celldetective 1.3.8__py3-none-any.whl → 1.3.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/_version.py +1 -1
- celldetective/extra_properties.py +113 -17
- celldetective/filters.py +12 -12
- celldetective/gui/btrack_options.py +1 -1
- celldetective/gui/control_panel.py +1 -1
- celldetective/gui/gui_utils.py +4 -4
- celldetective/gui/measurement_options.py +1 -1
- celldetective/gui/plot_signals_ui.py +23 -6
- celldetective/gui/process_block.py +1 -1
- celldetective/gui/processes/measure_cells.py +4 -4
- celldetective/gui/processes/segment_cells.py +3 -3
- celldetective/gui/processes/track_cells.py +4 -4
- celldetective/gui/signal_annotator.py +26 -6
- celldetective/gui/signal_annotator2.py +1 -1
- celldetective/gui/signal_annotator_options.py +1 -1
- celldetective/gui/survival_ui.py +4 -1
- celldetective/gui/thresholds_gui.py +6 -5
- celldetective/io.py +1 -44
- celldetective/links/zenodo.json +233 -93
- celldetective/measure.py +22 -16
- celldetective/models/signal_detection/NucCond/classification_loss.png +0 -0
- celldetective/models/signal_detection/NucCond/classifier.h5 +0 -0
- celldetective/models/signal_detection/NucCond/config_input.json +1 -0
- celldetective/models/signal_detection/NucCond/log_classifier.csv +126 -0
- celldetective/models/signal_detection/NucCond/log_regressor.csv +282 -0
- celldetective/models/signal_detection/NucCond/regression_loss.png +0 -0
- celldetective/models/signal_detection/NucCond/regressor.h5 +0 -0
- celldetective/models/signal_detection/NucCond/scores.npy +0 -0
- celldetective/models/signal_detection/NucCond/test_confusion_matrix.png +0 -0
- celldetective/models/signal_detection/NucCond/test_regression.png +0 -0
- celldetective/models/signal_detection/NucCond/validation_confusion_matrix.png +0 -0
- celldetective/models/signal_detection/NucCond/validation_regression.png +0 -0
- celldetective/regionprops/__init__.py +1 -0
- celldetective/regionprops/_regionprops.py +310 -0
- celldetective/regionprops/props.json +63 -0
- celldetective/scripts/measure_relative.py +2 -20
- celldetective/segmentation.py +14 -4
- celldetective/utils.py +182 -171
- {celldetective-1.3.8.dist-info → celldetective-1.3.9.dist-info}/METADATA +1 -1
- {celldetective-1.3.8.dist-info → celldetective-1.3.9.dist-info}/RECORD +44 -29
- {celldetective-1.3.8.dist-info → celldetective-1.3.9.dist-info}/LICENSE +0 -0
- {celldetective-1.3.8.dist-info → celldetective-1.3.9.dist-info}/WHEEL +0 -0
- {celldetective-1.3.8.dist-info → celldetective-1.3.9.dist-info}/entry_points.txt +0 -0
- {celldetective-1.3.8.dist-info → celldetective-1.3.9.dist-info}/top_level.txt +0 -0
|
Binary file
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from ._regionprops import regionprops_table
|
|
@@ -0,0 +1,310 @@
|
|
|
1
|
+
from skimage.measure._regionprops import RegionProperties, regionprops, _cached, _props_to_dict, _infer_number_of_required_args
|
|
2
|
+
import numpy as np
|
|
3
|
+
import inspect
|
|
4
|
+
import json
|
|
5
|
+
import os
|
|
6
|
+
from scipy.ndimage import find_objects
|
|
7
|
+
|
|
8
|
+
abs_path = os.sep.join([os.path.split(os.path.dirname(os.path.realpath(__file__)))[0]])
|
|
9
|
+
|
|
10
|
+
with open(os.sep.join([abs_path, 'regionprops', 'props.json'])) as f:
|
|
11
|
+
PROPS = json.load(f)
|
|
12
|
+
|
|
13
|
+
COL_DTYPES = {
|
|
14
|
+
'area': float,
|
|
15
|
+
'area_bbox': float,
|
|
16
|
+
'area_convex': float,
|
|
17
|
+
'area_filled': float,
|
|
18
|
+
'axis_major_length': float,
|
|
19
|
+
'axis_minor_length': float,
|
|
20
|
+
'bbox': int,
|
|
21
|
+
'centroid': float,
|
|
22
|
+
'centroid_local': float,
|
|
23
|
+
'centroid_weighted': float,
|
|
24
|
+
'centroid_weighted_local': float,
|
|
25
|
+
'coords': object,
|
|
26
|
+
'coords_scaled': object,
|
|
27
|
+
'eccentricity': float,
|
|
28
|
+
'equivalent_diameter_area': float,
|
|
29
|
+
'euler_number': int,
|
|
30
|
+
'extent': float,
|
|
31
|
+
'feret_diameter_max': float,
|
|
32
|
+
'image': object,
|
|
33
|
+
'image_convex': object,
|
|
34
|
+
'image_filled': object,
|
|
35
|
+
'image_intensity': object,
|
|
36
|
+
'inertia_tensor': float,
|
|
37
|
+
'inertia_tensor_eigvals': float,
|
|
38
|
+
'intensity_max': float,
|
|
39
|
+
'intensity_mean': float,
|
|
40
|
+
'intensity_min': float,
|
|
41
|
+
'intensity_std': float,
|
|
42
|
+
'label': int,
|
|
43
|
+
'moments': float,
|
|
44
|
+
'moments_central': float,
|
|
45
|
+
'moments_hu': float,
|
|
46
|
+
'moments_normalized': float,
|
|
47
|
+
'moments_weighted': float,
|
|
48
|
+
'moments_weighted_central': float,
|
|
49
|
+
'moments_weighted_hu': float,
|
|
50
|
+
'moments_weighted_normalized': float,
|
|
51
|
+
'num_pixels': int,
|
|
52
|
+
'orientation': float,
|
|
53
|
+
'perimeter': float,
|
|
54
|
+
'perimeter_crofton': float,
|
|
55
|
+
'slice': object,
|
|
56
|
+
'solidity': float,
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
OBJECT_COLUMNS = [col for col, dtype in COL_DTYPES.items() if dtype == object]
|
|
60
|
+
PROP_VALS = set(PROPS.values())
|
|
61
|
+
|
|
62
|
+
class CustomRegionProps(RegionProperties):
|
|
63
|
+
|
|
64
|
+
"""
|
|
65
|
+
From https://github.com/scikit-image/scikit-image/blob/main/skimage/measure/_regionprops.py with a modification to not mask the intensity image itself before measurements
|
|
66
|
+
"""
|
|
67
|
+
|
|
68
|
+
def __init__(self, channel_names, *args, **kwargs):
|
|
69
|
+
|
|
70
|
+
self.channel_names = channel_names
|
|
71
|
+
if isinstance(self.channel_names, np.ndarray):
|
|
72
|
+
self.channel_names = list(self.channel_names)
|
|
73
|
+
super().__init__(*args, **kwargs)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def __getattr__(self, attr):
|
|
77
|
+
|
|
78
|
+
if self.channel_names is not None and self._multichannel:
|
|
79
|
+
assert len(self.channel_names)==self._intensity_image.shape[-1],'Mismatch between provided channel names and the number of channels in the image...'
|
|
80
|
+
|
|
81
|
+
if attr == "__setstate__":
|
|
82
|
+
# When deserializing this object with pickle, `__setstate__`
|
|
83
|
+
# is accessed before any other attributes like `self._intensity_image`
|
|
84
|
+
# are available which leads to a RecursionError when trying to
|
|
85
|
+
# access them later on in this function. So guard against this by
|
|
86
|
+
# provoking the default AttributeError (gh-6465).
|
|
87
|
+
return self.__getattribute__(attr)
|
|
88
|
+
|
|
89
|
+
if self._intensity_image is None and attr in _require_intensity_image:
|
|
90
|
+
raise AttributeError(
|
|
91
|
+
f"Attribute '{attr}' unavailable when `intensity_image` "
|
|
92
|
+
f"has not been specified."
|
|
93
|
+
)
|
|
94
|
+
if attr in self._extra_properties:
|
|
95
|
+
func = self._extra_properties[attr]
|
|
96
|
+
n_args = _infer_number_of_required_args(func)
|
|
97
|
+
# determine whether func requires intensity image
|
|
98
|
+
if n_args == 2:
|
|
99
|
+
if self._intensity_image is not None:
|
|
100
|
+
if self._multichannel:
|
|
101
|
+
arg_dict = dict(inspect.signature(func).parameters)
|
|
102
|
+
if self.channel_names is not None and 'target_channel' in arg_dict:
|
|
103
|
+
multichannel_list = [np.nan for i in range(self.image_intensity.shape[-1])]
|
|
104
|
+
default_channel = arg_dict['target_channel']._default
|
|
105
|
+
if default_channel in self.channel_names:
|
|
106
|
+
idx = self.channel_names.index(default_channel)
|
|
107
|
+
multichannel_list[idx] = func(self.image, self.image_intensity[..., idx])
|
|
108
|
+
else:
|
|
109
|
+
print(f'Warning... Channel required by custom measurement ({default_channel}) could not be found in your data...')
|
|
110
|
+
return np.stack(multichannel_list, axis=-1)
|
|
111
|
+
else:
|
|
112
|
+
multichannel_list = [
|
|
113
|
+
func(self.image, self.image_intensity[..., i])
|
|
114
|
+
for i in range(self.image_intensity.shape[-1])
|
|
115
|
+
]
|
|
116
|
+
return np.stack(multichannel_list, axis=-1)
|
|
117
|
+
else:
|
|
118
|
+
return func(self.image, self.image_intensity)
|
|
119
|
+
else:
|
|
120
|
+
raise AttributeError(
|
|
121
|
+
f'intensity image required to calculate {attr}'
|
|
122
|
+
)
|
|
123
|
+
elif n_args == 1:
|
|
124
|
+
return func(self.image)
|
|
125
|
+
else:
|
|
126
|
+
raise AttributeError(
|
|
127
|
+
f'Custom regionprop function\'s number of arguments must '
|
|
128
|
+
f'be 1 or 2, but {attr} takes {n_args} arguments.'
|
|
129
|
+
)
|
|
130
|
+
elif attr in PROPS and attr.lower() == attr:
|
|
131
|
+
if (
|
|
132
|
+
self._intensity_image is None
|
|
133
|
+
and PROPS[attr] in _require_intensity_image
|
|
134
|
+
):
|
|
135
|
+
raise AttributeError(
|
|
136
|
+
f"Attribute '{attr}' unavailable when `intensity_image` "
|
|
137
|
+
f"has not been specified."
|
|
138
|
+
)
|
|
139
|
+
# retrieve deprecated property (excluding old CamelCase ones)
|
|
140
|
+
return getattr(self, PROPS[attr])
|
|
141
|
+
else:
|
|
142
|
+
raise AttributeError(f"'{type(self)}' object has no attribute '{attr}'")
|
|
143
|
+
|
|
144
|
+
@property
|
|
145
|
+
@_cached
|
|
146
|
+
def image_intensity(self):
|
|
147
|
+
if self._intensity_image is None:
|
|
148
|
+
raise AttributeError('No intensity image specified.')
|
|
149
|
+
image = (
|
|
150
|
+
self.image
|
|
151
|
+
if not self._multichannel
|
|
152
|
+
else np.expand_dims(self.image, self._ndim)
|
|
153
|
+
)
|
|
154
|
+
return self._intensity_image[self.slice]
|
|
155
|
+
|
|
156
|
+
def regionprops(label_image, intensity_image=None,cache=True,channel_names=None,*,extra_properties=None,spacing=None,offset=None):
|
|
157
|
+
|
|
158
|
+
"""
|
|
159
|
+
From https://github.com/scikit-image/scikit-image/blob/main/skimage/measure/_regionprops.py with a modification to use CustomRegionProps
|
|
160
|
+
"""
|
|
161
|
+
|
|
162
|
+
if label_image.ndim not in (2, 3):
|
|
163
|
+
raise TypeError('Only 2-D and 3-D images supported.')
|
|
164
|
+
|
|
165
|
+
if not np.issubdtype(label_image.dtype, np.integer):
|
|
166
|
+
if np.issubdtype(label_image.dtype, bool):
|
|
167
|
+
raise TypeError(
|
|
168
|
+
'Non-integer image types are ambiguous: '
|
|
169
|
+
'use skimage.measure.label to label the connected '
|
|
170
|
+
'components of label_image, '
|
|
171
|
+
'or label_image.astype(np.uint8) to interpret '
|
|
172
|
+
'the True values as a single label.'
|
|
173
|
+
)
|
|
174
|
+
else:
|
|
175
|
+
raise TypeError('Non-integer label_image types are ambiguous')
|
|
176
|
+
|
|
177
|
+
if offset is None:
|
|
178
|
+
offset_arr = np.zeros((label_image.ndim,), dtype=int)
|
|
179
|
+
else:
|
|
180
|
+
offset_arr = np.asarray(offset)
|
|
181
|
+
if offset_arr.ndim != 1 or offset_arr.size != label_image.ndim:
|
|
182
|
+
raise ValueError(
|
|
183
|
+
'Offset should be an array-like of integers '
|
|
184
|
+
'of shape (label_image.ndim,); '
|
|
185
|
+
f'{offset} was provided.'
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
regions = []
|
|
189
|
+
|
|
190
|
+
objects = find_objects(label_image)
|
|
191
|
+
for i, sl in enumerate(objects):
|
|
192
|
+
if sl is None:
|
|
193
|
+
continue
|
|
194
|
+
|
|
195
|
+
label = i + 1
|
|
196
|
+
|
|
197
|
+
props = CustomRegionProps(
|
|
198
|
+
channel_names,
|
|
199
|
+
sl,
|
|
200
|
+
label,
|
|
201
|
+
label_image,
|
|
202
|
+
intensity_image,
|
|
203
|
+
cache,
|
|
204
|
+
spacing=spacing,
|
|
205
|
+
extra_properties=extra_properties,
|
|
206
|
+
offset=offset_arr,
|
|
207
|
+
)
|
|
208
|
+
regions.append(props)
|
|
209
|
+
|
|
210
|
+
return regions
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def _props_to_dict(regions, properties=('label', 'bbox'), separator='-'):
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
out = {}
|
|
217
|
+
n = len(regions)
|
|
218
|
+
for prop in properties:
|
|
219
|
+
r = regions[0]
|
|
220
|
+
# Copy the original property name so the output will have the
|
|
221
|
+
# user-provided property name in the case of deprecated names.
|
|
222
|
+
orig_prop = prop
|
|
223
|
+
# determine the current property name for any deprecated property.
|
|
224
|
+
prop = PROPS.get(prop, prop)
|
|
225
|
+
rp = getattr(r, prop)
|
|
226
|
+
if prop in COL_DTYPES:
|
|
227
|
+
dtype = COL_DTYPES[prop]
|
|
228
|
+
else:
|
|
229
|
+
func = r._extra_properties[prop]
|
|
230
|
+
# dtype = _infer_regionprop_dtype(
|
|
231
|
+
# func,
|
|
232
|
+
# intensity=r._intensity_image is not None,
|
|
233
|
+
# ndim=r.image.ndim,
|
|
234
|
+
# )
|
|
235
|
+
dtype = np.float64
|
|
236
|
+
|
|
237
|
+
# scalars and objects are dedicated one column per prop
|
|
238
|
+
# array properties are raveled into multiple columns
|
|
239
|
+
# for more info, refer to notes 1
|
|
240
|
+
if np.isscalar(rp) or prop in OBJECT_COLUMNS or dtype is np.object_:
|
|
241
|
+
column_buffer = np.empty(n, dtype=dtype)
|
|
242
|
+
for i in range(n):
|
|
243
|
+
column_buffer[i] = regions[i][prop]
|
|
244
|
+
out[orig_prop] = np.copy(column_buffer)
|
|
245
|
+
else:
|
|
246
|
+
# precompute property column names and locations
|
|
247
|
+
modified_props = []
|
|
248
|
+
locs = []
|
|
249
|
+
for ind in np.ndindex(np.shape(rp)):
|
|
250
|
+
modified_props.append(separator.join(map(str, (orig_prop,) + ind)))
|
|
251
|
+
locs.append(ind if len(ind) > 1 else ind[0])
|
|
252
|
+
|
|
253
|
+
# fill temporary column data_array
|
|
254
|
+
n_columns = len(locs)
|
|
255
|
+
column_data = np.empty((n, n_columns), dtype=dtype)
|
|
256
|
+
for k in range(n):
|
|
257
|
+
# we coerce to a numpy array to ensure structures like
|
|
258
|
+
# tuple-of-arrays expand correctly into columns
|
|
259
|
+
rp = np.asarray(regions[k][prop])
|
|
260
|
+
for i, loc in enumerate(locs):
|
|
261
|
+
column_data[k, i] = rp[loc]
|
|
262
|
+
|
|
263
|
+
# add the columns to the output dictionary
|
|
264
|
+
for i, modified_prop in enumerate(modified_props):
|
|
265
|
+
out[modified_prop] = column_data[:, i]
|
|
266
|
+
return out
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
def regionprops_table(label_image,intensity_image=None,properties=('label', 'bbox'),*,cache=True,separator='-',extra_properties=None,spacing=None,channel_names=None):
|
|
270
|
+
|
|
271
|
+
"""
|
|
272
|
+
From https://github.com/scikit-image/scikit-image/blob/main/skimage/measure/_regionprops.py
|
|
273
|
+
"""
|
|
274
|
+
regions = regionprops(
|
|
275
|
+
label_image,
|
|
276
|
+
intensity_image=intensity_image,
|
|
277
|
+
cache=cache,
|
|
278
|
+
extra_properties=extra_properties,
|
|
279
|
+
spacing=spacing,
|
|
280
|
+
channel_names=channel_names,
|
|
281
|
+
)
|
|
282
|
+
if extra_properties is not None:
|
|
283
|
+
properties = list(properties) + [prop.__name__ for prop in extra_properties]
|
|
284
|
+
if len(regions) == 0:
|
|
285
|
+
ndim = label_image.ndim
|
|
286
|
+
label_image = np.zeros((3,) * ndim, dtype=int)
|
|
287
|
+
label_image[(1,) * ndim] = 1
|
|
288
|
+
if intensity_image is not None:
|
|
289
|
+
intensity_image = np.zeros(
|
|
290
|
+
label_image.shape + intensity_image.shape[ndim:],
|
|
291
|
+
dtype=intensity_image.dtype,
|
|
292
|
+
)
|
|
293
|
+
regions = regionprops(
|
|
294
|
+
label_image,
|
|
295
|
+
intensity_image=intensity_image,
|
|
296
|
+
cache=cache,
|
|
297
|
+
extra_properties=extra_properties,
|
|
298
|
+
spacing=spacing,
|
|
299
|
+
channel_names=channel_names,
|
|
300
|
+
)
|
|
301
|
+
out_d = _props_to_dict(regions, properties=properties, separator=separator)
|
|
302
|
+
return {k: v[:0] for k, v in out_d.items()}
|
|
303
|
+
|
|
304
|
+
good_props = []
|
|
305
|
+
for prop in properties:
|
|
306
|
+
nan_test = [np.isnan(getattr(r,prop)) for r in regions]
|
|
307
|
+
if not np.all(nan_test):
|
|
308
|
+
good_props.append(prop)
|
|
309
|
+
|
|
310
|
+
return _props_to_dict(regions, properties=good_props, separator=separator)
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
{
|
|
2
|
+
"Area": "area",
|
|
3
|
+
"BoundingBox": "bbox",
|
|
4
|
+
"BoundingBoxArea": "area_bbox",
|
|
5
|
+
"bbox_area": "area_bbox",
|
|
6
|
+
"CentralMoments": "moments_central",
|
|
7
|
+
"Centroid": "centroid",
|
|
8
|
+
"ConvexArea": "area_convex",
|
|
9
|
+
"convex_area": "area_convex",
|
|
10
|
+
"ConvexImage": "image_convex",
|
|
11
|
+
"convex_image": "image_convex",
|
|
12
|
+
"Coordinates": "coords",
|
|
13
|
+
"Eccentricity": "eccentricity",
|
|
14
|
+
"EquivDiameter": "equivalent_diameter_area",
|
|
15
|
+
"equivalent_diameter": "equivalent_diameter_area",
|
|
16
|
+
"EulerNumber": "euler_number",
|
|
17
|
+
"Extent": "extent",
|
|
18
|
+
"FeretDiameter": "feret_diameter_max",
|
|
19
|
+
"FeretDiameterMax": "feret_diameter_max",
|
|
20
|
+
"FilledArea": "area_filled",
|
|
21
|
+
"filled_area": "area_filled",
|
|
22
|
+
"FilledImage": "image_filled",
|
|
23
|
+
"filled_image": "image_filled",
|
|
24
|
+
"HuMoments": "moments_hu",
|
|
25
|
+
"Image": "image",
|
|
26
|
+
"InertiaTensor": "inertia_tensor",
|
|
27
|
+
"InertiaTensorEigvals": "inertia_tensor_eigvals",
|
|
28
|
+
"IntensityImage": "image_intensity",
|
|
29
|
+
"intensity_image": "image_intensity",
|
|
30
|
+
"Label": "label",
|
|
31
|
+
"LocalCentroid": "centroid_local",
|
|
32
|
+
"local_centroid": "centroid_local",
|
|
33
|
+
"MajorAxisLength": "axis_major_length",
|
|
34
|
+
"major_axis_length": "axis_major_length",
|
|
35
|
+
"MaxIntensity": "intensity_max",
|
|
36
|
+
"max_intensity": "intensity_max",
|
|
37
|
+
"MeanIntensity": "intensity_mean",
|
|
38
|
+
"mean_intensity": "intensity_mean",
|
|
39
|
+
"MinIntensity": "intensity_min",
|
|
40
|
+
"min_intensity": "intensity_min",
|
|
41
|
+
"std_intensity": "intensity_std",
|
|
42
|
+
"MinorAxisLength": "axis_minor_length",
|
|
43
|
+
"minor_axis_length": "axis_minor_length",
|
|
44
|
+
"Moments": "moments",
|
|
45
|
+
"NormalizedMoments": "moments_normalized",
|
|
46
|
+
"Orientation": "orientation",
|
|
47
|
+
"Perimeter": "perimeter",
|
|
48
|
+
"CroftonPerimeter": "perimeter_crofton",
|
|
49
|
+
"Slice": "slice",
|
|
50
|
+
"Solidity": "solidity",
|
|
51
|
+
"WeightedCentralMoments": "moments_weighted_central",
|
|
52
|
+
"weighted_moments_central": "moments_weighted_central",
|
|
53
|
+
"WeightedCentroid": "centroid_weighted",
|
|
54
|
+
"weighted_centroid": "centroid_weighted",
|
|
55
|
+
"WeightedHuMoments": "moments_weighted_hu",
|
|
56
|
+
"weighted_moments_hu": "moments_weighted_hu",
|
|
57
|
+
"WeightedLocalCentroid": "centroid_weighted_local",
|
|
58
|
+
"weighted_local_centroid": "centroid_weighted_local",
|
|
59
|
+
"WeightedMoments": "moments_weighted",
|
|
60
|
+
"weighted_moments": "moments_weighted",
|
|
61
|
+
"WeightedNormalizedMoments": "moments_weighted_normalized",
|
|
62
|
+
"weighted_moments_normalized": "moments_weighted_normalized"
|
|
63
|
+
}
|
|
@@ -34,36 +34,18 @@ movie_prefix = ConfigSectionMap(config, "MovieSettings")["movie_prefix"]
|
|
|
34
34
|
spatial_calibration = float(ConfigSectionMap(config, "MovieSettings")["pxtoum"])
|
|
35
35
|
time_calibration = float(ConfigSectionMap(config, "MovieSettings")["frametomin"])
|
|
36
36
|
len_movie = float(ConfigSectionMap(config, "MovieSettings")["len_movie"])
|
|
37
|
-
channel_names,
|
|
37
|
+
channel_names, channel_indices = extract_experiment_channels(expfolder)
|
|
38
38
|
nbr_channels = len(channel_names)
|
|
39
39
|
|
|
40
40
|
# from tracking instructions, fetch btrack config, features, haralick, clean_traj, idea: fetch custom timeline?
|
|
41
41
|
instr_path = PurePath(expfolder, Path(f"{instruction_file}"))
|
|
42
42
|
previous_pair_table_path = pos + os.sep.join(['output', 'tables', 'trajectories_pairs.csv'])
|
|
43
43
|
|
|
44
|
-
# if os.path.exists(instr_path):
|
|
45
|
-
# print(f"Neighborhood instructions has been successfully located.")
|
|
46
|
-
# with open(instr_path, 'r') as f:
|
|
47
|
-
# instructions = json.load(f)
|
|
48
|
-
# print("Reading the following instructions: ", instructions)
|
|
49
|
-
|
|
50
|
-
# if 'distance' in instructions:
|
|
51
|
-
# distance = instructions['distance'][0]
|
|
52
|
-
# else:
|
|
53
|
-
# distance = None
|
|
54
|
-
# else:
|
|
55
|
-
# print('No measurement instructions found')
|
|
56
|
-
# os.abort()
|
|
57
44
|
|
|
58
45
|
previous_neighborhoods = []
|
|
59
46
|
associated_reference_population = []
|
|
60
47
|
|
|
61
|
-
|
|
62
|
-
# print('No measurement could be performed. Check your inputs.')
|
|
63
|
-
# print('Done.')
|
|
64
|
-
# os.abort()
|
|
65
|
-
# #distance = 0
|
|
66
|
-
# else:
|
|
48
|
+
|
|
67
49
|
neighborhoods_to_measure = extract_neighborhoods_from_pickles(pos)
|
|
68
50
|
all_df_pairs = []
|
|
69
51
|
if os.path.exists(previous_pair_table_path):
|
celldetective/segmentation.py
CHANGED
|
@@ -229,7 +229,7 @@ def segment_from_thresholds(stack, target_channel=0, thresholds=None, view_on_na
|
|
|
229
229
|
return masks
|
|
230
230
|
|
|
231
231
|
def segment_frame_from_thresholds(frame, target_channel=0, thresholds=None, equalize_reference=None,
|
|
232
|
-
filters=None, marker_min_distance=30, marker_footprint_size=20, marker_footprint=None, feature_queries=None, channel_names=None, do_watershed=True):
|
|
232
|
+
filters=None, marker_min_distance=30, marker_footprint_size=20, marker_footprint=None, feature_queries=None, channel_names=None, do_watershed=True, edge_exclusion=True, fill_holes=True):
|
|
233
233
|
|
|
234
234
|
"""
|
|
235
235
|
Segments objects within a single frame based on intensity thresholds and optional image processing steps.
|
|
@@ -269,14 +269,24 @@ def segment_frame_from_thresholds(frame, target_channel=0, thresholds=None, equa
|
|
|
269
269
|
|
|
270
270
|
"""
|
|
271
271
|
|
|
272
|
+
if frame.ndim==2:
|
|
273
|
+
frame = frame[:,:,np.newaxis]
|
|
272
274
|
img = frame[:,:,target_channel]
|
|
273
|
-
|
|
275
|
+
|
|
276
|
+
if np.any(img!=img):
|
|
277
|
+
img = interpolate_nan(img)
|
|
278
|
+
|
|
274
279
|
if equalize_reference is not None:
|
|
275
280
|
img = match_histograms(img, equalize_reference)
|
|
281
|
+
|
|
276
282
|
img_mc = frame.copy()
|
|
277
283
|
img = filter_image(img, filters=filters)
|
|
278
|
-
|
|
279
|
-
|
|
284
|
+
if edge_exclusion:
|
|
285
|
+
edge = estimate_unreliable_edge(filters)
|
|
286
|
+
else:
|
|
287
|
+
edge = None
|
|
288
|
+
|
|
289
|
+
binary_image = threshold_image(img, thresholds[0], thresholds[1], fill_holes=fill_holes, edge_exclusion=edge)
|
|
280
290
|
|
|
281
291
|
if do_watershed:
|
|
282
292
|
coords,distance = identify_markers_from_binary(binary_image, marker_min_distance, footprint_size=marker_footprint_size, footprint=marker_footprint, return_edt=True)
|