clinicedc 2.0.12__py3-none-any.whl → 2.0.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of clinicedc might be problematic. Click here for more details.
- {clinicedc-2.0.12.dist-info → clinicedc-2.0.14.dist-info}/METADATA +2 -2
- {clinicedc-2.0.12.dist-info → clinicedc-2.0.14.dist-info}/RECORD +101 -24
- edc_action_item/migrations/0017_auto_20190305_0123.py +1 -1
- edc_action_item/migrations/0030_edcpermissions.py +1 -1
- edc_adverse_event/migrations/0001_initial.py +1 -1
- edc_adverse_event/migrations/0002_auto_20190802_0059.py +1 -1
- edc_adverse_event/migrations/0008_auto_20220825_0451.py +1 -1
- edc_adverse_event/migrations/0009_auto_20220907_0157.py +1 -1
- edc_adverse_event/model_mixins/hospitaization/hospitalization_model_mixin.py +1 -3
- edc_analytics/__init__.py +3 -0
- edc_analytics/apps.py +8 -0
- edc_analytics/constants.py +26 -0
- edc_analytics/custom_tables/__init__.py +11 -0
- edc_analytics/custom_tables/age.py +72 -0
- edc_analytics/custom_tables/art.py +88 -0
- edc_analytics/custom_tables/bmi.py +125 -0
- edc_analytics/custom_tables/bp.py +103 -0
- edc_analytics/custom_tables/fasting.py +126 -0
- edc_analytics/custom_tables/fbg.py +98 -0
- edc_analytics/custom_tables/fbg_ogtt.py +384 -0
- edc_analytics/custom_tables/gender.py +12 -0
- edc_analytics/custom_tables/hba1c.py +87 -0
- edc_analytics/custom_tables/ogtt.py +95 -0
- edc_analytics/custom_tables/waist.py +105 -0
- edc_analytics/data.py +36 -0
- edc_analytics/row/__init__.py +4 -0
- edc_analytics/row/row_definition.py +43 -0
- edc_analytics/row/row_definitions.py +32 -0
- edc_analytics/row/row_statistics.py +88 -0
- edc_analytics/row/row_statistics_with_gender.py +115 -0
- edc_analytics/stata/__init__.py +1 -0
- edc_analytics/stata/get_stata_labels_from_model.py +44 -0
- edc_analytics/styler.py +93 -0
- edc_analytics/table.py +108 -0
- edc_analytics/urls.py +6 -0
- edc_appointment/migrations/0018_auto_20190305_0123.py +1 -1
- edc_auth/migrations/0001_squashed_0033_alter_userprofile_is_multisite_viewer.py +1 -1
- edc_auth/migrations/0012_auto_20191026_0034.py +1 -1
- edc_auth/migrations/0013_auto_20191026_0055.py +1 -1
- edc_auth/migrations/0025_permissions.py +1 -1
- edc_consent/migrations/0001_initial.py +1 -1
- edc_dashboard/migrations/0001_initial.py +1 -1
- edc_data_manager/migrations/0001_initial.py +1 -1
- edc_data_manager/migrations/0025_edcpermissions.py +1 -1
- edc_dx/__init__.py +6 -0
- edc_dx/apps.py +5 -0
- edc_dx/diagnoses.py +250 -0
- edc_dx/form_validators/__init__.py +2 -0
- edc_dx/form_validators/diagnosis_form_validator_mixin.py +54 -0
- edc_dx/form_validators/result_form_validator_mixin.py +65 -0
- edc_dx/utils.py +42 -0
- edc_dx_review/__init__.py +0 -0
- edc_dx_review/apps.py +5 -0
- edc_dx_review/auth_objects.py +13 -0
- edc_dx_review/auths.py +12 -0
- edc_dx_review/choices.py +24 -0
- edc_dx_review/constants.py +7 -0
- edc_dx_review/fieldsets.py +47 -0
- edc_dx_review/form_mixins/__init__.py +3 -0
- edc_dx_review/form_mixins/clinical_review_baseline_required_form_mixin.py +25 -0
- edc_dx_review/form_validator_mixins/__init__.py +6 -0
- edc_dx_review/form_validator_mixins/clinical_review_baseline_form_validator_mixin.py +7 -0
- edc_dx_review/form_validator_mixins/clinical_review_followup_form_validator_mixin.py +25 -0
- edc_dx_review/list_data.py +19 -0
- edc_dx_review/medical_date.py +195 -0
- edc_dx_review/migrations/0001_initial.py +307 -0
- edc_dx_review/migrations/0002_diagnosislocations_extra_value_and_more.py +32 -0
- edc_dx_review/migrations/0003_alter_diagnosislocations_options_and_more.py +148 -0
- edc_dx_review/migrations/0004_remove_diagnosislocations_edc_dx_revi_name_a39b40_idx_and_more.py +20 -0
- edc_dx_review/migrations/__init__.py +0 -0
- edc_dx_review/model_mixins/__init__.py +20 -0
- edc_dx_review/model_mixins/clinical_review_baseline_model_mixin.py +25 -0
- edc_dx_review/model_mixins/clinical_review_followup/__init__.py +5 -0
- edc_dx_review/model_mixins/clinical_review_followup/clinical_review_followup_chol_model_mixin.py +54 -0
- edc_dx_review/model_mixins/clinical_review_followup/clinical_review_followup_dm_model_mixin.py +54 -0
- edc_dx_review/model_mixins/clinical_review_followup/clinical_review_followup_hiv_model_mixin.py +54 -0
- edc_dx_review/model_mixins/clinical_review_followup/clinical_review_followup_htn_model_mixin.py +56 -0
- edc_dx_review/model_mixins/clinical_review_followup/clinical_review_followup_model_mixin.py +25 -0
- edc_dx_review/model_mixins/dx_location_model_mixin.py +17 -0
- edc_dx_review/model_mixins/factory/__init__.py +4 -0
- edc_dx_review/model_mixins/factory/baseline_review_model_mixin_factory.py +55 -0
- edc_dx_review/model_mixins/factory/calculate_date.py +43 -0
- edc_dx_review/model_mixins/factory/dx_initial_review_model_mixin_factory.py +97 -0
- edc_dx_review/model_mixins/factory/followup_review_model_mixin_factory.py +39 -0
- edc_dx_review/model_mixins/factory/rx_initial_review_model_mixin_factory.py +69 -0
- edc_dx_review/model_mixins/followup_review/__init__.py +2 -0
- edc_dx_review/model_mixins/followup_review/followup_review_model_mixin.py +22 -0
- edc_dx_review/model_mixins/followup_review/hiv_followup_review_model_mixin.py +32 -0
- edc_dx_review/model_mixins/initial_review/__init__.py +6 -0
- edc_dx_review/model_mixins/initial_review/chol_initial_review_model_mixin.py +34 -0
- edc_dx_review/model_mixins/initial_review/hiv_initial_model_mixins.py +119 -0
- edc_dx_review/model_mixins/initial_review/ncd_initial_review_model_mixin.py +42 -0
- edc_dx_review/models.py +20 -0
- edc_dx_review/radio_fields.py +30 -0
- edc_dx_review/utils.py +220 -0
- edc_export/migrations/0004_auto_20190305_0123.py +1 -1
- edc_export/migrations/0013_edcpermissions.py +1 -1
- edc_facility/migrations/0005_healthfacility_healthfacilitytypes_and_more.py +1 -1
- edc_vitals/model_mixins/blood_pressure_model_mixin.py +1 -0
- {clinicedc-2.0.12.dist-info → clinicedc-2.0.14.dist-info}/WHEEL +0 -0
- {clinicedc-2.0.12.dist-info → clinicedc-2.0.14.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from edc_constants.constants import FEMALE, MALE
|
|
3
|
+
|
|
4
|
+
from ..constants import (
|
|
5
|
+
MEDIAN_IQR,
|
|
6
|
+
MEDIAN_RANGE,
|
|
7
|
+
N_ONLY,
|
|
8
|
+
N_WITH_COL_PROP,
|
|
9
|
+
N_WITH_ROW_PROP,
|
|
10
|
+
)
|
|
11
|
+
from ..row import RowDefinition, RowDefinitions
|
|
12
|
+
from ..table import Table
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class BmiTable(Table):
|
|
16
|
+
|
|
17
|
+
colname = "calculated_bmi_value"
|
|
18
|
+
|
|
19
|
+
def __init__(self, main_df: pd.DataFrame = None):
|
|
20
|
+
super().__init__(
|
|
21
|
+
colname="calculated_bmi_value",
|
|
22
|
+
main_df=main_df,
|
|
23
|
+
title="BMI categories (kg/m2)",
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
@property
|
|
27
|
+
def row_definitions(self) -> RowDefinitions:
|
|
28
|
+
df_tmp = self.main_df.copy()
|
|
29
|
+
row_defs = RowDefinitions(reverse_rows=False)
|
|
30
|
+
row0 = RowDefinition(
|
|
31
|
+
title=self.title,
|
|
32
|
+
label=self.default_sublabel,
|
|
33
|
+
condition=(df_tmp["gender"].notna()),
|
|
34
|
+
columns={FEMALE: (N_ONLY, 2), MALE: (N_ONLY, 2), "All": (N_ONLY, 2)},
|
|
35
|
+
drop=False,
|
|
36
|
+
)
|
|
37
|
+
row_defs.add(row0)
|
|
38
|
+
columns = {
|
|
39
|
+
FEMALE: (N_WITH_COL_PROP, 2),
|
|
40
|
+
MALE: (N_WITH_COL_PROP, 2),
|
|
41
|
+
"All": (N_WITH_ROW_PROP, 2),
|
|
42
|
+
}
|
|
43
|
+
row_defs.add(
|
|
44
|
+
RowDefinition(
|
|
45
|
+
colname="calculated_bmi_value",
|
|
46
|
+
label="Less than 18.5",
|
|
47
|
+
condition=(df_tmp[self.colname] < 18.5),
|
|
48
|
+
columns=columns,
|
|
49
|
+
drop=False,
|
|
50
|
+
)
|
|
51
|
+
)
|
|
52
|
+
row_defs.add(
|
|
53
|
+
RowDefinition(
|
|
54
|
+
colname="calculated_bmi_value",
|
|
55
|
+
label="18.5-24.9",
|
|
56
|
+
condition=(df_tmp[self.colname] >= 18.5) & (df_tmp[self.colname] < 25.0),
|
|
57
|
+
columns=columns,
|
|
58
|
+
drop=False,
|
|
59
|
+
)
|
|
60
|
+
)
|
|
61
|
+
row_defs.add(
|
|
62
|
+
RowDefinition(
|
|
63
|
+
colname="calculated_bmi_value",
|
|
64
|
+
label="25.0-29.9",
|
|
65
|
+
condition=(df_tmp[self.colname] >= 25.0) & (df_tmp[self.colname] < 30.0),
|
|
66
|
+
columns=columns,
|
|
67
|
+
drop=False,
|
|
68
|
+
)
|
|
69
|
+
)
|
|
70
|
+
row_defs.add(
|
|
71
|
+
RowDefinition(
|
|
72
|
+
colname="calculated_bmi_value",
|
|
73
|
+
label="30.0-39.9",
|
|
74
|
+
condition=(df_tmp[self.colname] >= 30.0) & (df_tmp[self.colname] < 40.0),
|
|
75
|
+
columns=columns,
|
|
76
|
+
drop=False,
|
|
77
|
+
)
|
|
78
|
+
)
|
|
79
|
+
row_defs.add(
|
|
80
|
+
RowDefinition(
|
|
81
|
+
colname="calculated_bmi_value",
|
|
82
|
+
label="40 or above",
|
|
83
|
+
condition=(df_tmp[self.colname] >= 40.0),
|
|
84
|
+
columns=columns,
|
|
85
|
+
drop=False,
|
|
86
|
+
)
|
|
87
|
+
)
|
|
88
|
+
cond = df_tmp[self.colname].isna()
|
|
89
|
+
if len(df_tmp[cond]) > 0:
|
|
90
|
+
row_defs.add(
|
|
91
|
+
RowDefinition(
|
|
92
|
+
colname="calculated_bmi_value",
|
|
93
|
+
label="not measured",
|
|
94
|
+
condition=cond,
|
|
95
|
+
columns=columns,
|
|
96
|
+
drop=False,
|
|
97
|
+
)
|
|
98
|
+
)
|
|
99
|
+
row_defs.add(
|
|
100
|
+
RowDefinition(
|
|
101
|
+
colname="calculated_bmi_value",
|
|
102
|
+
label="Median (IQR)",
|
|
103
|
+
condition=(df_tmp["gender"].notna()),
|
|
104
|
+
columns={
|
|
105
|
+
FEMALE: (MEDIAN_IQR, 2),
|
|
106
|
+
MALE: (MEDIAN_IQR, 2),
|
|
107
|
+
"All": (MEDIAN_IQR, 2),
|
|
108
|
+
},
|
|
109
|
+
drop=False,
|
|
110
|
+
)
|
|
111
|
+
)
|
|
112
|
+
row_defs.add(
|
|
113
|
+
RowDefinition(
|
|
114
|
+
colname="calculated_bmi_value",
|
|
115
|
+
label="Median (range)",
|
|
116
|
+
condition=(df_tmp["gender"].notna()),
|
|
117
|
+
columns={
|
|
118
|
+
FEMALE: (MEDIAN_RANGE, 2),
|
|
119
|
+
MALE: (MEDIAN_RANGE, 2),
|
|
120
|
+
"All": (MEDIAN_RANGE, 2),
|
|
121
|
+
},
|
|
122
|
+
drop=False,
|
|
123
|
+
)
|
|
124
|
+
)
|
|
125
|
+
return row_defs
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from edc_constants.constants import FEMALE, MALE
|
|
3
|
+
|
|
4
|
+
from ..constants import N_ONLY, N_WITH_COL_PROP, N_WITH_ROW_PROP
|
|
5
|
+
from ..row import RowDefinition, RowDefinitions
|
|
6
|
+
from ..table import Table
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class BpTable(Table):
|
|
10
|
+
|
|
11
|
+
sys_col_name = "sys_blood_pressure_avg"
|
|
12
|
+
dia_col_name = "dia_blood_pressure_avg"
|
|
13
|
+
|
|
14
|
+
def __init__(self, main_df: pd.DataFrame = None):
|
|
15
|
+
super().__init__(
|
|
16
|
+
colname="",
|
|
17
|
+
main_df=main_df,
|
|
18
|
+
title="Blood pressure at baseline (mmHg)",
|
|
19
|
+
)
|
|
20
|
+
self.table_df = self.table_df.reindex(index=self.table_df.index[::-1])
|
|
21
|
+
|
|
22
|
+
@property
|
|
23
|
+
def row_definitions(self) -> RowDefinitions:
|
|
24
|
+
df_tmp = self.main_df.copy()
|
|
25
|
+
row_defs = RowDefinitions(reverse_rows=True)
|
|
26
|
+
row0 = RowDefinition(
|
|
27
|
+
title=self.title,
|
|
28
|
+
label=self.default_sublabel,
|
|
29
|
+
condition=(df_tmp["gender"].notna()),
|
|
30
|
+
columns={
|
|
31
|
+
FEMALE: (N_ONLY, 2),
|
|
32
|
+
MALE: (N_ONLY, 2),
|
|
33
|
+
"All": (N_ONLY, 2),
|
|
34
|
+
},
|
|
35
|
+
drop=False,
|
|
36
|
+
)
|
|
37
|
+
row_defs.add(row0)
|
|
38
|
+
columns = {
|
|
39
|
+
FEMALE: (N_WITH_COL_PROP, 2),
|
|
40
|
+
MALE: (N_WITH_COL_PROP, 2),
|
|
41
|
+
"All": (N_WITH_ROW_PROP, 2),
|
|
42
|
+
}
|
|
43
|
+
row_defs.add(
|
|
44
|
+
RowDefinition(
|
|
45
|
+
label="Severe hypertension (>=180/110)",
|
|
46
|
+
condition=(
|
|
47
|
+
(df_tmp[self.sys_col_name] >= 180) | (df_tmp[self.dia_col_name] >= 110)
|
|
48
|
+
),
|
|
49
|
+
columns=columns,
|
|
50
|
+
drop=True,
|
|
51
|
+
)
|
|
52
|
+
)
|
|
53
|
+
row_defs.add(
|
|
54
|
+
RowDefinition(
|
|
55
|
+
label="Hypertension (>=140/90)",
|
|
56
|
+
condition=(
|
|
57
|
+
(df_tmp[self.sys_col_name] >= 140) | (df_tmp[self.dia_col_name] >= 90)
|
|
58
|
+
),
|
|
59
|
+
columns=columns,
|
|
60
|
+
drop=True,
|
|
61
|
+
)
|
|
62
|
+
)
|
|
63
|
+
row_defs.add(
|
|
64
|
+
RowDefinition(
|
|
65
|
+
label="Pre-hypertension (<140/90)",
|
|
66
|
+
condition=(
|
|
67
|
+
(df_tmp[self.sys_col_name] >= 120) | (df_tmp[self.dia_col_name] >= 80)
|
|
68
|
+
),
|
|
69
|
+
columns=columns,
|
|
70
|
+
drop=True,
|
|
71
|
+
)
|
|
72
|
+
)
|
|
73
|
+
row_defs.add(
|
|
74
|
+
RowDefinition(
|
|
75
|
+
label="Normal (<120/80)",
|
|
76
|
+
condition=(
|
|
77
|
+
(df_tmp[self.sys_col_name] >= 90) | (df_tmp[self.dia_col_name] >= 60)
|
|
78
|
+
),
|
|
79
|
+
columns=columns,
|
|
80
|
+
drop=True,
|
|
81
|
+
)
|
|
82
|
+
)
|
|
83
|
+
row_defs.add(
|
|
84
|
+
RowDefinition(
|
|
85
|
+
label="Low (<90/60)",
|
|
86
|
+
condition=(
|
|
87
|
+
(df_tmp[self.sys_col_name] >= 0) | (df_tmp[self.dia_col_name] >= 0)
|
|
88
|
+
),
|
|
89
|
+
columns=columns,
|
|
90
|
+
drop=True,
|
|
91
|
+
)
|
|
92
|
+
)
|
|
93
|
+
row_defs.add(
|
|
94
|
+
RowDefinition(
|
|
95
|
+
label="not measured",
|
|
96
|
+
condition=(
|
|
97
|
+
(df_tmp[self.sys_col_name].isna()) & (df_tmp[self.dia_col_name].isna())
|
|
98
|
+
),
|
|
99
|
+
columns=columns,
|
|
100
|
+
drop=True,
|
|
101
|
+
)
|
|
102
|
+
)
|
|
103
|
+
return row_defs
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from edc_constants.constants import FEMALE, MALE
|
|
3
|
+
|
|
4
|
+
from ..constants import MEDIAN_IQR, N_ONLY, N_WITH_COL_PROP, N_WITH_ROW_PROP
|
|
5
|
+
from ..row import RowDefinition, RowDefinitions
|
|
6
|
+
from ..table import Table
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class FastingFbgTable(Table):
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
main_df: pd.DataFrame = None,
|
|
13
|
+
colname: str | None = None,
|
|
14
|
+
title: str | None = None,
|
|
15
|
+
):
|
|
16
|
+
colname = colname or "fasting_fbg_hrs"
|
|
17
|
+
title = title or "Fasting duration (hrs)"
|
|
18
|
+
super().__init__(colname=colname, main_df=main_df, title=title)
|
|
19
|
+
|
|
20
|
+
@property
|
|
21
|
+
def row_definitions(self) -> RowDefinitions:
|
|
22
|
+
df_tmp = self.main_df.copy()
|
|
23
|
+
row_defs = RowDefinitions(reverse_rows=False)
|
|
24
|
+
row0 = RowDefinition(
|
|
25
|
+
title=self.title,
|
|
26
|
+
label=self.default_sublabel,
|
|
27
|
+
condition=(df_tmp["gender"].notna()),
|
|
28
|
+
columns={FEMALE: (N_ONLY, 2), MALE: (N_ONLY, 2), "All": (N_ONLY, 2)},
|
|
29
|
+
drop=False,
|
|
30
|
+
)
|
|
31
|
+
row_defs.add(row0)
|
|
32
|
+
columns = {
|
|
33
|
+
FEMALE: (MEDIAN_IQR, 2),
|
|
34
|
+
MALE: (MEDIAN_IQR, 2),
|
|
35
|
+
"All": (MEDIAN_IQR, 2),
|
|
36
|
+
}
|
|
37
|
+
row_defs.add(
|
|
38
|
+
RowDefinition(
|
|
39
|
+
colname=self.colname,
|
|
40
|
+
label="FBG fasted (hours), median (IQR)",
|
|
41
|
+
condition=(self.main_df[self.colname].notna()),
|
|
42
|
+
columns=columns,
|
|
43
|
+
drop=False,
|
|
44
|
+
)
|
|
45
|
+
)
|
|
46
|
+
columns = {
|
|
47
|
+
FEMALE: (N_WITH_COL_PROP, 2),
|
|
48
|
+
MALE: (N_WITH_COL_PROP, 2),
|
|
49
|
+
"All": (N_WITH_ROW_PROP, 2),
|
|
50
|
+
}
|
|
51
|
+
row_defs.add(
|
|
52
|
+
RowDefinition(
|
|
53
|
+
colname=self.colname,
|
|
54
|
+
label="FBG Fasted <8.0 hrs",
|
|
55
|
+
condition=(self.main_df[self.colname] < 8.0),
|
|
56
|
+
columns=columns,
|
|
57
|
+
drop=False,
|
|
58
|
+
)
|
|
59
|
+
)
|
|
60
|
+
row_defs.add(
|
|
61
|
+
RowDefinition(
|
|
62
|
+
colname=self.colname,
|
|
63
|
+
label="not measured",
|
|
64
|
+
condition=(self.main_df[self.colname].isna()),
|
|
65
|
+
columns=columns,
|
|
66
|
+
drop=False,
|
|
67
|
+
)
|
|
68
|
+
)
|
|
69
|
+
return row_defs
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
class FastingOgttTable(Table):
|
|
73
|
+
def __init__(self, main_df: pd.DataFrame = None):
|
|
74
|
+
super().__init__(colname="fasting_ogtt_hrs", main_df=main_df, title="")
|
|
75
|
+
|
|
76
|
+
@property
|
|
77
|
+
def row_definitions(self) -> RowDefinitions:
|
|
78
|
+
row_defs = RowDefinitions(reverse_rows=False)
|
|
79
|
+
columns = {
|
|
80
|
+
FEMALE: (MEDIAN_IQR, 2),
|
|
81
|
+
MALE: (MEDIAN_IQR, 2),
|
|
82
|
+
"All": (MEDIAN_IQR, 2),
|
|
83
|
+
}
|
|
84
|
+
row_defs.add(
|
|
85
|
+
RowDefinition(
|
|
86
|
+
colname=self.colname,
|
|
87
|
+
label="OGTT fasted (hours), median (IQR)",
|
|
88
|
+
condition=(self.main_df[self.colname].notna()),
|
|
89
|
+
columns=columns,
|
|
90
|
+
drop=False,
|
|
91
|
+
)
|
|
92
|
+
)
|
|
93
|
+
columns = {
|
|
94
|
+
FEMALE: (N_WITH_COL_PROP, 2),
|
|
95
|
+
MALE: (N_WITH_COL_PROP, 2),
|
|
96
|
+
"All": (N_WITH_ROW_PROP, 2),
|
|
97
|
+
}
|
|
98
|
+
row_defs.add(
|
|
99
|
+
RowDefinition(
|
|
100
|
+
colname=self.colname,
|
|
101
|
+
label="OGTT Fasted <8.0 hrs",
|
|
102
|
+
condition=(self.main_df[self.colname] < 8.0),
|
|
103
|
+
columns=columns,
|
|
104
|
+
drop=False,
|
|
105
|
+
)
|
|
106
|
+
)
|
|
107
|
+
row_defs.add(
|
|
108
|
+
RowDefinition(
|
|
109
|
+
colname=self.colname,
|
|
110
|
+
label="not measured",
|
|
111
|
+
condition=(self.main_df[self.colname].isna()),
|
|
112
|
+
columns=columns,
|
|
113
|
+
drop=False,
|
|
114
|
+
)
|
|
115
|
+
)
|
|
116
|
+
return row_defs
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
class FastingTable(Table):
|
|
120
|
+
def __init__(self, main_df: pd.DataFrame = None):
|
|
121
|
+
super().__init__(main_df=main_df, title="Fasting duration (hrs)")
|
|
122
|
+
|
|
123
|
+
def build_table_df(self) -> None:
|
|
124
|
+
df1 = FastingFbgTable(main_df=self.main_df).table_df
|
|
125
|
+
df2 = FastingOgttTable(main_df=self.main_df).table_df
|
|
126
|
+
self.table_df = pd.concat([df1, df2])
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from edc_constants.constants import FEMALE, MALE
|
|
3
|
+
|
|
4
|
+
from ..constants import MEAN_95CI, N_ONLY, N_WITH_COL_PROP, N_WITH_ROW_PROP
|
|
5
|
+
from ..row import RowDefinition, RowDefinitions
|
|
6
|
+
from ..table import Table
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
class FbgTable(Table):
|
|
10
|
+
def __init__(self, main_df: pd.DataFrame = None):
|
|
11
|
+
super().__init__(colname="fbg", main_df=main_df, title="FBG (mmol/L) categories")
|
|
12
|
+
|
|
13
|
+
@property
|
|
14
|
+
def row_definitions(self) -> RowDefinitions:
|
|
15
|
+
df_tmp = self.main_df.copy()
|
|
16
|
+
row_defs = RowDefinitions(reverse_rows=False)
|
|
17
|
+
row0 = RowDefinition(
|
|
18
|
+
title=self.title,
|
|
19
|
+
label=self.default_sublabel,
|
|
20
|
+
condition=(df_tmp["gender"].notna()),
|
|
21
|
+
columns={FEMALE: (N_ONLY, 2), MALE: (N_ONLY, 2), "All": (N_ONLY, 2)},
|
|
22
|
+
drop=False,
|
|
23
|
+
)
|
|
24
|
+
row_defs.add(row0)
|
|
25
|
+
|
|
26
|
+
columns = {
|
|
27
|
+
FEMALE: (N_WITH_COL_PROP, 2),
|
|
28
|
+
MALE: (N_WITH_COL_PROP, 2),
|
|
29
|
+
"All": (N_WITH_ROW_PROP, 2),
|
|
30
|
+
}
|
|
31
|
+
row_defs.add(
|
|
32
|
+
RowDefinition(
|
|
33
|
+
colname=self.colname,
|
|
34
|
+
label="Not fasted",
|
|
35
|
+
condition=(self.main_df["fasting_fbg_hrs"] < 8.0),
|
|
36
|
+
columns=columns,
|
|
37
|
+
drop=True,
|
|
38
|
+
)
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
columns = {
|
|
42
|
+
FEMALE: (MEAN_95CI, 2),
|
|
43
|
+
MALE: (MEAN_95CI, 2),
|
|
44
|
+
"All": (MEAN_95CI, 2),
|
|
45
|
+
}
|
|
46
|
+
row_mean = RowDefinition(
|
|
47
|
+
colname=self.colname,
|
|
48
|
+
label="Mean (95% CI)",
|
|
49
|
+
condition=(self.main_df[self.colname].notna()),
|
|
50
|
+
columns=columns,
|
|
51
|
+
drop=False,
|
|
52
|
+
)
|
|
53
|
+
columns = {
|
|
54
|
+
FEMALE: (N_WITH_COL_PROP, 2),
|
|
55
|
+
MALE: (N_WITH_COL_PROP, 2),
|
|
56
|
+
"All": (N_WITH_ROW_PROP, 2),
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
row_defs.add(
|
|
60
|
+
RowDefinition(
|
|
61
|
+
colname=self.colname,
|
|
62
|
+
label="<6.1",
|
|
63
|
+
condition=(self.main_df[self.colname] < 6.1),
|
|
64
|
+
columns=columns,
|
|
65
|
+
drop=True,
|
|
66
|
+
)
|
|
67
|
+
)
|
|
68
|
+
row_defs.add(
|
|
69
|
+
RowDefinition(
|
|
70
|
+
colname=self.colname,
|
|
71
|
+
label="6.1-6.9",
|
|
72
|
+
condition=(self.main_df[self.colname] >= 6.1)
|
|
73
|
+
& (self.main_df[self.colname] < 7.0),
|
|
74
|
+
columns=columns,
|
|
75
|
+
drop=True,
|
|
76
|
+
)
|
|
77
|
+
)
|
|
78
|
+
row_defs.add(
|
|
79
|
+
RowDefinition(
|
|
80
|
+
colname=self.colname,
|
|
81
|
+
label="7.0 and above",
|
|
82
|
+
condition=(self.main_df[self.colname] >= 7.0),
|
|
83
|
+
columns=columns,
|
|
84
|
+
drop=True,
|
|
85
|
+
)
|
|
86
|
+
)
|
|
87
|
+
row_defs.add(
|
|
88
|
+
RowDefinition(
|
|
89
|
+
colname=self.colname,
|
|
90
|
+
label="not measured",
|
|
91
|
+
condition=(self.main_df[self.colname].isna()),
|
|
92
|
+
columns=columns,
|
|
93
|
+
drop=True,
|
|
94
|
+
)
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
row_defs.add(row_mean)
|
|
98
|
+
return row_defs
|