celldetective 1.4.2__py3-none-any.whl → 1.5.0b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/__init__.py +25 -0
- celldetective/__main__.py +62 -43
- celldetective/_version.py +1 -1
- celldetective/extra_properties.py +477 -399
- celldetective/filters.py +192 -97
- celldetective/gui/InitWindow.py +541 -411
- celldetective/gui/__init__.py +0 -15
- celldetective/gui/about.py +44 -39
- celldetective/gui/analyze_block.py +120 -84
- celldetective/gui/base/__init__.py +0 -0
- celldetective/gui/base/channel_norm_generator.py +335 -0
- celldetective/gui/base/components.py +249 -0
- celldetective/gui/base/feature_choice.py +92 -0
- celldetective/gui/base/figure_canvas.py +52 -0
- celldetective/gui/base/list_widget.py +133 -0
- celldetective/gui/{styles.py → base/styles.py} +92 -36
- celldetective/gui/base/utils.py +33 -0
- celldetective/gui/base_annotator.py +900 -767
- celldetective/gui/classifier_widget.py +6 -22
- celldetective/gui/configure_new_exp.py +777 -671
- celldetective/gui/control_panel.py +635 -524
- celldetective/gui/dynamic_progress.py +449 -0
- celldetective/gui/event_annotator.py +2023 -1662
- celldetective/gui/generic_signal_plot.py +1292 -944
- celldetective/gui/gui_utils.py +899 -1289
- celldetective/gui/interactions_block.py +658 -0
- celldetective/gui/interactive_timeseries_viewer.py +447 -0
- celldetective/gui/json_readers.py +48 -15
- celldetective/gui/layouts/__init__.py +5 -0
- celldetective/gui/layouts/background_model_free_layout.py +537 -0
- celldetective/gui/layouts/channel_offset_layout.py +134 -0
- celldetective/gui/layouts/local_correction_layout.py +91 -0
- celldetective/gui/layouts/model_fit_layout.py +372 -0
- celldetective/gui/layouts/operation_layout.py +68 -0
- celldetective/gui/layouts/protocol_designer_layout.py +96 -0
- celldetective/gui/pair_event_annotator.py +3130 -2435
- celldetective/gui/plot_measurements.py +586 -267
- celldetective/gui/plot_signals_ui.py +724 -506
- celldetective/gui/preprocessing_block.py +395 -0
- celldetective/gui/process_block.py +1678 -1831
- celldetective/gui/seg_model_loader.py +580 -473
- celldetective/gui/settings/__init__.py +0 -7
- celldetective/gui/settings/_cellpose_model_params.py +181 -0
- celldetective/gui/settings/_event_detection_model_params.py +95 -0
- celldetective/gui/settings/_segmentation_model_params.py +159 -0
- celldetective/gui/settings/_settings_base.py +77 -65
- celldetective/gui/settings/_settings_event_model_training.py +752 -526
- celldetective/gui/settings/_settings_measurements.py +1133 -964
- celldetective/gui/settings/_settings_neighborhood.py +574 -488
- celldetective/gui/settings/_settings_segmentation_model_training.py +779 -564
- celldetective/gui/settings/_settings_signal_annotator.py +329 -305
- celldetective/gui/settings/_settings_tracking.py +1304 -1094
- celldetective/gui/settings/_stardist_model_params.py +98 -0
- celldetective/gui/survival_ui.py +422 -312
- celldetective/gui/tableUI.py +1665 -1701
- celldetective/gui/table_ops/_maths.py +295 -0
- celldetective/gui/table_ops/_merge_groups.py +140 -0
- celldetective/gui/table_ops/_merge_one_hot.py +95 -0
- celldetective/gui/table_ops/_query_table.py +43 -0
- celldetective/gui/table_ops/_rename_col.py +44 -0
- celldetective/gui/thresholds_gui.py +382 -179
- celldetective/gui/viewers/__init__.py +0 -0
- celldetective/gui/viewers/base_viewer.py +700 -0
- celldetective/gui/viewers/channel_offset_viewer.py +331 -0
- celldetective/gui/viewers/contour_viewer.py +394 -0
- celldetective/gui/viewers/size_viewer.py +153 -0
- celldetective/gui/viewers/spot_detection_viewer.py +341 -0
- celldetective/gui/viewers/threshold_viewer.py +309 -0
- celldetective/gui/workers.py +304 -126
- celldetective/log_manager.py +92 -0
- celldetective/measure.py +1895 -1478
- celldetective/napari/__init__.py +0 -0
- celldetective/napari/utils.py +1025 -0
- celldetective/neighborhood.py +1914 -1448
- celldetective/preprocessing.py +1620 -1220
- celldetective/processes/__init__.py +0 -0
- celldetective/processes/background_correction.py +271 -0
- celldetective/processes/compute_neighborhood.py +894 -0
- celldetective/processes/detect_events.py +246 -0
- celldetective/processes/measure_cells.py +565 -0
- celldetective/processes/segment_cells.py +760 -0
- celldetective/processes/track_cells.py +435 -0
- celldetective/processes/train_segmentation_model.py +694 -0
- celldetective/processes/train_signal_model.py +265 -0
- celldetective/processes/unified_process.py +292 -0
- celldetective/regionprops/_regionprops.py +358 -317
- celldetective/relative_measurements.py +987 -710
- celldetective/scripts/measure_cells.py +313 -212
- celldetective/scripts/measure_relative.py +90 -46
- celldetective/scripts/segment_cells.py +165 -104
- celldetective/scripts/segment_cells_thresholds.py +96 -68
- celldetective/scripts/track_cells.py +198 -149
- celldetective/scripts/train_segmentation_model.py +324 -201
- celldetective/scripts/train_signal_model.py +87 -45
- celldetective/segmentation.py +844 -749
- celldetective/signals.py +3514 -2861
- celldetective/tracking.py +30 -15
- celldetective/utils/__init__.py +0 -0
- celldetective/utils/cellpose_utils/__init__.py +133 -0
- celldetective/utils/color_mappings.py +42 -0
- celldetective/utils/data_cleaning.py +630 -0
- celldetective/utils/data_loaders.py +450 -0
- celldetective/utils/dataset_helpers.py +207 -0
- celldetective/utils/downloaders.py +197 -0
- celldetective/utils/event_detection/__init__.py +8 -0
- celldetective/utils/experiment.py +1782 -0
- celldetective/utils/image_augmenters.py +308 -0
- celldetective/utils/image_cleaning.py +74 -0
- celldetective/utils/image_loaders.py +926 -0
- celldetective/utils/image_transforms.py +335 -0
- celldetective/utils/io.py +62 -0
- celldetective/utils/mask_cleaning.py +348 -0
- celldetective/utils/mask_transforms.py +5 -0
- celldetective/utils/masks.py +184 -0
- celldetective/utils/maths.py +351 -0
- celldetective/utils/model_getters.py +325 -0
- celldetective/utils/model_loaders.py +296 -0
- celldetective/utils/normalization.py +380 -0
- celldetective/utils/parsing.py +465 -0
- celldetective/utils/plots/__init__.py +0 -0
- celldetective/utils/plots/regression.py +53 -0
- celldetective/utils/resources.py +34 -0
- celldetective/utils/stardist_utils/__init__.py +104 -0
- celldetective/utils/stats.py +90 -0
- celldetective/utils/types.py +21 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b0.dist-info}/METADATA +1 -1
- celldetective-1.5.0b0.dist-info/RECORD +187 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b0.dist-info}/WHEEL +1 -1
- tests/gui/test_new_project.py +129 -117
- tests/gui/test_project.py +127 -79
- tests/test_filters.py +39 -15
- tests/test_notebooks.py +8 -0
- tests/test_tracking.py +232 -13
- tests/test_utils.py +123 -77
- celldetective/gui/base_components.py +0 -23
- celldetective/gui/layouts.py +0 -1602
- celldetective/gui/processes/compute_neighborhood.py +0 -594
- celldetective/gui/processes/measure_cells.py +0 -360
- celldetective/gui/processes/segment_cells.py +0 -499
- celldetective/gui/processes/track_cells.py +0 -303
- celldetective/gui/processes/train_segmentation_model.py +0 -270
- celldetective/gui/processes/train_signal_model.py +0 -108
- celldetective/gui/table_ops/merge_groups.py +0 -118
- celldetective/gui/viewers.py +0 -1354
- celldetective/io.py +0 -3663
- celldetective/utils.py +0 -3108
- celldetective-1.4.2.dist-info/RECORD +0 -123
- /celldetective/{gui/processes → processes}/downloader.py +0 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b0.dist-info}/entry_points.txt +0 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b0.dist-info}/licenses/LICENSE +0 -0
- {celldetective-1.4.2.dist-info → celldetective-1.5.0b0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,894 @@
|
|
|
1
|
+
from multiprocessing import Process
|
|
2
|
+
import time
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
from celldetective.utils.image_loaders import locate_labels
|
|
6
|
+
from celldetective.utils.data_loaders import get_position_table, get_position_pickle
|
|
7
|
+
|
|
8
|
+
from tqdm import tqdm
|
|
9
|
+
import numpy as np
|
|
10
|
+
import pandas as pd
|
|
11
|
+
from art import tprint
|
|
12
|
+
|
|
13
|
+
from celldetective.neighborhood import (
|
|
14
|
+
_fill_distance_neighborhood_at_t,
|
|
15
|
+
set_live_status,
|
|
16
|
+
compute_attention_weight,
|
|
17
|
+
compute_neighborhood_metrics,
|
|
18
|
+
mean_neighborhood_after_event,
|
|
19
|
+
mean_neighborhood_before_event,
|
|
20
|
+
_compute_mask_contact_dist_map,
|
|
21
|
+
_fill_contact_neighborhood_at_t,
|
|
22
|
+
)
|
|
23
|
+
from celldetective.utils.data_cleaning import extract_identity_col
|
|
24
|
+
from scipy.spatial.distance import cdist
|
|
25
|
+
from celldetective.relative_measurements import measure_pair_signals_at_position
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class NeighborhoodProcess(Process):
|
|
29
|
+
|
|
30
|
+
def __init__(self, queue=None, process_args=None):
|
|
31
|
+
|
|
32
|
+
super().__init__()
|
|
33
|
+
|
|
34
|
+
self.queue = queue
|
|
35
|
+
|
|
36
|
+
if process_args is not None:
|
|
37
|
+
for key, value in process_args.items():
|
|
38
|
+
setattr(self, key, value)
|
|
39
|
+
|
|
40
|
+
self.column_labels = {
|
|
41
|
+
"track": "TRACK_ID",
|
|
42
|
+
"time": "FRAME",
|
|
43
|
+
"x": "POSITION_X",
|
|
44
|
+
"y": "POSITION_Y",
|
|
45
|
+
}
|
|
46
|
+
|
|
47
|
+
tprint("Neighborhood")
|
|
48
|
+
|
|
49
|
+
if not hasattr(self, "well_progress"):
|
|
50
|
+
self.well_progress = 0
|
|
51
|
+
if not hasattr(self, "pos_progress"):
|
|
52
|
+
self.pos_progress = 0
|
|
53
|
+
if not hasattr(self, "measure_pairs"):
|
|
54
|
+
self.measure_pairs = False
|
|
55
|
+
|
|
56
|
+
self.sum_done = 0
|
|
57
|
+
self.t0 = time.time()
|
|
58
|
+
|
|
59
|
+
def mask_contact_neighborhood(
|
|
60
|
+
self,
|
|
61
|
+
setA,
|
|
62
|
+
setB,
|
|
63
|
+
labelsA,
|
|
64
|
+
labelsB,
|
|
65
|
+
distance,
|
|
66
|
+
mode="two-pop",
|
|
67
|
+
status=None,
|
|
68
|
+
not_status_option=None,
|
|
69
|
+
compute_cum_sum=True,
|
|
70
|
+
attention_weight=True,
|
|
71
|
+
symmetrize=True,
|
|
72
|
+
include_dead_weight=True,
|
|
73
|
+
column_labels={
|
|
74
|
+
"track": "TRACK_ID",
|
|
75
|
+
"time": "FRAME",
|
|
76
|
+
"x": "POSITION_X",
|
|
77
|
+
"y": "POSITION_Y",
|
|
78
|
+
"mask_id": "class_id",
|
|
79
|
+
},
|
|
80
|
+
):
|
|
81
|
+
|
|
82
|
+
if setA is not None and setB is not None:
|
|
83
|
+
setA, setB, status = set_live_status(setA, setB, status, not_status_option)
|
|
84
|
+
else:
|
|
85
|
+
return None, None
|
|
86
|
+
|
|
87
|
+
# Check distance option
|
|
88
|
+
if not isinstance(distance, list):
|
|
89
|
+
distance = [distance]
|
|
90
|
+
|
|
91
|
+
cl = []
|
|
92
|
+
for s in [setA, setB]:
|
|
93
|
+
|
|
94
|
+
# Check whether data can be tracked
|
|
95
|
+
temp_column_labels = column_labels.copy()
|
|
96
|
+
|
|
97
|
+
id_col = extract_identity_col(s)
|
|
98
|
+
temp_column_labels.update({"track": id_col})
|
|
99
|
+
if id_col == "ID":
|
|
100
|
+
compute_cum_sum = False
|
|
101
|
+
|
|
102
|
+
cl.append(temp_column_labels)
|
|
103
|
+
|
|
104
|
+
setA = setA.loc[~setA[cl[0]["track"]].isnull(), :].copy()
|
|
105
|
+
setB = setB.loc[~setB[cl[1]["track"]].isnull(), :].copy()
|
|
106
|
+
|
|
107
|
+
if labelsB is None:
|
|
108
|
+
labelsB = [None] * len(labelsA)
|
|
109
|
+
|
|
110
|
+
for d in distance:
|
|
111
|
+
# loop over each provided distance
|
|
112
|
+
if mode == "two-pop":
|
|
113
|
+
neigh_col = f"neighborhood_2_contact_{d}_px"
|
|
114
|
+
elif mode == "self":
|
|
115
|
+
neigh_col = f"neighborhood_self_contact_{d}_px"
|
|
116
|
+
else:
|
|
117
|
+
print("Please provide a valid mode between `two-pop` and `self`...")
|
|
118
|
+
return None
|
|
119
|
+
|
|
120
|
+
setA[neigh_col] = np.nan
|
|
121
|
+
setA[neigh_col] = setA[neigh_col].astype(object)
|
|
122
|
+
|
|
123
|
+
setB[neigh_col] = np.nan
|
|
124
|
+
setB[neigh_col] = setB[neigh_col].astype(object)
|
|
125
|
+
|
|
126
|
+
# Loop over each available timestep
|
|
127
|
+
timeline = np.unique(
|
|
128
|
+
np.concatenate(
|
|
129
|
+
[setA[cl[0]["time"]].to_numpy(), setB[cl[1]["time"]].to_numpy()]
|
|
130
|
+
)
|
|
131
|
+
).astype(int)
|
|
132
|
+
|
|
133
|
+
self.sum_done = 0
|
|
134
|
+
self.t0 = time.time()
|
|
135
|
+
|
|
136
|
+
for t in tqdm(timeline):
|
|
137
|
+
|
|
138
|
+
setA_t = setA.loc[setA[cl[0]["time"]] == t, :].copy()
|
|
139
|
+
setB_t = setB.loc[setB[cl[1]["time"]] == t, :].copy()
|
|
140
|
+
|
|
141
|
+
if len(setA_t) > 0 and len(setB_t) > 0:
|
|
142
|
+
dist_map, intersection_map = _compute_mask_contact_dist_map(
|
|
143
|
+
setA_t,
|
|
144
|
+
setB_t,
|
|
145
|
+
labelsA[t],
|
|
146
|
+
labelsB[t],
|
|
147
|
+
distance=d,
|
|
148
|
+
mode=mode,
|
|
149
|
+
column_labelsA=cl[0],
|
|
150
|
+
column_labelsB=cl[1],
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
d_filter = 1.0e05
|
|
154
|
+
if attention_weight:
|
|
155
|
+
status_A = setA_t[status[0]].to_numpy()
|
|
156
|
+
ids_A = setA_t[cl[0]["track"]].to_numpy()
|
|
157
|
+
weights, closest_A = compute_attention_weight(
|
|
158
|
+
dist_map,
|
|
159
|
+
d_filter,
|
|
160
|
+
status_A,
|
|
161
|
+
ids_A,
|
|
162
|
+
axis=1,
|
|
163
|
+
include_dead_weight=include_dead_weight,
|
|
164
|
+
)
|
|
165
|
+
else:
|
|
166
|
+
weights = None
|
|
167
|
+
closest_A = None
|
|
168
|
+
|
|
169
|
+
_fill_contact_neighborhood_at_t(
|
|
170
|
+
t,
|
|
171
|
+
setA,
|
|
172
|
+
setB,
|
|
173
|
+
dist_map,
|
|
174
|
+
intersection_map=intersection_map,
|
|
175
|
+
attention_weight=attention_weight,
|
|
176
|
+
include_dead_weight=include_dead_weight,
|
|
177
|
+
symmetrize=symmetrize,
|
|
178
|
+
compute_cum_sum=compute_cum_sum,
|
|
179
|
+
weights=weights,
|
|
180
|
+
closest_A=closest_A,
|
|
181
|
+
neigh_col=neigh_col,
|
|
182
|
+
column_labelsA=cl[0],
|
|
183
|
+
column_labelsB=cl[1],
|
|
184
|
+
statusA=status[0],
|
|
185
|
+
statusB=status[1],
|
|
186
|
+
d_filter=d_filter,
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
self.sum_done += 1 / len(timeline) * 100
|
|
190
|
+
mean_exec_per_step = (time.time() - self.t0) / (
|
|
191
|
+
self.sum_done * len(timeline) / 100 + 1
|
|
192
|
+
)
|
|
193
|
+
pred_time = (
|
|
194
|
+
len(timeline) - (self.sum_done * len(timeline) / 100 + 1)
|
|
195
|
+
) * mean_exec_per_step
|
|
196
|
+
self.queue.put(
|
|
197
|
+
{
|
|
198
|
+
"frame_progress": self.sum_done,
|
|
199
|
+
"frame_time": f"Time left: {round(pred_time, 1)}s",
|
|
200
|
+
"well_progress": self.well_progress,
|
|
201
|
+
"pos_progress": self.pos_progress,
|
|
202
|
+
}
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
return setA, setB
|
|
206
|
+
|
|
207
|
+
def distance_cut_neighborhood(
|
|
208
|
+
self,
|
|
209
|
+
setA,
|
|
210
|
+
setB,
|
|
211
|
+
distance,
|
|
212
|
+
mode="two-pop",
|
|
213
|
+
status=None,
|
|
214
|
+
not_status_option=None,
|
|
215
|
+
compute_cum_sum=True,
|
|
216
|
+
attention_weight=True,
|
|
217
|
+
symmetrize=True,
|
|
218
|
+
include_dead_weight=True,
|
|
219
|
+
column_labels={
|
|
220
|
+
"track": "TRACK_ID",
|
|
221
|
+
"time": "FRAME",
|
|
222
|
+
"x": "POSITION_X",
|
|
223
|
+
"y": "POSITION_Y",
|
|
224
|
+
},
|
|
225
|
+
):
|
|
226
|
+
# Check live_status option
|
|
227
|
+
if setA is not None and setB is not None:
|
|
228
|
+
setA, setB, status = set_live_status(setA, setB, status, not_status_option)
|
|
229
|
+
else:
|
|
230
|
+
return None, None
|
|
231
|
+
|
|
232
|
+
# Check distance option
|
|
233
|
+
if not isinstance(distance, list):
|
|
234
|
+
distance = [distance]
|
|
235
|
+
|
|
236
|
+
for d in distance:
|
|
237
|
+
# loop over each provided distance
|
|
238
|
+
|
|
239
|
+
if mode == "two-pop":
|
|
240
|
+
neigh_col = f"neighborhood_2_circle_{d}_px"
|
|
241
|
+
elif mode == "self":
|
|
242
|
+
neigh_col = f"neighborhood_self_circle_{d}_px"
|
|
243
|
+
|
|
244
|
+
cl = []
|
|
245
|
+
for s in [setA, setB]:
|
|
246
|
+
|
|
247
|
+
# Check whether data can be tracked
|
|
248
|
+
temp_column_labels = column_labels.copy()
|
|
249
|
+
|
|
250
|
+
id_col = extract_identity_col(s)
|
|
251
|
+
temp_column_labels.update({"track": id_col})
|
|
252
|
+
if id_col == "ID":
|
|
253
|
+
compute_cum_sum = (
|
|
254
|
+
False # if no tracking data then cum_sum is not relevant
|
|
255
|
+
)
|
|
256
|
+
cl.append(temp_column_labels)
|
|
257
|
+
|
|
258
|
+
# Remove nan tracks (cells that do not belong to a track)
|
|
259
|
+
s[neigh_col] = np.nan
|
|
260
|
+
s[neigh_col] = s[neigh_col].astype(object)
|
|
261
|
+
s.dropna(subset=[cl[-1]["track"]], inplace=True)
|
|
262
|
+
|
|
263
|
+
# Loop over each available timestep
|
|
264
|
+
timeline = np.unique(
|
|
265
|
+
np.concatenate(
|
|
266
|
+
[setA[cl[0]["time"]].to_numpy(), setB[cl[1]["time"]].to_numpy()]
|
|
267
|
+
)
|
|
268
|
+
).astype(int)
|
|
269
|
+
|
|
270
|
+
self.sum_done = 0
|
|
271
|
+
self.t0 = time.time()
|
|
272
|
+
|
|
273
|
+
for t in tqdm(timeline):
|
|
274
|
+
|
|
275
|
+
coordinates_A = setA.loc[
|
|
276
|
+
setA[cl[0]["time"]] == t, [cl[0]["x"], cl[0]["y"]]
|
|
277
|
+
].to_numpy()
|
|
278
|
+
ids_A = setA.loc[setA[cl[0]["time"]] == t, cl[0]["track"]].to_numpy()
|
|
279
|
+
status_A = setA.loc[setA[cl[0]["time"]] == t, status[0]].to_numpy()
|
|
280
|
+
|
|
281
|
+
coordinates_B = setB.loc[
|
|
282
|
+
setB[cl[1]["time"]] == t, [cl[1]["x"], cl[1]["y"]]
|
|
283
|
+
].to_numpy()
|
|
284
|
+
ids_B = setB.loc[setB[cl[1]["time"]] == t, cl[1]["track"]].to_numpy()
|
|
285
|
+
|
|
286
|
+
if len(ids_A) > 0 and len(ids_B) > 0:
|
|
287
|
+
|
|
288
|
+
# compute distance matrix
|
|
289
|
+
dist_map = cdist(coordinates_A, coordinates_B, metric="euclidean")
|
|
290
|
+
|
|
291
|
+
if attention_weight:
|
|
292
|
+
weights, closest_A = compute_attention_weight(
|
|
293
|
+
dist_map,
|
|
294
|
+
d,
|
|
295
|
+
status_A,
|
|
296
|
+
ids_A,
|
|
297
|
+
axis=1,
|
|
298
|
+
include_dead_weight=include_dead_weight,
|
|
299
|
+
)
|
|
300
|
+
|
|
301
|
+
_fill_distance_neighborhood_at_t(
|
|
302
|
+
t,
|
|
303
|
+
setA,
|
|
304
|
+
setB,
|
|
305
|
+
dist_map,
|
|
306
|
+
attention_weight=attention_weight,
|
|
307
|
+
include_dead_weight=include_dead_weight,
|
|
308
|
+
symmetrize=symmetrize,
|
|
309
|
+
compute_cum_sum=compute_cum_sum,
|
|
310
|
+
weights=weights,
|
|
311
|
+
closest_A=closest_A,
|
|
312
|
+
neigh_col=neigh_col,
|
|
313
|
+
column_labelsA=cl[0],
|
|
314
|
+
column_labelsB=cl[1],
|
|
315
|
+
statusA=status[0],
|
|
316
|
+
statusB=status[1],
|
|
317
|
+
distance=d,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
self.sum_done += 1 / len(timeline) * 100
|
|
321
|
+
mean_exec_per_step = (time.time() - self.t0) / (
|
|
322
|
+
self.sum_done * len(timeline) / 100 + 1
|
|
323
|
+
)
|
|
324
|
+
pred_time = (
|
|
325
|
+
len(timeline) - (self.sum_done * len(timeline) / 100 + 1)
|
|
326
|
+
) * mean_exec_per_step
|
|
327
|
+
self.queue.put(
|
|
328
|
+
{
|
|
329
|
+
"frame_progress": self.sum_done,
|
|
330
|
+
"frame_time": f"Time left: {round(pred_time, 1)}s",
|
|
331
|
+
"well_progress": self.well_progress,
|
|
332
|
+
"pos_progress": self.pos_progress,
|
|
333
|
+
}
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
return setA, setB
|
|
337
|
+
|
|
338
|
+
def compute_neighborhood_at_position(
|
|
339
|
+
self,
|
|
340
|
+
pos,
|
|
341
|
+
distance,
|
|
342
|
+
population=["targets", "effectors"],
|
|
343
|
+
theta_dist=None,
|
|
344
|
+
img_shape=(2048, 2048),
|
|
345
|
+
return_tables=False,
|
|
346
|
+
clear_neigh=False,
|
|
347
|
+
event_time_col=None,
|
|
348
|
+
neighborhood_kwargs={
|
|
349
|
+
"mode": "two-pop",
|
|
350
|
+
"status": None,
|
|
351
|
+
"not_status_option": None,
|
|
352
|
+
"include_dead_weight": True,
|
|
353
|
+
"compute_cum_sum": False,
|
|
354
|
+
"attention_weight": True,
|
|
355
|
+
"symmetrize": True,
|
|
356
|
+
},
|
|
357
|
+
):
|
|
358
|
+
|
|
359
|
+
pos = pos.replace("\\", "/")
|
|
360
|
+
pos = rf"{pos}"
|
|
361
|
+
assert os.path.exists(pos), f"Position {pos} is not a valid path."
|
|
362
|
+
|
|
363
|
+
if isinstance(population, str):
|
|
364
|
+
population = [population, population]
|
|
365
|
+
|
|
366
|
+
if not isinstance(distance, list):
|
|
367
|
+
distance = [distance]
|
|
368
|
+
if not theta_dist is None and not isinstance(theta_dist, list):
|
|
369
|
+
theta_dist = [theta_dist]
|
|
370
|
+
|
|
371
|
+
if theta_dist is None:
|
|
372
|
+
theta_dist = [0.9 * d for d in distance]
|
|
373
|
+
assert len(theta_dist) == len(
|
|
374
|
+
distance
|
|
375
|
+
), "Incompatible number of distances and number of edge thresholds."
|
|
376
|
+
|
|
377
|
+
if population[0] == population[1]:
|
|
378
|
+
neighborhood_kwargs.update({"mode": "self"})
|
|
379
|
+
if population[1] != population[0]:
|
|
380
|
+
neighborhood_kwargs.update({"mode": "two-pop"})
|
|
381
|
+
|
|
382
|
+
df_A, path_A = get_position_table(
|
|
383
|
+
pos, population=population[0], return_path=True
|
|
384
|
+
)
|
|
385
|
+
df_B, path_B = get_position_table(
|
|
386
|
+
pos, population=population[1], return_path=True
|
|
387
|
+
)
|
|
388
|
+
if df_A is None or df_B is None:
|
|
389
|
+
return None
|
|
390
|
+
|
|
391
|
+
if clear_neigh:
|
|
392
|
+
if os.path.exists(path_A.replace(".csv", ".pkl")):
|
|
393
|
+
os.remove(path_A.replace(".csv", ".pkl"))
|
|
394
|
+
if os.path.exists(path_B.replace(".csv", ".pkl")):
|
|
395
|
+
os.remove(path_B.replace(".csv", ".pkl"))
|
|
396
|
+
df_pair, pair_path = get_position_table(
|
|
397
|
+
pos, population="pairs", return_path=True
|
|
398
|
+
)
|
|
399
|
+
if df_pair is not None:
|
|
400
|
+
os.remove(pair_path)
|
|
401
|
+
|
|
402
|
+
df_A_pkl = get_position_pickle(pos, population=population[0], return_path=False)
|
|
403
|
+
df_B_pkl = get_position_pickle(pos, population=population[1], return_path=False)
|
|
404
|
+
|
|
405
|
+
if df_A_pkl is not None:
|
|
406
|
+
pkl_columns = np.array(df_A_pkl.columns)
|
|
407
|
+
neigh_columns = np.array(
|
|
408
|
+
[c.startswith("neighborhood") for c in pkl_columns]
|
|
409
|
+
)
|
|
410
|
+
cols = list(pkl_columns[neigh_columns]) + ["FRAME"]
|
|
411
|
+
|
|
412
|
+
id_col = extract_identity_col(df_A_pkl)
|
|
413
|
+
cols.append(id_col)
|
|
414
|
+
on_cols = [id_col, "FRAME"]
|
|
415
|
+
|
|
416
|
+
print(f"Recover {cols} from the pickle file...")
|
|
417
|
+
try:
|
|
418
|
+
df_A = pd.merge(df_A, df_A_pkl.loc[:, cols], how="outer", on=on_cols)
|
|
419
|
+
print(df_A.columns)
|
|
420
|
+
except Exception as e:
|
|
421
|
+
print(f"Failure to merge pickle and csv files: {e}")
|
|
422
|
+
|
|
423
|
+
if df_B_pkl is not None and df_B is not None:
|
|
424
|
+
pkl_columns = np.array(df_B_pkl.columns)
|
|
425
|
+
neigh_columns = np.array(
|
|
426
|
+
[c.startswith("neighborhood") for c in pkl_columns]
|
|
427
|
+
)
|
|
428
|
+
cols = list(pkl_columns[neigh_columns]) + ["FRAME"]
|
|
429
|
+
|
|
430
|
+
id_col = extract_identity_col(df_B_pkl)
|
|
431
|
+
cols.append(id_col)
|
|
432
|
+
on_cols = [id_col, "FRAME"]
|
|
433
|
+
|
|
434
|
+
print(f"Recover {cols} from the pickle file...")
|
|
435
|
+
try:
|
|
436
|
+
df_B = pd.merge(df_B, df_B_pkl.loc[:, cols], how="outer", on=on_cols)
|
|
437
|
+
except Exception as e:
|
|
438
|
+
print(f"Failure to merge pickle and csv files: {e}")
|
|
439
|
+
|
|
440
|
+
if clear_neigh:
|
|
441
|
+
unwanted = df_A.columns[df_A.columns.str.contains("neighborhood")]
|
|
442
|
+
df_A = df_A.drop(columns=unwanted)
|
|
443
|
+
unwanted = df_B.columns[df_B.columns.str.contains("neighborhood")]
|
|
444
|
+
df_B = df_B.drop(columns=unwanted)
|
|
445
|
+
|
|
446
|
+
df_A, df_B = self.distance_cut_neighborhood(
|
|
447
|
+
df_A, df_B, distance, **neighborhood_kwargs
|
|
448
|
+
)
|
|
449
|
+
|
|
450
|
+
if df_A is None or df_B is None or len(df_A) == 0:
|
|
451
|
+
return None
|
|
452
|
+
|
|
453
|
+
for td, d in zip(theta_dist, distance):
|
|
454
|
+
|
|
455
|
+
if neighborhood_kwargs["mode"] == "two-pop":
|
|
456
|
+
neigh_col = f"neighborhood_2_circle_{d}_px"
|
|
457
|
+
|
|
458
|
+
elif neighborhood_kwargs["mode"] == "self":
|
|
459
|
+
neigh_col = f"neighborhood_self_circle_{d}_px"
|
|
460
|
+
|
|
461
|
+
# edge_filter_A = (df_A['POSITION_X'] > td)&(df_A['POSITION_Y'] > td)&(df_A['POSITION_Y'] < (img_shape[0] - td))&(df_A['POSITION_X'] < (img_shape[1] - td))
|
|
462
|
+
# edge_filter_B = (df_B['POSITION_X'] > td)&(df_B['POSITION_Y'] > td)&(df_B['POSITION_Y'] < (img_shape[0] - td))&(df_B['POSITION_X'] < (img_shape[1] - td))
|
|
463
|
+
# df_A.loc[~edge_filter_A, neigh_col] = np.nan
|
|
464
|
+
# df_B.loc[~edge_filter_B, neigh_col] = np.nan
|
|
465
|
+
|
|
466
|
+
print("Count neighborhood...")
|
|
467
|
+
df_A = compute_neighborhood_metrics(
|
|
468
|
+
df_A,
|
|
469
|
+
neigh_col,
|
|
470
|
+
metrics=["inclusive", "exclusive", "intermediate"],
|
|
471
|
+
decompose_by_status=True,
|
|
472
|
+
)
|
|
473
|
+
# if neighborhood_kwargs['symmetrize']:
|
|
474
|
+
# df_B = compute_neighborhood_metrics(df_B, neigh_col, metrics=['inclusive','exclusive','intermediate'], decompose_by_status=True)
|
|
475
|
+
print("Done...")
|
|
476
|
+
|
|
477
|
+
if "TRACK_ID" in list(df_A.columns):
|
|
478
|
+
if not np.all(df_A["TRACK_ID"].isnull()):
|
|
479
|
+
print("Estimate average neighborhood before/after event...")
|
|
480
|
+
df_A = mean_neighborhood_before_event(
|
|
481
|
+
df_A, neigh_col, event_time_col
|
|
482
|
+
)
|
|
483
|
+
if event_time_col is not None:
|
|
484
|
+
df_A = mean_neighborhood_after_event(
|
|
485
|
+
df_A, neigh_col, event_time_col
|
|
486
|
+
)
|
|
487
|
+
print("Done...")
|
|
488
|
+
|
|
489
|
+
if not population[0] == population[1]:
|
|
490
|
+
# Remove neighborhood column from neighbor table, rename with actual population name
|
|
491
|
+
for td, d in zip(theta_dist, distance):
|
|
492
|
+
if neighborhood_kwargs["mode"] == "two-pop":
|
|
493
|
+
neigh_col = f"neighborhood_2_circle_{d}_px"
|
|
494
|
+
new_neigh_col = neigh_col.replace(
|
|
495
|
+
"_2_", f"_({population[0]}-{population[1]})_"
|
|
496
|
+
)
|
|
497
|
+
df_A = df_A.rename(columns={neigh_col: new_neigh_col})
|
|
498
|
+
elif neighborhood_kwargs["mode"] == "self":
|
|
499
|
+
neigh_col = f"neighborhood_self_circle_{d}_px"
|
|
500
|
+
df_B = df_B.drop(columns=[neigh_col])
|
|
501
|
+
df_B.to_pickle(path_B.replace(".csv", ".pkl"))
|
|
502
|
+
|
|
503
|
+
cols_to_rename = [
|
|
504
|
+
c
|
|
505
|
+
for c in list(df_A.columns)
|
|
506
|
+
if c.startswith("intermediate_count_")
|
|
507
|
+
or c.startswith("inclusive_count_")
|
|
508
|
+
or c.startswith("exclusive_count_")
|
|
509
|
+
or c.startswith("mean_count_")
|
|
510
|
+
]
|
|
511
|
+
new_col_names = [
|
|
512
|
+
c.replace("_2_", f"_({population[0]}-{population[1]})_")
|
|
513
|
+
for c in cols_to_rename
|
|
514
|
+
]
|
|
515
|
+
new_name_map = {}
|
|
516
|
+
for k, c in enumerate(cols_to_rename):
|
|
517
|
+
new_name_map.update({c: new_col_names[k]})
|
|
518
|
+
df_A = df_A.rename(columns=new_name_map)
|
|
519
|
+
|
|
520
|
+
df_A.to_pickle(path_A.replace(".csv", ".pkl"))
|
|
521
|
+
|
|
522
|
+
unwanted = df_A.columns[df_A.columns.str.startswith("neighborhood_")]
|
|
523
|
+
df_A2 = df_A.drop(columns=unwanted)
|
|
524
|
+
df_A2.to_csv(path_A, index=False)
|
|
525
|
+
|
|
526
|
+
if not population[0] == population[1]:
|
|
527
|
+
unwanted = df_B.columns[df_B.columns.str.startswith("neighborhood_")]
|
|
528
|
+
df_B_csv = df_B.drop(unwanted, axis=1, inplace=False)
|
|
529
|
+
df_B_csv.to_csv(path_B, index=False)
|
|
530
|
+
|
|
531
|
+
if return_tables:
|
|
532
|
+
return df_A, df_B
|
|
533
|
+
|
|
534
|
+
def compute_contact_neighborhood_at_position(
|
|
535
|
+
self,
|
|
536
|
+
pos,
|
|
537
|
+
distance,
|
|
538
|
+
population=["targets", "effectors"],
|
|
539
|
+
theta_dist=None,
|
|
540
|
+
img_shape=(2048, 2048),
|
|
541
|
+
return_tables=False,
|
|
542
|
+
clear_neigh=False,
|
|
543
|
+
event_time_col=None,
|
|
544
|
+
neighborhood_kwargs={
|
|
545
|
+
"mode": "two-pop",
|
|
546
|
+
"status": None,
|
|
547
|
+
"not_status_option": None,
|
|
548
|
+
"include_dead_weight": True,
|
|
549
|
+
"compute_cum_sum": False,
|
|
550
|
+
"attention_weight": True,
|
|
551
|
+
"symmetrize": True,
|
|
552
|
+
},
|
|
553
|
+
):
|
|
554
|
+
|
|
555
|
+
pos = pos.replace("\\", "/")
|
|
556
|
+
pos = rf"{pos}"
|
|
557
|
+
assert os.path.exists(pos), f"Position {pos} is not a valid path."
|
|
558
|
+
|
|
559
|
+
if isinstance(population, str):
|
|
560
|
+
population = [population, population]
|
|
561
|
+
|
|
562
|
+
if not isinstance(distance, list):
|
|
563
|
+
distance = [distance]
|
|
564
|
+
if not theta_dist is None and not isinstance(theta_dist, list):
|
|
565
|
+
theta_dist = [theta_dist]
|
|
566
|
+
|
|
567
|
+
if theta_dist is None:
|
|
568
|
+
theta_dist = [0 for d in distance] # 0.9*d
|
|
569
|
+
assert len(theta_dist) == len(
|
|
570
|
+
distance
|
|
571
|
+
), "Incompatible number of distances and number of edge thresholds."
|
|
572
|
+
|
|
573
|
+
if population[0] == population[1]:
|
|
574
|
+
neighborhood_kwargs.update({"mode": "self"})
|
|
575
|
+
if population[1] != population[0]:
|
|
576
|
+
neighborhood_kwargs.update({"mode": "two-pop"})
|
|
577
|
+
|
|
578
|
+
df_A, path_A = get_position_table(
|
|
579
|
+
pos, population=population[0], return_path=True
|
|
580
|
+
)
|
|
581
|
+
df_B, path_B = get_position_table(
|
|
582
|
+
pos, population=population[1], return_path=True
|
|
583
|
+
)
|
|
584
|
+
if df_A is None or df_B is None:
|
|
585
|
+
return None
|
|
586
|
+
|
|
587
|
+
if clear_neigh:
|
|
588
|
+
if os.path.exists(path_A.replace(".csv", ".pkl")):
|
|
589
|
+
os.remove(path_A.replace(".csv", ".pkl"))
|
|
590
|
+
if os.path.exists(path_B.replace(".csv", ".pkl")):
|
|
591
|
+
os.remove(path_B.replace(".csv", ".pkl"))
|
|
592
|
+
df_pair, pair_path = get_position_table(
|
|
593
|
+
pos, population="pairs", return_path=True
|
|
594
|
+
)
|
|
595
|
+
if df_pair is not None:
|
|
596
|
+
os.remove(pair_path)
|
|
597
|
+
|
|
598
|
+
df_A_pkl = get_position_pickle(pos, population=population[0], return_path=False)
|
|
599
|
+
df_B_pkl = get_position_pickle(pos, population=population[1], return_path=False)
|
|
600
|
+
|
|
601
|
+
if df_A_pkl is not None:
|
|
602
|
+
pkl_columns = np.array(df_A_pkl.columns)
|
|
603
|
+
neigh_columns = np.array(
|
|
604
|
+
[c.startswith("neighborhood") for c in pkl_columns]
|
|
605
|
+
)
|
|
606
|
+
cols = list(pkl_columns[neigh_columns]) + ["FRAME"]
|
|
607
|
+
|
|
608
|
+
id_col = extract_identity_col(df_A_pkl)
|
|
609
|
+
cols.append(id_col)
|
|
610
|
+
on_cols = [id_col, "FRAME"]
|
|
611
|
+
|
|
612
|
+
print(f"Recover {cols} from the pickle file...")
|
|
613
|
+
try:
|
|
614
|
+
df_A = pd.merge(df_A, df_A_pkl.loc[:, cols], how="outer", on=on_cols)
|
|
615
|
+
print(df_A.columns)
|
|
616
|
+
except Exception as e:
|
|
617
|
+
print(f"Failure to merge pickle and csv files: {e}")
|
|
618
|
+
|
|
619
|
+
if df_B_pkl is not None and df_B is not None:
|
|
620
|
+
pkl_columns = np.array(df_B_pkl.columns)
|
|
621
|
+
neigh_columns = np.array(
|
|
622
|
+
[c.startswith("neighborhood") for c in pkl_columns]
|
|
623
|
+
)
|
|
624
|
+
cols = list(pkl_columns[neigh_columns]) + ["FRAME"]
|
|
625
|
+
|
|
626
|
+
id_col = extract_identity_col(df_B_pkl)
|
|
627
|
+
cols.append(id_col)
|
|
628
|
+
on_cols = [id_col, "FRAME"]
|
|
629
|
+
|
|
630
|
+
print(f"Recover {cols} from the pickle file...")
|
|
631
|
+
try:
|
|
632
|
+
df_B = pd.merge(df_B, df_B_pkl.loc[:, cols], how="outer", on=on_cols)
|
|
633
|
+
except Exception as e:
|
|
634
|
+
print(f"Failure to merge pickle and csv files: {e}")
|
|
635
|
+
|
|
636
|
+
labelsA = locate_labels(pos, population=population[0])
|
|
637
|
+
if population[1] == population[0]:
|
|
638
|
+
labelsB = None
|
|
639
|
+
else:
|
|
640
|
+
labelsB = locate_labels(pos, population=population[1])
|
|
641
|
+
|
|
642
|
+
if clear_neigh:
|
|
643
|
+
unwanted = df_A.columns[df_A.columns.str.contains("neighborhood")]
|
|
644
|
+
df_A = df_A.drop(columns=unwanted)
|
|
645
|
+
unwanted = df_B.columns[df_B.columns.str.contains("neighborhood")]
|
|
646
|
+
df_B = df_B.drop(columns=unwanted)
|
|
647
|
+
|
|
648
|
+
print(f"Distance: {distance} for mask contact")
|
|
649
|
+
df_A, df_B = self.mask_contact_neighborhood(
|
|
650
|
+
df_A, df_B, labelsA, labelsB, distance, **neighborhood_kwargs
|
|
651
|
+
)
|
|
652
|
+
if df_A is None or df_B is None or len(df_A) == 0:
|
|
653
|
+
return None
|
|
654
|
+
|
|
655
|
+
for td, d in zip(theta_dist, distance):
|
|
656
|
+
|
|
657
|
+
if neighborhood_kwargs["mode"] == "two-pop":
|
|
658
|
+
neigh_col = f"neighborhood_2_contact_{d}_px"
|
|
659
|
+
elif neighborhood_kwargs["mode"] == "self":
|
|
660
|
+
neigh_col = f"neighborhood_self_contact_{d}_px"
|
|
661
|
+
else:
|
|
662
|
+
print("Invalid mode...")
|
|
663
|
+
return None
|
|
664
|
+
|
|
665
|
+
df_A.loc[df_A["class_id"].isnull(), neigh_col] = np.nan
|
|
666
|
+
|
|
667
|
+
# edge_filter_A = (df_A['POSITION_X'] > td)&(df_A['POSITION_Y'] > td)&(df_A['POSITION_Y'] < (img_shape[0] - td))&(df_A['POSITION_X'] < (img_shape[1] - td))
|
|
668
|
+
# edge_filter_B = (df_B['POSITION_X'] > td)&(df_B['POSITION_Y'] > td)&(df_B['POSITION_Y'] < (img_shape[0] - td))&(df_B['POSITION_X'] < (img_shape[1] - td))
|
|
669
|
+
# df_A.loc[~edge_filter_A, neigh_col] = np.nan
|
|
670
|
+
# df_B.loc[~edge_filter_B, neigh_col] = np.nan
|
|
671
|
+
|
|
672
|
+
df_A = compute_neighborhood_metrics(
|
|
673
|
+
df_A,
|
|
674
|
+
neigh_col,
|
|
675
|
+
metrics=["inclusive", "intermediate"],
|
|
676
|
+
decompose_by_status=True,
|
|
677
|
+
)
|
|
678
|
+
if "TRACK_ID" in list(df_A.columns):
|
|
679
|
+
if not np.all(df_A["TRACK_ID"].isnull()):
|
|
680
|
+
df_A = mean_neighborhood_before_event(
|
|
681
|
+
df_A,
|
|
682
|
+
neigh_col,
|
|
683
|
+
event_time_col,
|
|
684
|
+
metrics=["inclusive", "intermediate"],
|
|
685
|
+
)
|
|
686
|
+
if event_time_col is not None:
|
|
687
|
+
df_A = mean_neighborhood_after_event(
|
|
688
|
+
df_A,
|
|
689
|
+
neigh_col,
|
|
690
|
+
event_time_col,
|
|
691
|
+
metrics=["inclusive", "intermediate"],
|
|
692
|
+
)
|
|
693
|
+
print("Done...")
|
|
694
|
+
|
|
695
|
+
if not population[0] == population[1]:
|
|
696
|
+
# Remove neighborhood column from neighbor table, rename with actual population name
|
|
697
|
+
for td, d in zip(theta_dist, distance):
|
|
698
|
+
if neighborhood_kwargs["mode"] == "two-pop":
|
|
699
|
+
neigh_col = f"neighborhood_2_contact_{d}_px"
|
|
700
|
+
new_neigh_col = neigh_col.replace(
|
|
701
|
+
"_2_", f"_({population[0]}-{population[1]})_"
|
|
702
|
+
)
|
|
703
|
+
df_A = df_A.rename(columns={neigh_col: new_neigh_col})
|
|
704
|
+
elif neighborhood_kwargs["mode"] == "self":
|
|
705
|
+
neigh_col = f"neighborhood_self_contact_{d}_px"
|
|
706
|
+
else:
|
|
707
|
+
print("Invalid mode...")
|
|
708
|
+
return None
|
|
709
|
+
df_B = df_B.drop(columns=[neigh_col])
|
|
710
|
+
df_B.to_pickle(path_B.replace(".csv", ".pkl"))
|
|
711
|
+
|
|
712
|
+
cols_to_rename = [
|
|
713
|
+
c
|
|
714
|
+
for c in list(df_A.columns)
|
|
715
|
+
if c.startswith("intermediate_count_")
|
|
716
|
+
or c.startswith("inclusive_count_")
|
|
717
|
+
or c.startswith("exclusive_count_")
|
|
718
|
+
or c.startswith("mean_count_")
|
|
719
|
+
]
|
|
720
|
+
new_col_names = [
|
|
721
|
+
c.replace("_2_", f"_({population[0]}-{population[1]})_")
|
|
722
|
+
for c in cols_to_rename
|
|
723
|
+
]
|
|
724
|
+
new_name_map = {}
|
|
725
|
+
for k, c in enumerate(cols_to_rename):
|
|
726
|
+
new_name_map.update({c: new_col_names[k]})
|
|
727
|
+
df_A = df_A.rename(columns=new_name_map)
|
|
728
|
+
|
|
729
|
+
print(f"{df_A.columns=}")
|
|
730
|
+
df_A.to_pickle(path_A.replace(".csv", ".pkl"))
|
|
731
|
+
|
|
732
|
+
unwanted = df_A.columns[df_A.columns.str.startswith("neighborhood_")]
|
|
733
|
+
df_A2 = df_A.drop(columns=unwanted)
|
|
734
|
+
df_A2.to_csv(path_A, index=False)
|
|
735
|
+
|
|
736
|
+
if not population[0] == population[1]:
|
|
737
|
+
unwanted = df_B.columns[df_B.columns.str.startswith("neighborhood_")]
|
|
738
|
+
df_B_csv = df_B.drop(unwanted, axis=1, inplace=False)
|
|
739
|
+
df_B_csv.to_csv(path_B, index=False)
|
|
740
|
+
|
|
741
|
+
if return_tables:
|
|
742
|
+
return df_A, df_B
|
|
743
|
+
|
|
744
|
+
def run(self):
|
|
745
|
+
self.queue.put({"status": "Computing neighborhood..."})
|
|
746
|
+
print(f"Launching the neighborhood computation...")
|
|
747
|
+
if self.protocol["neighborhood_type"] == "distance_threshold":
|
|
748
|
+
self.compute_neighborhood_at_position(
|
|
749
|
+
self.pos,
|
|
750
|
+
self.protocol["distance"],
|
|
751
|
+
population=self.protocol["population"],
|
|
752
|
+
theta_dist=None,
|
|
753
|
+
img_shape=self.img_shape,
|
|
754
|
+
return_tables=False,
|
|
755
|
+
clear_neigh=self.protocol["clear_neigh"],
|
|
756
|
+
event_time_col=self.protocol["event_time_col"],
|
|
757
|
+
neighborhood_kwargs=self.protocol["neighborhood_kwargs"],
|
|
758
|
+
)
|
|
759
|
+
print(f"Computation done!")
|
|
760
|
+
elif self.protocol["neighborhood_type"] == "mask_contact":
|
|
761
|
+
print(f"Compute contact neigh!!")
|
|
762
|
+
self.compute_contact_neighborhood_at_position(
|
|
763
|
+
self.pos,
|
|
764
|
+
self.protocol["distance"],
|
|
765
|
+
population=self.protocol["population"],
|
|
766
|
+
theta_dist=None,
|
|
767
|
+
img_shape=self.img_shape,
|
|
768
|
+
return_tables=False,
|
|
769
|
+
clear_neigh=self.protocol["clear_neigh"],
|
|
770
|
+
event_time_col=self.protocol["event_time_col"],
|
|
771
|
+
neighborhood_kwargs=self.protocol["neighborhood_kwargs"],
|
|
772
|
+
)
|
|
773
|
+
print(f"Computation done!")
|
|
774
|
+
|
|
775
|
+
if self.measure_pairs:
|
|
776
|
+
self.queue.put({"status": "Measuring pairs..."})
|
|
777
|
+
print(f"Measuring pairs...")
|
|
778
|
+
|
|
779
|
+
distances = self.protocol["distance"]
|
|
780
|
+
if not isinstance(distances, list):
|
|
781
|
+
distances = [distances]
|
|
782
|
+
|
|
783
|
+
for d in distances:
|
|
784
|
+
# Construct the protocol dictionary expected by measure_pair_signals_at_position
|
|
785
|
+
if self.protocol["population"][0] == self.protocol["population"][1]:
|
|
786
|
+
mode = "self"
|
|
787
|
+
else:
|
|
788
|
+
mode = "two-pop"
|
|
789
|
+
|
|
790
|
+
if self.protocol["neighborhood_type"] == "distance_threshold":
|
|
791
|
+
neigh_type = "circle"
|
|
792
|
+
if mode == "two-pop":
|
|
793
|
+
neigh_col = f"neighborhood_2_circle_{d}_px"
|
|
794
|
+
elif mode == "self":
|
|
795
|
+
neigh_col = f"neighborhood_self_circle_{d}_px"
|
|
796
|
+
elif self.protocol["neighborhood_type"] == "mask_contact":
|
|
797
|
+
neigh_type = "contact"
|
|
798
|
+
if mode == "two-pop":
|
|
799
|
+
neigh_col = f"neighborhood_2_contact_{d}_px"
|
|
800
|
+
elif mode == "self":
|
|
801
|
+
neigh_col = f"neighborhood_self_contact_{d}_px"
|
|
802
|
+
|
|
803
|
+
pair_protocol = {
|
|
804
|
+
"reference": self.protocol["population"][0],
|
|
805
|
+
"neighbor": self.protocol["population"][1],
|
|
806
|
+
"type": neigh_type,
|
|
807
|
+
"distance": d,
|
|
808
|
+
"description": neigh_col,
|
|
809
|
+
}
|
|
810
|
+
|
|
811
|
+
print(f"Processing pairs for {neigh_col}...")
|
|
812
|
+
df_pairs = measure_pair_signals_at_position(self.pos, pair_protocol)
|
|
813
|
+
|
|
814
|
+
if df_pairs is not None:
|
|
815
|
+
if "REFERENCE_ID" in list(df_pairs.columns):
|
|
816
|
+
previous_pair_table_path = self.pos + os.sep.join(
|
|
817
|
+
["output", "tables", "trajectories_pairs.csv"]
|
|
818
|
+
)
|
|
819
|
+
|
|
820
|
+
if os.path.exists(previous_pair_table_path):
|
|
821
|
+
df_prev = pd.read_csv(previous_pair_table_path)
|
|
822
|
+
cols = [
|
|
823
|
+
c
|
|
824
|
+
for c in list(df_prev.columns)
|
|
825
|
+
if c in list(df_pairs.columns)
|
|
826
|
+
]
|
|
827
|
+
df_pairs = pd.merge(df_prev, df_pairs, how="outer", on=cols)
|
|
828
|
+
|
|
829
|
+
try:
|
|
830
|
+
df_pairs = df_pairs.sort_values(
|
|
831
|
+
by=[
|
|
832
|
+
"reference_population",
|
|
833
|
+
"neighbor_population",
|
|
834
|
+
"REFERENCE_ID",
|
|
835
|
+
"NEIGHBOR_ID",
|
|
836
|
+
"FRAME",
|
|
837
|
+
]
|
|
838
|
+
)
|
|
839
|
+
except KeyError:
|
|
840
|
+
pass
|
|
841
|
+
|
|
842
|
+
df_pairs.to_csv(previous_pair_table_path, index=False)
|
|
843
|
+
print(f"Pair measurements saved to {previous_pair_table_path}")
|
|
844
|
+
|
|
845
|
+
# self.indices = list(range(self.img_num_channels.shape[1]))
|
|
846
|
+
# chunks = np.array_split(self.indices, self.n_threads)
|
|
847
|
+
#
|
|
848
|
+
# self.timestep_dataframes = []
|
|
849
|
+
# with concurrent.futures.ThreadPoolExecutor(max_workers=self.n_threads) as executor:
|
|
850
|
+
# results = executor.map(self.parallel_job,
|
|
851
|
+
# chunks) # list(map(lambda x: executor.submit(self.parallel_job, x), chunks))
|
|
852
|
+
# try:
|
|
853
|
+
# for i, return_value in enumerate(results):
|
|
854
|
+
# print(f'Thread {i} completed...')
|
|
855
|
+
# self.timestep_dataframes.extend(return_value)
|
|
856
|
+
# except Exception as e:
|
|
857
|
+
# print("Exception: ", e)
|
|
858
|
+
#
|
|
859
|
+
# print('Measurements successfully performed...')
|
|
860
|
+
#
|
|
861
|
+
# if len(self.timestep_dataframes) > 0:
|
|
862
|
+
#
|
|
863
|
+
# df = pd.concat(self.timestep_dataframes)
|
|
864
|
+
#
|
|
865
|
+
# if self.trajectories is not None:
|
|
866
|
+
# df = df.sort_values(by=[self.column_labels['track'], self.column_labels['time']])
|
|
867
|
+
# df = df.dropna(subset=[self.column_labels['track']])
|
|
868
|
+
# else:
|
|
869
|
+
# df['ID'] = np.arange(len(df))
|
|
870
|
+
# df = df.sort_values(by=[self.column_labels['time'], 'ID'])
|
|
871
|
+
#
|
|
872
|
+
# df = df.reset_index(drop=True)
|
|
873
|
+
# df = _remove_invalid_cols(df)
|
|
874
|
+
#
|
|
875
|
+
# df.to_csv(self.pos + os.sep.join(["output", "tables", self.table_name]), index=False)
|
|
876
|
+
# print(f'Measurement table successfully exported in {os.sep.join(["output", "tables"])}...')
|
|
877
|
+
# print('Done.')
|
|
878
|
+
# else:
|
|
879
|
+
# print('No measurement could be performed. Check your inputs.')
|
|
880
|
+
# print('Done.')
|
|
881
|
+
|
|
882
|
+
# Send end signal
|
|
883
|
+
self.queue.put("finished")
|
|
884
|
+
self.queue.close()
|
|
885
|
+
|
|
886
|
+
def end_process(self):
|
|
887
|
+
|
|
888
|
+
self.terminate()
|
|
889
|
+
self.queue.put("finished")
|
|
890
|
+
|
|
891
|
+
def abort_process(self):
|
|
892
|
+
|
|
893
|
+
self.terminate()
|
|
894
|
+
self.queue.put("error")
|