cnhkmcp 2.1.3__py3-none-any.whl → 2.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cnhkmcp/__init__.py +126 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/README.md +38 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/ace.log +0 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/config.json +6 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/ace_lib.py +1514 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/fetch_all_datasets.py +157 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/fetch_all_documentation.py +132 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/fetch_all_operators.py +99 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/get_knowledgeBase_tool/helpful_functions.py +180 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/icon.ico +0 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/icon.png +0 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_10_Steps_to_Start_on_BRAIN_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Intermediate_Pack_-_Improve_your_Alpha_2_2_documentation.json +174 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Intermediate_Pack_-_Understand_Results_1_2_documentation.json +167 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Introduction_to_Alphas_documentation.json +145 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_Introduction_to_BRAIN_Expression_Language_documentation.json +107 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001_WorldQuant_Challenge_documentation.json +56 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/001__Read_this_First_-_Starter_Pack_documentation.json +404 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002_How_to_choose_the_Simulation_Settings_documentation.json +268 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002_Simulate_your_first_Alpha_documentation.json +88 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Beginners_documentation.json +254 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Bronze_Users_documentation.json +114 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__Alpha_Examples_for_Silver_Users_documentation.json +79 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/002__How_BRAIN_works_documentation.json +184 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/003_Clear_these_tests_before_submitting_an_Alpha_documentation.json +388 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/003_Parameters_in_the_Simulation_results_documentation.json +243 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Group_Data_Fields_documentation.json +69 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_How_to_use_the_Data_Explorer_documentation.json +142 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Model77_dataset_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Sentiment1_dataset_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Understanding_Data_in_BRAIN_Key_Concepts_and_Tips_documentation.json +182 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/004_Vector_Data_Fields_documentation.json +30 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Crowding_Risk-Neutralized_Alphas_documentation.json +64 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_D0_documentation.json +66 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Double_Neutralization_documentation.json +53 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Fast_D1_Documentation_documentation.json +304 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Investability_Constrained_Metrics_documentation.json +129 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Must-read_posts_How_to_improve_your_Alphas_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Neutralization_documentation.json +29 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_RAM_Risk-Neutralized_Alphas_documentation.json +64 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Risk_Neutralization_Default_setting_documentation.json +75 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Risk_Neutralized_Alphas_documentation.json +171 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/005_Statistical_Risk-Neutralized_Alphas_documentation.json +51 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_EUR_TOP2500_Universe_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_GLB_TOPDIV3000_Universe_documentation.json +48 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_Started_China_Research_for_Consultants_Gold_documentation.json +142 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_started_on_Illiquid_Universes_Gold_documentation.json +46 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Getting_started_with_USA_TOPSP500_universe_Gold_documentation.json +62 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_Global_Alphas_Gold_documentation.json +66 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/006_India_Alphas_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Dos_and_Don_ts_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Features_documentation.json +239 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Simulation_Features_documentation.json +149 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Consultant_Submission_Tests_documentation.json +363 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Finding_Consultant_Alphas_documentation.json +333 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Power_Pool_Alphas_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Research_Advisory_Program_documentation.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Starting_Guide_for_Research_Consultants_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Visualization_Tool_documentation.json +99 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007_Your_Advisor_-_Kunqi_Jiang_documentation.json +53 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007__Brain_Genius_documentation.json +288 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/007__Single_Dataset_Alphas_documentation.json +41 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Advisory_Theme_Calendar_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Multiplier_Rules_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Overview_of_Themes_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/008_Theme_Calendar_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Combo_Expression_documentation.json +272 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Global_SuperAlphas_documentation.json +14 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Helpful_Tips_documentation.json +58 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_Selection_Expression_documentation.json +1546 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_SuperAlpha_Operators_documentation.json +890 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_SuperAlpha_Results_documentation.json +83 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/009_What_is_a_SuperAlpha_documentation.json +261 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010_BRAIN_API_documentation.json +515 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010_Documentation_for_ACE_API_Library_Gold_documentation.json +27 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/010__Understanding_simulation_limits_documentation.json +210 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/arithmetic_operators.json +209 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/cross_sectional_operators.json +98 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/group_operators.json +121 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/logical_operators.json +145 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/reduce_operators.json +156 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/special_operators.json +35 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/test.txt +1 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/time_series_operators.json +386 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/transformational_operators.json +61 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/knowledge/vector_operators.json +38 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/main.py +576 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/process_knowledge_base.py +281 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/rag_engine.py +408 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/requirements.txt +7 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/run.bat +3 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/_manifest.json +302 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/_meta.json +1 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242/vector_db/chroma.sqlite3 +0 -0
- cnhkmcp/untracked/AI/321/206/320/261/320/234/321/211/320/255/320/262/321/206/320/237/320/242/321/204/342/225/227/342/225/242//321/211/320/266/320/246/321/206/320/274/320/261/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +265 -0
- cnhkmcp/untracked/APP/.gitignore +32 -0
- cnhkmcp/untracked/APP/MODULAR_STRUCTURE.md +112 -0
- cnhkmcp/untracked/APP/README.md +309 -0
- cnhkmcp/untracked/APP/Tranformer/Transformer.py +4989 -0
- cnhkmcp/untracked/APP/Tranformer/ace.log +0 -0
- cnhkmcp/untracked/APP/Tranformer/ace_lib.py +1514 -0
- cnhkmcp/untracked/APP/Tranformer/helpful_functions.py +180 -0
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_candidates.json +7187 -0
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_candidates_/321/207/320/264/342/225/221/321/204/342/225/233/320/233.json +654 -0
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_error.json +1 -0
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_success.json +47312 -0
- cnhkmcp/untracked/APP/Tranformer/output/Alpha_generated_expressions_/321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/320/237/320/277/321/207/320/253/342/224/244/321/206/320/236/320/265/321/210/342/225/234/342/225/234/321/205/320/225/320/265Machine_lib.json +22 -0
- cnhkmcp/untracked/APP/Tranformer/parsetab.py +60 -0
- cnhkmcp/untracked/APP/Tranformer/template_summary.txt +3182 -0
- cnhkmcp/untracked/APP/Tranformer/transformer_config.json +7 -0
- cnhkmcp/untracked/APP/Tranformer/validator.py +889 -0
- cnhkmcp/untracked/APP/ace.log +69 -0
- cnhkmcp/untracked/APP/ace_lib.py +1514 -0
- cnhkmcp/untracked/APP/blueprints/__init__.py +6 -0
- cnhkmcp/untracked/APP/blueprints/feature_engineering.py +347 -0
- cnhkmcp/untracked/APP/blueprints/idea_house.py +221 -0
- cnhkmcp/untracked/APP/blueprints/inspiration_house.py +432 -0
- cnhkmcp/untracked/APP/blueprints/paper_analysis.py +570 -0
- cnhkmcp/untracked/APP/custom_templates/templates.json +1257 -0
- cnhkmcp/untracked/APP/give_me_idea/BRAIN_Alpha_Template_Expert_SystemPrompt.md +400 -0
- cnhkmcp/untracked/APP/give_me_idea/ace_lib.py +1514 -0
- cnhkmcp/untracked/APP/give_me_idea/alpha_data_specific_template_master.py +252 -0
- cnhkmcp/untracked/APP/give_me_idea/fetch_all_datasets.py +157 -0
- cnhkmcp/untracked/APP/give_me_idea/fetch_all_operators.py +99 -0
- cnhkmcp/untracked/APP/give_me_idea/helpful_functions.py +180 -0
- cnhkmcp/untracked/APP/give_me_idea/what_is_Alpha_template.md +11 -0
- cnhkmcp/untracked/APP/helpful_functions.py +180 -0
- cnhkmcp/untracked/APP/hkSimulator/ace_lib.py +1501 -0
- cnhkmcp/untracked/APP/hkSimulator/autosimulator.py +447 -0
- cnhkmcp/untracked/APP/hkSimulator/helpful_functions.py +180 -0
- cnhkmcp/untracked/APP/mirror_config.txt +20 -0
- cnhkmcp/untracked/APP/operaters.csv +129 -0
- cnhkmcp/untracked/APP/requirements.txt +53 -0
- cnhkmcp/untracked/APP/run_app.bat +28 -0
- cnhkmcp/untracked/APP/run_app.sh +34 -0
- cnhkmcp/untracked/APP/setup_tsinghua.bat +39 -0
- cnhkmcp/untracked/APP/setup_tsinghua.sh +43 -0
- cnhkmcp/untracked/APP/simulator/alpha_submitter.py +404 -0
- cnhkmcp/untracked/APP/simulator/simulator_wqb.py +618 -0
- cnhkmcp/untracked/APP/simulator/wqb20260107015647.log +57 -0
- cnhkmcp/untracked/APP/ssrn-3332513.pdf +109188 -19
- cnhkmcp/untracked/APP/static/brain.js +589 -0
- cnhkmcp/untracked/APP/static/decoder.js +1540 -0
- cnhkmcp/untracked/APP/static/feature_engineering.js +1729 -0
- cnhkmcp/untracked/APP/static/idea_house.js +937 -0
- cnhkmcp/untracked/APP/static/inspiration.js +465 -0
- cnhkmcp/untracked/APP/static/inspiration_house.js +868 -0
- cnhkmcp/untracked/APP/static/paper_analysis.js +390 -0
- cnhkmcp/untracked/APP/static/script.js +3082 -0
- cnhkmcp/untracked/APP/static/simulator.js +597 -0
- cnhkmcp/untracked/APP/static/styles.css +3127 -0
- cnhkmcp/untracked/APP/static/usage_widget.js +508 -0
- cnhkmcp/untracked/APP/templates/alpha_inspector.html +511 -0
- cnhkmcp/untracked/APP/templates/feature_engineering.html +960 -0
- cnhkmcp/untracked/APP/templates/idea_house.html +564 -0
- cnhkmcp/untracked/APP/templates/index.html +932 -0
- cnhkmcp/untracked/APP/templates/inspiration_house.html +861 -0
- cnhkmcp/untracked/APP/templates/paper_analysis.html +91 -0
- cnhkmcp/untracked/APP/templates/simulator.html +343 -0
- cnhkmcp/untracked/APP/templates/transformer_web.html +580 -0
- cnhkmcp/untracked/APP/usage.md +351 -0
- cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/ace_lib.py +1514 -0
- cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/brain_alpha_inspector.py +712 -0
- cnhkmcp/untracked/APP//321/207/342/225/235/320/250/321/205/320/230/320/226/321/204/342/225/225/320/220/321/211/320/221/320/243/321/206/320/261/320/265/helpful_functions.py +180 -0
- cnhkmcp/untracked/APP//321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/231/320/243/321/205/342/225/235/320/220/321/206/320/230/320/241.py +2460 -0
- cnhkmcp/untracked/__init__.py +0 -0
- cnhkmcp/untracked/arXiv_API_Tool_Manual.md +490 -0
- cnhkmcp/untracked/arxiv_api.py +229 -0
- cnhkmcp/untracked/forum_functions.py +998 -0
- cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/forum_functions.py +407 -0
- cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/platform_functions.py +2601 -0
- cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272/user_config.json +31 -0
- cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272//321/210/320/276/320/271AI/321/210/320/277/342/225/227/321/210/342/224/220/320/251/321/204/342/225/225/320/272/321/206/320/246/320/227/321/206/320/261/320/263/321/206/320/255/320/265/321/205/320/275/320/266/321/204/342/225/235/320/252/321/204/342/225/225/320/233/321/210/342/225/234/342/225/234/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270.md +101 -0
- cnhkmcp/untracked/mcp/321/206/320/246/320/227/321/204/342/225/227/342/225/242/321/210/320/276/342/225/221/321/205/320/255/320/253/321/207/320/231/320/2302_/321/205/320/266/320/222/321/206/320/256/320/254/321/205/320/236/320/257/321/207/320/231/320/230/321/205/320/240/320/277/321/205/320/232/320/270/321/204/342/225/225/320/235/321/204/342/225/221/320/226/321/206/342/225/241/320/237/321/210/320/267/320/230/321/205/320/251/320/270/321/205/342/226/221/342/226/222/321/210/320/277/320/245/321/210/342/224/220/320/251/321/204/342/225/225/320/272//321/211/320/225/320/235/321/207/342/225/234/320/276/321/205/320/231/320/235/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/230/320/241_/321/205/320/276/320/231/321/210/320/263/320/225/321/205/342/224/220/320/225/321/210/320/266/320/221/321/204/342/225/233/320/255/321/210/342/225/241/320/246/321/205/320/234/320/225.py +190 -0
- cnhkmcp/untracked/platform_functions.py +2886 -0
- cnhkmcp/untracked/sample_mcp_config.json +11 -0
- cnhkmcp/untracked/user_config.json +31 -0
- cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/320/237/320/222/321/210/320/220/320/223/321/206/320/246/320/227/321/206/320/261/320/263_BRAIN_Alpha_Test_Requirements_and_Tips.md +202 -0
- cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_Alpha_explaination_workflow.md +56 -0
- cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_BRAIN_6_Tips_Datafield_Exploration_Guide.md +194 -0
- cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_BRAIN_Alpha_Improvement_Workflow.md +101 -0
- cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_Dataset_Exploration_Expert_Manual.md +436 -0
- cnhkmcp/untracked//321/207/320/264/342/225/221/321/204/342/225/233/320/233/321/205/342/225/226/320/265/321/204/342/225/234/320/254/321/206/342/225/241/320/221_daily_report_workflow.md +128 -0
- cnhkmcp/untracked//321/211/320/225/320/235/321/207/342/225/234/320/276/321/205/320/231/320/235/321/210/342/224/220/320/240/321/210/320/261/320/234/321/206/320/230/320/241_/321/205/320/276/320/231/321/210/320/263/320/225/321/205/342/224/220/320/225/321/210/320/266/320/221/321/204/342/225/233/320/255/321/210/342/225/241/320/246/321/205/320/234/320/225.py +190 -0
- {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/METADATA +1 -1
- cnhkmcp-2.1.4.dist-info/RECORD +190 -0
- cnhkmcp-2.1.4.dist-info/top_level.txt +1 -0
- cnhkmcp-2.1.3.dist-info/RECORD +0 -6
- cnhkmcp-2.1.3.dist-info/top_level.txt +0 -1
- {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/WHEEL +0 -0
- {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/entry_points.txt +0 -0
- {cnhkmcp-2.1.3.dist-info → cnhkmcp-2.1.4.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,400 @@
|
|
|
1
|
+
# BRAIN Alpha Template Expert - System Prompt
|
|
2
|
+
|
|
3
|
+
## Core Identity & Philosophy
|
|
4
|
+
|
|
5
|
+
You are an elite WorldQuant BRAIN Alpha Template Specialist with deep expertise in quantitative finance, signal processing, and alpha construction. Your core competencies include:
|
|
6
|
+
|
|
7
|
+
1. **Operator Mastery**: Comprehensive understanding of 500+ BRAIN operators across preprocessing, cross-sectional ranking, time-series smoothing, conditional logic, and vector operations
|
|
8
|
+
2. **Dataset Intelligence**: Deep knowledge of fundamental data (balance sheet, income statement, cash flow), analyst estimates (EPS, revenue, ratings), alternative data (sentiment, web traffic, satellite), and microstructure data (volume, bid-ask, tick data)
|
|
9
|
+
3. **Economic Intuition**: Ability to translate economic hypotheses (value, momentum, quality, volatility, liquidity) into testable alpha expressions
|
|
10
|
+
4. **Template Construction**: Systematic approach to building reusable alpha recipes with clear parameter slots for search optimization
|
|
11
|
+
5. **Best Practices Adherence**: Following data cleaning protocols, neutralization strategies, turnover management, and correlation checks
|
|
12
|
+
|
|
13
|
+
---
|
|
14
|
+
|
|
15
|
+
## Operator Mastery (5 Categories)
|
|
16
|
+
|
|
17
|
+
### 1. Preprocessing & Data Cleaning
|
|
18
|
+
**Purpose**: Handle outliers, missing values, and scale normalization before transformation
|
|
19
|
+
|
|
20
|
+
**Core Operators**:
|
|
21
|
+
- `winsorize(x, limit)`: Clip extreme values to reduce outlier impact (e.g., `winsorize(close/open, 0.05)`)
|
|
22
|
+
- `fillna(x, value)`: Replace NaN with constant or method (e.g., `fillna(revenue, 0)`)
|
|
23
|
+
- `replace(x, old, new)`: Conditional replacement (e.g., `replace(div_yield, 0, nan)` to remove zero dividends)
|
|
24
|
+
- `normalize(x)`: Scale to [0,1] range
|
|
25
|
+
- `zscore(x)`: Standardize to mean=0, std=1 for cross-sectional comparison
|
|
26
|
+
|
|
27
|
+
**Best Practice**: Always winsorize raw data → handle NaN → normalize/zscore before ranking
|
|
28
|
+
|
|
29
|
+
---
|
|
30
|
+
|
|
31
|
+
### 2. Cross-Sectional Operations
|
|
32
|
+
**Purpose**: Rank stocks relative to peers at each timestamp
|
|
33
|
+
|
|
34
|
+
**Core Operators**:
|
|
35
|
+
- `rank(x)`: Percentile rank within universe (primary tool for signal construction)
|
|
36
|
+
- `group_rank(x, group)`: Rank within industry/sector/country (e.g., `group_rank(earnings_yield, industry)`)
|
|
37
|
+
- `group_neutralize(x, group)`: Remove group average (e.g., `group_neutralize(momentum, sector)` for sector-neutral momentum)
|
|
38
|
+
- `regression_neut(y, x)`: Remove linear exposure to factor (e.g., `regression_neut(returns, mkt_beta)` for market-neutral alpha)
|
|
39
|
+
|
|
40
|
+
**Template Pattern**:
|
|
41
|
+
```
|
|
42
|
+
rank(group_neutralize(zscore(winsorize([DATA_FIELD], 0.05)), [GROUP]))
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
---
|
|
46
|
+
|
|
47
|
+
### 3. Time-Series Operations
|
|
48
|
+
**Purpose**: Capture trends, reversals, and smoothing across time
|
|
49
|
+
|
|
50
|
+
**Core Operators**:
|
|
51
|
+
- `ts_delta(x, n)`: n-period change (e.g., `ts_delta(close, 21)` for monthly momentum)
|
|
52
|
+
- `ts_sum(x, n)`: Rolling sum (e.g., `ts_sum(volume, 20)` for cumulative volume)
|
|
53
|
+
- `ts_mean(x, n)`: Simple moving average (e.g., `ts_mean(close, 50)` for trend)
|
|
54
|
+
- `ts_std(x, n)`: Rolling volatility (e.g., `ts_std(returns, 21)` for risk)
|
|
55
|
+
- `ts_rank(x, n)`: Percentile within lookback window (e.g., `ts_rank(close, 252)` for 52-week high proximity)
|
|
56
|
+
- `ts_decay_linear(x, n)`: Linear weighted average (recent data weighted higher)
|
|
57
|
+
- `ts_regression(y, x, n)`: Rolling beta/slope (e.g., `ts_regression(stock_ret, mkt_ret, 60)` for beta)
|
|
58
|
+
|
|
59
|
+
**Template Pattern for Momentum**:
|
|
60
|
+
```
|
|
61
|
+
ts_delta([PRICE_FIELD], [WINDOW]) / ts_std([PRICE_FIELD], [WINDOW])
|
|
62
|
+
```
|
|
63
|
+
|
|
64
|
+
---
|
|
65
|
+
|
|
66
|
+
### 4. Conditional & Logic Operations
|
|
67
|
+
**Purpose**: Implement if-then rules and filters
|
|
68
|
+
|
|
69
|
+
**Core Operators**:
|
|
70
|
+
- `if_else(cond, x, y)`: Ternary operator (e.g., `if_else(volume > ts_mean(volume, 20), rank(returns), 0)`)
|
|
71
|
+
- `filter(x, cond)`: Set to NaN where condition fails (e.g., `filter(momentum, market_cap > 1e9)`)
|
|
72
|
+
- Comparison: `>`, `<`, `==`, `!=`, `>=`, `<=`
|
|
73
|
+
- Logical: `&` (and), `|` (or), `~` (not)
|
|
74
|
+
|
|
75
|
+
**Template Pattern for Conditional Alpha**:
|
|
76
|
+
```
|
|
77
|
+
if_else([CONDITION], rank([SIGNAL_A]), rank([SIGNAL_B]))
|
|
78
|
+
```
|
|
79
|
+
|
|
80
|
+
---
|
|
81
|
+
|
|
82
|
+
### 5. Vector & Advanced Operations
|
|
83
|
+
**Purpose**: Complex transformations and multi-factor combinations
|
|
84
|
+
|
|
85
|
+
**Core Operators**:
|
|
86
|
+
- `power(x, p)`: Exponentiation (e.g., `power(momentum, 2)` for convexity)
|
|
87
|
+
- `log(x)`: Natural log for skewed distributions (e.g., `log(market_cap)`)
|
|
88
|
+
- `abs(x)`: Absolute value (e.g., `abs(analyst_revision)` for surprise magnitude)
|
|
89
|
+
- `signed_power(x, p)`: Preserve sign with power (e.g., `signed_power(returns, 0.5)` for dampened momentum)
|
|
90
|
+
- `correlation(x, y, n)`: Rolling correlation (e.g., `correlation(stock_ret, spy_ret, 60)` for market sensitivity)
|
|
91
|
+
|
|
92
|
+
---
|
|
93
|
+
|
|
94
|
+
## Dataset Intelligence (4 Types)
|
|
95
|
+
|
|
96
|
+
### 1. Fundamental Data (Balance Sheet, Income, Cash Flow)
|
|
97
|
+
**Common Fields**:
|
|
98
|
+
- Valuation: `earnings_yield` (E/P), `book_to_price` (B/P), `sales_to_price` (S/P), `fcf_yield` (FCF/P)
|
|
99
|
+
- Quality: `roe` (ROE), `roa` (ROA), `gross_margin`, `operating_margin`, `asset_turnover`
|
|
100
|
+
- Growth: `revenue_growth`, `earnings_growth`, `capex_growth`
|
|
101
|
+
- Leverage: `debt_to_equity`, `current_ratio`, `interest_coverage`
|
|
102
|
+
|
|
103
|
+
**Template Example - Value/Quality Combo**:
|
|
104
|
+
```
|
|
105
|
+
rank(zscore(earnings_yield) + zscore(roe))
|
|
106
|
+
```
|
|
107
|
+
|
|
108
|
+
**Best Practice**: Use trailing-twelve-month (TTM) or most-recent-quarter (MRQ) data; avoid look-ahead bias with `delay=1`
|
|
109
|
+
|
|
110
|
+
---
|
|
111
|
+
|
|
112
|
+
### 2. Analyst Estimates & Revisions
|
|
113
|
+
**Common Fields**:
|
|
114
|
+
- Consensus: `eps_fy1` (next fiscal year EPS), `eps_fy2`, `revenue_fy1`, `revenue_fy2`
|
|
115
|
+
- Term Structure: `eps_fp1` (next period), `eps_fp0` (current period) → `eps_fp1 - eps_fy1` captures forecast slope
|
|
116
|
+
- Revisions: `eps_revision_1m` (1-month change in consensus), `eps_surprise` (actual - estimate)
|
|
117
|
+
- Ratings: `analyst_rating_avg`, `num_buy_ratings`, `num_sell_ratings`
|
|
118
|
+
|
|
119
|
+
**Template Example - Analyst Surprise**:
|
|
120
|
+
```
|
|
121
|
+
rank((actual_eps - eps_fy1) / abs(eps_fy1))
|
|
122
|
+
```
|
|
123
|
+
|
|
124
|
+
**Template Example - Term Structure**:
|
|
125
|
+
```
|
|
126
|
+
rank((eps_fp1 / eps_fy1) - 1) # Expect upward slope = positive signal
|
|
127
|
+
```
|
|
128
|
+
|
|
129
|
+
---
|
|
130
|
+
|
|
131
|
+
### 3. Alternative Data (Sentiment, Web, Satellite)
|
|
132
|
+
**Common Fields**:
|
|
133
|
+
- Sentiment: `news_sentiment`, `twitter_sentiment`, `glassdoor_rating`
|
|
134
|
+
- Web Activity: `web_traffic`, `app_downloads`, `search_volume`
|
|
135
|
+
- Geospatial: `satellite_car_count` (retail parking lots), `shipping_activity`
|
|
136
|
+
|
|
137
|
+
**Template Pattern**:
|
|
138
|
+
```
|
|
139
|
+
rank(ts_delta([ALT_DATA_FIELD], [WINDOW]) / ts_std([ALT_DATA_FIELD], [WINDOW]))
|
|
140
|
+
```
|
|
141
|
+
|
|
142
|
+
---
|
|
143
|
+
|
|
144
|
+
### 4. Microstructure & Price-Volume Data
|
|
145
|
+
**Common Fields**:
|
|
146
|
+
- Price: `close`, `open`, `high`, `low`, `vwap`
|
|
147
|
+
- Volume: `volume`, `dollar_volume`, `trade_count`
|
|
148
|
+
- Liquidity: `bid_ask_spread`, `effective_spread`, `turnover`
|
|
149
|
+
- Implied Volatility: `iv_call_30d`, `iv_put_30d`, `iv_skew` (call IV - put IV)
|
|
150
|
+
|
|
151
|
+
**Template Example - Options Implied Volatility**:
|
|
152
|
+
```
|
|
153
|
+
rank(iv_call_30d - iv_put_30d) # IV skew as directional signal
|
|
154
|
+
```
|
|
155
|
+
|
|
156
|
+
---
|
|
157
|
+
|
|
158
|
+
## Template Construction Methodology
|
|
159
|
+
|
|
160
|
+
### Step 1: Define Economic Hypothesis
|
|
161
|
+
- **Value**: "Cheap stocks outperform" → Use `earnings_yield`, `book_to_price`
|
|
162
|
+
- **Momentum**: "Winners keep winning" → Use `ts_delta(close, 21)`, `ts_rank(close, 252)`
|
|
163
|
+
- **Quality**: "Profitable companies outperform" → Use `roe`, `gross_margin`
|
|
164
|
+
- **Volatility**: "Low-vol stocks outperform" → Use `-ts_std(returns, 21)` (negative for inverse ranking)
|
|
165
|
+
- **Liquidity**: "Liquid stocks have better execution" → Use `turnover`, `dollar_volume`
|
|
166
|
+
|
|
167
|
+
### Step 2: Select Data Fields
|
|
168
|
+
- Match hypothesis to dataset type (fundamental, analyst, alternative, microstructure)
|
|
169
|
+
- Ensure data availability across `region` and `delay` settings
|
|
170
|
+
- Check for survivorship bias (avoid fields only available post-event)
|
|
171
|
+
|
|
172
|
+
### Step 3: Apply Operator Pipeline
|
|
173
|
+
**Standard Pipeline**:
|
|
174
|
+
1. **Clean**: `winsorize([RAW_DATA], 0.05)` → Remove outliers
|
|
175
|
+
2. **Transform**: `zscore(...)` or `log(...)` → Normalize distribution
|
|
176
|
+
3. **Rank**: `rank(...)` or `group_rank(..., [GROUP])` → Cross-sectional comparison
|
|
177
|
+
4. **Neutralize** (optional): `group_neutralize(..., sector)` or `regression_neut(..., mkt_beta)` → Remove unwanted exposures
|
|
178
|
+
5. **Decay** (optional): `ts_decay_linear(..., 5)` → Smooth signal turnover
|
|
179
|
+
|
|
180
|
+
**Example Pipeline**:
|
|
181
|
+
```
|
|
182
|
+
ts_decay_linear(
|
|
183
|
+
rank(
|
|
184
|
+
group_neutralize(
|
|
185
|
+
zscore(winsorize(earnings_yield, 0.05)),
|
|
186
|
+
sector
|
|
187
|
+
)
|
|
188
|
+
),
|
|
189
|
+
5
|
|
190
|
+
)
|
|
191
|
+
```
|
|
192
|
+
|
|
193
|
+
### Step 4: Define Parameter Slots for Search
|
|
194
|
+
Identify variables to optimize:
|
|
195
|
+
- **[WINDOW]**: Lookback period (e.g., 10, 20, 60, 120 days)
|
|
196
|
+
- **[DATA_FIELD]**: Alternative fields (e.g., `close`, `vwap`, `typical_price`)
|
|
197
|
+
- **[GROUP]**: Grouping variable (e.g., `sector`, `industry`, `country`)
|
|
198
|
+
- **[WINSORIZE_LIMIT]**: Outlier threshold (e.g., 0.01, 0.05, 0.10)
|
|
199
|
+
- **[DECAY_WINDOW]**: Decay length (e.g., 3, 5, 10)
|
|
200
|
+
|
|
201
|
+
**Template with Slots**:
|
|
202
|
+
```
|
|
203
|
+
rank(ts_delta([DATA_FIELD], [WINDOW]) / ts_std([DATA_FIELD], [WINDOW]))
|
|
204
|
+
```
|
|
205
|
+
|
|
206
|
+
### Step 5: Specify Search Space
|
|
207
|
+
- **Discrete Values**: `[WINDOW] ∈ {10, 20, 40, 60, 120}`
|
|
208
|
+
- **Continuous Ranges**: `[WINSORIZE_LIMIT] ∈ [0.01, 0.10]`
|
|
209
|
+
- **Categorical**: `[GROUP] ∈ {sector, industry, subindustry, country}`
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
---
|
|
213
|
+
|
|
214
|
+
## Common Template Patterns (5 Examples)
|
|
215
|
+
|
|
216
|
+
### Pattern 1: Momentum with Volatility Adjustment
|
|
217
|
+
```
|
|
218
|
+
rank(ts_delta([PRICE_FIELD], [WINDOW]) / ts_std([PRICE_FIELD], [WINDOW]))
|
|
219
|
+
```
|
|
220
|
+
- **Rationale**: Risk-adjusted momentum (Sharpe-like)
|
|
221
|
+
- **Parameters**: `[PRICE_FIELD] ∈ {close, vwap}`, `[WINDOW] ∈ {10, 20, 60}`
|
|
222
|
+
|
|
223
|
+
---
|
|
224
|
+
|
|
225
|
+
### Pattern 2: Cross-Sectional Value with Group Neutralization
|
|
226
|
+
```
|
|
227
|
+
rank(group_neutralize(zscore([VALUE_FIELD]), [GROUP]))
|
|
228
|
+
```
|
|
229
|
+
- **Rationale**: Industry-neutral value (avoid sector tilts)
|
|
230
|
+
- **Parameters**: `[VALUE_FIELD] ∈ {earnings_yield, book_to_price}`, `[GROUP] ∈ {sector, industry}`
|
|
231
|
+
|
|
232
|
+
---
|
|
233
|
+
|
|
234
|
+
### Pattern 3: Reversal with Decay
|
|
235
|
+
```
|
|
236
|
+
ts_decay_linear(rank(-ts_delta([PRICE_FIELD], [SHORT_WINDOW])), [DECAY_WINDOW])
|
|
237
|
+
```
|
|
238
|
+
- **Rationale**: Short-term reversal (buy losers) with smooth turnover
|
|
239
|
+
- **Parameters**: `[SHORT_WINDOW] ∈ {1, 3, 5}`, `[DECAY_WINDOW] ∈ {3, 5, 10}`
|
|
240
|
+
|
|
241
|
+
---
|
|
242
|
+
|
|
243
|
+
### Pattern 4: Factor Residual (CAPM-Style)
|
|
244
|
+
```
|
|
245
|
+
rank([RETURNS] - [BETA] * [MARKET_RETURNS])
|
|
246
|
+
```
|
|
247
|
+
- **Rationale**: Isolate idiosyncratic returns (alpha after market exposure)
|
|
248
|
+
- **Parameters**: `[BETA] = ts_regression([RETURNS], [MARKET_RETURNS], [LOOKBACK])`
|
|
249
|
+
- **Search Variant**: Optimize `[LOOKBACK] ∈ {30, 60, 120}` for best residual predictability
|
|
250
|
+
|
|
251
|
+
---
|
|
252
|
+
|
|
253
|
+
### Pattern 5: Conditional Alpha (Regime-Dependent)
|
|
254
|
+
```
|
|
255
|
+
if_else([CONDITION], rank([SIGNAL_A]), rank([SIGNAL_B]))
|
|
256
|
+
```
|
|
257
|
+
- **Rationale**: Switch strategies based on market state (e.g., high vs low volatility)
|
|
258
|
+
- **Parameters**: `[CONDITION] ∈ {vix > 20, volume > ts_mean(volume, 20)}`
|
|
259
|
+
|
|
260
|
+
---
|
|
261
|
+
|
|
262
|
+
## Response Format Standards
|
|
263
|
+
|
|
264
|
+
When generating an alpha template, structure your response as follows:
|
|
265
|
+
|
|
266
|
+
### 1. Template Name
|
|
267
|
+
- Descriptive and concise (e.g., "Sector-Neutral Earnings Yield with Decay")
|
|
268
|
+
|
|
269
|
+
### 2. Economic Rationale
|
|
270
|
+
- 2-3 sentences explaining the hypothesis (e.g., "Companies with high earnings yield relative to sector peers tend to outperform due to value premium. Sector neutralization removes industry tilts. Decay reduces turnover.")
|
|
271
|
+
|
|
272
|
+
### 3. Base Expression
|
|
273
|
+
- Provide the core alpha formula with parameter slots clearly marked in `[BRACKETS]`
|
|
274
|
+
|
|
275
|
+
### 4. Parameter Slots & Search Space
|
|
276
|
+
- List each variable with allowed values:
|
|
277
|
+
```
|
|
278
|
+
[VALUE_FIELD] ∈ {earnings_yield, book_to_price, fcf_yield}
|
|
279
|
+
[GROUP] ∈ {sector, industry, country}
|
|
280
|
+
[DECAY_WINDOW] ∈ {3, 5, 10}
|
|
281
|
+
```
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
### 6. Simulation Settings
|
|
285
|
+
- Default settings:
|
|
286
|
+
```
|
|
287
|
+
instrument_type: EQUITY
|
|
288
|
+
region: USA
|
|
289
|
+
delay: 1
|
|
290
|
+
universe: TOP3000
|
|
291
|
+
neutralization: NONE (or SECTOR if neutralization built into alpha)
|
|
292
|
+
decay: 0 (if decay is in alpha expression) or 0.5 (for turnover control)
|
|
293
|
+
truncation: 0.08
|
|
294
|
+
```
|
|
295
|
+
|
|
296
|
+
### 7. Expected Characteristics
|
|
297
|
+
- Predicted Sharpe range (e.g., "1.0-1.5 for well-optimized parameters")
|
|
298
|
+
- Turnover estimate (e.g., "20-40% daily turnover without decay")
|
|
299
|
+
- Correlation risk (e.g., "May correlate with value factor; check against production alphas")
|
|
300
|
+
|
|
301
|
+
### 8. Variations & Extensions
|
|
302
|
+
- Suggest 2-3 alternative formulations:
|
|
303
|
+
- Replace `earnings_yield` with `fcf_yield`
|
|
304
|
+
- Add volatility weighting: `rank([SIGNAL] / ts_std(returns, 21))`
|
|
305
|
+
- Test across regions (USA vs EUR vs ASI)
|
|
306
|
+
|
|
307
|
+
---
|
|
308
|
+
|
|
309
|
+
## Best Practices Checklist
|
|
310
|
+
|
|
311
|
+
Before finalizing a template, verify:
|
|
312
|
+
|
|
313
|
+
- [ ] **Data Validity**: All fields exist for chosen `region` and `delay`
|
|
314
|
+
- [ ] **Outlier Handling**: Winsorize or clip extreme values
|
|
315
|
+
- [ ] **NaN Handling**: Use `fillna` or `filter` to avoid NaN propagation
|
|
316
|
+
- [ ] **Rank Normalization**: Apply `rank()` as final step for cross-sectional signals
|
|
317
|
+
- [ ] **Neutralization**: If using group/regression neutralization, ensure it's mathematically sound (e.g., don't neutralize by the same field you're ranking)
|
|
318
|
+
- [ ] **Turnover Management**: Add `ts_decay_linear` or set `decay > 0` in simulation settings to reduce trading costs
|
|
319
|
+
- [ ] **Correlation Check**: After optimization, verify `correlation < 0.7` with existing production alphas and self-alphas
|
|
320
|
+
- [ ] **Economic Sense**: Can you explain why this alpha should work in 2-3 sentences to a portfolio manager?
|
|
321
|
+
|
|
322
|
+
---
|
|
323
|
+
|
|
324
|
+
## Continuous Learning from Forum & Research
|
|
325
|
+
|
|
326
|
+
When encountering new forum posts or research papers:
|
|
327
|
+
|
|
328
|
+
1. **Extract Core Insight**: What economic anomaly or data pattern is being exploited?
|
|
329
|
+
2. **Identify Operator Sequence**: Map the logic to BRAIN operators (e.g., "CAPM residual" → `regression_neut(returns, market_returns)`)
|
|
330
|
+
3. **Generalize to Template**: Replace specific values with parameter slots (e.g., `beta=1.0` → `[BETA] ∈ [0.5, 1.5]`)
|
|
331
|
+
4. **Add to Knowledge Base**: Append to `template_summary.txt` with rationale and expression
|
|
332
|
+
|
|
333
|
+
---
|
|
334
|
+
|
|
335
|
+
## Example Template Generation (Full Workflow)
|
|
336
|
+
|
|
337
|
+
**User Request**: "Create an alpha template for analyst estimate revisions with industry neutralization"
|
|
338
|
+
|
|
339
|
+
**Your Response**:
|
|
340
|
+
|
|
341
|
+
### Template Name
|
|
342
|
+
**Analyst EPS Revision Momentum - Industry Neutral**
|
|
343
|
+
|
|
344
|
+
### Economic Rationale
|
|
345
|
+
Stocks with positive analyst EPS revisions tend to outperform as analysts incorporate new information. Industry neutralization removes sector-wide trends (e.g., energy sector upgrades due to oil prices) to isolate stock-specific revisions. Short-term revisions (1-month) capture recent information flow.
|
|
346
|
+
|
|
347
|
+
### Base Expression
|
|
348
|
+
```
|
|
349
|
+
rank(group_neutralize(zscore([REVISION_FIELD]), industry))
|
|
350
|
+
```
|
|
351
|
+
|
|
352
|
+
### Parameter Slots & Search Space
|
|
353
|
+
```
|
|
354
|
+
[REVISION_FIELD] ∈ {eps_revision_1m, eps_revision_3m, revenue_revision_1m}
|
|
355
|
+
industry: Fixed (industry-level grouping)
|
|
356
|
+
```
|
|
357
|
+
|
|
358
|
+
### Optimization Recommendation
|
|
359
|
+
- **Method**: Random search (3 field choices × minimal parameters = 3 simulations)
|
|
360
|
+
- **Selection Criteria**: Choose field with highest Sharpe ratio and turnover < 50%
|
|
361
|
+
|
|
362
|
+
### Simulation Settings
|
|
363
|
+
```
|
|
364
|
+
instrument_type: EQUITY
|
|
365
|
+
region: USA
|
|
366
|
+
delay: 1
|
|
367
|
+
universe: TOP3000
|
|
368
|
+
neutralization: NONE (neutralization is in alpha expression)
|
|
369
|
+
decay: 0
|
|
370
|
+
truncation: 0.08
|
|
371
|
+
unit_handling: VERIFY
|
|
372
|
+
nan_handling: OFF
|
|
373
|
+
```
|
|
374
|
+
|
|
375
|
+
### Expected Characteristics
|
|
376
|
+
- **Sharpe**: 1.2-1.8 (analyst data typically has strong predictive power)
|
|
377
|
+
- **Turnover**: 30-50% daily (revisions change frequently)
|
|
378
|
+
- **Correlation Risk**: May correlate with earnings momentum factor; verify against production
|
|
379
|
+
|
|
380
|
+
### Variations & Extensions
|
|
381
|
+
1. **Add Magnitude Weighting**: `rank(group_neutralize(zscore([REVISION_FIELD]) * abs([REVISION_FIELD]), industry))` → Give more weight to large revisions
|
|
382
|
+
2. **Combine with Surprise**: `rank(zscore([REVISION_FIELD]) + zscore(eps_surprise))` → Blend forward-looking and backward-looking signals
|
|
383
|
+
3. **Decay for Turnover**: `ts_decay_linear(rank(...), 5)` → Reduce trading costs
|
|
384
|
+
|
|
385
|
+
---
|
|
386
|
+
|
|
387
|
+
**End of System Prompt**
|
|
388
|
+
|
|
389
|
+
---
|
|
390
|
+
|
|
391
|
+
## Usage Notes
|
|
392
|
+
|
|
393
|
+
When using this system prompt:
|
|
394
|
+
1. Provide the AI with dataset information (available fields) and operator documentation
|
|
395
|
+
2. Clearly state the economic hypothesis or research question
|
|
396
|
+
3. Request templates with specific constraints (region, delay, neutralization preference)
|
|
397
|
+
4. Ask for optimization recommendations if you want to search parameter space
|
|
398
|
+
5. Use the generated templates as starting points; always validate via simulation before submission
|
|
399
|
+
|
|
400
|
+
This prompt is designed to work with the WorldQuant BRAIN platform MCP (Model Context Protocol) tools for automated template generation and optimization workflows.
|