+
np.array([[1, 0, 0], [0, 1, 0], [0, 0, -2]], dtype=complex) / np.sqrt(3),
|
|
393
|
+
]
|
|
394
|
+
return λ
|
|
395
|
+
|
|
396
|
+
# -------------------- Operator Overloading --------------------
|
|
397
|
+
|
|
398
|
+
def __mul__(self, other):
|
|
399
|
+
"""Frame multiplication or scalar multiplication"""
|
|
400
|
+
if isinstance(other, (int, float, complex)):
|
|
401
|
+
# Scalar multiplication
|
|
402
|
+
return U3Frame(
|
|
403
|
+
e1=self.e1 * other,
|
|
404
|
+
e2=self.e2 * other,
|
|
405
|
+
e3=self.e3 * other,
|
|
406
|
+
ensure_unitary=False
|
|
407
|
+
)
|
|
408
|
+
elif isinstance(other, U3Frame):
|
|
409
|
+
# Matrix multiplication
|
|
410
|
+
new_matrix = self.matrix @ other.matrix
|
|
411
|
+
return U3Frame(
|
|
412
|
+
e1=new_matrix[:, 0],
|
|
413
|
+
e2=new_matrix[:, 1],
|
|
414
|
+
e3=new_matrix[:, 2],
|
|
415
|
+
ensure_unitary=False
|
|
416
|
+
)
|
|
417
|
+
return NotImplemented
|
|
418
|
+
|
|
419
|
+
def __repr__(self):
|
|
420
|
+
phases = self.color_phases()
|
|
421
|
+
return f"U3Frame(phases=(R:{phases[0]:.3f}, G:{phases[1]:.3f}, B:{phases[2]:.3f}), φ={self.global_phase:.3f})"
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
# ============================================================
|
|
425
|
+
# SU(3) Component Class
|
|
426
|
+
# ============================================================
|
|
427
|
+
|
|
428
|
+
@dataclass
|
|
429
|
+
class SU3Component:
|
|
430
|
+
"""
|
|
431
|
+
SU(3) component (strong interaction gauge group)
|
|
432
|
+
|
|
433
|
+
Properties:
|
|
434
|
+
- det(V) = 1
|
|
435
|
+
- V† V = I
|
|
436
|
+
- 8 generators (Gell-Mann matrices)
|
|
437
|
+
|
|
438
|
+
Physical meaning:
|
|
439
|
+
- Corresponds to Quantum Chromodynamics (QCD)
|
|
440
|
+
- 8 gluon fields
|
|
441
|
+
- Color charge conservation
|
|
442
|
+
"""
|
|
443
|
+
matrix: np.ndarray # 3×3 SU(3) matrix
|
|
444
|
+
|
|
445
|
+
def __post_init__(self):
|
|
446
|
+
"""Verify SU(3) properties"""
|
|
447
|
+
det = np.linalg.det(self.matrix)
|
|
448
|
+
if not np.isclose(abs(det), 1.0, atol=1e-6):
|
|
449
|
+
warnings.warn(f"SU(3) matrix determinant is not 1: |det|={abs(det):.6f}")
|
|
450
|
+
|
|
451
|
+
def to_gell_mann_params(self) -> np.ndarray:
|
|
452
|
+
"""
|
|
453
|
+
Decompose into Gell-Mann matrix parameters
|
|
454
|
+
|
|
455
|
+
V = exp(i Σₐ θₐ λₐ)
|
|
456
|
+
|
|
457
|
+
Returns:
|
|
458
|
+
8 parameters (θ₁, ..., θ₈)
|
|
459
|
+
"""
|
|
460
|
+
# Take logarithm
|
|
461
|
+
log_v = scipy_logm(self.matrix)
|
|
462
|
+
|
|
463
|
+
# Extract Hermitian part
|
|
464
|
+
log_v_herm = (log_v - log_v.T.conj()) / (2j)
|
|
465
|
+
|
|
466
|
+
# Project onto Gell-Mann matrices
|
|
467
|
+
lambda_matrices = U3Frame._gell_mann_matrices()
|
|
468
|
+
params = np.array([
|
|
469
|
+
np.trace(log_v_herm @ lam).real / 2
|
|
470
|
+
for lam in lambda_matrices
|
|
471
|
+
])
|
|
472
|
+
|
|
473
|
+
return params
|
|
474
|
+
|
|
475
|
+
def color_charge(self) -> Tuple[float, float]:
|
|
476
|
+
"""
|
|
477
|
+
Color charge (corresponding to two Casimir operators of SU(3))
|
|
478
|
+
|
|
479
|
+
Returns:
|
|
480
|
+
(C₁, C₂) - First and second Casimir invariants
|
|
481
|
+
"""
|
|
482
|
+
# First Casimir: C₁ = Tr(T) (always 0 for SU(3))
|
|
483
|
+
C1 = np.trace(self.matrix).real
|
|
484
|
+
|
|
485
|
+
# Second Casimir: C₂ = Tr(T²)
|
|
486
|
+
C2 = np.trace(self.matrix @ self.matrix).real
|
|
487
|
+
|
|
488
|
+
return (C1, C2)
|
|
489
|
+
|
|
490
|
+
|
|
491
|
+
# ============================================================
|
|
492
|
+
# Gauge Field Class
|
|
493
|
+
# ============================================================
|
|
494
|
+
|
|
495
|
+
class GaugeConnection:
|
|
496
|
+
"""
|
|
497
|
+
Gauge field connection A_μ ∈ 𝔲(3)
|
|
498
|
+
|
|
499
|
+
Mathematical form:
|
|
500
|
+
A_μ = A_μ^{SU(3)} + A_μ^{SU(2)} + A_μ^{U(1)}
|
|
501
|
+
|
|
502
|
+
Covariant derivative:
|
|
503
|
+
D_μ U = ∂_μ U + A_μ U
|
|
504
|
+
|
|
505
|
+
Field strength tensor (curvature):
|
|
506
|
+
F_μν = ∂_μ A_ν - ∂_ν A_μ + [A_μ, A_ν]
|
|
507
|
+
|
|
508
|
+
Physical interpretation:
|
|
509
|
+
- A_μ^{SU(3)}: Gluon field (8 components)
|
|
510
|
+
- A_μ^{SU(2)}: W/Z boson field (3 components)
|
|
511
|
+
- A_μ^{U(1)}: Photon field (1 component)
|
|
512
|
+
"""
|
|
513
|
+
|
|
514
|
+
def __init__(self,
|
|
515
|
+
su3_component: Optional[np.ndarray] = None,
|
|
516
|
+
su2_component: Optional[np.ndarray] = None,
|
|
517
|
+
u1_component: Optional[complex] = None):
|
|
518
|
+
"""
|
|
519
|
+
Initialize gauge connection
|
|
520
|
+
|
|
521
|
+
Args:
|
|
522
|
+
su3_component: 8×1 real array (Gell-Mann components)
|
|
523
|
+
su2_component: 3×1 real array (Pauli components)
|
|
524
|
+
u1_component: Complex number (U(1) component)
|
|
525
|
+
"""
|
|
526
|
+
self.su3 = su3_component if su3_component is not None else np.zeros(8)
|
|
527
|
+
self.su2 = su2_component if su2_component is not None else np.zeros(3)
|
|
528
|
+
self.u1 = u1_component if u1_component is not None else 0.0+0j
|
|
529
|
+
|
|
530
|
+
def connection_matrix(self) -> np.ndarray:
|
|
531
|
+
"""
|
|
532
|
+
Matrix representation of connection A_μ ∈ 𝔲(3)
|
|
533
|
+
|
|
534
|
+
Returns:
|
|
535
|
+
3×3 anti-Hermitian matrix
|
|
536
|
+
"""
|
|
537
|
+
# SU(3) part
|
|
538
|
+
lambda_matrices = U3Frame._gell_mann_matrices()
|
|
539
|
+
A_su3 = sum(self.su3[i] * lambda_matrices[i] for i in range(8))
|
|
540
|
+
|
|
541
|
+
# SU(2) part (embedded in upper-left 2×2 block)
|
|
542
|
+
pauli_matrices = self._pauli_matrices()
|
|
543
|
+
A_su2_block = sum(self.su2[i] * pauli_matrices[i] for i in range(3))
|
|
544
|
+
A_su2 = np.zeros((3, 3), dtype=complex)
|
|
545
|
+
A_su2[:2, :2] = A_su2_block
|
|
546
|
+
|
|
547
|
+
# U(1) part
|
|
548
|
+
A_u1 = self.u1 * np.eye(3)
|
|
549
|
+
|
|
550
|
+
return 1j * (A_su3 + A_su2 + A_u1)
|
|
551
|
+
|
|
552
|
+
def field_strength(self, other: 'GaugeConnection') -> 'FieldStrength':
|
|
553
|
+
"""
|
|
554
|
+
Calculate field strength tensor F_μν = [D_μ, D_ν]
|
|
555
|
+
|
|
556
|
+
Args:
|
|
557
|
+
other: Connection in another direction A_ν
|
|
558
|
+
|
|
559
|
+
Returns:
|
|
560
|
+
FieldStrength object
|
|
561
|
+
"""
|
|
562
|
+
A_mu = self.connection_matrix()
|
|
563
|
+
A_nu = other.connection_matrix()
|
|
564
|
+
|
|
565
|
+
# F_μν = [A_μ, A_ν] (simplified version, ignoring derivative terms)
|
|
566
|
+
F_matrix = A_mu @ A_nu - A_nu @ A_mu
|
|
567
|
+
|
|
568
|
+
return FieldStrength(F_matrix)
|
|
569
|
+
|
|
570
|
+
@staticmethod
|
|
571
|
+
def _pauli_matrices() -> List[np.ndarray]:
|
|
572
|
+
"""Pauli 矩阵(SU(2) 生成元)"""
|
|
573
|
+
σ = [
|
|
574
|
+
np.array([[0, 1], [1, 0]], dtype=complex), # σ₁
|
|
575
|
+
np.array([[0, -1j], [1j, 0]], dtype=complex), # σ₂
|
|
576
|
+
np.array([[1, 0], [0, -1]], dtype=complex), # σ₃
|
|
577
|
+
]
|
|
578
|
+
return σ
|
|
579
|
+
|
|
580
|
+
def __repr__(self):
|
|
581
|
+
return f"GaugeConnection(SU(3): {np.linalg.norm(self.su3):.3f}, SU(2): {np.linalg.norm(self.su2):.3f}, U(1): {abs(self.u1):.3f})"
|
|
582
|
+
|
|
583
|
+
|
|
584
|
+
@dataclass
|
|
585
|
+
class FieldStrength:
|
|
586
|
+
"""
|
|
587
|
+
Field strength tensor F_μν (curvature of gauge field)
|
|
588
|
+
|
|
589
|
+
Physical meaning:
|
|
590
|
+
- Electromagnetic field: F_μν corresponds to electric and magnetic fields
|
|
591
|
+
- Non-Abelian gauge field: Field strength of gluons/W bosons
|
|
592
|
+
"""
|
|
593
|
+
matrix: np.ndarray # 3×3 anti-Hermitian matrix
|
|
594
|
+
|
|
595
|
+
def yang_mills_action(self) -> float:
|
|
596
|
+
"""
|
|
597
|
+
Yang-Mills action: S = -1/(4g²) Tr(F_μν F^μν)
|
|
598
|
+
|
|
599
|
+
Returns:
|
|
600
|
+
Action (real number)
|
|
601
|
+
"""
|
|
602
|
+
return -0.25 * np.trace(self.matrix @ self.matrix.T.conj()).real
|
|
603
|
+
|
|
604
|
+
def topological_charge(self) -> float:
|
|
605
|
+
"""
|
|
606
|
+
Topological charge: Q = (1/32π²) ∫ Tr(F ∧ F)
|
|
607
|
+
|
|
608
|
+
Returns:
|
|
609
|
+
Topological charge (instanton number)
|
|
610
|
+
"""
|
|
611
|
+
# Simplified version: using matrix trace
|
|
612
|
+
return (1.0 / (32 * np.pi**2)) * np.trace(self.matrix @ self.matrix).real
|
|
613
|
+
|
|
614
|
+
|
|
615
|
+
# ============================================================
|
|
616
|
+
# Symmetry Breaking Potential
|
|
617
|
+
# ============================================================
|
|
618
|
+
|
|
619
|
+
class SymmetryBreakingPotential:
|
|
620
|
+
"""
|
|
621
|
+
Symmetry breaking potential function
|
|
622
|
+
|
|
623
|
+
Mathematical form:
|
|
624
|
+
V(U) = -μ² Tr(U†U) + λ [Tr(U†U)]² + γ Tr([U†,U]²)
|
|
625
|
+
|
|
626
|
+
Minimum determines symmetry breaking pattern:
|
|
627
|
+
- SU(4) → SU(3) × U(1)
|
|
628
|
+
- SU(3) → SU(2) × U(1)
|
|
629
|
+
|
|
630
|
+
Physical analogy:
|
|
631
|
+
- Similar to Higgs potential
|
|
632
|
+
- Vacuum expectation value breaks symmetry
|
|
633
|
+
"""
|
|
634
|
+
|
|
635
|
+
def __init__(self, mu_squared: float = -1.0, lambda_coupling: float = 0.5, gamma_coupling: float = 0.1):
|
|
636
|
+
"""
|
|
637
|
+
Initialize potential parameters
|
|
638
|
+
|
|
639
|
+
Args:
|
|
640
|
+
mu_squared: Mass squared term (negative value triggers symmetry breaking)
|
|
641
|
+
lambda_coupling: Quartic coupling constant
|
|
642
|
+
gamma_coupling: Non-Abelian coupling constant
|
|
643
|
+
"""
|
|
644
|
+
self.mu2 = mu_squared
|
|
645
|
+
self.lambda_ = lambda_coupling
|
|
646
|
+
self.gamma = gamma_coupling
|
|
647
|
+
|
|
648
|
+
def potential(self, frame: U3Frame) -> float:
|
|
649
|
+
"""
|
|
650
|
+
Calculate potential V(U)
|
|
651
|
+
|
|
652
|
+
Args:
|
|
653
|
+
frame: U(3) frame
|
|
654
|
+
|
|
655
|
+
Returns:
|
|
656
|
+
Potential value
|
|
657
|
+
"""
|
|
658
|
+
U = frame.matrix
|
|
659
|
+
U_dag = U.T.conj()
|
|
660
|
+
|
|
661
|
+
# First term: -μ² Tr(U†U)
|
|
662
|
+
term1 = -self.mu2 * np.trace(U_dag @ U).real
|
|
663
|
+
|
|
664
|
+
# Second term: λ [Tr(U†U)]²
|
|
665
|
+
tr_UdagU = np.trace(U_dag @ U)
|
|
666
|
+
term2 = self.lambda_ * (tr_UdagU * tr_UdagU.conj()).real
|
|
667
|
+
|
|
668
|
+
# Third term: γ Tr([U†,U]²)
|
|
669
|
+
commutator = U_dag @ U - U @ U_dag
|
|
670
|
+
term3 = self.gamma * np.trace(commutator @ commutator).real
|
|
671
|
+
|
|
672
|
+
return term1 + term2 + term3
|
|
673
|
+
|
|
674
|
+
def gradient(self, frame: U3Frame) -> np.ndarray:
|
|
675
|
+
"""
|
|
676
|
+
Calculate potential gradient ∇V(U)
|
|
677
|
+
|
|
678
|
+
Used to minimize potential and find symmetry breaking vacuum
|
|
679
|
+
|
|
680
|
+
Returns:
|
|
681
|
+
3×3 complex matrix gradient
|
|
682
|
+
"""
|
|
683
|
+
U = frame.matrix
|
|
684
|
+
U_dag = U.T.conj()
|
|
685
|
+
|
|
686
|
+
# Numerical gradient (simplified implementation)
|
|
687
|
+
epsilon = 1e-6
|
|
688
|
+
grad = np.zeros((3, 3), dtype=complex)
|
|
689
|
+
|
|
690
|
+
V0 = self.potential(frame)
|
|
691
|
+
|
|
692
|
+
for i in range(3):
|
|
693
|
+
for j in range(3):
|
|
694
|
+
# Real part direction
|
|
695
|
+
U_perturb = U.copy()
|
|
696
|
+
U_perturb[i, j] += epsilon
|
|
697
|
+
frame_perturb = U3Frame(U_perturb[:, 0], U_perturb[:, 1], U_perturb[:, 2], ensure_unitary=False)
|
|
698
|
+
grad[i, j] = (self.potential(frame_perturb) - V0) / epsilon
|
|
699
|
+
|
|
700
|
+
# Imaginary part direction
|
|
701
|
+
U_perturb = U.copy()
|
|
702
|
+
U_perturb[i, j] += 1j * epsilon
|
|
703
|
+
frame_perturb = U3Frame(U_perturb[:, 0], U_perturb[:, 1], U_perturb[:, 2], ensure_unitary=False)
|
|
704
|
+
grad[i, j] += 1j * (self.potential(frame_perturb) - V0) / epsilon
|
|
705
|
+
|
|
706
|
+
return grad
|
|
707
|
+
|
|
708
|
+
def find_vacuum(self, initial_frame: Optional[U3Frame] = None,
|
|
709
|
+
max_iterations: int = 100, tolerance: float = 1e-6) -> U3Frame:
|
|
710
|
+
"""
|
|
711
|
+
Find vacuum state (potential minimum)
|
|
712
|
+
|
|
713
|
+
Using gradient descent method
|
|
714
|
+
|
|
715
|
+
Args:
|
|
716
|
+
initial_frame: Initial guess
|
|
717
|
+
max_iterations: Maximum number of iterations
|
|
718
|
+
tolerance: Convergence tolerance
|
|
719
|
+
|
|
720
|
+
Returns:
|
|
721
|
+
Vacuum state frame
|
|
722
|
+
"""
|
|
723
|
+
if initial_frame is None:
|
|
724
|
+
initial_frame = U3Frame() # Start from identity frame
|
|
725
|
+
|
|
726
|
+
current_frame = initial_frame
|
|
727
|
+
learning_rate = 0.01
|
|
728
|
+
|
|
729
|
+
for iteration in range(max_iterations):
|
|
730
|
+
grad = self.gradient(current_frame)
|
|
731
|
+
grad_norm = np.linalg.norm(grad)
|
|
732
|
+
|
|
733
|
+
if grad_norm < tolerance:
|
|
734
|
+
print(f"Converged at iteration {iteration}, |∇V| = {grad_norm:.2e}")
|
|
735
|
+
break
|
|
736
|
+
|
|
737
|
+
# Gradient descent step
|
|
738
|
+
U_new = current_frame.matrix - learning_rate * grad
|
|
739
|
+
current_frame = U3Frame(U_new[:, 0], U_new[:, 1], U_new[:, 2], ensure_unitary=True)
|
|
740
|
+
|
|
741
|
+
return current_frame
|
|
742
|
+
|
|
743
|
+
|
|
744
|
+
# ============================================================
|
|
745
|
+
# Auxiliary Functions
|
|
746
|
+
# ============================================================
|
|
747
|
+
|
|
748
|
+
def scipy_expm(matrix: np.ndarray) -> np.ndarray:
|
|
749
|
+
"""Matrix exponential function (depends on scipy)"""
|
|
750
|
+
try:
|
|
751
|
+
from scipy.linalg import expm
|
|
752
|
+
return expm(matrix)
|
|
753
|
+
except ImportError:
|
|
754
|
+
# Simplified implementation: Taylor expansion
|
|
755
|
+
return _matrix_exp_taylor(matrix, order=10)
|
|
756
|
+
|
|
757
|
+
def scipy_logm(matrix: np.ndarray) -> np.ndarray:
|
|
758
|
+
"""Matrix logarithm function (depends on scipy)"""
|
|
759
|
+
try:
|
|
760
|
+
from scipy.linalg import logm
|
|
761
|
+
return logm(matrix)
|
|
762
|
+
except ImportError:
|
|
763
|
+
raise NotImplementedError("Requires scipy.linalg.logm")
|
|
764
|
+
|
|
765
|
+
def _matrix_exp_taylor(A: np.ndarray, order: int = 10) -> np.ndarray:
|
|
766
|
+
"""Calculate matrix exponential using Taylor expansion"""
|
|
767
|
+
result = np.eye(A.shape[0], dtype=A.dtype)
|
|
768
|
+
term = np.eye(A.shape[0], dtype=A.dtype)
|
|
769
|
+
|
|
770
|
+
for k in range(1, order + 1):
|
|
771
|
+
term = term @ A / k
|
|
772
|
+
result += term
|
|
773
|
+
|
|
774
|
+
return result
|
|
775
|
+
|
|
776
|
+
|
|
777
|
+
# ============================================================
|
|
778
|
+
# Exports
|
|
779
|
+
# ============================================================
|
|
780
|
+
|
|
781
|
+
__all__ = [
|
|
782
|
+
'U3Frame',
|
|
783
|
+
'SU3Component',
|
|
784
|
+
'GaugeConnection',
|
|
785
|
+
'FieldStrength',
|
|
786
|
+
'SymmetryBreakingPotential',
|
|
787
|
+
'HBAR',
|
|
788
|
+
'C_SPEED',
|
|
789
|
+
]
|
|
790
|
+
|
|
791
|
+
|
|
792
|
+
# ============================================================
|
|
793
|
+
# Demonstration
|
|
794
|
+
# ============================================================
|
|
795
|
+
|
|
796
|
+
def demonstrate():
|
|
797
|
+
"""Demonstrate U(3) complex frame and gauge field"""
|
|
798
|
+
print("=" * 70)
|
|
799
|
+
print("U(3) Complex Frame and Gauge Field Unification Framework Demo")
|
|
800
|
+
print("=" * 70)
|
|
801
|
+
|
|
802
|
+
# 1. Create U(3) frame
|
|
803
|
+
print("\n1. Create U(3) complex frame")
|
|
804
|
+
frame = U3Frame()
|
|
805
|
+
print(f" {frame}")
|
|
806
|
+
print(f" det(U) = {frame.determinant:.6f}")
|
|
807
|
+
print(f" Global phase φ = {frame.global_phase:.4f} rad")
|
|
808
|
+
|
|
809
|
+
# 2. Color phases
|
|
810
|
+
print("\n2. Color phases (RGB)")
|
|
811
|
+
phases = frame.color_phases()
|
|
812
|
+
print(f" θ_R (red) = {phases[0]:.4f} rad")
|
|
813
|
+
print(f" θ_G (green) = {phases[1]:.4f} rad")
|
|
814
|
+
print(f" θ_B (blue) = {phases[2]:.4f} rad")
|
|
815
|
+
print(f" Constraint check: θ_R + θ_G + θ_B = {sum(phases):.4f} (should equal φ)")
|
|
816
|
+
|
|
817
|
+
# 3. Symmetry decomposition
|
|
818
|
+
print("\n3. U(3) → SU(3) × U(1) decomposition")
|
|
819
|
+
su3_comp, u1_phase = frame.to_su3_u1()
|
|
820
|
+
print(f" SU(3) component det = {np.linalg.det(su3_comp.matrix):.6f} (should be 1)")
|
|
821
|
+
print(f" U(1) phase = {u1_phase:.6f}")
|
|
822
|
+
|
|
823
|
+
# 4. Quaternion representation
|
|
824
|
+
print("\n4. Quaternion representation (SU(2) subgroup)")
|
|
825
|
+
q = frame.to_quaternion_representation()
|
|
826
|
+
print(f" q = ({q[0]:.4f}, {q[1]:.4f}, {q[2]:.4f}, {q[3]:.4f})")
|
|
827
|
+
print(f" |q| = {np.sqrt(sum(abs(x)**2 for x in q)):.6f}")
|
|
828
|
+
|
|
829
|
+
# 5. Gauge transformations
|
|
830
|
+
print("\n5. Gauge transformations")
|
|
831
|
+
# U(1) transformation
|
|
832
|
+
frame_u1 = frame.gauge_transform_u1(np.pi/4)
|
|
833
|
+
print(f" After U(1) transformation: {frame_u1}")
|
|
834
|
+
|
|
835
|
+
# SU(2) transformation
|
|
836
|
+
frame_su2 = frame.gauge_transform_su2((0.1, 0.2, 0.3))
|
|
837
|
+
print(f" After SU(2) transformation: {frame_su2}")
|
|
838
|
+
|
|
839
|
+
# 6. Gauge field connection
|
|
840
|
+
print("\n6. Gauge field connection")
|
|
841
|
+
connection = GaugeConnection(
|
|
842
|
+
su3_component=np.random.randn(8) * 0.1,
|
|
843
|
+
su2_component=np.random.randn(3) * 0.1,
|
|
844
|
+
u1_component=0.05+0.02j
|
|
845
|
+
)
|
|
846
|
+
print(f" {connection}")
|
|
847
|
+
A_matrix = connection.connection_matrix()
|
|
848
|
+
print(f" ||A_μ|| = {np.linalg.norm(A_matrix):.4f}")
|
|
849
|
+
|
|
850
|
+
# 7. Field strength tensor
|
|
851
|
+
print("\n7. Field strength tensor (curvature)")
|
|
852
|
+
connection2 = GaugeConnection(
|
|
853
|
+
su3_component=np.random.randn(8) * 0.1,
|
|
854
|
+
su2_component=np.random.randn(3) * 0.1,
|
|
855
|
+
u1_component=0.03+0.01j
|
|
856
|
+
)
|
|
857
|
+
F = connection.field_strength(connection2)
|
|
858
|
+
print(f" ||F_μν|| = {np.linalg.norm(F.matrix):.4f}")
|
|
859
|
+
print(f" Yang-Mills action S = {F.yang_mills_action():.6f}")
|
|
860
|
+
print(f" Topological charge Q = {F.topological_charge():.6f}")
|
|
861
|
+
|
|
862
|
+
# 8. Symmetry breaking
|
|
863
|
+
print("\n8. Symmetry breaking potential")
|
|
864
|
+
potential = SymmetryBreakingPotential(mu_squared=-1.0, lambda_coupling=0.5)
|
|
865
|
+
V = potential.potential(frame)
|
|
866
|
+
print(f" V(U) = {V:.6f}")
|
|
867
|
+
print(f" Finding vacuum state...")
|
|
868
|
+
vacuum = potential.find_vacuum(max_iterations=50)
|
|
869
|
+
V_vacuum = potential.potential(vacuum)
|
|
870
|
+
print(f" V(U_vacuum) = {V_vacuum:.6f}")
|
|
871
|
+
print(f" Vacuum state: {vacuum}")
|
|
872
|
+
|
|
873
|
+
print("\n" + "=" * 70)
|
|
874
|
+
print("Core Theory Summary:")
|
|
875
|
+
print(" • U(3) = [e₁, e₂, e₃] ∈ U(3) [Complete unitary frame]")
|
|
876
|
+
print(" • U(3) = SU(3) × U(1) [Symmetry decomposition]")
|
|
877
|
+
print(" • (θ_R, θ_G, θ_B) [Color phases]")
|
|
878
|
+
print(" • A_μ = A_μ^{SU(3)} + A_μ^{SU(2)} + A_μ^{U(1)} [Gauge connection]")
|
|
879
|
+
print(" • F_μν = [D_μ, D_ν] [Field strength tensor]")
|
|
880
|
+
print(" • V(U) minimization → Symmetry breaking pattern")
|
|
881
|
+
print("=" * 70)
|
|
882
|
+
|
|
883
|
+
|
|
884
|
+
if __name__ == "__main__":
|
|
885
|
+
demonstrate()
|