celldetective 1.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- celldetective/__init__.py +2 -0
- celldetective/__main__.py +432 -0
- celldetective/datasets/segmentation_annotations/blank +0 -0
- celldetective/datasets/signal_annotations/blank +0 -0
- celldetective/events.py +149 -0
- celldetective/extra_properties.py +100 -0
- celldetective/filters.py +89 -0
- celldetective/gui/__init__.py +20 -0
- celldetective/gui/about.py +44 -0
- celldetective/gui/analyze_block.py +563 -0
- celldetective/gui/btrack_options.py +898 -0
- celldetective/gui/classifier_widget.py +386 -0
- celldetective/gui/configure_new_exp.py +532 -0
- celldetective/gui/control_panel.py +438 -0
- celldetective/gui/gui_utils.py +495 -0
- celldetective/gui/json_readers.py +113 -0
- celldetective/gui/measurement_options.py +1425 -0
- celldetective/gui/neighborhood_options.py +452 -0
- celldetective/gui/plot_signals_ui.py +1042 -0
- celldetective/gui/process_block.py +1055 -0
- celldetective/gui/retrain_segmentation_model_options.py +706 -0
- celldetective/gui/retrain_signal_model_options.py +643 -0
- celldetective/gui/seg_model_loader.py +460 -0
- celldetective/gui/signal_annotator.py +2388 -0
- celldetective/gui/signal_annotator_options.py +340 -0
- celldetective/gui/styles.py +217 -0
- celldetective/gui/survival_ui.py +903 -0
- celldetective/gui/tableUI.py +608 -0
- celldetective/gui/thresholds_gui.py +1300 -0
- celldetective/icons/logo-large.png +0 -0
- celldetective/icons/logo.png +0 -0
- celldetective/icons/signals_icon.png +0 -0
- celldetective/icons/splash-test.png +0 -0
- celldetective/icons/splash.png +0 -0
- celldetective/icons/splash0.png +0 -0
- celldetective/icons/survival2.png +0 -0
- celldetective/icons/vignette_signals2.png +0 -0
- celldetective/icons/vignette_signals2.svg +114 -0
- celldetective/io.py +2050 -0
- celldetective/links/zenodo.json +561 -0
- celldetective/measure.py +1258 -0
- celldetective/models/segmentation_effectors/blank +0 -0
- celldetective/models/segmentation_generic/blank +0 -0
- celldetective/models/segmentation_targets/blank +0 -0
- celldetective/models/signal_detection/blank +0 -0
- celldetective/models/tracking_configs/mcf7.json +68 -0
- celldetective/models/tracking_configs/ricm.json +203 -0
- celldetective/models/tracking_configs/ricm2.json +203 -0
- celldetective/neighborhood.py +717 -0
- celldetective/scripts/analyze_signals.py +51 -0
- celldetective/scripts/measure_cells.py +275 -0
- celldetective/scripts/segment_cells.py +212 -0
- celldetective/scripts/segment_cells_thresholds.py +140 -0
- celldetective/scripts/track_cells.py +206 -0
- celldetective/scripts/train_segmentation_model.py +246 -0
- celldetective/scripts/train_signal_model.py +49 -0
- celldetective/segmentation.py +712 -0
- celldetective/signals.py +2826 -0
- celldetective/tracking.py +974 -0
- celldetective/utils.py +1681 -0
- celldetective-1.0.2.dist-info/LICENSE +674 -0
- celldetective-1.0.2.dist-info/METADATA +192 -0
- celldetective-1.0.2.dist-info/RECORD +66 -0
- celldetective-1.0.2.dist-info/WHEEL +5 -0
- celldetective-1.0.2.dist-info/entry_points.txt +2 -0
- celldetective-1.0.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,712 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Segmentation module
|
|
3
|
+
"""
|
|
4
|
+
import json
|
|
5
|
+
import os
|
|
6
|
+
from .io import locate_segmentation_model, get_stack_normalization_values, normalize_multichannel
|
|
7
|
+
from .utils import _estimate_scale_factor, _extract_channel_indices
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
from tqdm import tqdm
|
|
10
|
+
import numpy as np
|
|
11
|
+
from stardist.models import StarDist2D
|
|
12
|
+
from cellpose.models import CellposeModel
|
|
13
|
+
from skimage.transform import resize
|
|
14
|
+
from celldetective.io import _view_on_napari, locate_labels, locate_stack, _view_on_napari
|
|
15
|
+
from celldetective.filters import * #rework this to give a name
|
|
16
|
+
from celldetective.utils import rename_intensity_column
|
|
17
|
+
import scipy.ndimage as ndi
|
|
18
|
+
from skimage.segmentation import watershed
|
|
19
|
+
from skimage.feature import peak_local_max
|
|
20
|
+
from skimage.measure import regionprops_table
|
|
21
|
+
from skimage.exposure import match_histograms
|
|
22
|
+
import pandas as pd
|
|
23
|
+
import subprocess
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
abs_path = os.sep.join([os.path.split(os.path.dirname(os.path.realpath(__file__)))[0],'celldetective'])
|
|
27
|
+
|
|
28
|
+
def segment(stack, model_name, channels=None, spatial_calibration=None, view_on_napari=False,
|
|
29
|
+
use_gpu=True, time_flat_normalization=False, time_flat_percentiles=(0.0,99.99)):
|
|
30
|
+
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
Segment objects in a stack using a pre-trained segmentation model.
|
|
34
|
+
|
|
35
|
+
Parameters
|
|
36
|
+
----------
|
|
37
|
+
stack : ndarray
|
|
38
|
+
The input stack to be segmented, with shape (frames, height, width, channels).
|
|
39
|
+
model_name : str
|
|
40
|
+
The name of the pre-trained segmentation model to use.
|
|
41
|
+
channels : list or None, optional
|
|
42
|
+
The names of the channels in the stack. If None, assumes the channels are indexed from 0 to `stack.shape[-1] - 1`.
|
|
43
|
+
Default is None.
|
|
44
|
+
spatial_calibration : float or None, optional
|
|
45
|
+
The spatial calibration factor of the stack. If None, the calibration factor from the model configuration will be used.
|
|
46
|
+
Default is None.
|
|
47
|
+
view_on_napari : bool, optional
|
|
48
|
+
Whether to visualize the segmentation results using Napari. Default is False.
|
|
49
|
+
use_gpu : bool, optional
|
|
50
|
+
Whether to use GPU acceleration if available. Default is True.
|
|
51
|
+
time_flat_normalization : bool, optional
|
|
52
|
+
Whether to perform time-flat normalization on the stack before segmentation. Default is False.
|
|
53
|
+
time_flat_percentiles : tuple, optional
|
|
54
|
+
The percentiles used for time-flat normalization. Default is (0.0, 99.99).
|
|
55
|
+
|
|
56
|
+
Returns
|
|
57
|
+
-------
|
|
58
|
+
ndarray
|
|
59
|
+
The segmented labels with shape (frames, height, width).
|
|
60
|
+
|
|
61
|
+
Notes
|
|
62
|
+
-----
|
|
63
|
+
This function applies object segmentation to a stack of images using a pre-trained segmentation model. The stack is first
|
|
64
|
+
preprocessed by normalizing the intensity values, rescaling the spatial dimensions, and applying the segmentation model.
|
|
65
|
+
The resulting labels are returned as an ndarray with the same number of frames as the input stack.
|
|
66
|
+
|
|
67
|
+
Examples
|
|
68
|
+
--------
|
|
69
|
+
>>> stack = np.random.rand(10, 256, 256, 3)
|
|
70
|
+
>>> labels = segment(stack, 'model_name', channels=['channel_1', 'channel_2', 'channel_3'], spatial_calibration=0.5)
|
|
71
|
+
|
|
72
|
+
"""
|
|
73
|
+
|
|
74
|
+
model_path = locate_segmentation_model(model_name)
|
|
75
|
+
input_config = model_path+'config_input.json'
|
|
76
|
+
if os.path.exists(input_config):
|
|
77
|
+
with open(input_config) as config:
|
|
78
|
+
print("Loading input configuration from 'config_input.json'.")
|
|
79
|
+
input_config = json.load(config)
|
|
80
|
+
else:
|
|
81
|
+
print('Model input configuration could not be located...')
|
|
82
|
+
return None
|
|
83
|
+
|
|
84
|
+
if not use_gpu:
|
|
85
|
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
|
86
|
+
else:
|
|
87
|
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
88
|
+
|
|
89
|
+
if channels is not None:
|
|
90
|
+
assert len(channels)==stack.shape[-1],f'The channel names provided do not match with the expected number of channels in the stack: {stack.shape[-1]}.'
|
|
91
|
+
|
|
92
|
+
required_channels = input_config['channels']
|
|
93
|
+
channel_indices = _extract_channel_indices(channels, required_channels)
|
|
94
|
+
|
|
95
|
+
required_spatial_calibration = input_config['spatial_calibration']
|
|
96
|
+
model_type = input_config['model_type']
|
|
97
|
+
|
|
98
|
+
if 'normalize' in input_config:
|
|
99
|
+
normalize = input_config['normalize']
|
|
100
|
+
else:
|
|
101
|
+
normalize = True
|
|
102
|
+
|
|
103
|
+
if model_type=='cellpose':
|
|
104
|
+
diameter = input_config['diameter']
|
|
105
|
+
if diameter!=30:
|
|
106
|
+
required_spatial_calibration = None
|
|
107
|
+
cellprob_threshold = input_config['cellprob_threshold']
|
|
108
|
+
flow_threshold = input_config['flow_threshold']
|
|
109
|
+
|
|
110
|
+
scale = _estimate_scale_factor(spatial_calibration, required_spatial_calibration)
|
|
111
|
+
|
|
112
|
+
if model_type=='stardist':
|
|
113
|
+
model = StarDist2D(None, name=model_name, basedir=Path(model_path).parent)
|
|
114
|
+
print(f"StarDist model {model_name} successfully loaded")
|
|
115
|
+
|
|
116
|
+
elif model_type=='cellpose':
|
|
117
|
+
model = CellposeModel(gpu=use_gpu, pretrained_model=model_path+model_path.split('/')[-2], diam_mean=30.0)
|
|
118
|
+
|
|
119
|
+
labels = []
|
|
120
|
+
if (time_flat_normalization)*normalize:
|
|
121
|
+
normalization_values = get_stack_normalization_values(stack[:,:,:,channel_indices], percentiles=time_flat_percentiles)
|
|
122
|
+
else:
|
|
123
|
+
normalization_values = [None]*len(channel_indices)
|
|
124
|
+
|
|
125
|
+
for t in tqdm(range(len(stack)),desc="frame"):
|
|
126
|
+
|
|
127
|
+
# normalize
|
|
128
|
+
frame = stack[t,:,:,np.array(channel_indices)]
|
|
129
|
+
if np.argmin(frame.shape)!=(frame.ndim-1):
|
|
130
|
+
frame = np.moveaxis(frame,np.argmin(frame.shape),-1)
|
|
131
|
+
if normalize:
|
|
132
|
+
frame = normalize_multichannel(frame, values=normalization_values)
|
|
133
|
+
|
|
134
|
+
if scale is not None:
|
|
135
|
+
frame = ndi.zoom(frame, [scale,scale,1], order=3)
|
|
136
|
+
|
|
137
|
+
if model_type=="stardist":
|
|
138
|
+
|
|
139
|
+
Y_pred, details = model.predict_instances(frame, n_tiles=model._guess_n_tiles(frame), show_tile_progress=False, verbose=False)
|
|
140
|
+
Y_pred = Y_pred.astype(np.uint16)
|
|
141
|
+
|
|
142
|
+
elif model_type=="cellpose":
|
|
143
|
+
|
|
144
|
+
if stack.ndim==3:
|
|
145
|
+
channels_cp = [[0,0]]
|
|
146
|
+
else:
|
|
147
|
+
channels_cp = [[0,1]]
|
|
148
|
+
|
|
149
|
+
Y_pred, _, _ = model.eval([frame], diameter = diameter, flow_threshold=flow_threshold, channels=channels_cp, normalize=normalize)
|
|
150
|
+
Y_pred = Y_pred[0].astype(np.uint16)
|
|
151
|
+
|
|
152
|
+
if scale is not None:
|
|
153
|
+
Y_pred = ndi.zoom(Y_pred, [1./scale,1./scale],order=0)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
if Y_pred.shape != stack[0].shape[:2]:
|
|
157
|
+
Y_pred = resize(Y_pred, stack[0].shape, order=0)
|
|
158
|
+
|
|
159
|
+
labels.append(Y_pred)
|
|
160
|
+
|
|
161
|
+
labels = np.array(labels,dtype=int)
|
|
162
|
+
|
|
163
|
+
if view_on_napari:
|
|
164
|
+
_view_on_napari(tracks=None, stack=stack, labels=labels)
|
|
165
|
+
|
|
166
|
+
return labels
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def segment_from_thresholds(stack, target_channel=0, thresholds=None, view_on_napari=False, equalize_reference=None,
|
|
170
|
+
filters=None, marker_min_distance=30, marker_footprint_size=20, marker_footprint=None, feature_queries=None):
|
|
171
|
+
|
|
172
|
+
"""
|
|
173
|
+
Segments objects from a stack of images based on provided thresholds and optional image processing steps.
|
|
174
|
+
|
|
175
|
+
This function applies instance segmentation to each frame in a stack of images. Segmentation is based on intensity
|
|
176
|
+
thresholds, optionally preceded by image equalization and filtering. Identified objects can
|
|
177
|
+
be distinguished by applying distance-based marker detection. The segmentation results can be optionally viewed in Napari.
|
|
178
|
+
|
|
179
|
+
Parameters
|
|
180
|
+
----------
|
|
181
|
+
stack : ndarray
|
|
182
|
+
A 4D numpy array representing the image stack with dimensions (T, Y, X, C) where T is the
|
|
183
|
+
time dimension and C the channel dimension.
|
|
184
|
+
target_channel : int, optional
|
|
185
|
+
The channel index to be used for segmentation (default is 0).
|
|
186
|
+
thresholds : list of tuples, optional
|
|
187
|
+
A list of tuples specifying intensity thresholds for segmentation. Each tuple corresponds to a frame in the stack,
|
|
188
|
+
with values (lower_threshold, upper_threshold). If None, global thresholds are determined automatically (default is None).
|
|
189
|
+
view_on_napari : bool, optional
|
|
190
|
+
If True, displays the original stack and segmentation results in Napari (default is False).
|
|
191
|
+
equalize_reference : int or None, optional
|
|
192
|
+
The index of a reference frame used for histogram equalization. If None, equalization is not performed (default is None).
|
|
193
|
+
filters : list of dict, optional
|
|
194
|
+
A list of dictionaries specifying filters to be applied pre-segmentation. Each dictionary should
|
|
195
|
+
contain filter parameters (default is None).
|
|
196
|
+
marker_min_distance : int, optional
|
|
197
|
+
The minimum distance between markers used for distinguishing separate objects (default is 30).
|
|
198
|
+
marker_footprint_size : int, optional
|
|
199
|
+
The size of the footprint used for local maxima detection when generating markers (default is 20).
|
|
200
|
+
marker_footprint : ndarray or None, optional
|
|
201
|
+
An array specifying the footprint used for local maxima detection. Overrides `marker_footprint_size` if provided
|
|
202
|
+
(default is None).
|
|
203
|
+
feature_queries : list of str or None, optional
|
|
204
|
+
A list of query strings used to select features of interest from the segmented objects (default is None).
|
|
205
|
+
|
|
206
|
+
Returns
|
|
207
|
+
-------
|
|
208
|
+
ndarray
|
|
209
|
+
A 3D numpy array (T, Y, X) of type int16, where each element represents the segmented object label at each pixel.
|
|
210
|
+
|
|
211
|
+
Notes
|
|
212
|
+
-----
|
|
213
|
+
- The segmentation process can be customized extensively via the parameters, allowing for complex segmentation tasks.
|
|
214
|
+
|
|
215
|
+
"""
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
masks = []
|
|
219
|
+
for t in tqdm(range(len(stack))):
|
|
220
|
+
instance_seg = segment_frame_from_thresholds(stack[t], target_channel=target_channel, thresholds=thresholds, equalize_reference=equalize_reference,
|
|
221
|
+
filters=filters, marker_min_distance=marker_min_distance, marker_footprint_size=marker_footprint_size,
|
|
222
|
+
marker_footprint=marker_footprint, feature_queries=feature_queries)
|
|
223
|
+
masks.append(instance_seg)
|
|
224
|
+
|
|
225
|
+
masks = np.array(masks, dtype=np.int16)
|
|
226
|
+
if view_on_napari:
|
|
227
|
+
_view_on_napari(tracks=None, stack=stack, labels=masks)
|
|
228
|
+
return masks
|
|
229
|
+
|
|
230
|
+
def segment_frame_from_thresholds(frame, target_channel=0, thresholds=None, equalize_reference=None,
|
|
231
|
+
filters=None, marker_min_distance=30, marker_footprint_size=20, marker_footprint=None, feature_queries=None, channel_names=None):
|
|
232
|
+
|
|
233
|
+
"""
|
|
234
|
+
Segments objects within a single frame based on intensity thresholds and optional image processing steps.
|
|
235
|
+
|
|
236
|
+
This function performs instance segmentation on a single frame using intensity thresholds, with optional steps
|
|
237
|
+
including histogram equalization, filtering, and marker-based watershed segmentation. The segmented
|
|
238
|
+
objects can be further filtered based on specified features.
|
|
239
|
+
|
|
240
|
+
Parameters
|
|
241
|
+
----------
|
|
242
|
+
frame : ndarray
|
|
243
|
+
A 3D numpy array representing a single frame with dimensions (Y, X, C).
|
|
244
|
+
target_channel : int, optional
|
|
245
|
+
The channel index to be used for segmentation (default is 0).
|
|
246
|
+
thresholds : tuple of int, optional
|
|
247
|
+
A tuple specifying the intensity thresholds for segmentation, in the form (lower_threshold, upper_threshold).
|
|
248
|
+
equalize_reference : ndarray or None, optional
|
|
249
|
+
A 2D numpy array used as a reference for histogram equalization. If None, equalization is not performed (default is None).
|
|
250
|
+
filters : list of dict, optional
|
|
251
|
+
A list of dictionaries specifying filters to be applied to the image before segmentation. Each dictionary
|
|
252
|
+
should contain filter parameters (default is None).
|
|
253
|
+
marker_min_distance : int, optional
|
|
254
|
+
The minimum distance between markers used for distinguishing separate objects during watershed segmentation (default is 30).
|
|
255
|
+
marker_footprint_size : int, optional
|
|
256
|
+
The size of the footprint used for local maxima detection when generating markers for watershed segmentation (default is 20).
|
|
257
|
+
marker_footprint : ndarray or None, optional
|
|
258
|
+
An array specifying the footprint used for local maxima detection. Overrides `marker_footprint_size` if provided (default is None).
|
|
259
|
+
feature_queries : list of str or None, optional
|
|
260
|
+
A list of query strings used to select features of interest from the segmented objects for further filtering (default is None).
|
|
261
|
+
channel_names : list of str or None, optional
|
|
262
|
+
A list of channel names corresponding to the dimensions in `frame`, used in conjunction with `feature_queries` for feature selection (default is None).
|
|
263
|
+
|
|
264
|
+
Returns
|
|
265
|
+
-------
|
|
266
|
+
ndarray
|
|
267
|
+
A 2D numpy array of type int, where each element represents the segmented object label at each pixel.
|
|
268
|
+
|
|
269
|
+
"""
|
|
270
|
+
|
|
271
|
+
img = frame[:,:,target_channel]
|
|
272
|
+
if equalize_reference is not None:
|
|
273
|
+
img = match_histograms(img, equalize_reference)
|
|
274
|
+
img_mc = frame.copy()
|
|
275
|
+
img = filter_image(img, filters=filters)
|
|
276
|
+
binary_image = threshold_image(img, thresholds[0], thresholds[1])
|
|
277
|
+
coords,distance = identify_markers_from_binary(binary_image, marker_min_distance, footprint_size=marker_footprint_size, footprint=marker_footprint, return_edt=True)
|
|
278
|
+
instance_seg = apply_watershed(binary_image, coords, distance)
|
|
279
|
+
instance_seg = filter_on_property(instance_seg, intensity_image=img_mc, queries=feature_queries, channel_names=channel_names)
|
|
280
|
+
|
|
281
|
+
return instance_seg
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
def filter_on_property(labels, intensity_image=None, queries=None, channel_names=None):
|
|
285
|
+
|
|
286
|
+
"""
|
|
287
|
+
Filters segmented objects in a label image based on specified properties and queries.
|
|
288
|
+
|
|
289
|
+
This function evaluates each segmented object (label) in the input label image against a set of queries related to its
|
|
290
|
+
morphological and intensity properties. Objects not meeting the criteria defined in the queries are removed from the label
|
|
291
|
+
image. This allows for the exclusion of objects based on size, shape, intensity, or custom-defined properties.
|
|
292
|
+
|
|
293
|
+
Parameters
|
|
294
|
+
----------
|
|
295
|
+
labels : ndarray
|
|
296
|
+
A 2D numpy array where each unique non-zero integer represents a segmented object (label).
|
|
297
|
+
intensity_image : ndarray, optional
|
|
298
|
+
A 2D numpy array of the same shape as `labels`, providing intensity values for each pixel. This is used to calculate
|
|
299
|
+
intensity-related properties of the segmented objects if provided (default is None).
|
|
300
|
+
queries : str or list of str, optional
|
|
301
|
+
One or more query strings used to filter the segmented objects based on their properties. Each query should be a
|
|
302
|
+
valid pandas query string (default is None).
|
|
303
|
+
channel_names : list of str or None, optional
|
|
304
|
+
A list of channel names corresponding to the dimensions in the `intensity_image`. This is used to rename intensity
|
|
305
|
+
property columns appropriately (default is None).
|
|
306
|
+
|
|
307
|
+
Returns
|
|
308
|
+
-------
|
|
309
|
+
ndarray
|
|
310
|
+
A 2D numpy array of the same shape as `labels`, with objects not meeting the query criteria removed.
|
|
311
|
+
|
|
312
|
+
Notes
|
|
313
|
+
-----
|
|
314
|
+
- The function computes a set of predefined morphological properties and, if `intensity_image` is provided, intensity properties.
|
|
315
|
+
- Queries should be structured according to pandas DataFrame query syntax and can reference any of the computed properties.
|
|
316
|
+
- If `channel_names` is provided, intensity property column names are renamed to reflect the corresponding channel.
|
|
317
|
+
|
|
318
|
+
"""
|
|
319
|
+
|
|
320
|
+
if queries is None:
|
|
321
|
+
return labels
|
|
322
|
+
else:
|
|
323
|
+
if isinstance(queries, str):
|
|
324
|
+
queries = [queries]
|
|
325
|
+
|
|
326
|
+
props = ['label','area', 'area_bbox', 'area_convex', 'area_filled', 'axis_major_length',
|
|
327
|
+
'axis_minor_length', 'eccentricity', 'equivalent_diameter_area',
|
|
328
|
+
'euler_number', 'feret_diameter_max', 'orientation', 'perimeter',
|
|
329
|
+
'perimeter_crofton', 'solidity', 'centroid']
|
|
330
|
+
|
|
331
|
+
intensity_props = ['intensity_mean', 'intensity_max', 'intensity_min']
|
|
332
|
+
|
|
333
|
+
if intensity_image is not None:
|
|
334
|
+
props.extend(intensity_props)
|
|
335
|
+
|
|
336
|
+
properties = pd.DataFrame(regionprops_table(labels, intensity_image=intensity_image, properties=props))
|
|
337
|
+
if channel_names is not None:
|
|
338
|
+
properties = rename_intensity_column(properties, channel_names)
|
|
339
|
+
properties['radial_distance'] = np.sqrt((properties['centroid-1'] - labels.shape[0]/2)**2 + (properties['centroid-0'] - labels.shape[1]/2)**2)
|
|
340
|
+
|
|
341
|
+
for query in queries:
|
|
342
|
+
if query!='':
|
|
343
|
+
try:
|
|
344
|
+
properties = properties.query(f'not ({query})')
|
|
345
|
+
except Exception as e:
|
|
346
|
+
print(f'Query {query} could not be applied. Ensure that the feature exists. {e}')
|
|
347
|
+
else:
|
|
348
|
+
pass
|
|
349
|
+
|
|
350
|
+
cell_ids = list(np.unique(labels)[1:])
|
|
351
|
+
leftover_cells = list(properties['label'].unique())
|
|
352
|
+
to_remove = [value for value in cell_ids if value not in leftover_cells]
|
|
353
|
+
|
|
354
|
+
for c in to_remove:
|
|
355
|
+
labels[np.where(labels==c)] = 0.
|
|
356
|
+
|
|
357
|
+
return labels
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
def apply_watershed(binary_image, coords, distance):
|
|
361
|
+
|
|
362
|
+
"""
|
|
363
|
+
Applies the watershed algorithm to segment objects in a binary image using given markers and distance map.
|
|
364
|
+
|
|
365
|
+
This function uses the watershed segmentation algorithm to delineate objects in a binary image. Markers for watershed
|
|
366
|
+
are determined by the coordinates of local maxima, and the segmentation is guided by a distance map to separate objects
|
|
367
|
+
that are close to each other.
|
|
368
|
+
|
|
369
|
+
Parameters
|
|
370
|
+
----------
|
|
371
|
+
binary_image : ndarray
|
|
372
|
+
A 2D numpy array of type bool, where True represents the foreground objects to be segmented and False represents the background.
|
|
373
|
+
coords : ndarray
|
|
374
|
+
An array of shape (N, 2) containing the (row, column) coordinates of local maxima points that will be used as markers for the
|
|
375
|
+
watershed algorithm. N is the number of local maxima.
|
|
376
|
+
distance : ndarray
|
|
377
|
+
A 2D numpy array of the same shape as `binary_image`, containing the distance transform of the binary image. This map is used
|
|
378
|
+
to guide the watershed segmentation.
|
|
379
|
+
|
|
380
|
+
Returns
|
|
381
|
+
-------
|
|
382
|
+
ndarray
|
|
383
|
+
A 2D numpy array of type int, where each unique non-zero integer represents a segmented object (label).
|
|
384
|
+
|
|
385
|
+
Notes
|
|
386
|
+
-----
|
|
387
|
+
- The function assumes that `coords` are derived from the distance map of `binary_image`, typically obtained using
|
|
388
|
+
peak local max detection on the distance transform.
|
|
389
|
+
- The watershed algorithm treats each local maximum as a separate object and segments the image by "flooding" from these points.
|
|
390
|
+
- This implementation uses the `skimage.morphology.watershed` function under the hood.
|
|
391
|
+
|
|
392
|
+
Examples
|
|
393
|
+
--------
|
|
394
|
+
>>> from skimage import measure, morphology
|
|
395
|
+
>>> binary_image = np.array([[0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 0], [0, 0, 0, 0]], dtype=bool)
|
|
396
|
+
>>> distance = morphology.distance_transform_edt(binary_image)
|
|
397
|
+
>>> coords = measure.peak_local_max(distance, indices=True)
|
|
398
|
+
>>> labels = apply_watershed(binary_image, coords, distance)
|
|
399
|
+
# Segments the objects in `binary_image` using the watershed algorithm.
|
|
400
|
+
|
|
401
|
+
"""
|
|
402
|
+
|
|
403
|
+
mask = np.zeros(binary_image.shape, dtype=bool)
|
|
404
|
+
mask[tuple(coords.T)] = True
|
|
405
|
+
markers, _ = ndi.label(mask)
|
|
406
|
+
labels = watershed(-distance, markers, mask=binary_image)
|
|
407
|
+
|
|
408
|
+
return labels
|
|
409
|
+
|
|
410
|
+
def identify_markers_from_binary(binary_image, min_distance, footprint_size=20, footprint=None, return_edt=False):
|
|
411
|
+
|
|
412
|
+
"""
|
|
413
|
+
|
|
414
|
+
Identify markers from a binary image using distance transform and peak detection.
|
|
415
|
+
|
|
416
|
+
Parameters
|
|
417
|
+
----------
|
|
418
|
+
binary_image : ndarray
|
|
419
|
+
The binary image from which to identify markers.
|
|
420
|
+
min_distance : int
|
|
421
|
+
The minimum distance between markers. Only the markers with a minimum distance greater than or equal to
|
|
422
|
+
`min_distance` will be identified.
|
|
423
|
+
footprint_size : int, optional
|
|
424
|
+
The size of the footprint or structuring element used for peak detection. Default is 20.
|
|
425
|
+
footprint : ndarray, optional
|
|
426
|
+
The footprint or structuring element used for peak detection. If None, a square footprint of size
|
|
427
|
+
`footprint_size` will be used. Default is None.
|
|
428
|
+
return_edt : bool, optional
|
|
429
|
+
Whether to return the Euclidean distance transform image along with the identified marker coordinates.
|
|
430
|
+
If True, the function will return the marker coordinates and the distance transform image as a tuple.
|
|
431
|
+
If False, only the marker coordinates will be returned. Default is False.
|
|
432
|
+
|
|
433
|
+
Returns
|
|
434
|
+
-------
|
|
435
|
+
ndarray or tuple
|
|
436
|
+
If `return_edt` is False, returns the identified marker coordinates as an ndarray of shape (N, 2), where N is
|
|
437
|
+
the number of identified markers. If `return_edt` is True, returns a tuple containing the marker coordinates
|
|
438
|
+
and the distance transform image.
|
|
439
|
+
|
|
440
|
+
Notes
|
|
441
|
+
-----
|
|
442
|
+
This function uses the distance transform of the binary image to identify markers by detecting local maxima. The
|
|
443
|
+
distance transform assigns each pixel a value representing the Euclidean distance to the nearest background pixel.
|
|
444
|
+
By finding peaks in the distance transform, we can identify the markers in the original binary image. The `min_distance`
|
|
445
|
+
parameter controls the minimum distance between markers to avoid clustering.
|
|
446
|
+
|
|
447
|
+
"""
|
|
448
|
+
|
|
449
|
+
distance = ndi.distance_transform_edt(binary_image.astype(float))
|
|
450
|
+
if footprint is None:
|
|
451
|
+
footprint = np.ones((footprint_size, footprint_size))
|
|
452
|
+
coords = peak_local_max(distance, footprint=footprint,
|
|
453
|
+
labels=binary_image.astype(int), min_distance=min_distance)
|
|
454
|
+
if return_edt:
|
|
455
|
+
return coords, distance
|
|
456
|
+
else:
|
|
457
|
+
return coords
|
|
458
|
+
|
|
459
|
+
|
|
460
|
+
def threshold_image(img, min_threshold, max_threshold, foreground_value=255., fill_holes=True):
|
|
461
|
+
|
|
462
|
+
"""
|
|
463
|
+
|
|
464
|
+
Threshold the input image to create a binary mask.
|
|
465
|
+
|
|
466
|
+
Parameters
|
|
467
|
+
----------
|
|
468
|
+
img : ndarray
|
|
469
|
+
The input image to be thresholded.
|
|
470
|
+
min_threshold : float
|
|
471
|
+
The minimum threshold value.
|
|
472
|
+
max_threshold : float
|
|
473
|
+
The maximum threshold value.
|
|
474
|
+
foreground_value : float, optional
|
|
475
|
+
The value assigned to foreground pixels in the binary mask. Default is 255.
|
|
476
|
+
fill_holes : bool, optional
|
|
477
|
+
Whether to fill holes in the binary mask. If True, the binary mask will be processed to fill any holes.
|
|
478
|
+
If False, the binary mask will not be modified. Default is True.
|
|
479
|
+
|
|
480
|
+
Returns
|
|
481
|
+
-------
|
|
482
|
+
ndarray
|
|
483
|
+
The binary mask after thresholding.
|
|
484
|
+
|
|
485
|
+
Notes
|
|
486
|
+
-----
|
|
487
|
+
This function applies a threshold to the input image to create a binary mask. Pixels with values within the specified
|
|
488
|
+
threshold range are considered as foreground and assigned the `foreground_value`, while pixels outside the range are
|
|
489
|
+
considered as background and assigned 0. If `fill_holes` is True, the binary mask will be processed to fill any holes
|
|
490
|
+
using morphological operations.
|
|
491
|
+
|
|
492
|
+
Examples
|
|
493
|
+
--------
|
|
494
|
+
>>> image = np.random.rand(256, 256)
|
|
495
|
+
>>> binary_mask = threshold_image(image, 0.2, 0.8, foreground_value=1., fill_holes=True)
|
|
496
|
+
|
|
497
|
+
"""
|
|
498
|
+
|
|
499
|
+
|
|
500
|
+
binary = (img>=min_threshold)*(img<=max_threshold) * foreground_value
|
|
501
|
+
if fill_holes:
|
|
502
|
+
binary = ndi.binary_fill_holes(binary)
|
|
503
|
+
return binary
|
|
504
|
+
|
|
505
|
+
def filter_image(img, filters=None):
|
|
506
|
+
|
|
507
|
+
"""
|
|
508
|
+
|
|
509
|
+
Apply one or more image filters to the input image.
|
|
510
|
+
|
|
511
|
+
Parameters
|
|
512
|
+
----------
|
|
513
|
+
img : ndarray
|
|
514
|
+
The input image to be filtered.
|
|
515
|
+
filters : list or None, optional
|
|
516
|
+
A list of filters to be applied to the image. Each filter is represented as a tuple or list with the first element being
|
|
517
|
+
the filter function name (minus the '_filter' extension, as listed in software.filters) and the subsequent elements being
|
|
518
|
+
the arguments for that filter function. If None, the original image is returned without any filtering applied. Default is None.
|
|
519
|
+
|
|
520
|
+
Returns
|
|
521
|
+
-------
|
|
522
|
+
ndarray
|
|
523
|
+
The filtered image.
|
|
524
|
+
|
|
525
|
+
Notes
|
|
526
|
+
-----
|
|
527
|
+
This function applies a series of image filters to the input image. The filters are specified as a list of tuples,
|
|
528
|
+
where each tuple contains the name of the filter function and its corresponding arguments. The filters are applied
|
|
529
|
+
sequentially to the image. If no filters are provided, the original image is returned unchanged.
|
|
530
|
+
|
|
531
|
+
Examples
|
|
532
|
+
--------
|
|
533
|
+
>>> image = np.random.rand(256, 256)
|
|
534
|
+
>>> filtered_image = filter_image(image, filters=[('gaussian', 3), ('median', 5)])
|
|
535
|
+
|
|
536
|
+
"""
|
|
537
|
+
|
|
538
|
+
if filters is None:
|
|
539
|
+
return img
|
|
540
|
+
|
|
541
|
+
if img.ndim==3:
|
|
542
|
+
img = np.squeeze(img)
|
|
543
|
+
|
|
544
|
+
for f in filters:
|
|
545
|
+
func = eval(f[0]+'_filter')
|
|
546
|
+
img = func(img, *f[1:])
|
|
547
|
+
return img
|
|
548
|
+
|
|
549
|
+
|
|
550
|
+
def segment_at_position(pos, mode, model_name, stack_prefix=None, use_gpu=True, return_labels=False, view_on_napari=False, threads=1):
|
|
551
|
+
|
|
552
|
+
"""
|
|
553
|
+
Perform image segmentation at the specified position using a pre-trained model.
|
|
554
|
+
|
|
555
|
+
Parameters
|
|
556
|
+
----------
|
|
557
|
+
pos : str
|
|
558
|
+
The path to the position directory containing the input images to be segmented.
|
|
559
|
+
mode : str
|
|
560
|
+
The segmentation mode. This determines the type of objects to be segmented ('target' or 'effector').
|
|
561
|
+
model_name : str
|
|
562
|
+
The name of the pre-trained segmentation model to be used.
|
|
563
|
+
stack_prefix : str or None, optional
|
|
564
|
+
The prefix of the stack file name. Defaults to None.
|
|
565
|
+
use_gpu : bool, optional
|
|
566
|
+
Whether to use the GPU for segmentation if available. Defaults to True.
|
|
567
|
+
return_labels : bool, optional
|
|
568
|
+
If True, the function returns the segmentation labels as an output. Defaults to False.
|
|
569
|
+
view_on_napari : bool, optional
|
|
570
|
+
If True, the segmented labels are displayed in a Napari viewer. Defaults to False.
|
|
571
|
+
|
|
572
|
+
Returns
|
|
573
|
+
-------
|
|
574
|
+
numpy.ndarray or None
|
|
575
|
+
If `return_labels` is True, the function returns the segmentation labels as a NumPy array. Otherwise, it returns None. The subprocess writes the
|
|
576
|
+
segmentation labels in the position directory.
|
|
577
|
+
|
|
578
|
+
Examples
|
|
579
|
+
--------
|
|
580
|
+
>>> labels = segment_at_position('ExperimentFolder/W1/100/', 'effector', 'mice_t_cell_RICM', return_labels=True)
|
|
581
|
+
|
|
582
|
+
"""
|
|
583
|
+
|
|
584
|
+
pos = pos.replace('\\','/')
|
|
585
|
+
pos = rf'{pos}'
|
|
586
|
+
assert os.path.exists(pos),f'Position {pos} is not a valid path.'
|
|
587
|
+
|
|
588
|
+
name_path = locate_segmentation_model(model_name)
|
|
589
|
+
|
|
590
|
+
script_path = os.sep.join([abs_path, 'scripts', 'segment_cells.py'])
|
|
591
|
+
cmd = f'python "{script_path}" --pos "{pos}" --model "{model_name}" --mode "{mode}" --use_gpu "{use_gpu}" --threads "{threads}"'
|
|
592
|
+
subprocess.call(cmd, shell=True)
|
|
593
|
+
|
|
594
|
+
if return_labels or view_on_napari:
|
|
595
|
+
labels = locate_labels(pos, population=mode)
|
|
596
|
+
if view_on_napari:
|
|
597
|
+
if stack_prefix is None:
|
|
598
|
+
stack_prefix = ''
|
|
599
|
+
stack = locate_stack(pos, prefix=stack_prefix)
|
|
600
|
+
_view_on_napari(tracks=None, stack=stack, labels=labels)
|
|
601
|
+
if return_labels:
|
|
602
|
+
return labels
|
|
603
|
+
else:
|
|
604
|
+
return None
|
|
605
|
+
|
|
606
|
+
def segment_from_threshold_at_position(pos, mode, config, threads=1):
|
|
607
|
+
|
|
608
|
+
"""
|
|
609
|
+
Executes a segmentation script on a specified position directory using a given configuration and mode.
|
|
610
|
+
|
|
611
|
+
This function calls an external Python script designed to segment images at a specified position directory.
|
|
612
|
+
The segmentation is configured through a JSON file and can operate in different modes specified by the user.
|
|
613
|
+
The function can leverage multiple threads to potentially speed up the processing.
|
|
614
|
+
|
|
615
|
+
Parameters
|
|
616
|
+
----------
|
|
617
|
+
pos : str
|
|
618
|
+
The file path to the position directory where images to be segmented are stored. The path must be valid.
|
|
619
|
+
mode : str
|
|
620
|
+
The operation mode for the segmentation script. The mode determines how the segmentation is performed and
|
|
621
|
+
which algorithm or parameters are used.
|
|
622
|
+
config : str
|
|
623
|
+
The file path to the JSON configuration file that specifies parameters for the segmentation process. The
|
|
624
|
+
path must be valid.
|
|
625
|
+
threads : int, optional
|
|
626
|
+
The number of threads to use for processing. Using more than one thread can speed up segmentation on
|
|
627
|
+
systems with multiple CPU cores (default is 1).
|
|
628
|
+
|
|
629
|
+
Raises
|
|
630
|
+
------
|
|
631
|
+
AssertionError
|
|
632
|
+
If either the `pos` or `config` paths do not exist.
|
|
633
|
+
|
|
634
|
+
Notes
|
|
635
|
+
-----
|
|
636
|
+
- The external segmentation script (`segment_cells_thresholds.py`) is expected to be located in a specific
|
|
637
|
+
directory relative to this function.
|
|
638
|
+
- The segmentation process and its parameters, including modes and thread usage, are defined by the external
|
|
639
|
+
script and the configuration file.
|
|
640
|
+
|
|
641
|
+
Examples
|
|
642
|
+
--------
|
|
643
|
+
>>> pos = '/path/to/position'
|
|
644
|
+
>>> mode = 'default'
|
|
645
|
+
>>> config = '/path/to/config.json'
|
|
646
|
+
>>> segment_from_threshold_at_position(pos, mode, config, threads=2)
|
|
647
|
+
# This will execute the segmentation script on the specified position directory with the given mode and
|
|
648
|
+
# configuration, utilizing 2 threads.
|
|
649
|
+
|
|
650
|
+
"""
|
|
651
|
+
|
|
652
|
+
|
|
653
|
+
pos = pos.replace('\\','/')
|
|
654
|
+
pos = rf"{pos}"
|
|
655
|
+
assert os.path.exists(pos),f'Position {pos} is not a valid path.'
|
|
656
|
+
|
|
657
|
+
config = config.replace('\\','/')
|
|
658
|
+
config = rf"{config}"
|
|
659
|
+
assert os.path.exists(config),f'Config {config} is not a valid path.'
|
|
660
|
+
|
|
661
|
+
script_path = os.sep.join([abs_path, 'scripts', 'segment_cells_thresholds.py'])
|
|
662
|
+
cmd = f'python "{script_path}" --pos "{pos}" --config "{config}" --mode "{mode}" --threads "{threads}"'
|
|
663
|
+
subprocess.call(cmd, shell=True)
|
|
664
|
+
|
|
665
|
+
|
|
666
|
+
def train_segmentation_model(config, use_gpu=True):
|
|
667
|
+
|
|
668
|
+
"""
|
|
669
|
+
Trains a segmentation model based on a specified configuration file.
|
|
670
|
+
|
|
671
|
+
This function initiates the training of a segmentation model by calling an external Python script,
|
|
672
|
+
which reads the training parameters and dataset information from a given JSON configuration file.
|
|
673
|
+
The training process, including model architecture, training data, and hyperparameters, is defined
|
|
674
|
+
by the contents of the configuration file.
|
|
675
|
+
|
|
676
|
+
Parameters
|
|
677
|
+
----------
|
|
678
|
+
config : str
|
|
679
|
+
The file path to the JSON configuration file that specifies training parameters and dataset
|
|
680
|
+
information for the segmentation model. The path must be valid.
|
|
681
|
+
|
|
682
|
+
Raises
|
|
683
|
+
------
|
|
684
|
+
AssertionError
|
|
685
|
+
If the `config` path does not exist.
|
|
686
|
+
|
|
687
|
+
Notes
|
|
688
|
+
-----
|
|
689
|
+
- The external training script (`train_segmentation_model.py`) is assumed to be located in a specific
|
|
690
|
+
directory relative to this function.
|
|
691
|
+
- The segmentation model and training process are highly dependent on the details specified in the
|
|
692
|
+
configuration file, including the model architecture, loss functions, optimizer settings, and
|
|
693
|
+
training/validation data paths.
|
|
694
|
+
|
|
695
|
+
Examples
|
|
696
|
+
--------
|
|
697
|
+
>>> config = '/path/to/training_config.json'
|
|
698
|
+
>>> train_segmentation_model(config)
|
|
699
|
+
# Initiates the training of a segmentation model using the parameters specified in the given configuration file.
|
|
700
|
+
|
|
701
|
+
"""
|
|
702
|
+
|
|
703
|
+
config = config.replace('\\','/')
|
|
704
|
+
config = rf"{config}"
|
|
705
|
+
assert os.path.exists(config),f'Config {config} is not a valid path.'
|
|
706
|
+
|
|
707
|
+
script_path = os.sep.join([abs_path, 'scripts', 'train_segmentation_model.py'])
|
|
708
|
+
cmd = f'python "{script_path}" --config "{config}" --use_gpu "{use_gpu}"'
|
|
709
|
+
subprocess.call(cmd, shell=True)
|
|
710
|
+
|
|
711
|
+
if __name__ == "__main__":
|
|
712
|
+
print(segment(None,'test'))
|