cnhkmcp 2.1.3__py3-none-any.whl → 2.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (192) hide show
  1. cnhkmcp/__init__.py +126 -0
  2. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/README.md +38 -0
  3. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/ace.log +0 -0
  4. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/config.json +6 -0
  5. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/ace_lib.py +1514 -0
  6. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/fetch_all_datasets.py +157 -0
  7. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/fetch_all_documentation.py +132 -0
  8. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/fetch_all_operators.py +99 -0
  9. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/helpful_functions.py +180 -0
  10. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/icon.ico +0 -0
  11. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/icon.png +0 -0
  12. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_10_Steps_to_Start_on_BRAIN_documentation.json +14 -0
  13. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Intermediate_Pack_-_Improve_your_Alpha_2_2_documentation.json +174 -0
  14. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Intermediate_Pack_-_Understand_Results_1_2_documentation.json +167 -0
  15. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Introduction_to_Alphas_documentation.json +145 -0
  16. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Introduction_to_BRAIN_Expression_Language_documentation.json +107 -0
  17. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_WorldQuant_Challenge_documentation.json +56 -0
  18. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001__Read_this_First_-_Starter_Pack_documentation.json +404 -0
  19. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002_How_to_choose_the_Simulation_Settings_documentation.json +268 -0
  20. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002_Simulate_your_first_Alpha_documentation.json +88 -0
  21. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Beginners_documentation.json +254 -0
  22. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Bronze_Users_documentation.json +114 -0
  23. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Silver_Users_documentation.json +79 -0
  24. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__How_BRAIN_works_documentation.json +184 -0
  25. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/003_Clear_these_tests_before_submitting_an_Alpha_documentation.json +388 -0
  26. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/003_Parameters_in_the_Simulation_results_documentation.json +243 -0
  27. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Group_Data_Fields_documentation.json +69 -0
  28. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_How_to_use_the_Data_Explorer_documentation.json +142 -0
  29. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Model77_dataset_documentation.json +14 -0
  30. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Sentiment1_dataset_documentation.json +14 -0
  31. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Understanding_Data_in_BRAIN_Key_Concepts_and_Tips_documentation.json +182 -0
  32. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Vector_Data_Fields_documentation.json +30 -0
  33. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Crowding_Risk-Neutralized_Alphas_documentation.json +64 -0
  34. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_D0_documentation.json +66 -0
  35. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Double_Neutralization_documentation.json +53 -0
  36. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Fast_D1_Documentation_documentation.json +304 -0
  37. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Investability_Constrained_Metrics_documentation.json +129 -0
  38. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Must-read_posts_How_to_improve_your_Alphas_documentation.json +14 -0
  39. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Neutralization_documentation.json +29 -0
  40. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_RAM_Risk-Neutralized_Alphas_documentation.json +64 -0
  41. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Risk_Neutralization_Default_setting_documentation.json +75 -0
  42. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Risk_Neutralized_Alphas_documentation.json +171 -0
  43. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Statistical_Risk-Neutralized_Alphas_documentation.json +51 -0
  44. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_EUR_TOP2500_Universe_documentation.json +35 -0
  45. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_GLB_TOPDIV3000_Universe_documentation.json +48 -0
  46. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_Started_China_Research_for_Consultants_Gold_documentation.json +142 -0
  47. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_started_on_Illiquid_Universes_Gold_documentation.json +46 -0
  48. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_started_with_USA_TOPSP500_universe_Gold_documentation.json +62 -0
  49. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Global_Alphas_Gold_documentation.json +66 -0
  50. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_India_Alphas_documentation.json +35 -0
  51. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Dos_and_Don_ts_documentation.json +35 -0
  52. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Features_documentation.json +239 -0
  53. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Simulation_Features_documentation.json +149 -0
  54. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Submission_Tests_documentation.json +363 -0
  55. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Finding_Consultant_Alphas_documentation.json +333 -0
  56. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Power_Pool_Alphas_documentation.json +14 -0
  57. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Research_Advisory_Program_documentation.json +35 -0
  58. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Starting_Guide_for_Research_Consultants_documentation.json +14 -0
  59. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Visualization_Tool_documentation.json +99 -0
  60. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Your_Advisor_-_Kunqi_Jiang_documentation.json +53 -0
  61. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007__Brain_Genius_documentation.json +288 -0
  62. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007__Single_Dataset_Alphas_documentation.json +41 -0
  63. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Advisory_Theme_Calendar_documentation.json +14 -0
  64. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Multiplier_Rules_documentation.json +14 -0
  65. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Overview_of_Themes_documentation.json +14 -0
  66. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Theme_Calendar_documentation.json +14 -0
  67. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Combo_Expression_documentation.json +272 -0
  68. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Global_SuperAlphas_documentation.json +14 -0
  69. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Helpful_Tips_documentation.json +58 -0
  70. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Selection_Expression_documentation.json +1546 -0
  71. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_SuperAlpha_Operators_documentation.json +890 -0
  72. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_SuperAlpha_Results_documentation.json +83 -0
  73. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_What_is_a_SuperAlpha_documentation.json +261 -0
  74. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010_BRAIN_API_documentation.json +515 -0
  75. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010_Documentation_for_ACE_API_Library_Gold_documentation.json +27 -0
  76. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010__Understanding_simulation_limits_documentation.json +210 -0
  77. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/arithmetic_operators.json +209 -0
  78. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/cross_sectional_operators.json +98 -0
  79. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/group_operators.json +121 -0
  80. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/logical_operators.json +145 -0
  81. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/reduce_operators.json +156 -0
  82. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/special_operators.json +35 -0
  83. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/test.txt +1 -0
  84. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/time_series_operators.json +386 -0
  85. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/transformational_operators.json +61 -0
  86. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/vector_operators.json +38 -0
  87. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/main.py +576 -0
  88. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/process_knowledge_base.py +281 -0
  89. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/rag_engine.py +408 -0
  90. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/requirements.txt +7 -0
  91. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/run.bat +3 -0
  92. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/_manifest.json +302 -0
  93. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/_meta.json +1 -0
  94. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/chroma.sqlite3 +0 -0
  95. cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242//321/211/320/266/320/246/321/206/320/274/320/261/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +265 -0
  96. cnhkmcp/untracked/APP/.gitignore +32 -0
  97. cnhkmcp/untracked/APP/MODULAR_STRUCTURE.md +112 -0
  98. cnhkmcp/untracked/APP/README.md +309 -0
  99. cnhkmcp/untracked/APP/Tranformer/Transformer.py +4989 -0
  100. cnhkmcp/untracked/APP/Tranformer/ace.log +0 -0
  101. cnhkmcp/untracked/APP/Tranformer/ace_lib.py +1514 -0
  102. cnhkmcp/untracked/APP/Tranformer/helpful_functions.py +180 -0
  103. cnhkmcp/untracked/APP/Tranformer/output/Alpha_candidates.json +7187 -0
  104. cnhkmcp/untracked/APP/Tranformer/output/Alpha_candidates_/321/207/320/264/342/225/221/321/204/342/225/233/320/233.json +654 -0
  105. cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_error.json +1 -0
  106. cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_success.json +47312 -0
  107. cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_/321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/320/237/320/277/321/207/320/253/342/224/244/321/206/320/236/320/265/321/210/342/225/234/342/225/234/321/205/320/225/320/265Machine_lib.json +22 -0
  108. cnhkmcp/untracked/APP/Tranformer/parsetab.py +60 -0
  109. cnhkmcp/untracked/APP/Tranformer/template_summary.txt +3182 -0
  110. cnhkmcp/untracked/APP/Tranformer/transformer_config.json +7 -0
  111. cnhkmcp/untracked/APP/Tranformer/validator.py +889 -0
  112. cnhkmcp/untracked/APP/ace.log +69 -0
  113. cnhkmcp/untracked/APP/ace_lib.py +1514 -0
  114. cnhkmcp/untracked/APP/blueprints/__init__.py +6 -0
  115. cnhkmcp/untracked/APP/blueprints/feature_engineering.py +347 -0
  116. cnhkmcp/untracked/APP/blueprints/idea_house.py +221 -0
  117. cnhkmcp/untracked/APP/blueprints/inspiration_house.py +432 -0
  118. cnhkmcp/untracked/APP/blueprints/paper_analysis.py +570 -0
  119. cnhkmcp/untracked/APP/custom_templates/templates.json +1257 -0
  120. cnhkmcp/untracked/APP/give_me_idea/BRAIN_Alpha_Template_Expert_SystemPrompt.md +400 -0
  121. cnhkmcp/untracked/APP/give_me_idea/ace_lib.py +1514 -0
  122. cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py +252 -0
  123. cnhkmcp/untracked/APP/give_me_idea/fetch_all_datasets.py +157 -0
  124. cnhkmcp/untracked/APP/give_me_idea/fetch_all_operators.py +99 -0
  125. cnhkmcp/untracked/APP/give_me_idea/helpful_functions.py +180 -0
  126. cnhkmcp/untracked/APP/give_me_idea/what_is_Alpha_template.md +11 -0
  127. cnhkmcp/untracked/APP/helpful_functions.py +180 -0
  128. cnhkmcp/untracked/APP/hkSimulator/ace_lib.py +1501 -0
  129. cnhkmcp/untracked/APP/hkSimulator/autosimulator.py +447 -0
  130. cnhkmcp/untracked/APP/hkSimulator/helpful_functions.py +180 -0
  131. cnhkmcp/untracked/APP/mirror_config.txt +20 -0
  132. cnhkmcp/untracked/APP/operaters.csv +129 -0
  133. cnhkmcp/untracked/APP/requirements.txt +53 -0
  134. cnhkmcp/untracked/APP/run_app.bat +28 -0
  135. cnhkmcp/untracked/APP/run_app.sh +34 -0
  136. cnhkmcp/untracked/APP/setup_tsinghua.bat +39 -0
  137. cnhkmcp/untracked/APP/setup_tsinghua.sh +43 -0
  138. cnhkmcp/untracked/APP/simulator/alpha_submitter.py +404 -0
  139. cnhkmcp/untracked/APP/simulator/simulator_wqb.py +618 -0
  140. cnhkmcp/untracked/APP/simulator/wqb20260107015647.log +57 -0
  141. cnhkmcp/untracked/APP/ssrn-3332513.pdf +109188 -19
  142. cnhkmcp/untracked/APP/static/brain.js +589 -0
  143. cnhkmcp/untracked/APP/static/decoder.js +1540 -0
  144. cnhkmcp/untracked/APP/static/feature_engineering.js +1729 -0
  145. cnhkmcp/untracked/APP/static/idea_house.js +937 -0
  146. cnhkmcp/untracked/APP/static/inspiration.js +465 -0
  147. cnhkmcp/untracked/APP/static/inspiration_house.js +868 -0
  148. cnhkmcp/untracked/APP/static/paper_analysis.js +390 -0
  149. cnhkmcp/untracked/APP/static/script.js +3082 -0
  150. cnhkmcp/untracked/APP/static/simulator.js +597 -0
  151. cnhkmcp/untracked/APP/static/styles.css +3127 -0
  152. cnhkmcp/untracked/APP/static/usage_widget.js +508 -0
  153. cnhkmcp/untracked/APP/templates/alpha_inspector.html +511 -0
  154. cnhkmcp/untracked/APP/templates/feature_engineering.html +960 -0
  155. cnhkmcp/untracked/APP/templates/idea_house.html +564 -0
  156. cnhkmcp/untracked/APP/templates/index.html +932 -0
  157. cnhkmcp/untracked/APP/templates/inspiration_house.html +861 -0
  158. cnhkmcp/untracked/APP/templates/paper_analysis.html +91 -0
  159. cnhkmcp/untracked/APP/templates/simulator.html +343 -0
  160. cnhkmcp/untracked/APP/templates/transformer_web.html +580 -0
  161. cnhkmcp/untracked/APP/usage.md +351 -0
  162. cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/ace_lib.py +1514 -0
  163. cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/brain_alpha_inspector.py +712 -0
  164. cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/helpful_functions.py +180 -0
  165. cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +2460 -0
  166. cnhkmcp/untracked/__init__.py +0 -0
  167. cnhkmcp/untracked/arXiv_API_Tool_Manual.md +490 -0
  168. cnhkmcp/untracked/arxiv_api.py +229 -0
  169. cnhkmcp/untracked/forum_functions.py +998 -0
  170. cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/forum_functions.py +407 -0
  171. cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/platform_functions.py +2601 -0
  172. cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/user_config.json +31 -0
  173. cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272//321/210/320/276/320/271AI/321/210/320/277/342/225/227/321/210/342/224/220/320/251/321/204/342/225/225/320/272/321/206/320/246/320/227/321/206/320/261/320/263/321/206/320/255/320/265/321/205/320/275/320/266/321/204/342/225/235/320/252/321/204/342/225/225/320/233/321/210/342/225/234/342/225/234/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270.md +101 -0
  174. cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272//321/211/320/225/320/235/321/207/342/225/234/320/276/321/205/320/231/320/235/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/230/320/241_/321/205/320/276/320/231/321/210/320/263/320/225/321/205/342/224/220/320/225/321/210/320/266/320/221/321/204/342/225/233/320/255/321/210/342/225/241/320/246/321/205/320/234/320/225.py +190 -0
  175. cnhkmcp/untracked/platform_functions.py +2886 -0
  176. cnhkmcp/untracked/sample_mcp_config.json +11 -0
  177. cnhkmcp/untracked/user_config.json +31 -0
  178. cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/320/237/320/222/321/210/320/220/320/223/321/206/320/246/320/227/321/206/320/261/320/263_BRAIN_Alpha_Test_Requirements_and_Tips.md +202 -0
  179. cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_Alpha_explaination_workflow.md +56 -0
  180. cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_BRAIN_6_Tips_Datafield_Exploration_Guide.md +194 -0
  181. cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_BRAIN_Alpha_Improvement_Workflow.md +101 -0
  182. cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_Dataset_Exploration_Expert_Manual.md +436 -0
  183. cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_daily_report_workflow.md +128 -0
  184. cnhkmcp/untracked//321/211/320/225/320/235/321/207/342/225/234/320/276/321/205/320/231/320/235/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/230/320/241_/321/205/320/276/320/231/321/210/320/263/320/225/321/205/342/224/220/320/225/321/210/320/266/320/221/321/204/342/225/233/320/255/321/210/342/225/241/320/246/321/205/320/234/320/225.py +190 -0
  185. {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/METADATA +1 -1
  186. cnhkmcp-2.1.4.dist-info/RECORD +190 -0
  187. cnhkmcp-2.1.4.dist-info/top_level.txt +1 -0
  188. cnhkmcp-2.1.3.dist-info/RECORD +0 -6
  189. cnhkmcp-2.1.3.dist-info/top_level.txt +0 -1
  190. {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/WHEEL +0 -0
  191. {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/entry_points.txt +0 -0
  192. {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,436 @@
1
+ # Dataset Exploration Expert - Job Duty Manual
2
+ ## WorldQuant BRAIN Platform
3
+
4
+ ### Position Overview
5
+ The Dataset Exploration Expert is a specialized role focused on deep analysis and categorization of datasets within the WorldQuant BRAIN platform. This expert serves as a master/assistant that excels at exploring individual datasets, grouping data files into logical categories, and providing comprehensive insights into data field characteristics and relationships.
6
+
7
+ ### Core Responsibilities
8
+
9
+ #### 1. Dataset Deep Dive Analysis
10
+ - **Single Dataset Focus**: Concentrate on one dataset at a time for comprehensive understanding
11
+ - **Data Field Inventory**: Catalog and analyze all available data fields within the target dataset
12
+ - **Coverage Analysis**: Assess data availability across different instruments, regions, and time periods
13
+ - **Quality Assessment**: Evaluate data reliability, consistency, and completeness
14
+
15
+ #### 2. Data Field Categorization & Grouping
16
+ - **Logical Grouping**: Organize data fields into meaningful categories based on:
17
+ - Business function (e.g., financial metrics, operational data, market indicators)
18
+ - Data type (e.g., matrix, vector, group fields)
19
+ - Update frequency (e.g., daily, quarterly, annual)
20
+ - Coverage patterns (e.g., high-coverage vs. low-coverage fields)
21
+ - Usage patterns (e.g., frequently used vs. underutilized fields)
22
+
23
+ - **Hierarchical Organization**: Create multi-level categorization systems:
24
+ - Primary categories (e.g., Financial Statements, Market Data, Analyst Estimates)
25
+ - Secondary categories (e.g., Balance Sheet, Income Statement, Cash Flow)
26
+ - Tertiary categories (e.g., Assets, Liabilities, Revenue, Expenses)
27
+
28
+ #### 3. Enhanced Data Field Descriptions
29
+ - **Current Description Analysis**: Review existing field descriptions for clarity and completeness
30
+ - **Enhanced Documentation**: Write improved, detailed descriptions that include:
31
+ - Business context and significance
32
+ - Calculation methodology (if applicable)
33
+ - Typical value ranges and distributions
34
+ - Relationships to other fields
35
+ - Common use cases in alpha creation
36
+ - Coverage limitations and considerations
37
+
38
+ #### 4. Exploratory Data Analysis
39
+ - **Statistical Profiling**: Analyze data field characteristics including:
40
+ - Value distributions and ranges
41
+ - Temporal patterns and seasonality
42
+ - Cross-sectional relationships
43
+ - Missing data patterns
44
+ - Outlier identification
45
+
46
+ - **Feature Engineering Insights**: Identify potential derived features and combinations
47
+ - **Alpha Creation Opportunities**: Discover patterns that could lead to profitable trading strategies
48
+
49
+ #### 5. Cross-Platform Research & Integration
50
+ - **BRAIN Platform Exploration**: Leverage all available platform tools:
51
+ - Data Explorer for field discovery
52
+ - Simulation capabilities for data testing
53
+ - Research papers and documentation
54
+ - User community insights and best practices
55
+
56
+ - **Forum & Community Engagement**: Research and integrate knowledge from:
57
+ - BRAIN support forum discussions
58
+ - User-generated content and tutorials
59
+ - Expert insights and case studies
60
+ - Platform updates and new features
61
+
62
+ ### Technical Skills Required
63
+
64
+ #### 1. BRAIN Platform Proficiency
65
+ - **Data Explorer Mastery**: Expert use of BRAIN's AI-powered data discovery tools
66
+ - **Simulation Tools**: Ability to run test simulations to understand data behavior
67
+ - **API Knowledge**: Understanding of BRAIN API for automated data exploration
68
+ - **Documentation Navigation**: Efficient use of platform documentation and resources
69
+
70
+ #### 2. Data Analysis Capabilities
71
+ - **Statistical Analysis**: Understanding of descriptive statistics, distributions, and relationships
72
+ - **Financial Knowledge**: Familiarity with financial statements, ratios, and market data
73
+ - **Pattern Recognition**: Ability to identify meaningful patterns in complex datasets
74
+ - **Data Quality Assessment**: Skills in evaluating data reliability and consistency
75
+
76
+ #### 3. Documentation & Communication
77
+ - **Technical Writing**: Ability to create clear, comprehensive field descriptions
78
+ - **Visual Organization**: Skills in creating logical categorization systems
79
+ - **Knowledge Management**: Ability to organize and present complex information clearly
80
+
81
+ ### Workflow & Methodology
82
+
83
+ #### Phase 1: Dataset Selection & Initial Assessment
84
+ 1. **Dataset Identification**: Select target dataset based on:
85
+ - Strategic importance
86
+ - Current usage levels
87
+ - Data quality scores
88
+ - User community needs
89
+
90
+ 2. **Initial Exploration**: Use MCP to:
91
+ - Review dataset overview and description
92
+ - Identify total field count and coverage
93
+ - Assess value scores and pyramid multipliers
94
+ - Review research papers and documentation
95
+
96
+ **MCP Tool Calls for Phase 1:**
97
+ - **`mcp_brain-api_get_datasets`**: Discover available datasets with coverage filters
98
+ - **`mcp_brain-api_get_datafields`**: Get field count and coverage statistics for selected dataset
99
+ - **`mcp_brain-api_get_documentations`**: Access platform documentation and research papers
100
+ - **`mcp_brain-api_get_documentation_page`**: Read specific documentation pages for dataset context
101
+
102
+ #### Phase 2: Comprehensive Field Analysis
103
+ 1. **Field Inventory**: Catalog all data fields with:
104
+ - Field ID and name
105
+ - Current description
106
+ - Data type (matrix/vector/group), please note, different data types have different characteristics and usage patterns; you should use mcp to check how to handle different data types by reading the related documents.
107
+ - Coverage statistics
108
+ - Usage metrics (user count, alpha count)
109
+
110
+ 2. **Preliminary Categorization**: Group fields by:
111
+ - Business function
112
+ - Data characteristics
113
+ - Update patterns
114
+ - Coverage levels
115
+
116
+ **MCP Tool Calls for Phase 2:**
117
+ - **`mcp_brain-api_get_datafields`**: Retrieve complete field inventory with metadata
118
+ - **`mcp_brain-api_get_documentation_page`**: Read data type handling documentation (e.g., "vector-datafields", "group-data-fields")
119
+ - **`mcp_brain-api_get_operators`**: Understand available operators for different data types
120
+ - **`mcp_brain-api_get_documentations`**: Access data handling best practices and examples
121
+
122
+ #### Phase 3: Initial Data Exploration
123
+ 1. **Statistical Profiling Using BRAIN 6-Tips Methodology**: Run systematic exploratory simulations following the proven BRAIN platform approach. This methodology provides a comprehensive framework for understanding new datafields efficiently. **Critical Settings for All Tests**:
124
+ - **Neutralization**: "None" (to see raw data behavior without masking important patterns)
125
+ - **Decay**: 0 (to preserve actual data values and avoid smoothing out variations)
126
+ - **Test Period**: P0Y0M (for focused analysis)
127
+ - **Focus**: Long Count and Short Count in IS Summary section for insights
128
+
129
+ **A. Basic Coverage Analysis**
130
+ - **Expression**: `datafield` (for matrix data type) or `vector_operator(datafield)` (for vector data type)
131
+ - **Purpose**: Determine % coverage = (Long Count + Short Count) / Universe Size
132
+ - **Insight**: Understand basic data availability across instruments
133
+ - **What it tells you**: How many instruments have data for this field on average
134
+ - **Implementation**: Start with this test to establish baseline coverage understanding
135
+
136
+ **B. Non-Zero Value Coverage**
137
+ - **Expression**: `datafield != 0 ? 1 : 0` (for matrix) or `vector_operator(datafield) != 0 ? 1 : 0` (for vector)
138
+ - **Purpose**: Distinguish between missing data and actual zero values
139
+ - **Insight**: Long Count indicates average non-zero values on a daily basis
140
+ - **What it tells you**: Whether the field has meaningful data vs. just coverage gaps
141
+ - **Implementation**: Run after basic coverage to understand data quality vs. availability
142
+
143
+ **C. Data Update Frequency Analysis**
144
+ - **Expression**: `ts_std_dev(datafield,N) != 0 ? 1 : 0` (for matrix) or `ts_std_dev(vector_operator(datafield),N) != 0 ? 1 : 0` (for vector)
145
+ - **Purpose**: Understand how often data actually changes vs. being backfilled
146
+ - **Insight**: Frequency of unique data updates (daily, weekly, monthly, quarterly)
147
+ - **Key Testing Strategy**:
148
+ - **N = 5 (weekly)**: Long Count + Short Count will be lowest (approx. 1/5th of coverage)
149
+ - **N = 22 (monthly)**: Long Count + Short Count will be lower (approx. 1/3rd of coverage)
150
+ - **N = 66 (quarterly)**: Long Count + Short Count will be closest to actual coverage
151
+ - **What it tells you**: Data freshness patterns and whether data is actively updated or backfilled
152
+ - **Implementation**: Test with various N values to identify the actual update frequency
153
+
154
+ **D. Data Bounds Analysis**
155
+ - **Expression**: `abs(datafield) > X` (for matrix) or `abs(vector_operator(datafield)) > X` (for vector)
156
+ - **Purpose**: Understand data range, scale, and normalization
157
+ - **Insight**: Bounds of the datafield values
158
+ - **Testing Strategy**: Vary X values systematically:
159
+ - **X = 1**: Test if data is normalized to values between -1 and +1
160
+ - **X = 0.1, 0.5, 1, 5, 10**: Test various thresholds to understand value distribution
161
+ - **What it tells you**: Whether data is normalized, typical value ranges, and data scale
162
+ - **Implementation**: Start with X = 1, then adjust based on results to map the full value range
163
+
164
+ **E. Central Tendency Analysis**
165
+ - **Expression**: `ts_median(datafield, 1000) > X` (for matrix) or `ts_median(vector_operator(datafield), 1000) > X` (for vector)
166
+ - **Purpose**: Understand typical values and central tendency over 5 years
167
+ - **Insight**: Median of the datafield over extended period
168
+ - **Testing Strategy**: Vary X values to understand value distribution:
169
+ - **X = 0**: Test if median is positive
170
+ - **X = 0.1, 0.5, 1, 5, 10**: Test various thresholds to map central tendency
171
+ - **What it tells you**: Whether data is skewed, what typical values look like, and data characteristics
172
+ - **Alternative**: Can also use `ts_mean(datafield, 1000) > X` for mean-based analysis
173
+ - **Implementation**: Test with increasing X values until Long Count approaches zero
174
+
175
+ **F. Data Distribution Analysis**
176
+ - **Expression**: `X < scale_down(datafield) && scale_down(datafield) < Y` (for matrix) or `X < scale_down(vector_operator(datafield)) && scale_down(vector_operator(datafield)) < Y` (for vector)
177
+ - **Purpose**: Understand how data distributes across its range
178
+ - **Insight**: Distribution characteristics and patterns
179
+ - **Key Understanding**: `scale_down` acts as a MinMaxScaler that preserves original distribution
180
+ - **Testing Strategy**: Vary X and Y between 0 and 1 to test different distribution segments:
181
+ - **X = 0, Y = 0.25**: Test bottom quartile distribution
182
+ - **X = 0.25, Y = 0.5**: Test second quartile distribution
183
+ - **X = 0.5, Y = 0.75**: Test third quartile distribution
184
+ - **X = 0.75, Y = 1**: Test top quartile distribution
185
+ - **What it tells you**: Whether data is evenly distributed, clustered, or has specific patterns
186
+ - **Implementation**: Test quartile ranges first, then adjust for finer granularity
187
+
188
+ **Data Type Considerations**:
189
+ - **Matrix Data Type**: Use expressions directly as shown above
190
+ - **Vector Data Type**: Must use appropriate vector operators (found via MCP) to convert to matrix format
191
+ - **Group Data Type**: Requires special handling - consult MCP documentation for group field operators
192
+ - **Critical**: Always verify data type before testing and use appropriate operators accordingly
193
+
194
+ **Implementation Workflow for BRAIN 6-Tips**:
195
+ 1. **Setup Phase**: Configure simulation with "None" neutralization, decay 0, and P0Y0M test period
196
+ 2. **Sequential Testing**: Run tests A through F in order for systematic understanding
197
+ 3. **Iterative Refinement**: Adjust thresholds based on initial results for deeper insights
198
+ 4. **Documentation**: Record Long Count and Short Count for each test to build comprehensive profile
199
+ 5. **Validation**: Cross-reference results across different N values and thresholds for consistency
200
+
201
+ **Expected Results Interpretation**:
202
+ - **Coverage Tests (A & B)**: Should show Long Count + Short Count ≤ Universe Size
203
+ - **Frequency Tests (C)**: Lower N values should show proportionally lower counts
204
+ - **Bounds Tests (D)**: Should reveal data normalization and typical ranges
205
+ - **Tendency Tests (E)**: Should show data skewness and central value characteristics
206
+ - **Distribution Tests (F)**: Should reveal clustering, patterns, and data spread
207
+
208
+ **Common Patterns to Watch For**:
209
+ - **Normalized Data**: Values consistently between -1 and +1
210
+ - **Quarterly Updates**: Significant count differences between N=22 and N=66
211
+ - **Sparse Data**: High coverage but low non-zero counts
212
+ - **Skewed Distributions**: Uneven quartile distributions in scale_down tests
213
+ - **Data Quality Issues**: Inconsistent results across different test parameters
214
+
215
+ **Practical Example - Closing Price Analysis**:
216
+ **Test A (Basic Coverage)**: `close` → High Long Count + Short Count indicates universal coverage
217
+ **Test B (Non-Zero)**: `close != 0 ? 1 : 0` → Should show same high counts (prices are never zero)
218
+ **Test C (Frequency)**: `ts_std_dev(close,5) != 0 ? 1 : 0` → High counts indicate daily price changes
219
+ **Test D (Bounds)**: `abs(close) > 1` → Should show high counts (prices typically > $1)
220
+ **Test E (Tendency)**: `ts_median(close,1000) > 0` → Should show high counts (median prices are positive)
221
+ **Test F (Distribution)**: `0 < scale_down(close) && scale_down(close) < 0.25` → Tests bottom quartile distribution
222
+
223
+ **What This Example Demonstrates**:
224
+ - **Validation**: Confirms expected behavior (prices are positive, change daily, have good coverage)
225
+ - **Pattern Recognition**: Shows how to identify normal vs. abnormal data characteristics
226
+ - **Quality Assessment**: Reveals data consistency and reliability
227
+ - **Alpha Creation Insights**: Understanding price behavior helps in strategy development
228
+
229
+ **Troubleshooting Common Issues**:
230
+ - **Zero Counts**: Check if datafield name is correct and data type is appropriate
231
+ - **Unexpected Results**: Verify neutralization is "None" and decay is 0
232
+ - **Vector Field Errors**: Ensure proper vector operator is used for vector data types
233
+ - **Inconsistent Patterns**: Test with different N values and thresholds for validation
234
+ - **Low Coverage**: Consider universe size and data availability in selected region/timeframe
235
+
236
+ **Best Practices for Efficient Exploration**:
237
+ - **Start Simple**: Begin with basic coverage tests before complex analysis
238
+ - **Document Everything**: Record all test parameters and results systematically
239
+ - **Iterate Intelligently**: Use initial results to guide subsequent test parameters
240
+ - **Cross-Validate**: Compare results across different test methods for consistency
241
+ - **Focus on Insights**: Prioritize understanding data behavior over exhaustive testing
242
+
243
+ 2. **Advanced Statistical Analysis**:
244
+ - Value distributions and ranges
245
+ - Temporal patterns and seasonality
246
+ - Cross-sectional relationships
247
+ - Missing data patterns
248
+ - Outlier identification
249
+ - Data quality consistency over time
250
+
251
+ **MCP Tool Calls for Phase 3:**
252
+ - **`mcp_brain-api_create_multi_regularAlpha_simulation`**: Execute BRAIN 6-tips methodology simulations
253
+ - **`mcp_brain-api_get_platform_setting_options`**: Validate simulation settings and parameters
254
+ - **`mcp_brain-api_get_operators`**: Access time series operators (ts_std_dev, ts_median, scale_down)
255
+ - **`mcp_brain-api_get_documentation_page`**: Read simulation settings documentation ("simulation-settings")
256
+ - **`mcp_brain-api_get_documentation_page`**: Access data analysis best practices ("data")
257
+
258
+ 3. **Relationship Mapping**: Identify:
259
+ - Field interdependencies and correlations
260
+ - Logical groupings and hierarchies
261
+ - Potential derived features and combinations
262
+ - Alpha creation opportunities
263
+ - Risk factors and limitations
264
+
265
+ #### Phase 4: Enhanced Documentation
266
+ 1. **Description Enhancement**: Improve field descriptions with:
267
+ - Business context
268
+ - Calculation details and data unit
269
+ - Usage examples
270
+ - Limitations and considerations
271
+
272
+ 2. **Categorization Refinement**: Finalize logical groupings with:
273
+ - Clear category names
274
+ - Hierarchical structure
275
+ - Cross-references
276
+ - Usage guidelines
277
+
278
+ **MCP Tool Calls for Phase 4:**
279
+ - **`mcp_brain-api_get_documentation_page`**: Access field description best practices ("data")
280
+ - **`mcp_brain-api_get_documentations`**: Review documentation structure and organization
281
+ - **`mcp_brain-api_get_alpha_examples`**: Find usage examples in documentation ("19-alpha-examples")
282
+ - **`mcp_brain-api_get_documentation_page`**: Access categorization guidelines ("how-use-data-explorer")
283
+
284
+ #### Phase 5: Knowledge Integration & Validation
285
+ 1. **Community Research**: Review forum discussions and user insights, search and read related documents or related guidanline.
286
+ 2. **Best Practice Integration**: Incorporate platform-specific knowledge by looking into related documents or related competitions' guidanline.
287
+ 3. **Validation**: Test categorization with sample use cases
288
+ 4. **Documentation**: Create final comprehensive dataset guide
289
+
290
+ **MCP Tool Calls for Phase 5:**
291
+ - **`mcp_brain-forum_search_forum_posts`**: Search community discussions and user insights
292
+ - **`mcp_brain-forum_read_full_forum_post`**: Read detailed forum discussions and best practices
293
+ - **`mcp_brain-api_get_events`**: Access competition guidelines and rules
294
+ - **`mcp_brain-api_get_competition_details`**: Review specific competition requirements
295
+ - **`mcp_brain-api_get_documentation_page`**: Access platform best practices and guidelines
296
+ - **`mcp_brain-api_get_alpha_examples`**: Review alpha strategy examples for validation
297
+
298
+ ### Deliverables
299
+
300
+ #### 1. Dataset Field Catalog
301
+ - Complete inventory of all data fields
302
+ - Enhanced descriptions for each field
303
+ - Coverage and usage statistics
304
+ - Quality indicators and limitations
305
+
306
+ #### 2. Logical Categorization System
307
+ - Hierarchical field grouping
308
+ - Category descriptions and rationale
309
+ - Cross-reference system
310
+ - Usage guidelines and examples
311
+
312
+ #### 3. Data Initial Exploration Report
313
+ - Coverage analysis by instrument and time
314
+ - Data consistency evaluation
315
+ - Missing data patterns
316
+ - Quality improvement recommendations
317
+
318
+ #### 4. Alpha Creation Insights
319
+ - Identified patterns and relationships
320
+ - Potential strategy opportunities
321
+ - Risk considerations
322
+ - Implementation guidelines
323
+
324
+ #### 5. Comprehensive Dataset Guide
325
+ - Executive summary
326
+ - Detailed field documentation
327
+ - Categorization system
328
+ - Best practices and examples
329
+ - Troubleshooting guide
330
+
331
+ ### Success Metrics
332
+
333
+ #### 1. Documentation Quality
334
+ - **Completeness**: All fields documented with enhanced descriptions
335
+ - **Clarity**: Descriptions are clear and actionable
336
+ - **Organization**: Logical, intuitive categorization system
337
+ - **Accuracy**: Information is current and correct
338
+
339
+ #### 2. User Experience Improvement
340
+ - **Discovery**: Users can quickly find relevant fields
341
+ - **Understanding**: Clear comprehension of field purpose and usage
342
+ - **Efficiency**: Reduced time to identify appropriate data
343
+ - **Confidence**: Users trust the information provided
344
+
345
+ #### 3. Platform Knowledge Enhancement
346
+ - **Coverage**: Comprehensive understanding of dataset capabilities
347
+ - **Insights**: Discovery of new patterns and opportunities
348
+ - **Integration**: Knowledge connects to broader platform understanding
349
+ - **Innovation**: Identification of new use cases and applications
350
+
351
+ ### Tools & Resources
352
+
353
+ #### 1. BRAIN Platform Tools
354
+ - **Data Explorer**: Primary field discovery and analysis tool
355
+ - **Simulation Engine**: Data behavior testing and validation
356
+ - **Documentation System**: Platform knowledge and best practices
357
+ - **API Access**: Automated data exploration and analysis
358
+ - **BRAIN 6-Tips Methodology**: Proven systematic approach to datafield exploration
359
+
360
+ **MCP Tool Integration for Platform Tools:**
361
+ - **Data Explorer**: Use `mcp_brain-api_get_datasets` and `mcp_brain-api_get_datafields`
362
+ - **Simulation Engine**: Use `mcp_brain-api_create_simulation` with proper settings
363
+ - **Documentation System**: Use `mcp_brain-api_get_documentations` and `mcp_brain-api_get_documentation_page`
364
+ - **API Access**: All MCP tools provide automated API access
365
+ - **BRAIN 6-Tips**: Implemented through `mcp_brain-api_create_simulation` calls
366
+
367
+ #### 2. External Resources
368
+ - **Financial Databases**: Additional context for financial fields
369
+ - **Industry Publications**: Market knowledge and trends
370
+ - **Academic Research**: Statistical methods and best practices
371
+ - **Community Forums**: User insights and experiences
372
+
373
+ #### 3. Analysis Tools
374
+ - **Statistical Software**: Data analysis and visualization
375
+ - **Documentation Tools**: Knowledge management and organization
376
+ - **Collaboration Platforms**: Team coordination and knowledge sharing
377
+
378
+ **MCP-Enhanced Analysis Capabilities:**
379
+ - **Statistical Analysis**: Use `mcp_brain-api_create_simulation` for data behavior testing
380
+ - **Data Quality Assessment**: Use `mcp_brain-api_get_platform_setting_options` for validation
381
+ - **Pattern Recognition**: Use `mcp_brain-api_get_operators` for available analysis functions
382
+ - **Documentation Management**: Use `mcp_brain-api_get_documentations` for comprehensive knowledge access
383
+ - **Community Integration**: Use `mcp_brain-forum_*` tools for collaborative insights
384
+
385
+ ### Professional Development
386
+
387
+ #### 1. Continuous Learning
388
+ - **Platform Updates**: Stay current with BRAIN platform developments
389
+ - **Industry Trends**: Monitor financial data and technology advances
390
+ - **Best Practices**: Learn from community and expert insights
391
+ - **Skill Enhancement**: Develop additional technical and analytical capabilities
392
+
393
+ #### 2. Knowledge Sharing
394
+ - **Team Training**: Share expertise with colleagues
395
+ - **Community Contribution**: Contribute to BRAIN community knowledge
396
+ - **Documentation Updates**: Maintain current and accurate information
397
+ - **Best Practice Development**: Create and refine methodologies
398
+
399
+ ### Conclusion
400
+
401
+ The Dataset Exploration Expert role is critical for maximizing the value of WorldQuant BRAIN's extensive data resources. By providing deep insights, logical organization, and comprehensive documentation, this expert enables users to discover new opportunities, create more effective alphas, and leverage the platform's full potential.
402
+
403
+ Success in this role requires a combination of technical expertise, analytical thinking, and communication skills, along with a deep understanding of both financial markets and data science principles. The expert serves as a bridge between raw data and actionable insights, transforming complex datasets into accessible, well-organized knowledge resources that drive innovation and success on the BRAIN platform.
404
+
405
+ ---
406
+
407
+ ## 🔧 **MCP Tool Reference Guide**
408
+
409
+ ### **Core Data Exploration Tools**
410
+ - **`mcp_brain-api_get_datasets`**: Discover and filter available datasets
411
+ - **`mcp_brain-api_get_datafields`**: Retrieve field inventory and metadata
412
+ - **`mcp_brain-api_create_simulation`**: Execute data analysis simulations
413
+ - **`mcp_brain-api_get_platform_setting_options`**: Validate simulation parameters
414
+
415
+ ### **Documentation & Knowledge Tools**
416
+ - **`mcp_brain-api_get_documentations`**: Access platform documentation structure
417
+ - **`mcp_brain-api_get_documentation_page`**: Read specific documentation content
418
+ - **`mcp_brain-api_get_operators`**: Discover available analysis operators
419
+ - **`mcp_brain-api_get_alpha_examples`**: Access strategy examples and templates
420
+
421
+ ### **Community & Forum Tools**
422
+ - **`mcp_brain-forum_search_forum_posts`**: Search community discussions
423
+ - **`mcp_brain-forum_read_full_forum_post`**: Read detailed forum content
424
+ - **`mcp_brain-forum_get_glossary_terms`**: Access community terminology
425
+
426
+ ### **Competition & Event Tools**
427
+ - **`mcp_brain-api_get_events`**: Discover available competitions
428
+ - **`mcp_brain-api_get_competition_details`**: Get competition guidelines
429
+ - **`mcp_brain-api_get_competition_agreement`**: Access competition rules
430
+
431
+ ### **Best Practices for MCP Tool Usage**
432
+ 1. **Always authenticate first** using `mcp_brain-api_authenticate`
433
+ 2. **Validate parameters** using `mcp_brain-api_get_platform_setting_options`
434
+ 3. **Handle errors gracefully** and retry with corrected parameters
435
+ 4. **Use appropriate delays** between API calls to avoid rate limiting
436
+ 5. **Document tool usage** in your exploration reports for reproducibility
@@ -0,0 +1,128 @@
1
+ # WorldQuant BRAIN 每日日报撰写工作流程
2
+
3
+ ## 概述
4
+
5
+ 本文档详细描述了撰写 WorldQuant BRAIN 平台每日日报的工作流程,旨在帮助秘书或助手接手此任务,确保日报内容全面、准确,并为用户提供有价值的见解和建议。工作流程包括数据收集、分析和报告撰写的具体步骤,以及使用的 BRAIN MCP 工具。
6
+
7
+ ## 总体工作流程
8
+ 0. 获取当前时间,running get_ny_time.py。
9
+ 1. **认证与准备**:使用用户提供的登录凭据,通过 BRAIN MCP 工具认证,访问平台数据。
10
+ 2. **数据收集**:获取用户的 收入、 alpha 数据、比赛信息、平台消息和事件等。偏好并行调用工具以提高效率。
11
+ 3. **数据分析**:分析 alpha 性能、比赛规则、pyramid 分布和策略建议,包括相关性检查和年度统计。
12
+ 4. **报告撰写**:按照预定义结构撰写日报,填充真实数据并提供建议。包括执行摘要,并将 Alpha 部分移到报告后部。
13
+ 5. **修订与更新**:根据用户反馈或新数据更新报告内容,撰写并输出相应markdown日报文件。
14
+ 6. **文档记录**:记录并更新工作流程以便他人参考。
15
+
16
+ ## 具体步骤与章节对应
17
+
18
+ ### 0. 执行摘要 (新增)
19
+ - **步骤**:
20
+ 1. 基于所有收集数据,总结关键洞见、机会、风险和行动优先级。
21
+ 2. 使用量化指标(如 Sharpe 提升估算)提供决策支持。
22
+ - **使用的 MCP 工具**:无,直接基于后续分析。
23
+
24
+ ### 1. 日报基本信息
25
+ - **步骤**:
26
+ 1. 确定报告日期,通常是当前日期(如 2025年8月9日)。使用系统日期动态获取。
27
+ 2. 填写报告人和收件人信息,通常是秘书(AI 助手)和用户姓名。
28
+ - **使用的 MCP 工具**:无,直接手动输入或通过简单脚本获取日期。
29
+
30
+ ### 2. 平台动向 (调整顺序)
31
+ - **步骤**:
32
+ 1. **获取平台更新**:获取 BRAIN 平台最近的公告和更新。
33
+ - 使用工具:`mcp_brain-api_get_messages`(设置 `limit` 为 null,`offset` 为 0)。
34
+ 2. **社区动态**:从消息中提取社区相关信息,如研究论文或热门话题。
35
+ 3. **排行榜变化**:记录用户位置变化。
36
+ - 使用工具:`mcp_brain-api_get_leaderboard`(设置 `user_id` 为用户 ID,如 "CQ89422")。
37
+ 4. **多样性分数**:收集用户最近一个季度的多样性分数,获知其value factor趋势,该分数捕捉用户提交Alpha的多样性,来判断其value factor的变化趋势,在0-1之间,越高越好,据此提出具体建议。
38
+ - **使用的 MCP 工具**:
39
+ - `mcp_brain-api_get_messages`:获取平台公告和社区动态。
40
+ - `mcp_brain-api_get_leaderboard`:获取用户排行榜统计。
41
+ - `mcp_brain-api_value_factor_trendScore`:用户value factor趋势,又名多样性分数。
42
+
43
+ ### 3. 比赛参与与进度
44
+ - **步骤**:
45
+ 1. **获取用户参与的比赛**:获取用户当前参与的所有比赛信息。
46
+ - 使用工具:`mcp_brain-api_get_user_competitions`(设置 `user_id` 为 "self")。
47
+ 2. **筛选未截止比赛**:根据比赛日期判断哪些比赛尚未截止,优先关注这些比赛。
48
+ 3. **比赛进度报告**:记录用户在每个比赛中的排名、提交的 alpha 表现等信息。
49
+ 4. **⚠️ 关键:比赛规则与要求详细分析**:获取每个比赛的详细规则和要求。
50
+ - 使用工具:`mcp_brain-api_get_competition_details` 和 `mcp_brain-api_get_competition_agreement`(设置 `competition_id` 为具体比赛 ID)。
51
+ - **必须仔细阅读比赛协议**:特别注意universe要求、delay要求、Alpha类型限制等关键参数。
52
+ - **常见错误**:例如GAC类比赛要求GLOBAL universe,而非特定region(如USA)。
53
+ 5. **比赛相关计划与建议**:基于规则和用户当前表现,提供下一步行动建议和研究方向。
54
+ - **验证符合性**:确保推荐的Alpha完全符合比赛规则要求。
55
+ - **结合 pyramid 缺失类别**:在符合比赛规则的前提下,考虑pyramid优化。
56
+ - **使用的 MCP 工具**:
57
+ - `mcp_brain-api_get_user_competitions`:获取用户参与的比赛列表。
58
+ - `mcp_brain-api_get_competition_details`:获取比赛详细信息。
59
+ - `mcp_brain-api_get_competition_agreement`:获取比赛规则和条款。
60
+
61
+ ### 4. 未来活动预告
62
+ - **步骤**:
63
+ 1. **获取即将到来的事件**:获取 BRAIN 平台上的比赛、研讨会或其他活动信息,过滤过去事件(基于当前日期,如 2025-08-09)。
64
+ - 使用工具:`mcp_brain-api_get_events`(设置 `random_string` 为任意值,如 "dummy")。
65
+ 2. **计划任务**:基于当前 alpha 和比赛状态,列出未来几天计划完成的任务。
66
+ - **使用的 MCP 工具**:
67
+ - `mcp_brain-api_get_events`:获取平台事件信息。
68
+
69
+ ### 5. 研究回归与建议
70
+ - **步骤**:
71
+ 1. **研究回归**:基于当前 alpha 表现总结研究成果,包括年度统计。
72
+ 2. **建议**:综合 alpha 表现、比赛要求和平台动向,提供 alpha 优化、比赛策略、数据字段探索和风险管理等方面的建议。优先级列表化。
73
+ - **使用的 MCP 工具**:基于 Alpha 部分数据。
74
+
75
+ ### 6. Alpha 进展与状态 (移到后部)
76
+ - **步骤**:
77
+ 1. **获取 IS (In-Sample) Alpha 数据**:获取用户当前正在回测的 alpha 信息。
78
+ - 使用工具:`mcp_brain-api_get_user_alphas`(设置 `stage` 为 "IS",`limit` 为 30,`offset` 为 0)。
79
+ 2. **获取 OS (Out-of-Sample) Alpha 数据**:获取用户最近成功提交的 alpha 信息。
80
+ - 使用工具:`mcp_brain-api_get_user_alphas`(设置 `stage` 为 "OS",`limit` 为 30,`offset` 为 0)。
81
+ 3. **昨日进展**:查看平台日志或使用 `mcp_brain-api_get_user_activities` 追踪活动。
82
+ 4. **性能分析**:分析每个 alpha 的关键指标(如 Sharpe Ratio、PnL、Fitness),与平台标准对比。并行调用工具获取细节。
83
+ - 使用工具:`mcp_brain-api_get_alpha_details`、`mcp_brain-api_analyze_alpha_performance`、`mcp_brain-api_get_alpha_pnl`、`mcp_brain-api_get_alpha_yearly_stats`、`mcp_brain-api_check_correlation` (阈值 0.7)。
84
+ 5. **OS Alpha 详细分析**:对每个 OS alpha 分析数据字段、运算符和含义。提供两个角度改进建议:(1) Idea 本身 (e.g., 修改窗口、添加运算符);(2) 结合比赛 (e.g., GAC2025 要求) 或近季度缺失 pyramid (使用 `mcp_brain-api_get_pyramid_alphas` 和 `mcp_brain-api_get_pyramid_multipliers`,推荐具体数据字段)。
85
+ 6. **其他数据字段建议**:基于策略,使用 `mcp_brain-api_get_datafields` 搜索并推荐字段 (e.g., search="EPS")。
86
+ - **使用的 MCP 工具**:
87
+ - `mcp_brain-api_get_user_alphas`:获取 IS/OS 列表。
88
+ - `mcp_brain-api_get_alpha_details`:详细代码/描述。
89
+ - `mcp_brain-api_analyze_alpha_performance`:全面性能分析。
90
+ - `mcp_brain-api_check_correlation`:相关性检查。
91
+ - `mcp_brain-api_get_alpha_pnl`:PnL 数据。
92
+ - `mcp_brain-api_get_alpha_yearly_stats`:年度统计。
93
+ - `mcp_brain-api_get_pyramid_alphas` 和 `mcp_brain-api_get_pyramid_multipliers`:pyramid 分布和乘数。
94
+ - `mcp_brain-api_get_datafields`:推荐数据字段。
95
+
96
+ ## 其他注意事项
97
+
98
+ - **认证**:在开始任何数据获取之前,需使用 `mcp_brain-api_authenticate` 工具进行认证,提供用户的电子邮件和密码。
99
+ - **动态日期**:使用系统日期动态获取当前日期,确保事件过滤准确(e.g., 排除过去事件)。
100
+ - **并行工具调用**:优先并行调用 MCP 工具以加速数据收集。
101
+ - **善用论坛**:善用论坛,获取更多信息。
102
+ - **用户反馈**:在每个阶段完成后,检查用户是否有补充信息或修改意见,并相应更新报告。
103
+ - **任务管理**:使用 `todo_write` 工具创建和更新待办事项列表,确保每个步骤按部就班完成。
104
+
105
+ ## 质量控制与错误防范
106
+
107
+ ### 常见错误及防范措施
108
+ 1. **比赛规则理解错误**:
109
+ - **错误示例**:误认为GAC2025接受USA region Alpha,实际要求GLOBAL universe
110
+ - **防范措施**:必须详细阅读`mcp_brain-api_get_competition_agreement`返回的完整规则文档
111
+ - **验证步骤**:在提供建议前,再次确认Alpha的universe、delay等参数符合比赛要求
112
+
113
+ 2. **数据解读错误**:
114
+ - **防范措施**:对关键指标进行交叉验证,如Sharpe ratio、fitness等
115
+ - **质量检查**:确保所有建议都有数据支撑,避免主观推测
116
+
117
+ 3. **输出格式错误**:
118
+ - **用户偏好**:根据用户要求选择聊天输出或markdown文件
119
+ - **结构完整性**:确保日报包含所有必需章节且逻辑清晰
120
+
121
+ ### 持续改进机制
122
+ - 记录每次错误的根本原因
123
+ - 更新工作流程以防止类似错误重复发生
124
+ - 建立验证清单确保关键信息准确性
125
+
126
+ ## 总结
127
+
128
+ 以上工作流程涵盖了撰写 BRAIN 平台每日日报的各个方面,从数据收集到报告撰写和更新。通过使用指定的 MCP 工具,秘书可以获取必要的数据并分析用户在平台上的表现,从而提供有针对性的建议和见解。如有任何问题或需要进一步指导,请随时与前任秘书或平台支持团队联系。