cars 1.0.0rc1__cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of cars might be problematic. Click here for more details.

Files changed (200) hide show
  1. cars/__init__.py +74 -0
  2. cars/applications/__init__.py +37 -0
  3. cars/applications/application.py +117 -0
  4. cars/applications/application_constants.py +29 -0
  5. cars/applications/application_template.py +146 -0
  6. cars/applications/auxiliary_filling/__init__.py +29 -0
  7. cars/applications/auxiliary_filling/abstract_auxiliary_filling_app.py +104 -0
  8. cars/applications/auxiliary_filling/auxiliary_filling_algo.py +475 -0
  9. cars/applications/auxiliary_filling/auxiliary_filling_from_sensors_app.py +630 -0
  10. cars/applications/auxiliary_filling/auxiliary_filling_wrappers.py +90 -0
  11. cars/applications/dem_generation/__init__.py +30 -0
  12. cars/applications/dem_generation/abstract_dem_generation_app.py +116 -0
  13. cars/applications/dem_generation/bulldozer_config/base_config.yaml +42 -0
  14. cars/applications/dem_generation/bulldozer_dem_app.py +655 -0
  15. cars/applications/dem_generation/bulldozer_memory.py +55 -0
  16. cars/applications/dem_generation/dem_generation_algo.py +107 -0
  17. cars/applications/dem_generation/dem_generation_constants.py +32 -0
  18. cars/applications/dem_generation/dem_generation_wrappers.py +323 -0
  19. cars/applications/dense_match_filling/__init__.py +30 -0
  20. cars/applications/dense_match_filling/abstract_dense_match_filling_app.py +242 -0
  21. cars/applications/dense_match_filling/fill_disp_algo.py +113 -0
  22. cars/applications/dense_match_filling/fill_disp_constants.py +39 -0
  23. cars/applications/dense_match_filling/fill_disp_wrappers.py +83 -0
  24. cars/applications/dense_match_filling/zero_padding_app.py +302 -0
  25. cars/applications/dense_matching/__init__.py +30 -0
  26. cars/applications/dense_matching/abstract_dense_matching_app.py +261 -0
  27. cars/applications/dense_matching/census_mccnn_sgm_app.py +1460 -0
  28. cars/applications/dense_matching/cpp/__init__.py +0 -0
  29. cars/applications/dense_matching/cpp/dense_matching_cpp.cpython-312-i386-linux-gnu.so +0 -0
  30. cars/applications/dense_matching/cpp/dense_matching_cpp.py +94 -0
  31. cars/applications/dense_matching/cpp/includes/dense_matching.hpp +58 -0
  32. cars/applications/dense_matching/cpp/meson.build +9 -0
  33. cars/applications/dense_matching/cpp/src/bindings.cpp +13 -0
  34. cars/applications/dense_matching/cpp/src/dense_matching.cpp +207 -0
  35. cars/applications/dense_matching/dense_matching_algo.py +401 -0
  36. cars/applications/dense_matching/dense_matching_constants.py +89 -0
  37. cars/applications/dense_matching/dense_matching_wrappers.py +951 -0
  38. cars/applications/dense_matching/disparity_grid_algo.py +588 -0
  39. cars/applications/dense_matching/loaders/__init__.py +23 -0
  40. cars/applications/dense_matching/loaders/config_census_sgm_default.json +31 -0
  41. cars/applications/dense_matching/loaders/config_census_sgm_homogeneous.json +30 -0
  42. cars/applications/dense_matching/loaders/config_census_sgm_mountain_and_vegetation.json +30 -0
  43. cars/applications/dense_matching/loaders/config_census_sgm_shadow.json +30 -0
  44. cars/applications/dense_matching/loaders/config_census_sgm_sparse.json +36 -0
  45. cars/applications/dense_matching/loaders/config_census_sgm_urban.json +30 -0
  46. cars/applications/dense_matching/loaders/config_mapping.json +13 -0
  47. cars/applications/dense_matching/loaders/config_mccnn.json +28 -0
  48. cars/applications/dense_matching/loaders/global_land_cover_map.tif +0 -0
  49. cars/applications/dense_matching/loaders/pandora_loader.py +593 -0
  50. cars/applications/dsm_filling/__init__.py +32 -0
  51. cars/applications/dsm_filling/abstract_dsm_filling_app.py +101 -0
  52. cars/applications/dsm_filling/border_interpolation_app.py +270 -0
  53. cars/applications/dsm_filling/bulldozer_config/base_config.yaml +44 -0
  54. cars/applications/dsm_filling/bulldozer_filling_app.py +279 -0
  55. cars/applications/dsm_filling/exogenous_filling_app.py +333 -0
  56. cars/applications/grid_generation/__init__.py +30 -0
  57. cars/applications/grid_generation/abstract_grid_generation_app.py +142 -0
  58. cars/applications/grid_generation/epipolar_grid_generation_app.py +327 -0
  59. cars/applications/grid_generation/grid_correction_app.py +496 -0
  60. cars/applications/grid_generation/grid_generation_algo.py +388 -0
  61. cars/applications/grid_generation/grid_generation_constants.py +46 -0
  62. cars/applications/grid_generation/transform_grid.py +88 -0
  63. cars/applications/ground_truth_reprojection/__init__.py +30 -0
  64. cars/applications/ground_truth_reprojection/abstract_ground_truth_reprojection_app.py +137 -0
  65. cars/applications/ground_truth_reprojection/direct_localization_app.py +629 -0
  66. cars/applications/ground_truth_reprojection/ground_truth_reprojection_algo.py +275 -0
  67. cars/applications/point_cloud_outlier_removal/__init__.py +30 -0
  68. cars/applications/point_cloud_outlier_removal/abstract_outlier_removal_app.py +385 -0
  69. cars/applications/point_cloud_outlier_removal/outlier_removal_algo.py +392 -0
  70. cars/applications/point_cloud_outlier_removal/outlier_removal_constants.py +43 -0
  71. cars/applications/point_cloud_outlier_removal/small_components_app.py +527 -0
  72. cars/applications/point_cloud_outlier_removal/statistical_app.py +531 -0
  73. cars/applications/rasterization/__init__.py +30 -0
  74. cars/applications/rasterization/abstract_pc_rasterization_app.py +183 -0
  75. cars/applications/rasterization/rasterization_algo.py +534 -0
  76. cars/applications/rasterization/rasterization_constants.py +38 -0
  77. cars/applications/rasterization/rasterization_wrappers.py +634 -0
  78. cars/applications/rasterization/simple_gaussian_app.py +1152 -0
  79. cars/applications/resampling/__init__.py +28 -0
  80. cars/applications/resampling/abstract_resampling_app.py +187 -0
  81. cars/applications/resampling/bicubic_resampling_app.py +762 -0
  82. cars/applications/resampling/resampling_algo.py +614 -0
  83. cars/applications/resampling/resampling_constants.py +36 -0
  84. cars/applications/resampling/resampling_wrappers.py +309 -0
  85. cars/applications/sparse_matching/__init__.py +30 -0
  86. cars/applications/sparse_matching/abstract_sparse_matching_app.py +498 -0
  87. cars/applications/sparse_matching/sift_app.py +735 -0
  88. cars/applications/sparse_matching/sparse_matching_algo.py +360 -0
  89. cars/applications/sparse_matching/sparse_matching_constants.py +68 -0
  90. cars/applications/sparse_matching/sparse_matching_wrappers.py +238 -0
  91. cars/applications/triangulation/__init__.py +32 -0
  92. cars/applications/triangulation/abstract_triangulation_app.py +227 -0
  93. cars/applications/triangulation/line_of_sight_intersection_app.py +1243 -0
  94. cars/applications/triangulation/pc_transform.py +552 -0
  95. cars/applications/triangulation/triangulation_algo.py +371 -0
  96. cars/applications/triangulation/triangulation_constants.py +38 -0
  97. cars/applications/triangulation/triangulation_wrappers.py +259 -0
  98. cars/bundleadjustment.py +757 -0
  99. cars/cars.py +177 -0
  100. cars/conf/__init__.py +23 -0
  101. cars/conf/geoid/egm96.grd +0 -0
  102. cars/conf/geoid/egm96.grd.hdr +15 -0
  103. cars/conf/input_parameters.py +156 -0
  104. cars/conf/mask_cst.py +35 -0
  105. cars/core/__init__.py +23 -0
  106. cars/core/cars_logging.py +402 -0
  107. cars/core/constants.py +191 -0
  108. cars/core/constants_disparity.py +50 -0
  109. cars/core/datasets.py +140 -0
  110. cars/core/geometry/__init__.py +27 -0
  111. cars/core/geometry/abstract_geometry.py +1119 -0
  112. cars/core/geometry/shareloc_geometry.py +598 -0
  113. cars/core/inputs.py +568 -0
  114. cars/core/outputs.py +176 -0
  115. cars/core/preprocessing.py +722 -0
  116. cars/core/projection.py +843 -0
  117. cars/core/roi_tools.py +215 -0
  118. cars/core/tiling.py +774 -0
  119. cars/core/utils.py +164 -0
  120. cars/data_structures/__init__.py +23 -0
  121. cars/data_structures/cars_dataset.py +1541 -0
  122. cars/data_structures/cars_dict.py +74 -0
  123. cars/data_structures/corresponding_tiles_tools.py +186 -0
  124. cars/data_structures/dataframe_converter.py +185 -0
  125. cars/data_structures/format_transformation.py +297 -0
  126. cars/devibrate.py +689 -0
  127. cars/extractroi.py +264 -0
  128. cars/orchestrator/__init__.py +23 -0
  129. cars/orchestrator/achievement_tracker.py +125 -0
  130. cars/orchestrator/cluster/__init__.py +37 -0
  131. cars/orchestrator/cluster/abstract_cluster.py +244 -0
  132. cars/orchestrator/cluster/abstract_dask_cluster.py +375 -0
  133. cars/orchestrator/cluster/dask_cluster_tools.py +103 -0
  134. cars/orchestrator/cluster/dask_config/README.md +94 -0
  135. cars/orchestrator/cluster/dask_config/dask.yaml +21 -0
  136. cars/orchestrator/cluster/dask_config/distributed.yaml +70 -0
  137. cars/orchestrator/cluster/dask_config/jobqueue.yaml +26 -0
  138. cars/orchestrator/cluster/dask_config/reference_confs/dask-schema.yaml +137 -0
  139. cars/orchestrator/cluster/dask_config/reference_confs/dask.yaml +26 -0
  140. cars/orchestrator/cluster/dask_config/reference_confs/distributed-schema.yaml +1009 -0
  141. cars/orchestrator/cluster/dask_config/reference_confs/distributed.yaml +273 -0
  142. cars/orchestrator/cluster/dask_config/reference_confs/jobqueue.yaml +212 -0
  143. cars/orchestrator/cluster/dask_jobqueue_utils.py +204 -0
  144. cars/orchestrator/cluster/local_dask_cluster.py +116 -0
  145. cars/orchestrator/cluster/log_wrapper.py +1075 -0
  146. cars/orchestrator/cluster/mp_cluster/__init__.py +27 -0
  147. cars/orchestrator/cluster/mp_cluster/mp_factorizer.py +212 -0
  148. cars/orchestrator/cluster/mp_cluster/mp_objects.py +535 -0
  149. cars/orchestrator/cluster/mp_cluster/mp_tools.py +93 -0
  150. cars/orchestrator/cluster/mp_cluster/mp_wrapper.py +505 -0
  151. cars/orchestrator/cluster/mp_cluster/multiprocessing_cluster.py +873 -0
  152. cars/orchestrator/cluster/mp_cluster/multiprocessing_profiler.py +399 -0
  153. cars/orchestrator/cluster/pbs_dask_cluster.py +207 -0
  154. cars/orchestrator/cluster/sequential_cluster.py +139 -0
  155. cars/orchestrator/cluster/slurm_dask_cluster.py +234 -0
  156. cars/orchestrator/orchestrator.py +905 -0
  157. cars/orchestrator/orchestrator_constants.py +29 -0
  158. cars/orchestrator/registry/__init__.py +23 -0
  159. cars/orchestrator/registry/abstract_registry.py +143 -0
  160. cars/orchestrator/registry/compute_registry.py +106 -0
  161. cars/orchestrator/registry/id_generator.py +116 -0
  162. cars/orchestrator/registry/replacer_registry.py +213 -0
  163. cars/orchestrator/registry/saver_registry.py +363 -0
  164. cars/orchestrator/registry/unseen_registry.py +118 -0
  165. cars/orchestrator/tiles_profiler.py +279 -0
  166. cars/pipelines/__init__.py +26 -0
  167. cars/pipelines/conf_resolution/conf_final_resolution.yaml +5 -0
  168. cars/pipelines/conf_resolution/conf_first_resolution.yaml +2 -0
  169. cars/pipelines/conf_resolution/conf_intermediate_resolution.yaml +2 -0
  170. cars/pipelines/default/__init__.py +26 -0
  171. cars/pipelines/default/default_pipeline.py +786 -0
  172. cars/pipelines/parameters/__init__.py +0 -0
  173. cars/pipelines/parameters/advanced_parameters.py +417 -0
  174. cars/pipelines/parameters/advanced_parameters_constants.py +69 -0
  175. cars/pipelines/parameters/application_parameters.py +71 -0
  176. cars/pipelines/parameters/depth_map_inputs.py +0 -0
  177. cars/pipelines/parameters/dsm_inputs.py +918 -0
  178. cars/pipelines/parameters/dsm_inputs_constants.py +25 -0
  179. cars/pipelines/parameters/output_constants.py +52 -0
  180. cars/pipelines/parameters/output_parameters.py +454 -0
  181. cars/pipelines/parameters/sensor_inputs.py +842 -0
  182. cars/pipelines/parameters/sensor_inputs_constants.py +49 -0
  183. cars/pipelines/parameters/sensor_loaders/__init__.py +29 -0
  184. cars/pipelines/parameters/sensor_loaders/basic_classif_loader.py +86 -0
  185. cars/pipelines/parameters/sensor_loaders/basic_image_loader.py +98 -0
  186. cars/pipelines/parameters/sensor_loaders/pivot_classif_loader.py +90 -0
  187. cars/pipelines/parameters/sensor_loaders/pivot_image_loader.py +105 -0
  188. cars/pipelines/parameters/sensor_loaders/sensor_loader.py +93 -0
  189. cars/pipelines/parameters/sensor_loaders/sensor_loader_template.py +71 -0
  190. cars/pipelines/parameters/sensor_loaders/slurp_classif_loader.py +86 -0
  191. cars/pipelines/pipeline.py +119 -0
  192. cars/pipelines/pipeline_constants.py +31 -0
  193. cars/pipelines/pipeline_template.py +139 -0
  194. cars/pipelines/unit/__init__.py +26 -0
  195. cars/pipelines/unit/unit_pipeline.py +2850 -0
  196. cars/starter.py +167 -0
  197. cars-1.0.0rc1.dist-info/METADATA +292 -0
  198. cars-1.0.0rc1.dist-info/RECORD +200 -0
  199. cars-1.0.0rc1.dist-info/WHEEL +6 -0
  200. cars-1.0.0rc1.dist-info/entry_points.txt +8 -0
@@ -0,0 +1,1075 @@
1
+ #!/usr/bin/env python
2
+ # coding: utf8
3
+ #
4
+ # Copyright (c) 2020 Centre National d'Etudes Spatiales (CNES).
5
+ #
6
+ # This file is part of CARS
7
+ # (see https://github.com/CNES/cars).
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ #
21
+ """
22
+ Contains functions for wrapper logs
23
+ """
24
+ # pylint: disable=C0302
25
+
26
+ import copy
27
+ import cProfile
28
+ import datetime
29
+ import functools
30
+ import gc
31
+ import io
32
+ import logging
33
+ import os
34
+ import pstats
35
+ import shutil
36
+ import time
37
+ import uuid
38
+ from abc import ABCMeta, abstractmethod
39
+ from importlib import import_module
40
+ from multiprocessing import Pipe
41
+ from threading import Thread
42
+
43
+ import matplotlib.pyplot as plt
44
+ import numpy as np
45
+ import pandas as pd
46
+ import psutil
47
+ from json_checker import Checker
48
+ from matplotlib.backends.backend_pdf import PdfPages
49
+ from PIL import Image
50
+
51
+ from cars.core import cars_logging
52
+ from cars.core.utils import safe_makedirs
53
+
54
+ THREAD_TIMEOUT = 2
55
+
56
+
57
+ # pylint: disable=too-few-public-methods
58
+ class AbstractLogWrapper(metaclass=ABCMeta):
59
+ """
60
+ AbstractLogWrapper
61
+ """
62
+
63
+ available_modes = {}
64
+
65
+ def __new__(cls, conf_profiling, out_dir): # pylint: disable=W0613
66
+ """
67
+ Return Log wrapper
68
+ """
69
+ profiling_mode = "cars_profiling"
70
+
71
+ if "mode" not in conf_profiling:
72
+ logging.debug("Profiling mode not defined, default is used")
73
+ else:
74
+ profiling_mode = conf_profiling["mode"]
75
+
76
+ return super(AbstractLogWrapper, cls).__new__(
77
+ cls.available_modes[profiling_mode]
78
+ )
79
+
80
+ def __init__(self, conf_profiling, out_dir):
81
+ # Check conf
82
+ self.checked_conf_profiling = self.check_conf(conf_profiling)
83
+ self.out_dir = out_dir
84
+
85
+ @classmethod
86
+ def register_subclass(cls, short_name: str):
87
+ """
88
+ Allows to register the subclass with its short name
89
+ :param short_name: the subclass to be registered
90
+ :type short_name: string
91
+ """
92
+
93
+ def decorator(subclass):
94
+ """
95
+ Registers the subclass in the available methods
96
+ :param subclass: the subclass to be registered
97
+ :type subclass: object
98
+ """
99
+ cls.available_modes[short_name] = subclass
100
+ return subclass
101
+
102
+ return decorator
103
+
104
+ @abstractmethod
105
+ def check_conf(self, conf):
106
+ """
107
+ Check configuration
108
+
109
+ :param conf: configuration to check
110
+ :type conf: dict
111
+
112
+ :return: overloaded configuration
113
+ :rtype: dict
114
+
115
+ """
116
+
117
+ @abstractmethod
118
+ def get_func_args_plus(self, func):
119
+ """
120
+ getter for the args of the future function
121
+
122
+ :param: function to apply
123
+
124
+ :return: function to apply, overloaded key arguments
125
+ """
126
+
127
+
128
+ @AbstractLogWrapper.register_subclass("cars_profiling")
129
+ class LogWrapper(AbstractLogWrapper):
130
+ """
131
+ LogWrapper
132
+
133
+ simple log wrapper doing nothing
134
+ """
135
+
136
+ def __init__(self, conf_profiling, out_dir):
137
+ self.out_dir = out_dir
138
+ # call parent init
139
+ super().__init__(conf_profiling, out_dir)
140
+ self.loop_testing = self.checked_conf_profiling["loop_testing"]
141
+
142
+ def check_conf(self, conf):
143
+ """
144
+ Check configuration
145
+
146
+ :param conf: configuration to check
147
+ :type conf: dict
148
+
149
+ :return: overloaded configuration
150
+ :rtype: dict
151
+
152
+ """
153
+
154
+ # init conf
155
+ if conf is not None:
156
+ overloaded_conf = conf.copy()
157
+ else:
158
+ conf = {}
159
+ overloaded_conf = {}
160
+
161
+ # Overload conf
162
+ overloaded_conf["mode"] = conf.get("mode", "cars_profiling")
163
+ overloaded_conf["loop_testing"] = conf.get("loop_testing", False)
164
+
165
+ cluster_schema = {"mode": str, "loop_testing": bool}
166
+
167
+ # Check conf
168
+ checker = Checker(cluster_schema)
169
+ checker.validate(overloaded_conf)
170
+
171
+ return overloaded_conf
172
+
173
+ def get_func_args_plus(self, func):
174
+ fun = log_function
175
+ new_kwarg = {
176
+ "fun_log_wrapper": func,
177
+ "loop_testing": self.loop_testing,
178
+ }
179
+
180
+ return fun, new_kwarg
181
+
182
+
183
+ @AbstractLogWrapper.register_subclass("cprofile")
184
+ class CProfileWrapper(AbstractLogWrapper):
185
+ """
186
+ CProfileWrapper
187
+
188
+ log wrapper to analyze the internal time consuming of the function.
189
+ The wrapper use cprofile API.
190
+ """
191
+
192
+ def __init__(self, conf_profiling, out_dir):
193
+ self.out_dir = out_dir
194
+ # call parent init
195
+ super().__init__(conf_profiling, out_dir)
196
+
197
+ def check_conf(self, conf):
198
+ """
199
+ Check configuration
200
+
201
+ :param conf: configuration to check
202
+ :type conf: dict
203
+
204
+ :return: overloaded configuration
205
+ :rtype: dict
206
+
207
+ """
208
+
209
+ # init conf
210
+ if conf is not None:
211
+ overloaded_conf = conf.copy()
212
+ else:
213
+ conf = {}
214
+ overloaded_conf = {}
215
+
216
+ # Overload conf
217
+ overloaded_conf["mode"] = conf.get("mode", "cars_profiling")
218
+ cluster_schema = {"mode": str}
219
+
220
+ # Check conf
221
+ checker = Checker(cluster_schema)
222
+ checker.validate(overloaded_conf)
223
+
224
+ return overloaded_conf
225
+
226
+ def get_func_args_plus(self, func):
227
+ fun = time_profiling_function
228
+ new_kwarg = {"fun_log_wrapper": func}
229
+
230
+ return fun, new_kwarg
231
+
232
+
233
+ @AbstractLogWrapper.register_subclass("memray")
234
+ class MemrayWrapper(AbstractLogWrapper):
235
+ """
236
+ MemrayWrapper
237
+
238
+ log wrapper to analyze the internal allocation
239
+ memory consuming of the function.
240
+ The wrapper use cprofile API.
241
+ """
242
+
243
+ def __init__(self, conf_profiling, out_dir):
244
+ self.out_dir = out_dir
245
+ profiling_memory_dir = os.path.join(
246
+ out_dir, "logs", "profiling", "memray"
247
+ )
248
+ safe_makedirs(profiling_memory_dir, cleanup=True)
249
+ # call parent init
250
+ super().__init__(conf_profiling, out_dir)
251
+ self.loop_testing = self.checked_conf_profiling["loop_testing"]
252
+
253
+ def check_conf(self, conf):
254
+ """
255
+ Check configuration
256
+
257
+ :param conf: configuration to check
258
+ :type conf: dict
259
+
260
+ :return: overloaded configuration
261
+ :rtype: dict
262
+
263
+ """
264
+
265
+ # init conf
266
+ if conf is not None:
267
+ overloaded_conf = conf.copy()
268
+ else:
269
+ conf = {}
270
+ overloaded_conf = {}
271
+
272
+ # Overload conf
273
+ overloaded_conf["mode"] = conf.get("mode", "cars_profiling")
274
+ overloaded_conf["loop_testing"] = conf.get("loop_testing", False)
275
+
276
+ cluster_schema = {"mode": str, "loop_testing": bool}
277
+
278
+ # Check conf
279
+ checker = Checker(cluster_schema)
280
+ checker.validate(overloaded_conf)
281
+
282
+ return overloaded_conf
283
+
284
+ def get_func_args_plus(self, func):
285
+ fun = memory_profiling_function
286
+ new_kwarg = {
287
+ "fun_log_wrapper": func,
288
+ "loop_testing": self.loop_testing,
289
+ "out_dir": self.out_dir,
290
+ }
291
+
292
+ return fun, new_kwarg
293
+
294
+
295
+ def log_function(*argv, **kwargs):
296
+ """
297
+ Create a wrapper for function running it
298
+
299
+ :param argv: args of func
300
+ :param kwargs: kwargs of func
301
+
302
+ :return: path to results
303
+ """
304
+ func = kwargs["fun_log_wrapper"]
305
+ loop_testing = kwargs["loop_testing"]
306
+ kwargs.pop("fun_log_wrapper")
307
+ kwargs.pop("loop_testing")
308
+
309
+ if loop_testing:
310
+ # Profile
311
+ res = cars_profile(name=func.__name__ + "_looped", interval=0.2)(
312
+ loop_function
313
+ )(argv, kwargs, func)
314
+ else:
315
+ res = cars_profile(interval=0.2)(func)(*argv, **kwargs)
316
+
317
+ return res
318
+
319
+
320
+ def time_profiling_function(*argv, **kwargs):
321
+ """
322
+ Create a wrapper to profile the function elapse time
323
+
324
+ :param argv: args of func
325
+ :param kwargs: kwargs of func
326
+
327
+ :return: path to results
328
+ """
329
+ func = kwargs["fun_log_wrapper"]
330
+ kwargs.pop("fun_log_wrapper")
331
+ # Monitor time
332
+ start_time = time.time()
333
+ # Profile time
334
+ profiler = cProfile.Profile()
335
+ profiler.enable()
336
+ res = func(*argv, **kwargs)
337
+ profiler.disable()
338
+ total_time = time.time() - start_time
339
+
340
+ switch_messages(func, total_time)
341
+ print("## PROF STATs")
342
+
343
+ stream_cumtime = io.StringIO()
344
+ stream_calls = io.StringIO()
345
+ pstats.Stats(profiler, stream=stream_cumtime).sort_stats(
346
+ "tottime"
347
+ ).print_stats(5)
348
+ pstats.Stats(profiler, stream=stream_calls).sort_stats("calls").print_stats(
349
+ 5
350
+ )
351
+ logging.info(stream_cumtime.getvalue())
352
+ print(stream_cumtime.getvalue())
353
+ logging.info(stream_calls.getvalue())
354
+ print(stream_calls.getvalue())
355
+ print("----------")
356
+ return res
357
+
358
+
359
+ def memory_profiling_function(*argv, **kwargs):
360
+ """
361
+ Create a wrapper to profile the function occupation memory
362
+
363
+ :param argv: args of func
364
+ :param kwargs: kwargs of func
365
+
366
+ :return: path to results
367
+ """
368
+ func = kwargs["fun_log_wrapper"]
369
+ loop_testing = kwargs["loop_testing"]
370
+ outputdir = kwargs["out_dir"]
371
+
372
+ kwargs.pop("fun_log_wrapper")
373
+ kwargs.pop("loop_testing")
374
+ kwargs.pop("out_dir")
375
+
376
+ # Monitor time
377
+ memray = import_module("memray")
378
+ start_time = time.time()
379
+ unique_filename = str(uuid.uuid4())
380
+ # Profile memory
381
+ with memray.Tracker(
382
+ os.path.join(
383
+ outputdir,
384
+ "profiling",
385
+ "memray",
386
+ func.__name__ + "-" + unique_filename + ".bin",
387
+ )
388
+ ):
389
+ if loop_testing:
390
+ res = loop_function(argv, kwargs, func)
391
+ else:
392
+ res = func(*argv, **kwargs)
393
+ total_time = time.time() - start_time
394
+
395
+ switch_messages(func, total_time)
396
+ print("----------")
397
+ return res
398
+
399
+
400
+ def switch_messages(func, total_time, max_memory=None):
401
+ """
402
+ create profile message with specific message
403
+ depends on elapsed time (LONG, FAST...).
404
+
405
+
406
+ :param func : profiled function
407
+ :param total_time : elapsed time of the function
408
+ """
409
+ message = "Clock# %{}%: %{:.4f}% s Max ram : {} MiB".format(
410
+ func.__name__.capitalize(), total_time, max_memory
411
+ )
412
+
413
+ if total_time >= 1:
414
+ message += " LONG"
415
+ elif 1 > total_time >= 0.001:
416
+ message += " FAST"
417
+ elif 0.001 > total_time >= 0.000001:
418
+ message += " VERY FAST"
419
+ else:
420
+ message += " TOO FAST"
421
+
422
+ log_message(func, message)
423
+
424
+
425
+ def log_message(func, message):
426
+ """
427
+ log profiling message
428
+
429
+ :param func : logged function
430
+ :param message : log message
431
+ """
432
+ cars_logging.add_profiling_message(message)
433
+ cars_logging.add_profiling_message(func.__module__)
434
+
435
+
436
+ def loop_function(argv, kwargs, func, nb_iteration=5):
437
+ """
438
+ generate a loop on each cluster function to eval possible leak
439
+
440
+ :param argv : input argv
441
+ :param kwargs : input kwargs
442
+ :param func : function to evaluation
443
+ :param nb_iteration (int, optional): number of the iteration loop.
444
+ :param Defaults to 5.
445
+
446
+ Returns:
447
+ _type_: result of the function
448
+ """
449
+ logging.info("{} {}".format(func.__module__, func.__name__.capitalize()))
450
+ argv_temp = copy.copy(argv)
451
+ kwargs_temp = copy.deepcopy(kwargs)
452
+ # execute sevral time the function to observe possible leaks
453
+ for k in range(1, nb_iteration):
454
+ logging.info("loop iteration {}".format(k))
455
+ func(*argv, **kwargs)
456
+ del argv
457
+ del kwargs
458
+ gc.collect()
459
+ argv = copy.deepcopy(argv_temp)
460
+ kwargs = copy.deepcopy(kwargs_temp)
461
+ return func(*argv, **kwargs)
462
+
463
+
464
+ def get_current_memory():
465
+ """
466
+ Get current memory of process
467
+
468
+ :return: memory
469
+ :rtype: float
470
+
471
+ """
472
+
473
+ # Use psutil to capture python process memory as well
474
+ process = psutil.Process(os.getpid())
475
+ process_memory = process.memory_info().rss
476
+
477
+ # Convert nbytes size for logger
478
+ process_memory = float(process_memory) / 1000000
479
+
480
+ return process_memory
481
+
482
+
483
+ def log_delta_memory(func, memory_start, memory_end):
484
+ """
485
+ Log memory infos
486
+
487
+ :param func: profiled function
488
+ :param memory_start: memory before the run of function
489
+ :type memory_start: float
490
+ :param memory_end: memory after the run of function
491
+ :type memory_end: float
492
+
493
+ """
494
+
495
+ message = "Memory before run: {}Mb, Memory after run: {}Mb".format(
496
+ str(memory_start), str(memory_end)
497
+ )
498
+
499
+ log_message(func, message)
500
+
501
+
502
+ def exception_safe(func):
503
+ """
504
+ Decorator for consistent exception handling in profiling functions
505
+
506
+ :param func: function to wrap
507
+ :return: wrapped function
508
+ """
509
+
510
+ @functools.wraps(func)
511
+ def wrapper(*args, **kwargs):
512
+ """
513
+ Catch error
514
+ """
515
+ try:
516
+ return func(*args, **kwargs)
517
+ except Exception as exc:
518
+ error_msg = (
519
+ f"Error in {func.__name__}: {type(exc).__name__}: {str(exc)}"
520
+ )
521
+ logging.error(error_msg)
522
+ cars_logging.add_profiling_message(f"ERROR - {error_msg}")
523
+ return None
524
+
525
+ return wrapper
526
+
527
+
528
+ @exception_safe
529
+ def generate_summary(out_dir, used_conf, clean_worker_logs=False):
530
+ """
531
+ Generate Profiling summary
532
+ """
533
+ nb_workers = 1
534
+ if "orchestrator" not in used_conf:
535
+ first_key = next(iter(used_conf))
536
+ if "nb_workers" in used_conf[first_key]["orchestrator"]:
537
+ nb_workers = used_conf[first_key]["orchestrator"]["nb_workers"]
538
+ else:
539
+ if "nb_workers" in used_conf["orchestrator"]:
540
+ nb_workers = used_conf["orchestrator"]["nb_workers"]
541
+
542
+ workers_log_dir = os.path.join(out_dir, "workers_log")
543
+ os.makedirs(workers_log_dir, exist_ok=True)
544
+
545
+ log_file_main = os.path.join(
546
+ workers_log_dir,
547
+ "profiling.log",
548
+ )
549
+
550
+ out_profiling_main = os.path.join(out_dir, "profiling", "profiling.log")
551
+
552
+ log_files = [log_file_main, out_profiling_main]
553
+
554
+ names = []
555
+ times = []
556
+ max_ram = []
557
+ start_ram = []
558
+ end_ram = []
559
+ max_cpu = []
560
+
561
+ for log_file in log_files:
562
+ if not os.path.exists(log_file):
563
+ logging.debug("{} log file does not exist".format(log_file))
564
+ return
565
+
566
+ with open(log_file, encoding="UTF-8") as file_desc:
567
+ for item in file_desc:
568
+ if "CarsProfiling" in item:
569
+ splited_items = item.split("%")
570
+ names.append(splited_items[1])
571
+ times.append(float(splited_items[3]))
572
+ max_ram.append(float(splited_items[5]))
573
+ start_ram.append(float(splited_items[7]))
574
+ end_ram.append(float(splited_items[9]))
575
+ max_cpu.append(float(splited_items[11]))
576
+
577
+ times_df = pd.DataFrame(
578
+ {
579
+ "name": names,
580
+ "time": times,
581
+ "max_ram": max_ram,
582
+ "start_ram": start_ram,
583
+ "end_ram": end_ram,
584
+ "max_cpu": max_cpu,
585
+ }
586
+ )
587
+
588
+ # Generate summary message
589
+ cars_logging.add_profiling_message(
590
+ "\n \n \n "
591
+ "----------------------------------------"
592
+ " SUMMARY PROFILLING "
593
+ "----------------------------------------"
594
+ " \n \n \n"
595
+ )
596
+
597
+ summary_names = []
598
+ summary_max_ram = []
599
+ summary_max_ram_err_min = []
600
+ summary_max_ram_err_max = []
601
+ summary_max_ram_relative = []
602
+ summary_mean_time_per_task = []
603
+ summary_mean_time_per_task_err_min = []
604
+ summary_mean_time_per_task_err_max = []
605
+ summary_total_time = []
606
+ summary_max_cpu = []
607
+ summary_nb_calls = []
608
+ full_max_ram = []
609
+ full_added_ram = []
610
+ full_time = []
611
+ full_max_cpu = []
612
+
613
+ for name in pd.unique(times_df["name"]):
614
+ current_df = times_df.loc[times_df["name"] == name]
615
+
616
+ current_med_time = current_df["time"].mean()
617
+ current_med_time_err_min = current_med_time - current_df["time"].min()
618
+ current_med_time_err_max = current_df["time"].max() - current_med_time
619
+ total_time = current_df["time"].sum()
620
+ max_ram = current_df["max_ram"].mean()
621
+ max_ram_err_min = max_ram - current_df["max_ram"].min()
622
+ max_ram_err_max = current_df["max_ram"].max() - max_ram
623
+ max_cpu = current_df["max_cpu"].max()
624
+ max_ram_without_start = (
625
+ current_df["max_ram"] - current_df["start_ram"]
626
+ ).max()
627
+ diff_end_start = (current_df["end_ram"] - current_df["start_ram"]).max()
628
+ nb_values = len(current_df)
629
+
630
+ # Fill lists with all data
631
+ full_max_ram.append(list(current_df["max_ram"]))
632
+ full_added_ram.append(
633
+ list(current_df["max_ram"] - current_df["start_ram"])
634
+ )
635
+ full_time.append(list(current_df["time"]))
636
+ full_max_cpu.append(list(current_df["max_cpu"]))
637
+
638
+ # fill lists for figures
639
+ summary_names.append(name)
640
+ summary_max_ram.append(max_ram)
641
+ summary_max_ram_err_min.append(max_ram_err_min)
642
+ summary_max_ram_err_max.append(max_ram_err_max)
643
+ summary_max_ram_relative.append(max_ram_without_start)
644
+ summary_mean_time_per_task.append(current_med_time)
645
+ summary_mean_time_per_task_err_min.append(current_med_time_err_min)
646
+ summary_mean_time_per_task_err_max.append(current_med_time_err_max)
647
+ summary_total_time.append(total_time)
648
+ summary_max_cpu.append(max_cpu)
649
+ summary_nb_calls.append(nb_values)
650
+
651
+ message = (
652
+ "Task {} ran {} times, with mean time {} sec, "
653
+ "total time: {} sec, Max cpu: {} %"
654
+ " max ram in process during task: {} MiB, "
655
+ "max ram - start ram: {}, "
656
+ " end - start ram : {}".format(
657
+ name,
658
+ nb_values,
659
+ current_med_time,
660
+ total_time,
661
+ max_cpu,
662
+ max_ram,
663
+ max_ram_without_start,
664
+ diff_end_start,
665
+ )
666
+ )
667
+
668
+ cars_logging.add_profiling_message(message)
669
+
670
+ # Generate png
671
+ _, axs = plt.subplots(3, 2, figsize=(20, 20), layout="tight")
672
+ # Fill
673
+
674
+ generate_boxplot(
675
+ axs.flat[0], summary_names, full_max_cpu, "Max CPU usage", "%"
676
+ )
677
+ generate_histo(
678
+ axs.flat[1], summary_names, summary_total_time, "Total Time", "s"
679
+ )
680
+
681
+ (
682
+ summary_names_without_pipeline,
683
+ total_full_time_without_pipeline,
684
+ ) = filter_lists(
685
+ summary_names,
686
+ full_time,
687
+ lambda name: "pipeline" not in name,
688
+ )
689
+ generate_boxplot(
690
+ axs.flat[2],
691
+ summary_names_without_pipeline,
692
+ total_full_time_without_pipeline,
693
+ "Time per task",
694
+ "s",
695
+ )
696
+
697
+ generate_boxplot(
698
+ axs.flat[3],
699
+ summary_names,
700
+ full_max_ram,
701
+ "Max RAM used",
702
+ "MiB",
703
+ )
704
+
705
+ generate_boxplot(
706
+ axs.flat[4],
707
+ summary_names,
708
+ full_added_ram,
709
+ "Max RAM added",
710
+ "MiB",
711
+ )
712
+ generate_histo(
713
+ axs.flat[5],
714
+ summary_names,
715
+ summary_nb_calls,
716
+ "NB calls",
717
+ "calls",
718
+ )
719
+
720
+ # file_name
721
+ profiling_plot = os.path.join(
722
+ out_dir,
723
+ "profiling",
724
+ "profiling_plots_histograms.png",
725
+ )
726
+ plt.savefig(profiling_plot)
727
+
728
+ # Pie chart
729
+
730
+ (name_task_workers, summary_workers) = filter_lists(
731
+ summary_names, summary_total_time, lambda name: "wrapper" in name
732
+ )
733
+
734
+ (name_task_main, summary_main) = filter_lists(
735
+ summary_names,
736
+ summary_total_time,
737
+ lambda name: "wrapper" not in name
738
+ and "pipeline" not in name
739
+ and "Compute futures" not in name,
740
+ )
741
+
742
+ (_, [pipeline_time]) = filter_lists(
743
+ summary_names, summary_total_time, lambda name: "unit_pipeline" in name
744
+ )
745
+
746
+ (_, [multiprocessing_time]) = filter_lists(
747
+ summary_names,
748
+ summary_total_time,
749
+ lambda name: "Compute futures" in name,
750
+ )
751
+
752
+ sequential_time = pipeline_time - multiprocessing_time
753
+
754
+ total_time_workers = nb_workers * multiprocessing_time
755
+
756
+ _, axs2 = plt.subplots(2, 1, figsize=(40, 40), layout="tight")
757
+
758
+ generate_pie_chart(
759
+ axs2.flat[0],
760
+ name_task_workers,
761
+ 100 * np.array(summary_workers) / total_time_workers,
762
+ "Total time in parallel tasks ({} workers) : {}".format(
763
+ nb_workers,
764
+ str(datetime.timedelta(seconds=int(multiprocessing_time))),
765
+ ),
766
+ )
767
+
768
+ generate_pie_chart(
769
+ axs2.flat[1],
770
+ name_task_main,
771
+ 100 * np.array(summary_main) / sequential_time,
772
+ "Total time in sequential tasks : {}".format(
773
+ str(datetime.timedelta(seconds=int(sequential_time)))
774
+ ),
775
+ )
776
+
777
+ profiling_plot2 = os.path.join(
778
+ out_dir,
779
+ "profiling",
780
+ "profiling_plots_pie_chart.png",
781
+ )
782
+ plt.savefig(profiling_plot2)
783
+
784
+ if clean_worker_logs and os.path.exists(workers_log_dir):
785
+ shutil.rmtree(workers_log_dir)
786
+
787
+
788
+ def generate_pdf_profiling(log_dir):
789
+ """
790
+ Generate PDF profiling summary for all res
791
+ """
792
+
793
+ pages_data = {}
794
+ resolutions = []
795
+
796
+ for item in os.listdir(log_dir):
797
+ item_path = os.path.join(log_dir, item)
798
+ if os.path.isdir(item_path) and item.startswith("res"):
799
+ # Get resolution
800
+ res = int(item[4:])
801
+ resolutions.append(res)
802
+
803
+ # Add paths
804
+ pages_data[res] = {
805
+ "function_profiling_histo": os.path.join(
806
+ item_path, "profiling", "profiling_plots_histo.png"
807
+ ),
808
+ "function_profiling_pie_chart": os.path.join(
809
+ item_path, "profiling", "profiling_plots_pie_chart.png"
810
+ ),
811
+ "global_profiling": os.path.join(
812
+ item_path, "profiling", "memory_profiling.png"
813
+ ),
814
+ }
815
+
816
+ # ordered resolutions
817
+ resolutions.sort(reverse=True)
818
+
819
+ # Build pdf
820
+ pdf_path = os.path.join(log_dir, "profiling_summary.pdf")
821
+
822
+ with PdfPages(pdf_path) as pdf:
823
+ for res in resolutions:
824
+ # function_profiling
825
+ if os.path.exists(pages_data[res]["function_profiling_histo"]):
826
+ img = Image.open(pages_data[res]["function_profiling_histo"])
827
+ fig, axis = plt.subplots(1, 1, figsize=(11.69, 8.27), dpi=300)
828
+ axis.imshow(img, interpolation="none")
829
+ axis.set_title(
830
+ f"Function Profiling Histograms - "
831
+ f"Epipolar Resolution {res}",
832
+ fontsize=16,
833
+ fontweight="bold",
834
+ )
835
+ axis.axis("off")
836
+ plt.subplots_adjust(left=0, right=1, top=0.95, bottom=0)
837
+ pdf.savefig(fig, bbox_inches="tight", dpi=300)
838
+ plt.close(fig)
839
+
840
+ if os.path.exists(pages_data[res]["function_profiling_pie_chart"]):
841
+ img = Image.open(
842
+ pages_data[res]["function_profiling_pie_chart"]
843
+ )
844
+ fig, axis = plt.subplots(1, 1, figsize=(11.69, 8.27), dpi=300)
845
+ axis.imshow(img, interpolation="none")
846
+ axis.set_title(
847
+ f"Function Profiling Pie Chart - Epipolar Resolution {res}",
848
+ fontsize=16,
849
+ fontweight="bold",
850
+ )
851
+ axis.axis("off")
852
+ plt.subplots_adjust(left=0, right=1, top=0.95, bottom=0)
853
+ pdf.savefig(fig, bbox_inches="tight", dpi=300)
854
+ plt.close(fig)
855
+
856
+ # global_profiling
857
+ if os.path.exists(pages_data[res]["global_profiling"]):
858
+ img = Image.open(pages_data[res]["global_profiling"])
859
+ fig, axis = plt.subplots(1, 1, figsize=(11.69, 8.27), dpi=300)
860
+ axis.imshow(img, interpolation="none")
861
+ axis.set_title(
862
+ f"Global Profiling - Epipolar Resolution {res}",
863
+ fontsize=16,
864
+ fontweight="bold",
865
+ )
866
+ axis.axis("off")
867
+ plt.subplots_adjust(left=0, right=1, top=0.95, bottom=0)
868
+ pdf.savefig(fig, bbox_inches="tight", dpi=300)
869
+ plt.close(fig)
870
+
871
+ logging.info("PDF profiling summary generated: {}".format(pdf_path))
872
+
873
+
874
+ def filter_lists(names, data, cond):
875
+ """
876
+ Filter lists with condition on name
877
+ """
878
+
879
+ filtered_names = []
880
+ filtered_data = []
881
+
882
+ for name, dat in zip(names, data): # noqa: B905
883
+ if cond(name):
884
+ filtered_names.append(name)
885
+ filtered_data.append(dat)
886
+
887
+ return filtered_names, filtered_data
888
+
889
+
890
+ def generate_boxplot(axis, names, data_full, title, data_type):
891
+ """
892
+ Generate boxplot
893
+ """
894
+
895
+ axis.boxplot(data_full, vert=False, showfliers=False, labels=names)
896
+ axis.invert_yaxis()
897
+ axis.set_xlabel(data_type)
898
+ axis.set_title(title)
899
+
900
+
901
+ def generate_histo( # pylint: disable=too-many-positional-arguments
902
+ axis, names, data, title, data_type, data_min_err=None, data_max_err=None
903
+ ):
904
+ """
905
+ Generate histogram
906
+ """
907
+ y_pos = np.arange(len(names))
908
+ if None not in (data_min_err, data_max_err):
909
+ data_min_err = np.array(data_min_err)
910
+ data_max_err = np.array(data_max_err)
911
+ xerr = np.empty((2, data_min_err.shape[0]))
912
+ xerr[0, :] = data_min_err
913
+ xerr[1, :] = data_max_err
914
+ axis.barh(y_pos, data, xerr=xerr, align="center")
915
+ else:
916
+ axis.barh(y_pos, data, align="center")
917
+ axis.set_yticks(y_pos, labels=names)
918
+ axis.invert_yaxis()
919
+ axis.set_xlabel(data_type)
920
+ axis.set_title(title)
921
+
922
+
923
+ def generate_pie_chart(axis, names, data, title):
924
+ """
925
+ Generate pie chart, data in %
926
+ """
927
+ names = list(names)
928
+ data = list(data)
929
+
930
+ if np.sum(data) > 100:
931
+ cars_logging.add_profiling_message(
932
+ "Chart: sum of data {}> 100%".format(title)
933
+ )
934
+ title += " (with sum > 100%) "
935
+ else:
936
+ others = 100 - np.sum(data)
937
+ data.append(others)
938
+ names.append("other")
939
+
940
+ axis.pie(
941
+ data,
942
+ labels=names,
943
+ autopct="%1.1f%%",
944
+ labeldistance=1.1,
945
+ textprops={"fontsize": 30},
946
+ )
947
+ axis.set_title(title, fontsize=40)
948
+
949
+
950
+ def cars_profile(name=None, interval=0.1):
951
+ """
952
+ CARS profiling decorator
953
+
954
+ :param: func: function to monitor
955
+
956
+ """
957
+
958
+ def decorator_generator(func):
959
+ """
960
+ Inner function
961
+ """
962
+
963
+ def wrapper_cars_profile(*args, **kwargs):
964
+ """
965
+ Profiling wrapper
966
+
967
+ Generate profiling logs of functio, run
968
+
969
+ :return: func(*args, **kwargs)
970
+
971
+ """
972
+ start_time = time.time()
973
+
974
+ memory_start = get_current_memory()
975
+
976
+ # Launch memory profiling thread
977
+ child_pipe, parent_pipe = Pipe()
978
+ thread_monitoring = CarsMemProf(
979
+ os.getpid(), child_pipe, interval=interval
980
+ )
981
+ thread_monitoring.start()
982
+ if parent_pipe.poll(THREAD_TIMEOUT):
983
+ parent_pipe.recv()
984
+
985
+ res = func(*args, **kwargs)
986
+ total_time = time.time() - start_time
987
+
988
+ # end memprofiling monitoring
989
+ parent_pipe.send(0)
990
+ max_memory = None
991
+ max_cpu = None
992
+ if parent_pipe.poll(THREAD_TIMEOUT):
993
+ max_memory = parent_pipe.recv()
994
+ if parent_pipe.poll(THREAD_TIMEOUT):
995
+ max_cpu = parent_pipe.recv()
996
+ memory_end = get_current_memory()
997
+
998
+ func_name = name
999
+ if name is None:
1000
+ func_name = func.__name__.capitalize()
1001
+
1002
+ message = (
1003
+ "CarsProfiling# %{}%: %{:.4f}% s Max ram : %{}% MiB"
1004
+ " Start Ram: %{}% MiB, End Ram: %{}% MiB, "
1005
+ " Max CPU usage: %{}%".format(
1006
+ func_name,
1007
+ total_time,
1008
+ max_memory,
1009
+ memory_start,
1010
+ memory_end,
1011
+ max_cpu,
1012
+ )
1013
+ )
1014
+
1015
+ cars_logging.add_profiling_message(message)
1016
+
1017
+ return res
1018
+
1019
+ return wrapper_cars_profile
1020
+
1021
+ return decorator_generator
1022
+
1023
+
1024
+ class CarsMemProf(Thread):
1025
+ """
1026
+ CarsMemProf
1027
+
1028
+ Profiling thread
1029
+ """
1030
+
1031
+ def __init__(self, pid, pipe, interval=0.1):
1032
+ """
1033
+ Init function of CarsMemProf
1034
+ """
1035
+ super().__init__()
1036
+ self.pipe = pipe
1037
+ self.interval = interval
1038
+ self.cpu_interval = 0.1
1039
+ self.process = psutil.Process(pid)
1040
+
1041
+ def run(self):
1042
+ """
1043
+ Run
1044
+ """
1045
+
1046
+ try:
1047
+ max_mem = 0
1048
+ max_cpu = 0
1049
+
1050
+ # tell parent profiling is ready
1051
+ self.pipe.send(0)
1052
+ stop = False
1053
+ while True:
1054
+ # Get memory
1055
+ current_mem = self.process.memory_info().rss
1056
+
1057
+ max_mem = max(max_mem, current_mem)
1058
+
1059
+ # Get cpu max
1060
+ current_cpu = self.process.cpu_percent(
1061
+ interval=self.cpu_interval
1062
+ )
1063
+
1064
+ max_cpu = max(max_cpu, current_cpu)
1065
+
1066
+ if stop:
1067
+ break
1068
+ stop = self.pipe.poll(self.interval)
1069
+
1070
+ # Convert nbytes size for logger
1071
+ self.pipe.send(float(max_mem) / 1000000)
1072
+ self.pipe.send(max_cpu)
1073
+
1074
+ except BrokenPipeError:
1075
+ logging.debug("broken pipe error in log wrapper ")