coordinate-system 7.0.0__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,519 @@
1
+ """
2
+ Complex Geometric Physics - Unified Framework
3
+ ================================================================================
4
+
5
+ Implementation of the "Christmas Equation" and Complex Frame Unified Theory (CFUT)
6
+
7
+ The Christmas Equation (Complete complex form):
8
+ M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
9
+
10
+ Where:
11
+ - Ĝ_μν: Einstein tensor from complex frame U(x)
12
+ - K̄_μ: Chern-Simons current (topological)
13
+ - T̂_μν^(top): Topological energy-momentum tensor
14
+ - T̂_μν^(mat): Matter energy-momentum tensor
15
+
16
+ Core Theory:
17
+ - Universe as U(3) complex frame field: U(x) ∈ U(3)
18
+ - Real-imaginary decomposition: U = U^(R) + iU^(I)
19
+ - Real part: geometric properties (metric, curvature, spacetime)
20
+ - Imaginary part: topological properties (phase winding, gauge symmetry)
21
+
22
+ Physical Interpretation:
23
+ - Geometry + Topology = Complex Matter + Topological Force
24
+ - Unifies gravity, gauge fields, dark matter, and topology
25
+
26
+ Author: Enhanced by AI following theoretical framework
27
+ Date: 2025-01-14
28
+ Version: 7.0.0-alpha
29
+ """
30
+
31
+ __version__ = '7.0.0-alpha'
32
+
33
+ import numpy as np
34
+ from typing import Tuple, Optional, Callable, Dict, Any
35
+ from dataclasses import dataclass
36
+ import warnings
37
+
38
+ # Physical constants (natural units: ℏ = c = 1)
39
+ M_PLANCK = 2.435e18 # Planck mass [GeV]
40
+ LAMBDA_TOPO = 0.1008 # Topological coupling constant (from theory)
41
+ HBAR = 1.0 # Reduced Planck constant (natural units)
42
+ C_SPEED = 1.0 # Speed of light (natural units)
43
+
44
+ # Try to import U3Frame
45
+ try:
46
+ from .u3_frame import U3Frame, GaugeConnection, FieldStrength
47
+ except ImportError:
48
+ try:
49
+ from u3_frame import U3Frame, GaugeConnection, FieldStrength
50
+ except ImportError:
51
+ U3Frame = None
52
+ GaugeConnection = None
53
+ FieldStrength = None
54
+ warnings.warn("U3Frame not available. Some features will be limited.")
55
+
56
+
57
+ # ============================================================
58
+ # Core Data Structures
59
+ # ============================================================
60
+
61
+ @dataclass
62
+ class ComplexFrame:
63
+ """
64
+ Complex frame field U(x) = U^(R)(x) + iU^(I)(x)
65
+
66
+ Attributes:
67
+ real_part: Real part U^(R) - geometric properties
68
+ imag_part: Imaginary part U^(I) - topological properties
69
+ position: Spacetime position (x, y, z, t)
70
+ """
71
+ real_part: np.ndarray # 3×3 real matrix
72
+ imag_part: np.ndarray # 3×3 real matrix
73
+ position: Optional[np.ndarray] = None # (x, y, z, t)
74
+
75
+ def __post_init__(self):
76
+ """Validate complex frame structure"""
77
+ if self.real_part.shape != (3, 3):
78
+ raise ValueError(f"Real part must be 3×3, got {self.real_part.shape}")
79
+ if self.imag_part.shape != (3, 3):
80
+ raise ValueError(f"Imaginary part must be 3×3, got {self.imag_part.shape}")
81
+
82
+ @property
83
+ def complex_matrix(self) -> np.ndarray:
84
+ """Full complex matrix U = U^(R) + iU^(I)"""
85
+ return self.real_part + 1j * self.imag_part
86
+
87
+ @property
88
+ def metric_tensor(self) -> np.ndarray:
89
+ """
90
+ Metric tensor from real part: g_μν = U^(R)ᵀ U^(R)
91
+
92
+ Returns:
93
+ 3×3 metric tensor
94
+ """
95
+ return self.real_part.T @ self.real_part
96
+
97
+ @property
98
+ def gauge_potential(self) -> np.ndarray:
99
+ """
100
+ Gauge potential from imaginary part: A_μ ∝ U^(I)
101
+
102
+ Returns:
103
+ 3×3 anti-Hermitian matrix
104
+ """
105
+ return 1j * self.imag_part
106
+
107
+
108
+ @dataclass
109
+ class EnergyMomentumTensor:
110
+ """
111
+ Energy-momentum tensor T_μν
112
+
113
+ Decomposition:
114
+ T_μν = T_μν^(R) + iT_μν^(I)
115
+ - Real part: mass-energy density
116
+ - Imaginary part: charge current
117
+ """
118
+ real_part: np.ndarray # 4×4 real symmetric tensor
119
+ imag_part: np.ndarray # 4×4 real tensor
120
+
121
+ def __post_init__(self):
122
+ """Validate tensor structure"""
123
+ if self.real_part.shape != (4, 4):
124
+ raise ValueError(f"Real part must be 4×4, got {self.real_part.shape}")
125
+ if self.imag_part.shape != (4, 4):
126
+ raise ValueError(f"Imaginary part must be 4×4, got {self.imag_part.shape}")
127
+
128
+ @property
129
+ def complex_tensor(self) -> np.ndarray:
130
+ """Full complex tensor T = T^(R) + iT^(I)"""
131
+ return self.real_part + 1j * self.imag_part
132
+
133
+ def trace(self) -> complex:
134
+ """Trace of energy-momentum tensor"""
135
+ return np.trace(self.complex_tensor)
136
+
137
+ def energy_density(self) -> float:
138
+ """Energy density T_00"""
139
+ return self.real_part[0, 0]
140
+
141
+
142
+ # ============================================================
143
+ # Christmas Equation Implementation
144
+ # ============================================================
145
+
146
+ class ChristmasEquation:
147
+ """
148
+ The Christmas Equation - Unified field equation
149
+
150
+ Complete form:
151
+ M_P²/2 Ĝ_μν[U] + λ/(32π²) ∇̂_(μ K̄_ν)[U] = T̂_μν^(top)[U] + T̂_μν^(mat)
152
+
153
+ Components:
154
+ - Left side: Geometry + Topology
155
+ - Right side: Topological source + Matter source
156
+ """
157
+
158
+ def __init__(self,
159
+ planck_mass: float = M_PLANCK,
160
+ topo_coupling: float = LAMBDA_TOPO):
161
+ """
162
+ Initialize Christmas Equation solver
163
+
164
+ Args:
165
+ planck_mass: Planck mass M_P [GeV]
166
+ topo_coupling: Topological coupling constant λ
167
+ """
168
+ self.M_P = planck_mass
169
+ self.lambda_topo = topo_coupling
170
+
171
+ def einstein_tensor(self, frame: ComplexFrame) -> np.ndarray:
172
+ """
173
+ Compute Einstein tensor Ĝ_μν from complex frame
174
+
175
+ Ĝ_μν = R_μν - (1/2)g_μν R
176
+
177
+ Args:
178
+ frame: Complex frame field U(x)
179
+
180
+ Returns:
181
+ 3×3 Einstein tensor (spatial part)
182
+ """
183
+ # Extract metric from real part
184
+ g = frame.metric_tensor
185
+
186
+ # Compute Ricci tensor (simplified for demonstration)
187
+ # In full implementation, use intrinsic gradient method
188
+ R_tensor = self._compute_ricci_tensor(frame)
189
+
190
+ # Ricci scalar
191
+ g_inv = np.linalg.inv(g)
192
+ R_scalar = np.trace(g_inv @ R_tensor)
193
+
194
+ # Einstein tensor
195
+ G_tensor = R_tensor - 0.5 * g * R_scalar
196
+
197
+ return G_tensor
198
+
199
+ def chern_simons_current(self, frame: ComplexFrame) -> np.ndarray:
200
+ """
201
+ Compute Chern-Simons current K̄_μ from imaginary part
202
+
203
+ K̄_μ = ε_μνρσ Tr(A^ν F^ρσ - (2/3)A^ν A^ρ A^σ)
204
+
205
+ Args:
206
+ frame: Complex frame field U(x)
207
+
208
+ Returns:
209
+ 4-vector Chern-Simons current
210
+ """
211
+ # Extract gauge potential from imaginary part
212
+ A = frame.gauge_potential
213
+
214
+ # Compute field strength (simplified)
215
+ F = self._compute_field_strength(frame)
216
+
217
+ # Chern-Simons current (simplified 3D version)
218
+ K_current = np.zeros(4)
219
+
220
+ # Spatial components (simplified calculation)
221
+ for mu in range(3):
222
+ K_current[mu] = np.trace(A @ F).real
223
+
224
+ return K_current
225
+
226
+ def topological_energy_momentum(self, frame: ComplexFrame) -> EnergyMomentumTensor:
227
+ """
228
+ Compute topological energy-momentum tensor T̂_μν^(top)
229
+
230
+ From topological defects (instantons, vortices)
231
+
232
+ Args:
233
+ frame: Complex frame field U(x)
234
+
235
+ Returns:
236
+ Topological energy-momentum tensor
237
+ """
238
+ # Topological charge density
239
+ topo_charge = self._compute_topological_charge(frame)
240
+
241
+ # Construct tensor (simplified)
242
+ T_real = np.zeros((4, 4))
243
+ T_imag = np.zeros((4, 4))
244
+
245
+ # Energy density from topological charge
246
+ T_real[0, 0] = topo_charge
247
+
248
+ # Topological flow (imaginary part)
249
+ K = self.chern_simons_current(frame)
250
+ for mu in range(4):
251
+ T_imag[0, mu] = K[mu]
252
+
253
+ return EnergyMomentumTensor(T_real, T_imag)
254
+
255
+ def solve_christmas_equation(self,
256
+ frame: ComplexFrame,
257
+ matter_tensor: EnergyMomentumTensor) -> Dict[str, Any]:
258
+ """
259
+ Solve the Christmas Equation
260
+
261
+ M_P²/2 Ĝ_μν + λ/(32π²) ∇̂_(μ K̄_ν) = T̂_μν^(top) + T̂_μν^(mat)
262
+
263
+ Args:
264
+ frame: Complex frame field U(x)
265
+ matter_tensor: Matter energy-momentum tensor
266
+
267
+ Returns:
268
+ Dictionary with solution components
269
+ """
270
+ # Left side: Geometry + Topology
271
+ G_tensor = self.einstein_tensor(frame)
272
+ K_current = self.chern_simons_current(frame)
273
+
274
+ # Geometric term
275
+ geo_term = (self.M_P**2 / 2) * G_tensor
276
+
277
+ # Topological term (simplified)
278
+ topo_term = (self.lambda_topo / (32 * np.pi**2)) * np.outer(K_current[:3], K_current[:3])
279
+
280
+ # Right side: Topological + Matter sources
281
+ T_topo = self.topological_energy_momentum(frame)
282
+ T_total = EnergyMomentumTensor(
283
+ T_topo.real_part + matter_tensor.real_part,
284
+ T_topo.imag_part + matter_tensor.imag_part
285
+ )
286
+
287
+ # Check equation balance (residual)
288
+ left_side = geo_term + topo_term
289
+ right_side = T_total.real_part[:3, :3]
290
+ residual = np.linalg.norm(left_side - right_side)
291
+
292
+ return {
293
+ 'geometric_term': geo_term,
294
+ 'topological_term': topo_term,
295
+ 'topological_source': T_topo,
296
+ 'matter_source': matter_tensor,
297
+ 'total_source': T_total,
298
+ 'residual': residual,
299
+ 'balanced': residual < 1e-6
300
+ }
301
+
302
+ # -------------------- Internal Helper Methods --------------------
303
+
304
+ def _compute_ricci_tensor(self, frame: ComplexFrame) -> np.ndarray:
305
+ """
306
+ Compute Ricci tensor from frame (simplified)
307
+
308
+ In full implementation, use intrinsic gradient method:
309
+ R_μν = [G_μ, G_ν] where G_μ = ∂_μ log U
310
+
311
+ Args:
312
+ frame: Complex frame field
313
+
314
+ Returns:
315
+ 3×3 Ricci tensor
316
+ """
317
+ # Simplified calculation for demonstration
318
+ g = frame.metric_tensor
319
+ g_inv = np.linalg.inv(g)
320
+
321
+ # Approximate curvature from metric variation
322
+ R = np.eye(3) * 0.1 # Placeholder
323
+
324
+ return R
325
+
326
+ def _compute_field_strength(self, frame: ComplexFrame) -> np.ndarray:
327
+ """
328
+ Compute field strength tensor F_μν = ∂_μ A_ν - ∂_ν A_μ + [A_μ, A_ν]
329
+
330
+ Args:
331
+ frame: Complex frame field
332
+
333
+ Returns:
334
+ 3×3 field strength tensor
335
+ """
336
+ A = frame.gauge_potential
337
+
338
+ # Simplified: F ≈ [A, A]
339
+ F = A @ A - A.T @ A.T
340
+
341
+ return F
342
+
343
+ def _compute_topological_charge(self, frame: ComplexFrame) -> float:
344
+ """
345
+ Compute topological charge Q = (1/32π²) ∫ Tr(F ∧ F)
346
+
347
+ Args:
348
+ frame: Complex frame field
349
+
350
+ Returns:
351
+ Topological charge (instanton number)
352
+ """
353
+ F = self._compute_field_strength(frame)
354
+
355
+ # Topological charge density
356
+ Q = (1.0 / (32 * np.pi**2)) * np.trace(F @ F).real
357
+
358
+ return Q
359
+
360
+
361
+ # ============================================================
362
+ # Utility Functions
363
+ # ============================================================
364
+
365
+ def create_flat_spacetime_frame(position: Optional[np.ndarray] = None) -> ComplexFrame:
366
+ """
367
+ Create a flat spacetime complex frame (Minkowski space)
368
+
369
+ Args:
370
+ position: Spacetime position (x, y, z, t)
371
+
372
+ Returns:
373
+ ComplexFrame with flat metric
374
+ """
375
+ real_part = np.eye(3) # Flat spatial metric
376
+ imag_part = np.zeros((3, 3)) # No gauge field
377
+
378
+ return ComplexFrame(real_part, imag_part, position)
379
+
380
+
381
+ def create_curved_spacetime_frame(curvature: float = 0.1,
382
+ position: Optional[np.ndarray] = None) -> ComplexFrame:
383
+ """
384
+ Create a curved spacetime complex frame
385
+
386
+ Args:
387
+ curvature: Curvature parameter
388
+ position: Spacetime position (x, y, z, t)
389
+
390
+ Returns:
391
+ ComplexFrame with curved metric
392
+ """
393
+ # Simple curved metric (spherical-like)
394
+ real_part = np.diag([1.0 + curvature, 1.0 + curvature, 1.0])
395
+ imag_part = np.zeros((3, 3))
396
+
397
+ return ComplexFrame(real_part, imag_part, position)
398
+
399
+
400
+ def create_gauge_field_frame(field_strength: float = 0.1,
401
+ position: Optional[np.ndarray] = None) -> ComplexFrame:
402
+ """
403
+ Create a complex frame with gauge field
404
+
405
+ Args:
406
+ field_strength: Gauge field strength
407
+ position: Spacetime position (x, y, z, t)
408
+
409
+ Returns:
410
+ ComplexFrame with gauge field
411
+ """
412
+ real_part = np.eye(3) # Flat spatial metric
413
+ imag_part = np.array([
414
+ [0, field_strength, 0],
415
+ [-field_strength, 0, 0],
416
+ [0, 0, 0]
417
+ ]) # Non-trivial gauge field
418
+
419
+ return ComplexFrame(real_part, imag_part, position)
420
+
421
+
422
+ # ============================================================
423
+ # Exports
424
+ # ============================================================
425
+
426
+ __all__ = [
427
+ 'ComplexFrame',
428
+ 'EnergyMomentumTensor',
429
+ 'ChristmasEquation',
430
+ 'create_flat_spacetime_frame',
431
+ 'create_curved_spacetime_frame',
432
+ 'create_gauge_field_frame',
433
+ 'M_PLANCK',
434
+ 'LAMBDA_TOPO',
435
+ ]
436
+
437
+
438
+ # ============================================================
439
+ # Demonstration
440
+ # ============================================================
441
+
442
+ def demonstrate():
443
+ """Demonstrate Complex Geometric Physics and Christmas Equation"""
444
+ print("=" * 80)
445
+ print("Complex Geometric Physics - Christmas Equation Demonstration")
446
+ print("=" * 80)
447
+
448
+ # 1. Create complex frames
449
+ print("\n1. Creating Complex Frames")
450
+ print("-" * 40)
451
+
452
+ flat_frame = create_flat_spacetime_frame()
453
+ print(f" Flat spacetime frame created")
454
+ print(f" Metric determinant: {np.linalg.det(flat_frame.metric_tensor):.6f}")
455
+
456
+ curved_frame = create_curved_spacetime_frame(curvature=0.1)
457
+ print(f" Curved spacetime frame created")
458
+ print(f" Metric determinant: {np.linalg.det(curved_frame.metric_tensor):.6f}")
459
+
460
+ gauge_frame = create_gauge_field_frame(field_strength=0.1)
461
+ print(f" Gauge field frame created")
462
+ print(f" Gauge potential norm: {np.linalg.norm(gauge_frame.gauge_potential):.6f}")
463
+
464
+ # 2. Initialize Christmas Equation solver
465
+ print("\n2. Christmas Equation Solver")
466
+ print("-" * 40)
467
+
468
+ solver = ChristmasEquation()
469
+ print(f" Planck mass M_P: {solver.M_P:.3e} GeV")
470
+ print(f" Topological coupling λ: {solver.lambda_topo:.4f}")
471
+
472
+ # 3. Compute geometric quantities
473
+ print("\n3. Geometric Quantities")
474
+ print("-" * 40)
475
+
476
+ G_tensor = solver.einstein_tensor(curved_frame)
477
+ print(f" Einstein tensor computed")
478
+ print(f" Trace(G): {np.trace(G_tensor):.6e}")
479
+
480
+ K_current = solver.chern_simons_current(gauge_frame)
481
+ print(f" Chern-Simons current computed")
482
+ print(f" |K|: {np.linalg.norm(K_current):.6e}")
483
+
484
+ # 4. Compute energy-momentum tensors
485
+ print("\n4. Energy-Momentum Tensors")
486
+ print("-" * 40)
487
+
488
+ T_topo = solver.topological_energy_momentum(gauge_frame)
489
+ print(f" Topological energy density: {T_topo.energy_density():.6e}")
490
+
491
+ # Create matter tensor
492
+ matter_real = np.diag([1.0, 0.1, 0.1, 0.1])
493
+ matter_imag = np.zeros((4, 4))
494
+ T_matter = EnergyMomentumTensor(matter_real, matter_imag)
495
+ print(f" Matter energy density: {T_matter.energy_density():.6e}")
496
+
497
+ # 5. Solve Christmas Equation
498
+ print("\n5. Solving Christmas Equation")
499
+ print("-" * 40)
500
+
501
+ solution = solver.solve_christmas_equation(gauge_frame, T_matter)
502
+ print(f" Geometric term norm: {np.linalg.norm(solution['geometric_term']):.6e}")
503
+ print(f" Topological term norm: {np.linalg.norm(solution['topological_term']):.6e}")
504
+ print(f" Equation residual: {solution['residual']:.6e}")
505
+ print(f" Equation balanced: {solution['balanced']}")
506
+
507
+ # 6. Theory summary
508
+ print("\n" + "=" * 80)
509
+ print("Core Theory Summary:")
510
+ print(" • Christmas Equation: M_P²/2 Ĝ_μν + λ/(32π²) ∇̂_(μ K̄_ν) = T̂_μν^(top) + T̂_μν^(mat)")
511
+ print(" • U(x) = U^(R)(x) + iU^(I)(x) [Complex frame decomposition]")
512
+ print(" • Real part: Geometry (metric, curvature, spacetime)")
513
+ print(" • Imaginary part: Topology (phase, gauge field, winding)")
514
+ print(" • Unifies: Gravity + Gauge fields + Dark matter + Topology")
515
+ print("=" * 80)
516
+
517
+
518
+ if __name__ == "__main__":
519
+ demonstrate()